
MTFCT: A task offloading approach for fog
computing and cloud computing

Rajni Jindal

Deprtment of CSE
Delhi Technological University

Delhi, India

Neetesh Kumar
ABV-Indian Institute of Information

Technology and Management
Gwalior, Madhya Pradesh, India

Hitesh Nirwan
Department of CSE

Delhi Technological University
Delhi, India

Abstract— Cloud computing is an important computing
paradigm for handling all types of computations, even the
smaller ones in the past. But sometimes, it becomes ineffective
when the task is to be done in real-time, with very low latency.
Therefore, fog computing was introduced as a supplement
computing paradigm for cloud computing. Internet of Things
based applications perform better with the amalgamation of its
and the fog computing. Due to low capacity, when fog can’t
compute the task on its own, heavy computations are offloaded
from fog to cloud. But when to offload the task from fog to cloud
is a major decision. The decision is to be made out to offload the
tasks from fog to cloud is very crucial, so this paper presents an
idea to solve this problem.

Keywords— Cloud Computing; Fog Computing; Task
Offloading

I. INTRODUCTION
With the advancement in the technology area, more and

more electronically enabled devices, which are capable are
connecting with the internet, so the Internet of Things (IoT)
devices are increasing day by day. These devices are
communicating with each other, so basically, they are
generating lots of data [1].

Because of this, the burden on cloud computing to solve
computations and to provide the result back in a given time
was also increasing day by day.

Cloud computing is an important computing paradigm to
handle heavy scientific workflows by providing infinite virtual
resources but doesn’t work well where latency requirement is
low [2].

There may be a case where latency-sensitive applications
demand results back in real-time. Cloud may provide an
accurate result, but it may return the result late, which may
diminish the whole objective.

To solve this issue, fog computing was introduced in 2014 [3].
Fog computing is an online computing paradigm to solve low
complexity problems in real-time. It was introduced as a
supplement to cloud computing. Its aim was never to replace

cloud computing, rather reduce the overload on cloud
datacenters and provide fast services to the latency-sensitive
application [14].

So it can perform both the operations, storing as well as
processing the data near the edge of the network or near the
end-user. The interconnection of IoT devices with fog nodes
and fog with the cloud is shown in fig 1.

Fig. 1. Three tiers IoT, Fog and Cloud Architecture [11]

Fog computing is decentralized in nature, unlike cloud, which
is centralized [4]. It also provides fog computing an upper edge
over cloud computing

II. BACKGROUND KNOWLEDGE AND
MOTIVATION

According to an estimate, more than 50 billion devices will be
connected to the internet by 2020 [5]. The majority of these
devices are not able to process their data on their own. So, we
need the help of fog computing also along with cloud
computing. IoT is the future, but we need to amalgamate it
with fog computing. We can not overload cloud datacenters.

Moreover, providing a reliable result is still not an easy task.
The performance of fog computing is dependent upon fog

145978-1-7281-2791-0/20/$31.00 c©2020 IEEE

nodes placement as well as the resources provided to the fog
nodes. Fog nodes are generally much closer, at the edge of the
network [6]. Therefore, their latency time is very less as
compared to cloud datacenters.

Fog nodes are small data centers that provide the
computational capability to these latency-sensitive devices [7].
They are generally placed between the end devices and the
cloud data centers in the network — the closeness of these
nodes with end devices benefits in providing low latency [8].

The drawback of these fog nodes is their limited capacity. They
cannot provide high computational and storage power [9].
Because of this reason, some data is offloaded from these fog
nodes to the cloud data center for processing. ‘

Fig 2. Explains the architecture of fog and cloud. From the
figure, we can observe that there are three levels. At the lowest
level, we have sensors and actuators. Sensors gather the data
from the surrounding, and this data is in the form of data
streams known as tuples.

Fig. 2. Cloud/Fog Computing Architecture [10]

While actuators receive that output data from the upper layer,
these sensors and actuators work as the front end. This layer is
in the shortest distance with the user. This data is then
transferred from this front end to near end devices, a sensor to
the fog nodes, which are available in the fog layer (middle
layer). These devices process the data according to the
requirements and send the result back to the actuators.
If the data is not fully processed, the processed data will be
offloaded to the cloud for further processing and storage
purposes. Cloud may lead to a delay in the application result
but will complete the job.
After completing the task, the result will be sent back to the
actuators. This cloud layer is generally used for handling big
applications and also for the storage purpose.
There is a various application where fog is integrated with
cloud and provide support for various IoT applications very
effectively like in the smart home, smart transportation, smart
healthcare sytem, visual security, education sector, etc.

Aim of this is to provide a better computing experience, which
can support all types of applications, even the latency-
sensitive one too.
Some of the advantages of fog computing over cloud
computing are low power consumption, low latency,
bandwidth saving, decentralized nature, security, mobility, etc.

