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Abstract: The petrochemical industry is the top priority of the national economy and 

sustainable development. For the purpose of improving the energy efficiency in the 

petrochemical industry, an energy optimization and prediction model based on the improved 

convolutional neural network (CNN) integrating the cross-feature (CF) (CF-CNN) is proposed. 

The CF can combine the correlation between features to obtain the input of the CNN, which 

can avoid over-fitting problems caused by fewer features. Then the CNN is designed as a three-

layer structure and the Rectified Linear Unit (ReLU) is introduced to achieve better 

generalization capability and stability with boiler fluctuations in the petrochemical industry. 

The developed method has better performances of modeling accuracy and applicability than 

that of the back-propagation (BP) neural network and the extreme learning machine (ELM) on 

University of California Irvine (UCI) benchmark datasets. Furthermore, the developed method 

is applied to establish an energy optimization and prediction model of ethylene production 

systems in the petrochemical industry. The experimental results testify the capability of the 

proposed method. Meanwhile, the average relative generalization error is 2.86%, and the 
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energy utilization efficiency increases by 6.38%, which leads to reduction of the carbon 

emissions by 5.29%.

Key words: Production prediction modeling; Energy optimization; Carbon emissions reduction; 

Convolutional neural network; Cross-feature; Petrochemical industry

1. Introduction

The petrochemical industry is the top priority of the national economy and sustainable 

development. And the ethylene industry is a key part of complex petrochemical production 

industry. Currently, the ethylene is one of the demanding basic chemical materials [1] and the 

ethylene production consumes more than 15% of energy (including fuels and materials) in 

thousands of chemical products [2]. However, when the ethylene is produced by cracking, the 

total energy loss exceeds 45% [3]. Along with China's rapid development, the total ethylene 

production capacity in 2017 increased to 23.21 million tons and the ethylene equivalent 

consumption grew up to 10% [4]. 

However, the fast growth of the ethylene production leads to the increase of the energy 

consumption and carbon emissions, and reduction of the ethylene production efficiency. 

Therefore, how to increase the ethylene production efficiency and reduce the carbon emissions 

has become a problem in the world. Nowadays, with the high-speed development of artificial 

intelligence, more and more energy optimization and analysis models have been used to raise 

productivity and energy efficiency in complex petrochemical processes. Geng et al. developed 

an artificial neural network (ANN) based on self-organizing cosine similarity, which overcame 

shortcomings of the single-hidden layer network in building the ethylene production prediction 

model [5]. An index decomposition analysis (IDA) method, combined with an ANN and a data 

envelopment analysis (DEA) was proposed by Olanrewaju et al. to assess energy consumption 

[6] and the energy capacity of industry in South African [7]. However, the process of extracting 

features in experiments is very complicated and the above models are not stable for fluctuations 

in complex industrial production. Considering the characteristics of high data dimension and 
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noise in the industrial data, an extreme learning machines (ELM) method based on the IDA for 

energy optimization and analysis was proposed by Geng et al. [8]. However, these methods do 

not take local minimization problems and the convergence rate in traditional ANNs into 

account. Considering the shortcomings and the limitations of the ANNs, a convolutional neural 

network (CNN) based on the cross-feature (CF) is proposed. The CF can combine the 

correlation between features to obtain the input of the CNN, which can avoid over-fitting 

problems caused by fewer features. Then the CNN is designed as a three-layer structure and the 

Rectified Linear Unit (ReLU) is introduced to achieve better generalization capability and 

stability with boiler fluctuations in petrochemical industry. The developed model has higher 

accuracy and scalability compared with back-propagation (BP) neural network and the ELM on 

the basis of the University of California Irvine (UCI) benchmark datasets. Finally, applied in 

the ethylene production process, the proposed method can accurately predict the ethylene 

production with an average relative generalization error of 2.86%. As the number of ethylene 

production features is small, the CNN is prone to over-fitting. The CF can not only obtain an 

expanded feature space serving as the input of the CNN, but also fully explore the correlation 

among crude oils, streams, fuel, water and electricity, which are essential inputs of ethylene 

production plants. By analyzing the model prediction results and the actual ethylene production, 

the experimental results show that ethylene plants have greater energy efficiency improvement 

space and energy saving potential. The proposed method serves as guidance for the ethylene 

production factory by allotting crude oils, streams, fuel, water and electricity in a reasonable 

way, with the energy efficiency increase of 6.38% and a carbon emissions decrease of 5.29%.

