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Abstract: Model construction is a key and indispensable stepinderstand the internal
structure of concrete at the micro-/mesoscale Javiich affects its properties in practice. In
this paper, a practical and applicable method Ip@sed for generating the mesoscale
structure of plain and fiber reinforced concretesthis method, cell fracture algorithm was
developed to obtain arbitrary-shaped aggregatesfacu subdivision (Catmull-Clark
subdivision algorithm), Displacement mapping andplaee smoothing algorithm were
developed to constructed rough surface of real&jgregates. Random algorithm was used to
generate fibers, the interactions between aggregatd fibers were detected and solved by
collision algorithm. The influence of shape, sizel aolume fractions of aggregate, together
with fiber’'s orientation on the structure and pnags of plain and fiber reinforced concrete
were studied. Compared with experimental data aedqus works, the proposed models can
well predict the volume fraction of the interfacimhnsition zone (ITZ) and the elastic
modulus of plain and fiber reinforced concretesisTaper provides a promising tool for

numerical and analytical research of plain andrfieenforced concretes.

Keywords. Mesoscale model; Concrete; Fiber reinforced coegitaterfacial transition zone;

Elastic modulus
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1. Introduction

Concrete is a multi-phase and heterogeneous matkrieonsists of three important
components: cement paste, aggregate and the m&rfeansition zone (ITZ). Fiber is often
added into concrete in practice to improve its naeatal performance, including the flexible
strength, toughness, etc. [1]. At mesoscale, fibarforced concrete (FRC) can be simplified
as aggregates and fibers embedded in the cemenk nvabereas the ITZ is the interface
between different phases. Still, it is very difficto precisely understand the realistic structure
of plain and fiber-reinforced concretes by tradiab experimental methods without
destroying their structures. X-ray tomography imageed reconstruction technique [2, 3] is
a promising approach to solve this problem, howets new technique requires specialized
instruments and is time-consuming, laborious and #xpensive. Moreover, the resolution of
this approach has an important effect on the acgusathe obtained results, which limits its
application in cementitious materials. As an akéifre, numerical modeling provides an
economic and reliable way to construct the con@sitecture at mesoscale.

Various mesoscale models for simulating concretectires have been developed in
recent decades. Aggregate generation technologjes, as Euclidean geometry [4, 5], low
polyhedral [6, 7] and sphere harmonic function [Bhve made remarkable progress.
Aggregates are generally treated as sphericalcfgif®, 10], so that complex overlapping
detection algorithms can be avoided. Besides, aatgs with regular shapease(, Euclidean
geometric polyhedron and ellipsoid) are also usetbnhstruct the structural model so that the
elastic modulus [11], effective diffusion [12], wle strength [13] and damage behavior [14]
of concrete can be studied. Low polyhedral aggesgatere developed to model the static [15]
and dynamic [6] behaviors of concrete under varimeding conditions, which can be
generated by mathematical functions on the basi®llgisoidal particles [16]. Voronoi
tessellation method [17] can also be employed toegge such aggregates. In addition, a
“taking” and *“placing” method was developed to ramdy generate 2D non-convex
aggregates [18JAlthough random sequential addition (RSA) [19] ix@mmon method to
model the packing of non-spherical aggregatesyetselement method (DEM) [20-22] has

been proven to yield more realistic concrete stmas since the contacts between particles are
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well considered in DEM. Realistic aggregates ameegaly generated by sphere harmonic
function [8, 23], which can be utilized to investig the fracture behavior of cementitious
materials [24] at different scales. Moreover, a hodt [25] that combines digital image
processing, spectral representation and point ¢lewas proposed to model 2D and 3D
concrete aggregates of arbitrary shapes. X-ray emagglysis is able to obtain the real
aggregates by scanning the sample’s surface. Howbeesurface fine texture characteristics
of aggregates are ignordebr the generation of aggregate, CT scanning tdoggpaan only
obtain limited and specific aggregates, while nuoa¢model can study a large number of
aggregates with different characteristic.