Location awareness is also high in fog computing in
comparison to the cloud. Physically fog nodes are
decentralized and distributed, while the cloud is centralized. It
gives an upper edge to the fog computing and fog nodes. They
can be well distributed to decrease the load on any fog node.

These advantages encourage the user to move to fog
computing. As the fog layer is sharing part of the original data
which it received from the terminal nodes, it is decreasing the
overall bandwidth requirement, which is very useful [12].

Fog computing has some disadvantages also. These are
computation and storage power of fog nodes that are much
less than the cloud datacenter. But in a real environment, it
does not affect much.
As the original purpose of fog computing is to provide small
computation and storage facility to the end-user. So heavy
computational requirement is not needed to the end-user.

In offloading, the task is to contract out to the external agents
to handle. External resources work towards the completion of
the intended task [13]. It may be due to the high computational
requirement or storage requirement, which task source or
mobile device is unable to perform.

The decision when to offload the data to the cloud is an
important one. It can affect the latency significantly. If the
decision when to offload the data is not taken place in time, it
can degrade the whole computing experience and can affect the
latency in a very negative matter.

If we upload the data to the cloud, when it was not needed,
latency will be increased drastically. If we don’t upload the
data to the cloud or upload late, then also the latency will be
increased. We have worked in this direction and proposed a
new algorithm to solve this offloading issue.

III. OFFLOADING APPROACH

A. Problem description
We are assuming that there is only one cloud datacenter,

which will provide all the heavy computing facilities. It is
located at a far distance from the end-user. Bandwidth between
cloud and fog nodes (BFC), cloud datacenter, and terminal
nodes/ end devices (BEC) are already known in Mbps. The
energy required to transfer each unit of data from fog node to
cloud datacenter (EFC) and from end devices to cloud
datacenter (EEC) is also already known.

There is N number of fog nodes in an area with each having
different processing capacity (PN) and different pricing for each
data unit (FPN). Pricing for cloud data center varies according
to the chosen VM. So, the task by end devices can be

146 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence)

configured as TN = {T1, T2,….., TN}. It will be decided whether
the fog nodes are chosen or cloud data center or both.

Bandwidth requirement to offload the data to the cloud is
generally greater than the bandwidth requirement to offload the
data to the fog. Also, the prices to lease the cloud datacenter
resources and their capacity is much larger than the prices and
capacity of fog nodes.

Total work is done in three phases. In phase 1, it is decided that
whether the generated task by an end device can be processed
by the end device itself or not.

If the end device is not capable of doing so, only in that
condition, the decision to process the data through fog nodes
will be taken. Otherwise, offloading will not be performed.

Now, if the fog node can process the data and also within the
given allotted time, then the task will be processed by the fog
node. Otherwise, data will be offloaded to the cloud datacenter.

There will be a central fog manager, who will be aware of all
the fog node processing power and their impact zone, where
they provide services.

Fog manager will select the best fog node to provide service to
mobile devices based upon its computation capability and its
impact zone. Tasks that fog node can not process on their own
will be offloaded to the cloud datacenter.

To determine whether offloading the task to fog node or cloud
from mobile devices are in our favor or not, we have proposed
Mobile to Fog and Cloud Transfer (MTFCT) algorithm.

B. Execution Time
Execution time is divided into many phases, which are the

following:

1) TOD = A decision is made before transferring data to the
fog node, whether the fog nodes can process the given task or
not. If the fog nodes meet the task requirement, the task will
be given to the fog nodes; otherwise, the task will be given to
the cloud datacenter.
This decision is based on the task processing requirement and
fog nodes capacity in the vicinity of the fog node manager.
This decision takes time, and it is known as TOD. It is a crucial
decision. It will take place with the help of various other
parameters.

2) TMF = Task size*Time required to transfer one unit of
data to the fog (Time required to transfer whole data from
mobile device to the fog node)
The selection of fog node will be managed by the fog
manager. This time will only be considered when the fog
manager decides that the given task can be processed by the
fog node in the given time. It depends upon the available
bandwidth and task size.

3) TMC = Task size*Time required to transfer one unit of
data to the cloud data-center (Time required to transfer whole
data from mobile device to the cloud data-center). This time is
generally greater than TMF.

4) TEF = Task size/fog node processing capacity (Time
required to execute a task by fog node). If the task is processed
by the fog node, it is calculated using the task size and
processing capacity of that particular node. Lesser the
processing capacity higher will be the TEF.

5) TFM = Time required to send the result back to the
mobile device. The same channel is used as in TMF. This time
will depend upon bandwidth and result in size. The more the
task size more will be its value.

6) TEC = Tasksize/cloud datacenter processing capacity If
the task is processed by the cloud datacenter (Time required to
execute a task by cloud datacenter). It is calculated using task
size and processing capacity of that cloud datacenter, which is
generally very high. Its value is always less than TFM.