The rest of the paper is designed as follows. The current research results in energy 

prediction and analysis in complex petrochemical processes are shown in Section 2. Section 3 

illustrates the details of the CF-CNN. Comparison of verification results of the CF-CNN, the 

BP and the ELM based on the UCI standard dataset is conducted in Section 4. We present a 
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case study of energy optimization and prediction for an ethylene production process based on 

the CF-CNN in Section 5. In the end, the summary is presented in Section 6. 

2. Related work

With the high-speed development of the computer technology, more and more simulation 

and energy efficiency prediction model of industrial production processes has been built by 

using the information technology, including the complex petrochemical production processes. 

Cai et al. developed a novel method combining the principal component analysis (PCA) with 

the complex network theory in process monitoring of the chemical industry [9]. A novel 

method based on the PCA was developed for energy efficiency evaluation by Zhu et al. [10]. 

However, finding a suitable mapping space in the PCA to accommodate the training data is 

complicated. Middleton et al. proposed a novel linearized approach to optimize energy network 

models [11]. Gong et al. developed an ethylene production system combining the DEA with 

factor analysis for energy efficiency evaluation [12]. Han et al. developed a modified DEA 

cross model for complex industrial processes [13,14]. However, the above statistical methods 

based on feature engineering in specific fields cannot be transferred to other industrial 

production fields and have limited generalization ability. Therefore, the ANN is proposed. The 

ANN is proved to be an effective algorithm for dealing with recognition, regression and 

classification tasks [15]. Hinton et al. proposed the BP neural network with a gradient-based 

back propagation algorithm [16], one of the most common neural networks. Ni et al. estimated 

the spatial distribution of PM2.5 concentrations in the Beijing-Tianjin-Hebei region from 2014 

to 2016 by using the BP neural network [17]. However, the convergence speed of the BP neural 

network is too slow and may fall into local optimum, which makes industrial modeling unstable. 

The ELM [18, 19] greatly enriched the ANN, compared with the BP neural network. Unlike 

other feedforward neural networks, the ELM randomly initializes the network weight of the 

single hidden layer. The outputs are calculated by the Moore-Penrose inverse matrix. Therefore, 

the speed of calculating outputs and the generalization precision are pretty high, and not easy to 
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fall into local optimum [20]. Han at al. proposed the predictive modeling method combining the 

ELM with affinity propagation [21]. Cao et al. developed an improved adaptive evolution ELM 

algorithm to optimize the learning network weights of hidden neurons [22]. Suresh et al. 

proposed a genetic algorithm based on real-code to select the initialization parameters in the 

ELM. This method also speeded up the process of calculating the optimal parameters of the 

network, thereby improving the performance of the ELM [23]. Liu et al. combined four hybrid 

models based on four signal decomposition algorithms to calculate the output weights of the 

ELM, and the model obtained good performance in wind speed prediction [24]. On the other 

hand, the single-hidden layer feedforward neural network has significant limitations for 

production prediction modeling based on complex petrochemical data. 

Recently, deep learning has set off a research boom and gained a large number of 

followers. Deep learning explores complex structures in large datasets by using BP algorithms 

to change the parameters of the training model (for calculating errors in each layer from errors 

in the previous layer). CNNs have achieved great progress in processing images, video and 

voice [25]. The CNN is a biologically inspired, trainable architecture that learns characteristics. 

The CNN is consisted of a filter bank, some non-linear feature pooling layers. Through these 

stages, the CNN can construct a multi-level functional hierarchy [26]. Lee et al. [27] developed 

a CNN model, named FDC-CNN for fault detection and classification (FDC) in semiconductor 

manufacturing processes. Meanwhile, CNNs have inherent advantages for images and strong 

adaptability in the image processing field [28]. Malek et al. obtained a one-dimensional (1D) 

CNN model for making chemometric analyses from spectroscopic data by particle swarm 

optimization training [29]. Abdeljaber et al. merged feature extraction and classification blocks 

into a compact learning body, and constructed a 1D-CNN model for damage detection [30]. 