For the generation of randomly distributed fibeBjanet al. [26] assumed that the
shape of fiber is ellipsoid, such that the commexbedding detection between fibers can be
avoidedHowever, elliptical fibers are rarely used in emgring. Lianget al. [27] used Rand
function in MATLAB to generate fibers with differerdength, but still the interactions
between fibers are not well considered. eX@al. [28] proposed a 2D mesoscale model that is
able to take both aggregates and fibers into adcctinfortunately, only a limited amount of
fibers can be considered in the abovementioned suak®models. It is thus quite important
to establish the mesoscale model of plain and fite#nforced concrete with realistic
aggregates and fibers, which can be used to préaictvolume fraction of ITZs, elastic
modulus and mechanical performance of concrete [29]

Calculating the volume fraction of ITZ in concrdtg experiments is very difficult, and
numerical models seem to be a possible tool. ldaml. [30] proposed an one-point
probability function, in which the contraction fact(CF) is employed to generate 2D
non-convex aggregate, so that the volume fractidimZs can be determined by Monte Carlo
approach [31, 32]. It is found that the volume fi@t of ITZ goes up linearly with the
increase of aggregate content. However, 2D modelsuaable to fully reflect the volume
fraction of ITZ in real concrete and 3D models atdl required. As for the study on the
elastic modulus of concrete, Wriggeatsal. [5] proposed a mesoscale model but it is only
based on spherical aggregates. Gadl. [29] studied the effective elastic modulus of FRC

consisting of spherical aggregates and straigtdrdiband pointed out that there exists an
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overestimation of the obtained elastic modulushatihcreased volume fraction of fibers. Xu
et al. [33] derived a Hashin-Shtrikman (HS) model [34Haralculated the effective elastic
modulus of three-phase composite materials. Ibseoved that the effective elastic modulus
of composites goes up with the increase of thefaxt@l elastic modulus, but decreases at the
increased thickness of ITZ [35]. Unfortunately, spbal and regular shape of aggregate
cannot reflect the real situation in practice.

This paper proposed an economical, effective ahabte method for the generation of
plain and fiber reinforced concrete at the meseséavel. The rough surface texture of
realistic aggregate and different fibers are bakemh into account. The applications of
proposed mesoscale model on the prediction of T volume fraction and the elastic
modulus of plain and fiber reinforced concrete @s® included. This work is useful in the
field of cementitious materials and can be furthseed to study the mechanical performance
of plain and fiber reinforced concrete in combiaatwith other numerical methods, such as

FEM, DEM, etc.
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Fig. 1 Framework of this research

2. Generation of 3D mesoscale modelsfor plain and fiber reinforced concretes

2. 1A new framework of generation of realistic aggregate with rough surface texture

A new framework of generation of realistic aggregatith rough surface texture is
proposed in this work, which consists of four maigorithms: (1) Cell fracture; (2) Surface
subdivision (Catmull-Clark subdivision algorithm6[} (3) Displacement mapping; (4)

Laplace smoothing.
2.1.1 Céll Fracture

To obtain the realistic aggregate with rough swefeexture, the first step is to generate
low-polygon aggregates by cell fracture algorithAn illustration about cell fracture
algorithm is shown in Fig. 2. First, random seedh{zoor Voronoi diagrams are generated
according to the scatter algorithm [37]. Then, tM@ronoi diagrams are separated by
Delaunay triangulation algorithm, which divide ajimn into discrete triangular area [17].
Next, fragments are modeled by filling surfadélast, all the Voronoi diagrams meshes are
defined as rigid bodies and expanded in a real-8mrilation. In this way, low-polyhedral
aggregates of different sizes can be obtainedndieated in Fig. 3. All simulations are

implemented by using Python code.
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Fig. 2 Schematic diagram of cedcture algorithm [22]

2.1.2 Surface subdivision

Cell Fracture
[——

N

Fig. 3 Generation of low-polygon aggregates by ftaliture algorithm

Aggregates generated by cell fracture algorithmuateally of convex shapes. In order to

obtain non-convex aggregates, weight function wesduto regenerate the coordinates of
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P(xy2)=R(xy+[ L) fw) Lw)R(y?)  ©
Where, B(x,y,z) and P;(x,y,z) are thei-th initial and updated coordinates of aggregate,
respectivelyfs, f,, f3 are the weight function, which can be expressed bgnstant or random
function. Delaunay triangulation algorithm is ugedeconstruct the meshes of aggregate.
Aggregate of complex shape can be further genetayebtating, scaling and moving

the local meshes:

