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 
Abstract— A novel general-purpose theorem for the analysis of 

linear circuits is stated and proven in this paper. When applying 
the proposed theorem, any current (voltage) of interest is 
determined by finding first an equivalent voltage (current) and 
an equivalent resistance. Although two equivalent parameters 
have to be found to determine the variable of interest, these are 
evaluated in circuits that are simpler than the original one, thus 
resulting in a more straightforward analysis technique. Examples 
are provided to show the applicability and advantages of the 
proposed theorem. 
 

Index Terms— Circuit theory, circuit analysis, circuit 
theorem, linear circuits, network theorem. 

I. INTRODUCTION 

inear circuits can be analyzed applying different 
techniques. Two well-stablished and systematic 

techniques are the node-voltage and the mesh-current 
methods. However, the analysis can become easier and more 
intuitive by applying well-known theorems such as 
superposition, Thévenin, Norton, and maximum power 
transfer. These theorems were stated more than one hundred 
years ago, but they are still nowadays the main analysis tools 
explained in classical university textbooks about circuit 
analysis [1], [2]. Recently, Thévenin and Norton theorems 
have been re-explained to show, on the one hand, how 
powerful they are and, on the other hand, the misconceptions 
about them [3], [4]. Other theorems for circuit analysis, which 
are relatively more recent, can be found in the literature, but 
these are more specific than those indicated before. Some 
examples are: Millman’s theorem [5], Miller’s theorem 
[6], [7], extra-element theorem [8], cut-insertion theorem 
[9], [10], Foster’s theorem [11], and reciprocal power theorem 
[12]. 
 This paper aims to provide a novel general-purpose theorem 
for the analysis of linear circuits, complementing the four 
basic theorems indicated above. The analysis of circuits by 
means of the proposed theorem involves the determination of 
an equivalent voltage and an equivalent resistance if the 
variable of interest is a current, whereas an equivalent current 
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and an equivalent resistance if the variable is a voltage. 
Although two equivalent parameters have to be determined to 
know the variable of interest, these are evaluated in circuits 
that are simpler than the original one and, therefore, the 
analysis technique is more straightforward. In the following 
sections, the theorem is stated, two examples are given to 
show its applicability and advantages, and then the theorem is 
proven. 

II. THEOREM 

Let us suppose the generic linear circuit represented in Fig. 
1a, where the rectangular symbol can be either a passive or an 
active two-terminal element. Here, we assume resistors and 
independent voltage/current sources, but we could also have 
capacitors, inductors, and linearly-controlled sources. The 
proposed theorem states that: 
1. Any current of the circuit (for instance, IA in Fig. 1a) can be 
determined as VeqA/ReqA, where VeqA and ReqA are an equivalent 
voltage and resistance, respectively. In order to calculate these 
parameters, the current path of IA must be blocked through an 
open circuit, as shown in Fig. 1b, and then: 

1.1. ReqA is the resistance between terminals 1 and 2 of the 
intended open circuit; this resistance must be found by 
turning off all the independent sources, as usual. 
1.2. VeqA is the open-circuit voltage between terminals 1 and 
2. The polarity of VeqA must be in accordance with the 
direction of IA. 

2. Any voltage of the circuit (for instance, VB in Fig. 1a) can 
be determined as IeqB·ReqB, where IeqB and ReqB are an 
equivalent current and resistance, respectively. These 
parameters must be calculated as: 

2.1. ReqB is the resistance between the nodes (indicated as 
terminals 1 and 2 in Fig. 1c) of the voltage difference under 
study; this resistance is again found by turning off all the 
independent sources.  
2.2. IeqB is the current flowing between terminals 1 and 2 
when these are short-circuited, as shown in Fig. 1d. The 
direction of IeqB must be in accordance with the polarity of 
VB. 
 