In addition, the output of a chemical process is determined by one or more factors, and 

some factors are sometimes decisive. Therefore, how to fully consider the internal correlation 

and interaction between these factors is the modeling basis of the complex petrochemical 
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industry modeling. The CF is one of the methods in feature engineering [31]. The CF fully 

considered the internal correlation between features [32], exploring the correlation between 

each feature and all other features [33, 34]. Jian et al. proposed the KL transform theory for 

feature intersection in the feature space [35]. Then the combined feature is expressed as a 

complex vector [36]. Through the above discussion, the CF-CNN is proposed to build the 

energy optimization and prediction model of complex petrochemical processes. 

3. Convolutional neural network integrating cross-feature

In order to make better use of the internal correlation between the influencing factors, the 

CF is introduced into the CNN. The feature space obtained by the CF is used as the input of the 

CNN to establish the energy optimization and prediction model of complex petrochemical 

industrial processes.

3.1 One-dimensional convolutional neural network 

The CNN is mainly composed of some convolution layers, pooling layers and a fully 

connected layer [37]. The typical structure of the 1D-CNN is shown in Fig. 1. It is important 

that the CNN makes full use of natural signal properties like local connections and shared 

weights, which reduces the dimension of features and keeps an invariance of few shifts and 

distortions [38]. The back propagation and the forward propagation in the training process in 

1D-CNN can be depicted as the following.
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Fig. 1 The typical structure of the 1D-CNN

The convolutional layer can explore local connections of the previous layer of the network, 

and in the convolutional layer local units share the weight of the convolution kernel [39]. And 

the calculation formula for 1D-convolution is explained as follows:

   y(𝑘) = ℎ(𝑘) ∗ 𝑢(𝑘) = ∑𝑁
𝑖 = 0ℎ(𝑘 ― 𝑖)𝑢(𝑖)                                         (1)

wherein  and  are 1D-sequences and y  is the convolution result. ℎ(𝑘) 𝑢(𝑘) (𝑘) ℎ(𝑘) ∗ 𝑢(𝑘) =  𝑢

, which means the order can be swapped in the convolution calculation.(𝑘) ∗  ℎ(𝑘)

It can be seen from Fig. 1 that  is a complex vector into which the input data is converted, 𝐻

and  is the convolution kernel. Therefore,  can be obtained after the convolution operation.𝐶 𝑃

P = 𝐻 ∗ 𝐶                                                                       (2)

wherein  can be written as:  𝐻,𝐶

𝐻 =  [𝐻1,𝐻2,…,𝐻𝑛]𝑇 = [ℎ11 ⋯ ℎ1𝑘
⋮ ⋱ ⋮

ℎ𝑛1 ⋯ ℎ𝑛𝑘
]

𝑛 × 𝑘

                                 (3) 

𝐶 =  [𝐶𝑇
1,𝐶𝑇

2, …,𝐶𝑇
𝑠 ]𝑚 × 𝑠  (𝑚 < 𝑘)                                               (4)

wherein,  is a row vector which is represented as  .  (i = 𝐻𝑖(𝑖 = 1,2,…,𝑛) [ℎ𝑖1,ℎ𝑖2,…,ℎ𝑖𝑘] 𝐶𝑇
𝑖

1,2,…,s) is a column vector of the i-th convolution kernel.  is the amount of the sample data, 𝑛

and  represents the number of input features.  and  represent the length and the number of 𝑘 𝑚 𝑠
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the convolution kernel, respectively. Based on the above representations, Eq. (2) can be 

transformed to Eqs. (5) and (6).

(5)𝑃 =  [𝑃1,𝑃2,…,𝑃𝑠]                                                            

(j = 1,2, …,s)  (6)𝑃𝑗 =  [𝐻1 ∗  𝐶𝑇
𝑗

⋮
𝐻𝑛 ∗  𝐶𝑇

𝑗
]

𝑛 ×  (𝑘 ― 𝑚 + 1)

                                       

wherein  represents the result of the convolution operation of the input vector  and the j-th 𝑃𝑗 𝐻

convolution kernel. The width of  is . And a convolution operation with an input 𝑃𝑗 𝑘 ― 𝑚 + 1

with k features and a convolution kernel of length m (assuming that m=3) is shown in Fig. 2. 