Fi’(X, Y; Z) =Ciq DmNeEsmIeFiy( x,y,z) (2)
C, D and E represent the local rotating, moving acaling matrix, respectively. Catmull—

Clark subdivision surface algorithm [36] is used gmooth the mesh of aggregates by

iterations. The point of face and edge can be asptby:

+Uu-+ +
F i:]_ni'E_ 4

Where, \£, Ve are the number of points of a face F and edgeaidu represent the endpoint
of the edge E and,FF; are the adjacent faces of the edge E. The newspaiatgenerated by:

3)

V':1Q+ER+n—_3V (4)
n n n

Where, Q, R are the average of adjacent face pwiititispoint v and R is the average of the
midpoint of adjacent face points with point v. Aggates with smooth surface can also be
obtained through Catmull-Clark subdivision. If thebdivision surface were in-plane, it is

entitled as a simple Catmull-Clark subdivision.
2.1.3 Displacement mapping and Laplace smoothing

A local weight displace mapping is developed toaobtaggregates of rough surface

texture. Displacement mapping algorithm is expreésse[36]:
P (u,v)=P(u,v)+d(uyv)m(u,v) (5)

Where P(U,V), P(uV) are the initial surface and update surface sdt§uy) is the

displacement and (u,v) is the normal field of the surface. However, thaface reflects a

Gibbs phenomenon [38] if a complex texture is diyeased. Based on the displacement
7
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mapping algorithm, a local weight displacement niagpgan be rewritten as follow:
P'(u,v) =P(u,v) +[ w(u,v) | (u,v) d(u.v) (6)
Where, [W(u,v)] is the local weight vector, and if the whole sogas weighted by a

constant,[ w(u,v)] itis simple asv=C.

As shown in Fig. 4, aX2 mm plane (Fig. 4(a)) is generated to add rougfases with
distorted noise texture (Fig. 4(b)). The surfacethd plane shows sharp features if only
displace mapping algorithm implemented (as shownFig. 4(c), herew means the
displacement mapping factor). By combining disptaeet mapping algorithm, Catmull-
Clark subdivision and Laplace smoothing algorithiime realistic surface texture can be
obtained. As indicated in Fig. 4(d)-(f), the plaaweface tends to be smooth when the number
of iterations-ny, of Catmull-Clark subdivision is equal to 3. Whém tLaplace smoothing
factor- A increases from -0.1 to 0.1(avoiding a distortegmethe hump displacement also

goes up (Fig. 4(d)- Fig. 4(e)).

(a) Initial plane

n, =3.0
A=0.0

Fig. 4 Modeling of non-smooth plane surface

By adopting the abovementioned methods, realesggregates can be constructed. Figs.

5-6 show the generation process of crushed st&reatjgregate and gravel-like aggregate. It

8
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contains four steps as follows. At step 1, anahittosahedron with the edge length of 1mm

and a cloud texture were selected. The textureldHme chosen based on the real situation.

Displace mapping w=0.2), Simple Catmull-Clark subdivisionn(, =3.0) and Laplace

smoothing @ =0.2) were implemented, respectively. However, the aaigfroughness of
aggregate is still not clear as indicated in FigDBtorted noise texture was used at step 3 to

further modified the aggregate surface so as toeniakloser to the realistic, and Displace
mapping (w=0.05), Simple Catmull-Clark subdivisipny, =3.0) and Laplace smoothing

(A =0.0) were implemented to improve the accuracy of gaeer aggregates. A step 4, the
coordinate of the initial icosahedron was randotrapsformed. It should be noted that simple
Catmull-Clark subdivision is used to generate cedsstone-like aggregate, while gravel-like
aggregate should be constructed by Catmull-Clabdisision. Gravel-like aggregates and

crush stone-like aggregates generated by the pedpusdel are shown in Figs. 7-8.