This theorem not only provides a new method for the 

analysis of circuits, but it also has the benefit that calculating 
VeqA and ReqA (or IeqB and ReqB) is expected to be easier than 
directly calculating IA (or VB). This is because the circuit 
becomes simpler as a consequence of applying the open circuit 
(or the short circuit) indicated by the theorem. 
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III. EXAMPLE 1 

Let us suppose the two-mesh circuit shown in Fig. 2, where 
the current IA and the voltage VB have to be found. When 
applying the proposed theorem to find IA, first the current path 
has to be blocked through an open circuit. Then, the 
equivalent resistance and voltage can be determined using the 
circuits in Figs. 3a and 3b, respectively, as follows: 

 

1. ReqA: The equivalent resistance between terminals 1 and 2 
when the sources are turned off is 

 eqA 2 3R R R   (1) 

2. VeqA: The open-circuit voltage between terminals 1 and 2 
can be calculated using, for example, the superposition 
theorem as  

 eqA eq,I1 eq,V2 eq,V3 1 3 2 3V V V V I R V V       (2) 

Consequently, from (1) and (2), IA can be expressed as: 

 
eqA 1 3 2 3

A
eqA 2 3

V I R V V
I

R R R

 
 


 (3) 

As for the voltage VB in Fig. 2, the equivalent resistance and 
current are determined through the circuits in Figs. 3c and 3d, 
respectively, in the following way: 

1. ReqB: The equivalent resistance between terminals 1 and 2 
when the sources are turned off is 

 eqB 2 3||R R R  (4) 

2. IeqB: The short-circuit current between terminals 1 and 2 
can be calculated using, for instance, the superposition 
theorem as 

 
32

eqB eq,I1 eq,V2 eq,V3 1
2 2

VV
I I I I I

R R
       (5) 

According to (4) and (5), VB equals 
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Fig. 1.  Generic linear circuit employed to explain how to apply the proposed 
theorem. 

 
 

Fig. 2.  Two-mesh circuit example where the proposed theorem is applied. 
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Fig. 3.  Application of the proposed theorem to find IA and VB for the example shown in Fig. 2. 
  

Authorized licensed use limited to: Murdoch University. Downloaded on June 17,2020 at 00:44:27 UTC from IEEE Xplore.  Restrictions apply. 



1549-7747 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSII.2020.3000834, IEEE
Transactions on Circuits and Systems II: Express Briefs

3 
 

Let us compare the analysis of the circuit in Fig. 2 (for 
instance, to determine VB) without and with the proposed 
theorem. On the one hand, if the circuit is evaluated using 
exclusively the superposition theorem, the three subcircuits 
shown in Fig. 4 are obtained; cases (a), (b), and (c) correspond 
to the individual effects of I1, V2, and V3, respectively. In case 
(a), the circuit behaves as a current divider, whereas in cases 
(b) and (c), the circuit becomes a voltage divider. On the other 
hand, if the proposed theorem is employed, we need to find 
ReqB and IeqB. For the latter, the resulting subcircuits when 
applying the superposition theorem in Fig. 3d are shown in 
Fig. 5. Comparing the circuits in Fig. 4 with those in Fig. 5, 
one realizes that the voltage/current dividers in Fig. 4 are 
converted to simpler circuits thanks to the required short 
circuit that makes R3 superfluous. Consequently, obtaining the 
expression of the three subcomponents of IeqB is more 
straightforward than those of VB. 

IV. EXAMPLE 2 

The proposed theorem is next applied to a more complex 
three-mesh circuit represented in Fig. 6, where IA and VB have 
to be found. As for IA, the current path is first blocked via an 
open circuit, and the equivalent parameters are: 

1. ReqA: Between terminals 1 and 2, there is an equivalent 
resistance when the sources are turned off, as shown in Fig. 
7a, equal to 

 eqA 1 2R R R   (7) 

2. VeqA: Between terminals 1 and 2, there is an open-circuit 
voltage, as shown in Fig. 7b, that can be calculated using, for 
example, the superposition theorem as  

 eqA eq,I1 eq,I2 eq,V1 eq,V2 1 1 2 2 20V V V V V I R I R V         (8) 

Therefore, from (7) and (8), IA is 

 
eqA 1 1 2 2 2

A
eqA 1 2

V I R I R V
I

R R R

 
 


 (9) 

On the other hand, the equivalent parameters to determine 
VB in Fig. 6 are: 

1. ReqB: Between terminals 1 and 2, there is an equivalent 
resistance when the sources are turned off, as shown in Fig. 
7c, equal to: 

 eqB 1 2||R R R  (10) 

2. IeqB: Between terminals 1 and 2, there is a short-circuit 
current, as shown in Fig. 7d, that can be calculated using, for 
instance, the superposition theorem as 

 2
eqB eq,I1 eq,I2 eq,V1 eq,V2 1 2

1

0
V

I I I I I I I
R

          (11) 

According to (10) and (11), VB equals 
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Fig. 5.  Analysis of the circuit in Fig. 3d applying the superposition theorem. 
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Fig. 6.  Three-mesh circuit example where the proposed theorem is applied. 