Fig. 2 1D convolution operation

In addition, the convolved result is subjected to a nonlinear mapping of the activation 

function, which makes the network converge more quickly [40]. There are many types of 

activation functions and the Rectified Linear Unit (ReLU) is used here, denoted by  as 𝐺( ∙ )

follows:

𝑃 = 𝐺(𝑃) =  [𝐺(𝑃1),𝐺(𝑃2),…,𝐺(𝑃𝑠)]                                              (7)

where  is defined as follows:𝐺( ∙ )

 

 

 

Journal Pre-proof



9

𝐺(𝑥) =  {𝑥 ,   𝑥 > 0
0 ,   𝑥 ≤ 0                                                              (8)

The pooling layer can combine features with similar semantics to achieve nonlinearity [41]. 

The most common pooling layers include the maximum pooling and the average pooling, while 

the former one is used in this paper. The maximum pooling operation with the pooling layer of 

the size a=2 expressed as  is described in Fig. 3. The  obtained before is calculated as in 𝑚𝑎𝑥p 𝑃

Eqs. (9) and (10).

𝐽 = 𝑚𝑎𝑥𝑝(𝑃) =  [𝐽1,𝐽2,…,𝐽𝑠]                                                 (9)

𝐽𝑖 =  [𝑗11 ⋯ 𝑗1(𝑘 ― 𝑚 ― 𝑎 + 2)
⋮ ⋱ ⋮

𝑗𝑛1 ⋯ 𝑗𝑛(𝑘 ― 𝑚 ― 𝑎 + 2)
]

𝑛 × (𝑘 ― 𝑚 ― 𝑎 + 2)

 (𝑖 = 1,2,…,𝑠)                      (10)

More combinations of convolution and pooling are stacked to go through the fully 

connected layer for classification or regression purposes. The BP gradients in convolutional 

networks, like in normal networks, allow training of weights in all filters. 

Fig. 3 The maximum pooling operation

3.2 Cross-feature

The CF is one important method in feature engineering. There are three main schemes 

including a composite feature vector, shorter feature vectors obtained through feature selection 

and conversion techniques, and multiple classifiers, all trained on their own feature sets. 
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Addition, subtraction, multiplication and division can be used to obtain new feature space 

[34]. Therefore, a new feature space can be constructed by combining original features. 

Then the new feature set is generated by Cartesian product operation. Supposing the 

feature set is  with  features. A feature set  is constructed as 𝐴 =  {𝑎𝑛|𝑛 = 1,2,…,𝑁;𝑎𝑛 ∈ 𝑅} 𝑁 𝐵

. The Cartesian product of feature sets  and  forms a new feature set .𝐵 = 𝐴 𝐴 𝐵 𝐹

(11)𝐹 =  {𝑎𝑖𝑏𝑗|𝑎𝑖 ∈ 𝐴 ∧ 𝑏𝑗 ∈ 𝐵}                                                     

When the situation of  in the  feature set is removed, the feature set  is 𝑎𝑖𝑏𝑗 = 𝑎𝑗𝑏𝑖 𝐹 𝐹

represented as follows:

 (12)𝐹 =  {𝑓𝑛|𝑛 = 1,2,…,
𝑁(𝑁 ― 1)

2 ;𝑓𝑛 ∈ 𝑅}(𝑁 ≥ 3)                                   

wherein the limit  is to make the number of features in the feature set  greater than or 𝑁 ≥ 3 𝐹

equal to the original feature set . 𝐴

3.3 Evaluation criterion

In order to measure the validity of the developed model, the average relative 

generalization error (ARGE) is used to calculate errors between the training data and the test 

data [42], which can be calculated by Eqs. (13) and (14).