Step 4

w=0.2 w=0.05 Transformation of
Initial icosahedron Cloud texture ng, =3.0 Distorted noise texture ng, =3.0 coordinates of
A=0.2 4=00 icosahedron

Fig. 5 Generation of crushed stone-like aggregate

Step 3 Step 4

w=0.2 w=0.05 Transformation of
Initial icosahedron Cloud texture n, =3.0 Distorted noise texture n, =3.0 coordinates of
A=0.2 4=00 icosahedron

Fig. 6 Generation of gravel-like aggregate
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In general, cell fracture algorithm can be useddnerated aggregates of arbitrary shape.
Catmull-Clark subdivision algorithm is used for @bing the smooth surface of gravel-like
aggregate, while crushed stone-like and graveldygregates of rough surface texture can be
generated by Texture displacement mapping, surfadmlivision algorithm and Laplace

smoothing algorithm.

(a) Catmull-Clark subdivision algorithm(b) LHwe d|sp|acgment m.app'“g and
Laplace smoothing algorithm

Fig. 7 Gravel-like aggregate with smooth and rosigtiace texture

() Surface subdivision algorithm

(e) Cell fracture algorithm and coIIisionam q

algorithm displacement mapping algorithm

Fig. 8 Crushed stone-like aggregate with smoothrangh surface texture

2. 2 Verified the gradation of aggregates generated by the proposed method

It's well known that the gradation of aggregates l@a significant influence on the
workability, mechanical performance and durabilitf concrete. To verify the simulation

results obtained by the proposed method, Fulletrilbigion function according to our
11
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previous study [39] was used to represent the gadeurve of aggregate.
Y =100 /D, ) (7)

Where,Y is the volume fraction of aggregate, D ang.fare the aperture diameter and the
maximum diameter of aggregate, respectively, kaisdthe factor index.

For non-spherical aggregate, the equation canvaétten as [40]:
Y =100, /Dyaeq f (8)

Where, Dgq and Dmaxeq represent the aperture diameter and the maximuameder of

non-spherical aggregate, respectively.

2. 3 Generation of fibers

Fibers can be easily constructed by Euclidean gaggraemesoscale. The size and shape
of fibers in this study are referred to the pregiowrk [41], as described in Fig. 9. For linear
fiber, only two parameters.€., lengthl =13 mm and radius= 0.1 mm of cross-section) are
required. As for hooked fiber, three different lém);=1 mm,[,=3 mm,l3 =6 mm, the radius
rn= 0.25 mm at hooked region and the radius r= 0.1 aofntross-section need to be

determined.

linear fiber

|
. I Cross

I
| Ji ’
| I, I -0 section

h
’Z[ 44 "I hooked fiber
|
I

/

(a) Parameters of fibers (b) Mixture of fibers

Fig. 9 The parameters and mixture of fibers

2. 4 Dynamic mixing of aggregates and fibers

Collision algorithm is a good method for mixing thigers and aggregates although they

are generated by different methods. The framewbrkiring procedure is shown in Fig. 10.

12



213  The particle emitter is first used to randomly gete all random points in the concrete

214  model.
Generation of random point
(Particle emitter)
Rl a A P %7 /I«“
. OF o g L TN
.. Generation of aggregates & fibers 2 .;‘; $ie /\ /‘z ‘:\ a—f;_’/,
AXEL s
22 oS :_-; )
Dynamic mixing
(Physic engine)
Generation of ITZ
(Scaling algorithm)
215
216
217 Fig. 10 Schematic diagram of dynamic mixing procgsaggregates and fibers
218
219 Then, aggregates with surface texture were gertebgt¢he proposed method, and fibers

220 were constructed by Euclidean geometry method.aAt, Ithe dynamic mixing process of
221  fibers and aggregates is simulated by the rigidybmudlision algorithm in physical engine. In
222 this step, fibers and aggregates are defined & bigdies. In order to ensure the uniform
223 distribution of aggregates and fibers in concrdtee gravity acceleration of bodies is

224  randomly defined as a negative or positive value.