I1

R1

V2

R2

VB+

IA

+V1 I2

(a) (b) (c) 
 

Fig. 4.  Analysis of the circuit in Fig. 2 applying exclusively the superposition theorem. 
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V. PROOF AND LIMITATIONS 

The statements in Section II can be proven using the 
Thévenin and Norton theorems as follows: 

Statement #1: Let us assume the circuit in Fig. 1a where the 
current IA is to be determined, but considering two dummy 
terminals 1 and 2, as shown in Fig. 8a. In such conditions, IA 
can be seen as the Norton current of the circuit considering 
that the “load” was connected between terminals 1 and 2 [1], 
[2]; in the circuit under analysis, no load will be connected 
between these terminals, but the Norton theorem is still 
applicable. Therefore, if IA is the Norton current, it can also be 
calculated by means of the Thévenin voltage and resistance, 
and to do that, terminals 1 and 2 must be left in open circuit in 
both cases, as stated before and represented in Fig. 1b. 

Statement #2: Let us consider the circuit in Fig. 1a where 
the voltage VB is to be found, but considering again two 
dummy terminals 1 and 2, as shown in Fig. 8b. Now, VB can 
be seen as the Thévenin voltage of the circuit assuming that 
the “load” was connected between terminals 1 and 2; as 
indicated before, no load will be connected between these 
terminals, but the Thévenin theorem is still applicable. 
Consequently, if VB is the Thévenin voltage, it can also be 
calculated through the Norton current and resistance, and to do 
that, terminals 1 and 2 must be short-circuited and left open, 
respectively, as stated before and represented in Figs. 1d and 
1c. 

The proposed theorem not only is proven via Thévenin and 
Norton theorems, but it also extends the applicability of the 
concepts behind them to circuits that do not have the classical 
source-to-load interface [1], [2]. For instance, if IA has to be 
determined in the circuit shown in Fig. 1a, the concepts of 
“source”, “load”, and “two-terminal interface” are generally 
not applied. However, by introducing two dummy terminals 1 
and 2, as shown in Fig. 8a, the circuit can be seen from a 
different angle: all the circuit (except for the short circuit 
between terminals 1 and 2) is the “source”, the short circuit 
between terminals 1 and 2 is the “load”, and the two dummy 
terminals represent the “two-terminal interface”. Since the 
“load” is a short circuit, the load current (IA) equals the Norton 
current. Consequently, this current can also be computed by 
means of the equivalent resistance and voltage of the Thévenin 
model, and to find them the “load” must be in open circuit, as 
proposed herein. The fact of assuming that a short circuit (or 
an open circuit in Fig. 8b) between two dummy terminals 
takes the role of the “load” to find IA (or VB) has never been 
considered before in the literature for the analysis of linear 
circuits. 
 After testing the theorem in different linear circuits, the 
following limitation has been found. If the theorem is applied 
to find the voltage across the terminals of a voltage source or 
the current in series with a current source, the result has an 
indeterminate form although the response is straightforward 
without using any analysis technique. Actually, the Thévenin 
(Norton) theorem has the same limitation when it is applied to 
a circuit with just an ideal current (voltage) source. 

VI. CONCLUSION 

With the aim of complementing the basic theorems for 
circuit analysis that were stated more than one hundred years 
ago, a novel general-purpose theorem has been stated and 
proven herein. When applying this theorem, the circuit is 
looked from a different angle: any current (voltage) of interest 
is determined by finding an equivalent voltage (current) and 
an equivalent resistance. Since these two equivalent 
parameters are evaluated in circuits that are simpler than the 
original one, the analysis becomes more straightforward. In 
the opinion of the authors, the statements are easy to 
remember and to apply and, hence, the proposed theorem is 
expected to become a basic tool in the circuit theory. 
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Fig. 7.  Application of the proposed theorem to find IA and VB for the example shown in Fig. 6. 
  

(a) 

(b) 

 

 
Fig. 8.  Proof of the statements by means of the Thévenin and Norton theorems. 
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