𝑅𝐺𝐸𝑖 = 𝐴𝑏𝑠(𝑀𝑜𝑑𝑒𝑙𝑂𝑢𝑡𝑖𝑛𝑣𝑒𝑟
𝑖 ― 𝐸𝑥𝑝𝑒𝑐𝑡𝑂𝑢𝑡𝑖𝑛𝑣𝑒𝑟

𝑖

𝐸𝑥𝑝𝑒𝑐𝑡𝑂𝑢𝑡𝑖𝑛𝑣𝑒𝑟
𝑖

)                              (13)

𝐴𝑅𝐺𝐸 =  
∑𝑛

𝑖 = 1
𝑅𝐺𝐸𝑖

𝑛                                                      (14)

wherein  and  are the inverse normalized 𝑀𝑜𝑑𝑒𝑙𝑂𝑢𝑡𝑖𝑛𝑣𝑒𝑟
𝑖 𝐸𝑥𝑝𝑒𝑐𝑡𝑂𝑢𝑡𝑖𝑛𝑣𝑒𝑟

𝑖 (𝑖 = 1,2,…,𝑛)

prediction value and the real output of the train and test data. Since the data are normalized to 

the [0, 1] interval, it is essential to convert the normalized value back to the source data during 

the evaluation. And  is the number of samples. 𝑛

3.4 The framework of the CF-CNN
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The CF fully considers the correlation between features based on the original feature set, 

and generates a new feature set based on Cartesian product, and the new features are set as 

inputs of the CNN. Given a training set , where  is {(𝑋𝑛,𝑌𝑛)|𝑛 = 1,2,…,𝑁;𝑋𝑛 ∈ 𝑅𝑤1;𝑌𝑛 ∈ 𝑅𝑤2} 𝑋𝑛

the input complex vector and  is the expected value of each data sample. There are  𝑌𝑛 𝑁

samples in the data set. The details of the CF-CNN are shown as the following.

 Step 1: The input data  and  are normalized to the [0,1] interval by the min-max 𝑋𝑛 𝑌𝑛

normalization, which can be seen in Eq. (15). 

 (15)𝑥(𝑚)
𝑘 =  { 𝑥𝑘 ― 𝑚𝑖𝑛

1 ≤ 𝑗 ≤ 𝑛{𝑥𝑗}
𝑚𝑎𝑥
1 ≤ 𝑗 ≤ 𝑛{𝑥𝑗} ―  𝑚𝑖𝑛

1 ≤ 𝑗 ≤ 𝑛{𝑥𝑗}
 ,         𝑖𝑓 𝑚𝑎𝑥

1 ≤ 𝑗 ≤ 𝑛{𝑥𝑗} ≠  𝑚𝑖𝑛
1 ≤ 𝑗 ≤ 𝑛{𝑥𝑗} 

―1,                                                  𝑜𝑡ℎ𝑒𝑟
                          

Step 2: Then the input matrix of the network model is constructed as the form of , [𝐵,𝐿,𝐷]

where  is the batch quantity,  the batch size and the length of the sequence, and  the number 𝐵 𝐿 𝐷

of features. The dimension of the input data is shown in . The training step of [𝑥(1)
1 ⋯ 𝑥(𝐷)

1
⋮ ⋱ ⋮

𝑥(1)
𝐿 ⋯ 𝑥(𝐷)

𝐿
]

the CF-CNN starts from zero, at which time the data of the first batch  is entered for training. 𝑋0

As the iteration continues, when the counting step reaches , the last batch data is entered  𝐵 ― 1

into the CF-CNN. All the data are trained once. 

Step 3: Initialize the parameters of the CF-CNN. 

Step 4: According to Eqs. (2)-(12), parameters in the CF-CNN are continuously calculated 

and updated, retaining the best model in the training process. Here two sets of convolutional 

and maximum pooling layers are used, and the last fully connected layer integrates learned 

features for prediction. 

Step 5: The actual output of the CF-CNN needs to be inversely normalized based on Eq. 

(16).

𝑦𝑘 =  𝑦(𝑚)
𝑘 ∗ (𝑚𝑎𝑥

1 ≤ 𝑗 ≤ 𝑛{𝑥𝑗} ―  𝑚𝑖𝑛
1 ≤ 𝑗 ≤ 𝑛{𝑥𝑗}) +  𝑚𝑖𝑛

1 ≤ 𝑗 ≤ 𝑛{𝑥𝑗}                             (16) 

where  is the output of the CF-CNN, valued between . 𝑦(𝑚)
𝑘 [0,1]
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Step 6: Compare the expected output with the output of the CF-CNN, then calculate the 

 between training data and test data according to Eq. (14). 𝐴𝑅𝐺𝐸

The flow diagram of the CF-CNN is shown in Fig. 4. 