225 X pat = X Trandn v 9)

part

226 Where, Xpartand Xag are the coordinates of each part and averageibmaalel, respectively.
227 Vs the volume of unit model and the rangeaidn is [-1/2,1/2].
228 As shown in Figs. 11 and 12, the motion equatiorrigii bodies can be written as

229  below:

13



230

231

232

233

234

235
236

237

238
239
240

(10)

Where, X(t) is position vector,R(t) is orientation vector,P(t),L(t) are the linear

momentum vector and angular momentum vector, réispc Vv (t),@(t) represent the

velocity vector and angular velocity vector, regpety. F(t),z(t) represent force vector

and torque vector, respectively.

d
X(0), 1 —X(1)
| dt A

l Exceptions

Update Penetration Discontinui Constraint/
current detected iscontinuity || gotion force

state Estimate:t, determination

v / \
Collision Contact point _| Collision
detection determination "| response

Fig. 11 lllustration of collision detection [42]

Covnex hull

Fig. 12 Collision detection between two rigid badie
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Fig. 11 shows the mixing process of realistic aggtes and fibers. Realistic aggregates
and fibers are firstly generated and randomly itisted in the model, then the overlapping of
aggregates and fibers are detected. If the ovedapdetected, the positions of aggregates and
fibers are updated until there does not exist asipcadence in the model. To reduce the
calculation time, the collision detection algorithwas applied in the axis aligned bounding
box (AABB). This means that all bodies are consgdiwith bound convex-hull, as shown in
Fig. 12. The minimum distancegDis determined by calculating the distance of tharast
adjacent points in the boundary of rigid body. WHhag, is negative, the intersections of
adjacent rigid bodies are detected, and the pasitad rigid bodies are updated. The whole
process takes a very short time. This process tates once there does not exist intersections

of all rigid bodies in the system.

2.5 Generation of thel TZ

The ITZ is generally simplified as an annular regwith a certain thickness around the
aggregates and fibers [6, 43, 44], as shown in Bg32]. The ITZ is a weak but important
region in concrete, which significantly affects asmpressive strength [43], tensile strength
[44] and failure behavior. The thickness and molpdpp of ITZ [45] are determined by raw

materials, mix proportion, curing condition, etc.

Cement

Impervious Impervious

HHHT

Fig. 13 Mesoscale concrete model with cement paatgsegates and ITZs [32].
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Length
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Scaling algorithm was adopted in this work to abtie ITZ of fibers and aggregates,
as shown in Fig. 14. The centroid centers coordmalre determined by the equation as

follows:

X = jdv ’Vzvjdv ,Z:VIdV (11)

Where,x, vy, z are the coordinate of centroid centeks r€spectively. Particle with arbitrary
shape can be approximately divided by 3D Delaumandulation algorithm, so that the

equation can be further simplified as follow:

Wherex;, yi, and z represent the centroidal coordinates of Delaunagndulations,

respectively.

Aggregate region

ITZ region ‘

(a) lllustration of aggregate with th€b) Aggregate and the(c) Fiber and the
ITZ ITZ ITZ

t - Thickness of ITZ \ . /\ /

Fig. 14 lllustration of aggregate and fiber conitagrthe ITZ

3. Mesoscale models of plain and fiber reinforced concretes

The structures of plain and fiber reinforced cotesegenerated by the proposed method
are shown in Figs. 15-18. In order to show it miotaitively, the dynamic processes of the
cross-section diagrams of plain and fiber reinfdrcencretes mesoscale models are attached

in the data files, and the details are describebarfollowing sections.

16
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3. 1 Mesoscale model of two-graded aggregate concrete

As illustrated in Fig. 15, the minimum effectiveadieter of realistic aggregate is 4.75
mm and the maximum one is 38 mm, which is in ac@mocd with experimental data [46].
Each aggregate is generated by the proposed matitbthere do not exist the exactly same
aggregates in the model. The overlaps of aggregatesietected and each aggregate are
uniformly distributed. To validate that the genethtmodel meets the requirements of
aggregate gradation, the simulation results arepeoed and shows a good agreement with

the experimental data, as indicated in Fig. 16.

| P
tve 't ’s
. Maag, | w4 o,
1R g & Bl 08 ¢
- %-._‘.". Rt | .:v. *

(@) Aggregates (4.75-19(b) Aggregates (19-38 mm)  (c) Two-graded mesoscale
mm) concrete model

Fig. 15 Generation of two-graded mesoscale conaonetiels

1 00 L} l 1 I L} I L] I ]
| e—e—e Upper bound

e—e—e] ow bound

|~a——a Simulation

- -

(0]
o

(o2}
o

— -

N
o
!