Fig.4 The flow diagram of the CF-CNN

4. Benchmark verification of UCI data sets 

For the sake of proving the stability and capability of the proposed CF-CNN, the Combined 

Cycle Power Plant (CCPP) and the Airfoil Self-Noise data sets from UCI standard dataset 
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(more details can be found in the following website: http://archive.ics.uci.edu/ml/datasets.html) 

are picked to solve other regression problems. The characterization of the data set is presented 

in Table 1. 

Table 1 The characterization of UCI data

Data Set Input Size Output Size Train Samples Test Samples

Airfoil 5 1 1000 147

CCPP 4 1 200 34

First, the feature space of the two data sets is processed, and the CF is used to construct a 

new feature space based on the original feature set. According to Eqs. (11) and (12), the 

number of new features in the two data sets is 10 and 6 respectively. Then the test operation is 

performed according to the modeling process described above. At the same time, in order to 

meet conditions of the comparative experiment, the CF is introduced into the BP (CF-BP) and 

ELM (CF-ELM) respectively. Then the CF-ELM and CF-BP are used to test the above data and 

compared with the CF-CNN in test results. The learning rate of the CF-BP is set as 0.01. 

Meanwhile, the training times are 5000 and the momentum factor is 0.9. The evaluation 

indexes of these networks are calculated based on the ARGE. The number of nodes in the 

hidden layer is adjusted according to the performance of these models, in order to achieve the 

best performance. 

The test results of the two UCI data sets of three models are described in Table 2 and 

Table 3, respectively. 

As can be seen from Tables 2 and 3, the CF-CNN can make the evaluation index reach the 

minimum value with the best performance. Meanwhile, the proposed model has better 

generalization accuracy and better performance compared with the CF-BP and the CF-ELM. 

Therefore, the CF-CNN is proved effective. 

Table 2 The test results of Airfoil Data
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Model Hidden nodes ARGE

The CF-BP 60 0.202

The CF-ELM 87 0.113

The CF-CNN - 0.098

Table 3 The test results of CCPP Data

Model                                Hidden nodes ARGE                 

The CF-BP 50 0.268

The CF-ELM 56 0.178

The CF-CNN - 0.164

5. Case study: Energy optimization and prediction modeling of petrochemical industries

For the purpose of verifying the effectiveness of the proposed model in the actual 

petrochemical production process, an energy optimization and prediction model is established 

based on the CF-CNN to explore the rationality of energy efficiency and carbon emissions.

5.1 Introduction of data 

The ethylene industry is an important branch of the complex petrochemical industry. 

There are mainly two parts in the ethylene production: separation and cracking, in which a large 

amount of fuel is consumed during the cracking operation. At the same time, the fuel consumed 

reduces the energy efficiency. The separation process can be broken down into three steps: 

rapid cooling, compression and separation [43]. 

Different factories use different energy division standards and methods for calculating 

energy efficiency. This paper refers to the ethylene trade standard GB/T 2589-2008 and DB 

37/751e2007 [44, 45]. The ethylene plants in the actual ethylene production process are divided 

into different technology indices and scale indices, and we calculate the energy consumption 
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index according to a unified calculation standard [8]. Fig. 5 shows a schematic flow diagram of 

the ethylene plant. 

Fig. 5 Schematic flow diagram of the ethylene plant

There are many factors influencing the energy efficiency of the ethylene industry, and the 

most important factors are raw materials, fuel, power and ethylene production. Raw materials 

have a variety of crude oil, including hydrogenation tail oil, C345, light diesel fuel, naphtha and 

others. The fuel includes fuel gas, light weight oil and heavy weight oil. Power includes the 

electricity, and water includes boiler water and other water. The steam consists of super high 

pressure steam, high pressure steam, medium pressure steam and low pressure steam. The 

production indicator is expressed as the sum of ethylene, propylene and C4. According to the 

conversion relationship in the energy calculation method [46], the measurement units of fuel, 

steam, water and electricity are uniformly converted into GJ/Ton ethylene. However, the crude 

oil and the production indicator are still measured in Ton. 
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The data source comes from twenty ethylene plants based on different technologies in 

China [8]. The monthly industrial data dating from 2014 to 2018 for 5 years are used to realize 

the energy optimization and production prediction of the ethylene production using the 

proposed model. The input variables of the proposed model are crude oil, fuel, steam, water and 

electricity, and the output variable is the ethylene production, as described in Fig. 6. In the Fig. 