]

Percent of aggregates (20)
N
o
I
|

0 | 1 | 1 | 1
0 10 20 30 40

Size of aggregates (mm)

Fig. 16 Gradation curves of aggregates in this wbhper and low bound curves are from

[46])
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3. 2 Mesoscale model of hybrid fiber reinforced concrete

To construct mesoscale model of hybrid fiber reicdéd concrete, four steps should be
adopted: (1) Construct realistic aggregates bytbposed approach, this steps can be divided
into five parts as follows: (1a) Generate an aalbjishaped aggregate based on Euclidean
geometry algorithm; (1b) Obtain realistic aggregdig cell fracture algorithm; (1c) Realistic
surface texture of aggregate is generated by #ratibns of surface subdivision (Catmull-
Clark subdivision algorithm), displacement mappamgl Laplace smoothing; (1d) Validation
of the aggregate gradation; (1e) Define all aggesgas active bodies. Active body only
defines the initial position, it can move freely dollide with other particles. While passive
body limit the boundary and movement of partickesthe location can not be changed when
calculated by collision algorithm. (2) Euclideanogeetric formula was adopted to generate
long hooked and short straight fibers. In contr@stthe generation process of realistic
aggregate, all the fibers are defined as activedsaat this step. (3) Mix all the aggregates and
fibers according to the collision algorithm andest#tthe overlaps of fibers and aggregates; (4)

Construct the ITZ by the scaling algorithas, illustrated in Fig. 17.

‘ 0P Long hooked fiber O
X by | 0.3mm
a 13 mm o
I_l O
6 mm 0.2 mm
Short straight fiber
(a) Aggregates (b) Straight fibers

(c) Hooked fibers (d) Whole model

18
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Fig. 17 Mesoscale model of hybrid fiber reinforasshcrete

3. 3 Mesoscale model of aligned fiber reinforced concrete

In order to obtain the mesoscale model of alignkerfreinforced concrete, fibers were
firstly generated and located at random locatiomnit concrete model. Then, all the fibers
should be defined as passive bodies so that tlagidocand direction of fibers is unchanged.
Next, aggregates generated by the proposed metkhatkéined as active bodies with gravity
at Z-direction and were poured into concrete modéellast, aggregates in concrete were
redistributed according to the collision algoritlumtil there does not exist any overlaps. This

process is shown in Fig. 18.

||,‘1'| |'I|| i

il | I
\ \llﬂnw 1 || 1 ||'
N ||‘l' ll'l l||

| |
| ' | |W ! | :I'II':IMM

(c) FRC with aligned fibers

Fig. 18 Generation of FRC mesoscale model witmaligfibers
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4. Properties analysison 3D mesoscale modelsfor plain and fiber reinforced concretes

4.1 Thevolumefraction of thel TZ

Mesoscale model is the common, convenient and ecimab method to study the
volume fraction of the ITZ in concrete. It is refeat that the volume fraction of the ITZ goes
up at the increased aggregate content based on@Baconcrete mesoscale models [40, 47].
However, previous studies always use 2D and 3Dlaegggregates, the real situation cannot
be fully reflected. On the basis of the proposedrpand fiber reinforced concrete mesoscale
model, the influence of realistic aggregate aneérfion the volume fraction of the ITZ are

presented as follows.
4.1.1 Effect of aggregate size on the volume fraction of the ITZ

According to the previous work [48], the ITZ thidsses are found to be 25 pum, 35-34
um, 45 um and 50 pum for limestone aggregate obuarsizesi(e. 5 mm, 10 mm, 20 mm
and 30 mm), respectively. The thickness of ITZ tetalbe stable when the aggregate size is
larger than 30 mm. As illustrated in Fig. 19(ag tklationship between the ITZ thickness and

the size of aggregate can be expressed as a fanctio

ft)=175 VPrmaceq 1-27B nseq = 7'75, Dmaxeq represents the maximum diameter of
aggregates. Fig. 19(b) shows that the volume fraaif the ITZ goes up with the increase of
the volume fraction of aggregate whBrineg (the minimum diameter of aggregates) is equal
to 5 mm. However, the volume fraction of ITZ demesa with the increase of the maximum
equivalent particle size of aggregates. The reasdhat the total surface area of aggregate

decreases as the,Reqncreases, resulting in a decline in the volumetioa of the ITZ.
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4.1.2 Effect of aggregate gradation on the volume fraction of the ITZ