6, the X-coordinate axis represents the input variables and the output variable with their own 

units, the Y-coordinate axis represents all the samples, and the Z-coordinate axis represents the 

values of variables.

Fig. 6 The input variables and the ethylene yield

In order to ensure the data quality, the extracted data is preprocessed, including data 

cleaning and data reduction. During the data cleaning phase, samples with outliers of the input 

or output variables are excluded to ensure that all samples are valid. Then, the input features are 

mapped into a new feature space according to Eqs. (11) and (12). The data is normalized 

according to Eq. (15). 

5.2 Energy optimization and prediction modeling of ethylene plants

The preprocessed data is split into training data and generalization data. The proposed CF-

CNN are compared with the CF-ELM and the CF-BP to prove the predictive performance of 
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the proposed model. Initial values of the network parameters of three prediction models are 

shown in Table 4. The  is used to estimate the prediction accuracy in the experiment. The 𝐴𝑅𝐺𝐸

nodes of the hidden layer and the prediction accuracy of the training and test sets are shown in 

Table 5. The relationship between the predictive performance of compared networks and the 

number of hidden layer nodes is depicted in Fig. 7. 

Table 4 Initial values of the network parameters

Model parameters                             The CF-BP The CF-ELM                 The CF-CNN

Input layer node number

Input node number after CF

5

10

5

10

5

10

Output layer node number 1 1 1

Number of iterations

Activation function

5000

sigmoid

-

-

200

ReLU

Fig. 7 The relationship between the number of hidden layer nodes and the generalization error 

of the CF-BP and the CF-ELM

Table 5 The result of different models

Ethylene Production The CF-BP The CF-ELM                  The CF-CNN
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Hidden layer node 15 10 -

Training ARGE 0.0592 0.0382 0.023

Generalized ARGE 0.0615 0.0391 0.0286

Fig. 8 Predicted values by different models and actual values of ethylene production plants

As can be seen from Fig. 7, when the number of hidden layer nodes reaches 10 and 15, the 

CF-ELM and the CF-BP models get the minimum generalization error. Therefore, the CF-ELM 

and the CF-BP models that achieve the best performance are compared with the proposed 

model. As is evident in Table 5, the CF-CNN has the minimum error, which means that the CF-

CNN is effective in improving the ethylene production efficiency. The ARGE of the CF-BP, 

the CF-ELM and the CF-CNN is 6.15%, 3.91% and 2.86%, respectively. The predicted 

ethylene production of three models for the test sample and the actual values of ethylene 

production plants are depicted in Fig. 8, which also shows that the CF-CNN is more capable 

and more stable to fit the data. Meanwhile the proposed CF-CNN can obtain more accurate 

prediction of the ethylene production, serving to achieve energy optimization. 

The difference between predicted values of the CF-CNN model and actual values is shown 

in Fig. 9, which is expressed as . According to the data of samples 4, 11 and 21, 𝑦𝑟𝑒𝑎𝑙 ― 𝑦𝑝𝑟𝑒𝑑

the actual ethylene production amount is obviously lower than prediction outputs of the 

proposed model. For example, in the 21st group, the proposed model predicts the ethylene 
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production is 135349.34 tons, while the actual ethylene production amount is only 118750 tons, 

which indicates that the production efficiency of the ethylene plant is low in this month and the 

energy utilization rate is low. Therefore, it is necessary to adjust the structure of the production 

line and the proportion of energy and power inputs. However, according to data of the 3, 8, 19 

and 20 groups, the actual ethylene production amounts are similar to the prediction outputs. The 

actual ethylene production amounts in the 5, 6, 10 and 13 groups are higher than the predicted 

values, and the energy utilization rate is quite high and needs to be maintained, which also 

indicates the direction of future improvement. 

Fig. 9 The difference between the predicted result and the actual value

For example, in order to increase the ethylene production of the 11th test sample, the 

adjustment of each parameter in the production process is described in Fig. 10. According to 

data analysis of the forecast results, the crude oil, fuel, water and electricity in the 11th group of 

the ethylene plant needs to be decreased by 5,519 tons, 0.43GJ/Ton, 0.3724GJ/Ton and 

0.105GJ/Ton, respectively. At the same time, the steam is increased by 1.223GJ/Ton, so that 

the production amount of ethylene increases by about 7,192 tons. In this way, the ethylene is 

increased from 0.564 tons to 0.6 tons per ton of crude oil, with an increase rate of 6.38%. In 

addition, 1.77 tons of crude oil per ton of ethylene is required before production adjustment. 

However, the oil is reduced to 1.66 tons after the adjustment. Meanwhile, the carbon emissions 

per ton of ethylene produced from crude oil are reduced from 1.48 tons to 1.39 tons, as the 
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carbon emission coefficient of crude oil is 0.8363 TC/Ton. Similarly, the carbon emissions per 

ton of ethylene produced from fuel are reduced from 0.392 tons to 0.383 tons according to the 

carbon emission coefficient of 21.1 KgC/GJ, with a decrease rate of 5.29% [47].

Considering the difference in the way the ethylene produced, the ethylene production of 

the 4th test sample is also analyzed, which is depicted in Fig. 11. The crude oil, fuel and 

electricity in the 4th group of the ethylene plant are decreased by 1424 tons, 1.45GJ/Ton and 

0.003GJ/Ton, respectively. Meanwhile, the steam and water are increased by 0.134GJ/Ton and 

0.139GJ/Ton, which can increase the ethylene production amount by 3851 tons. 0.574 tons of 

ethylene per ton of crude oil can be increased to 0.59 tons, with an increase rate of 2.89%. 

Furthermore, the carbon emissions per ton of ethylene produced decrease from 1.87 tons to 1.8 

tons, with a decrease rate of 3.74%.

Fig. 10 The adjustment of parameters and increase of yield in ethylene production (11th)
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Fig. 11 The adjustment of parameters and increase of yield in ethylene production (4th)

6. Conclusion

The CF-CNN method is proposed for energy optimization and prediction modeling in 

complex petrochemical industries, which overcomes the shortcomings of the traditional ANN 

and the traditional statistical methods. The CF fully considers the nonlinear relationship and 

internal relationship between the features. Simultaneously, the new feature space generated 

from the original feature set is more conducive to improving the performance of the CF-CNN. 

In addition, the CF-CNN is examined by the UCI standard data sets with higher accuracy, 

better performance and greater generalization capabilities, compared with the CF-BP and the 

CF-ELM. Furthermore, the proposed model is applied in energy optimization and prediction 

modeling of ethylene plants in the complex petrochemical industry, with the ARGE of 2.86%. 

The model can accurately predict the ethylene production objectively and analyze the energy 

efficiency of different ethylene plants. By analyzing the model prediction results and actual 

ethylene production, ethylene plants have greater energy efficiency improvement space and 

energy saving potential. Furthermore, the CF-CNN guide the ethylene production factory by 

allotting crude oils, streams, fuel, water and electricity in a reasonable way with an energy 

efficiency increase of 6.38% and a carbon emissions decrease of 5.29%. This is significant for 

economic growth and environmental protection. 
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In the future, data with shorter time span will be used instead of monthly data to optimize 

our method, meeting with current production requirements. In addition, some other influencing 

factors will be added such as the cost that affects industrial profits. Since the proposed method 

requires a lot of data being continuously trained to obtain the best network weights, in the 

model needs long training time. Thus, parallel training methods will be introduced into our 

method to achieve optimization.
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Highlights

 A novel convolutional neural network (CNN) integrating cross-feature is 

proposed.

 Energy optimization and prediction model of petrochemical industries is 

obtained.

 The energy saving potential of ethylene production plants is about 6.38%.

 Carbon emissions reduce by 6.08% in ethylene production plants.
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