Fig. 20 shows the influence of aggregate gradatiothe volume fraction of ITZ. The
thickness of the ITZ and the gradation of aggregate in accordance with the experiment
[48]. It is found that as the gradation of aggregahcreases, the volume fraction of the ITZ
goes down. The volume fraction of the ITZ falls ithe order: one-gradation
level>two-gradation level. In other words, the Erqggregate gradation of concrete, the

smaller volume fraction of ITZ when the ITZ thiclasais a constant.

0.005 T

~ 0.004 |-

S5

o
o
O
@
|

0.002

Fraction of ITZ(V,,,

0.001 -

& 2h |
- 1 2
Different gradation

o

Fig. 20 Volume fraction of ITZ&477 at different aggregate gradation
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4.1.3 Effect of fiber amount on the volume fraction of the ITZ

According to the previous work [49], the ITZ thiedss between fiber and cement paste
is equal to 0.04 mm when the curing age is 28 f#ays’/HPC with water-binder ratio of 0.18
and 20% silica fume. As shown in Fig. 21, the vatufraction of the ITZ (Wz) almost
linearly goes up with the increase of the volunaetion of fiber ¥). The reason is that fibers
are uniformly dispersed in concrete mesoscale madel the size and volume fraction of
fiber are not high, so there does not exist oveilap of the ITZ between fibers and paste.

Hence, the volume fraction of the ITZ can be exgpedsas below:

_(R+D?-R) (1-21),,

Vl TZ RZ | f

(13)

Where,R, | are the radius and length of fiber, respectivigly.the thickness of the ITZ, aMd
represents the volume fraction of fibers. It carsben thak>>t, so the Eq. (16) can be further

simplified:

_(R+1)*-R)

Vi, R V, (14)
1 .2 L] I ] I T I ] I I
u—u—u/=0.04 mm, 7 ~28d
I/.
0.8 o -
3 '
N ./
0.4} v .
/

0 0.2 0.4 0.6 0.8 1
V,(%)

(a) BSEM images of ITZ of UHPC with (b) Virz versus VY
20% silica fume and fiber at 28d [49]
Fig. 21 Effect of fiber on the thickness and voluimaetion of the ITZ
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4.2 Prediction of the elastic modulus of plain and fiber reinforced concretes

On the basis of the obtained volume fraction of 1T, the effective elastic modulus of
concrete can be predicted. Although three-phaseomiechanical model for hybrid fiber
reinforced concrete [50] has been used before ntioidel only takes spherical aggregates or
regular aggregates into account. Combing Monte cCarmulation and the proposed
mesoscale model, the effective elastic moduludaih@nd fiber reinforced concretes can be
determined.

On the basis of the Hashin’s solution [51], @iwal. [52] proposed an exact solution to
compute the effective elastic modulus of three-ptamscrete, for four-phases fiber reinforced

concrete, the equation can be expressed as foliothss work:

(Kcon +4/£con)|:plz + BlZ(Kagg/fiber + 4'/KBITZ)]

Keff = Kcon + V /
i K. +4/3G
—A, =413, (G ~Gpy )+ (Ko +4/3G ('TZ on — B, j
? (Vagg/fiber + ITZ)( ITZ) ( o ITZ) Kagg/fiber - KITZ ?
(15)
Where,
K = Kon
A2 =Vagg rtiver (Kcon * 4/%|12) , B, = (Vagg/fiber +V|T2)nz— (16)

Kagg/fiber - an

Where, Kon, Kaggiiver, Kitz are the bulk modulus of concrete, aggregatesber,fiand ITZ,
respectively. @n, Gaggriberand Grz represents the shear modulus of concrete, aggegat
fiber, and ITZ, respectively. Myriver represents volume fraction of aggregate or filbaere

exists a relationship between the abovementioneghpeters and Poisson's ratio as below:

E E
K=—r— _ G=—1__
Ta-) T 2014y (17
Where,i represent the symbol of cement, aggregates and ATZording to the previous
research [53],Eco=75.5GPa, Eag=11.6 GPa, kz=45.3 GPa.Vor=0.35, Vag~0.15 and
Vitz=0.35, and the thickness of ITZ is 40 um [49]. Eifflective modulus can be calculated as

follows:
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Eu =3Ky (1— 2 )

(18)

The ITZ thickness and the properties of cement imaire kept the same in this study

according to the experimental data [48]. The eifecelastic modulus of concrete

containing aggregates of various shapes is ca@mllay the Monte Carlo method. It can be

seen from Fig. 21 that the predicted resultEgfE (Exk is the bulking modulus of concrete)

agree well with the experimental dgta3]. It shows that the aggregate shape does not

significantly affect the effective elastic modulag concrete when the effective maximum

diameteDemax Of aggregates is less than 20 mm.
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Fig. 22 Comparisons of simulation results and expantal data for the effective elastic

modulus of concrete (aggregate size ranges frorm#4o 19 mm)

Furthermore, the developed models can be appli@dltmlate the Young’s modulus of

hybrid fibers reinforced concrete. The models dnews in section 3. 2 in this paper.

According to the literature [54], the Young’s modsilof cemenE.=33.6 GPa, the passion

ratio v.=0.15. For steel fibers, the Young’s modukisand Possion ratigs are 210 GPa and

0.3, respectively. The volume fraction of long fibeand short fibers are both 1%.
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Experimental data [54] and simulation results bwottiicate that the Young's modulus of
UHPC containing hybrid fibers reaches the maximaiue when the volume fraction of long
and short fibers are 1.5% and 0.5%, as demonstiratéd). 23. It can also be found that the
numerical results are slightly smaller than theegixpental data. This may be attributed to the
fact that the thickness of ITZ is assumed to bermstant in this work, resulting in a lower
effective Young’s modulus of UHPC. In real situato ITZ is not constant and needs further

study.

T T T
! e o elxpriment -
Numerical _|

's Modulus(GPa)
w
®

W
(o))

o
o

Youn

w
H

32 1 | 1 | 1 | 1 | 1
LOSO L2S0L1.5S0.5 L1S1 L0.5S1.5 L0S2

Fig. 23 Effective elastic modulus of UHPC with higbfibers
(“L” represents “long steel fiber”, “S” represerighort steel fiber”, “LOS0” is referred to
UHPC with no fiber, and L1.5S0.5 represents UHP@ Wi5% long steel fiber and 0.5%

short steel fiber.)

5. Conclusions

This work presents a promising, reliable and usé&fol to generate plain and fiber
reinforced concretes 3D mesoscale model. Realigtitegates with rough surface texture can
be well represented by the proposed method. Theeimde of aggregates and fibers on the
ITZ volume fraction and mechanical properties ohaete are thus quantitatively studied.
Main conclusions can be drawn as follows:

(1) By combing modified cell fracture, Catmull-Q{asubdivision, texture displacement and

Laplace smoothing algorithm, realistic aggregaték wough/smooth surface texture can
25
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be generated.

(2) Physics engine is applied to construct plaid &ber reinforced concretes mesoscale
models. The shape, aggregate gradation, randomaléged fibers can be taken into
account. Collision algorithm is an effective apmimato model the dynamic mixing
process of fibers and aggregates in concrete.

(3) The volume fraction of the ITZ is found to goveh with the increase of the gradation and
Dmaxeq Of aggregate, and go up at the increased fibeunvelfraction when fibers are
uniformly distributed in concrete.

(4) The effective elastic modulus of plain and fibeinforced concretes can be well predicted.
A good agreement with the experimental data is rviesk validating the proposed model.

(5) Generating a reliable model is helpful for pdivg in-depth insights and can be widely
applied to study the properties of plain and fitenforced concretes combined with finite

element method, discrete element method, etcrihduworks.
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