7) TFC = Time required to send the task from fog to cloud.
Sometimes a task is partially processed by a fog node and is
sent to the cloud data center for further processing. In this, the
remaining task size and bandwidth between fog node and
cloud datacenter play an important role. So this time is known
as TFC.

8) TCF = After the task processing, if the result is sent back
to the fog node, the same channel is used as in TFC. So this is
known as TCF.

9) TCM = After the task processing, if the result is sent back
to the mobile device, the same channel is used as in TCM. This
time will depend upon bandwidth and result in size.

10) TM = Execution time if the task runs on mobile
devices itself.

So total execution time a task requires can be anything based
upon a combination of the factors mentioned above. If the
cloud data center gets involved, the execution time will get
high; otherwise, if only fog nodes are involved, the value of
execution time will be very less.

C. Cost of Execution
We can divide our cost of execution on a remote center into
two parts; the cost of execution on cloud (CC) and the cost of
execution on fog (CF). Cost of execution on fog can be further
divided into two parts which are following;
CF = CEF+ CEC (1)
(CEC depends upon how much part of the task is sent for
processing by the local fog node to the cloud node)
Where CEF is a cost for executing the part of the task on fog
node only, and CEC is the cost for the part sent to the cloud
datacenter from fog node for further processing and other
purposes. If the task is processed fully by the fog nodes
themselves, the value of CEC will become zero. So in that
case,
CF = CEF

CM = cost to run the task on mobile devices itself.
If we don’t offload our task to the cloud or fog node, in that
case, we calculate this value. This is generally used to check
whether it is beneficial to offload the task or not. If it is not
beneficial, the task will not be offloaded. But it is not the only

10th International Conference on Cloud Computing, Data Science & Engineering (Confluence) 147

factor which decides; other factors are also there like
execution time, energy requirement, etc.

Generally, the cost of processing on cloud takes high value,
but still, some tasks can not be processed locally by fog nodes
or the mobile devices itself, fully because of its size and
required time.
So, in that case, offloading the task to the cloud datacenter
becomes necessary. CEC will also be affected by the
scheduling policy chosen for its task scheduling.

D. Energy Requirement
Energy requirements can also be divided into two parts; EF
and EC.
E = EF + EC. (2)
EF = EMF+EEF+EFC+ EEC +ECF+ EFM (3)
EC = EMC+EEC+ECM (4)
Where,
EF = Total energy required if task go to the fog nodes for
processing. Task can also be partially executed on the fog
nodes too and rest can be sent to cloud. In this case value of EF
will get vey low, because only a part of task is executing on
fog node irrespective of full task.
The value of total energy consumption (E) in equation number
two becomes zero if a task is decided to be processed by the
end device (mobile device) itself.
EMF = Task size*Energy required to transfer one unit of data
(Energy required to transfer whole data to fog node)
EEF = Task size*Energy required to process one unit of data by
fog node (Energy required to process whole data by fog node)
EFC = Energy required to transfer the remaining task for
further processing by the cloud datacenter. Its value will
become zero if the task is fully processed by the fog nodes
themselves.
ECF = Energy required to transfer the result to fog node by
cloud. Its value will become zero if the task is fully processed
by the fog nodes themselves.
EFM = Energy required to transfer the result to the mobile
device by fog node
EC = Total energy required if the task goes to the cloud data
center for processing. Task can also be partially executed on
the cloud datacenter too. Its value will become zero if the task
is fully processed by the fog nodes themselves.
EMC = Task size*Energy required to transfer one unit of data to
the cloud datacenter (Energy required to transfer whole data to
the cloud datacenter). This is generally higher than the EMF as
the cloud data center is generally very far located as compared
to the fog nodes.
EEC = Task size*Energy required to process one unit of data by
cloud datacenter (Energy required to process whole data by
cloud datacenter)
ECM = Energy required to transfer the result to the mobile
device by cloud datacenter.
EM = Energy required to run the task on the mobile device
itself

E. Proposed algorithm
Algorithm 1 MTFCT algorithm
Input: parameters like TOD, TMF, TEF, TFC, TEC, TCF, TFM, TCM,
TMC, TM.
Output: Offloading decision, wheather to offload to fog,
cloud or not
 1: Calculate the value of each variable like TOD, TMF, etc.
 2: Check how much part of the task can be executed on

 local fog node too.
 3: Calculate TF = TOD+TMF+TEF+TFC+TEC+TCF+TFM
 (TEC depends upon how much part of task is sent to
 cloud for processing) (5)
 4: Calculate TC=TOD+TMC+TEC+TCM (6)
 5: Compare TM with TF and TC.

 5.1: If TM > TF and TM < TC,
 Task will be uploaded to the fog node
 5.2: If TM > TF and TM > TC,
 check if TF >TC, If yes Task will be uploaded to the
 cloud data center otherwise to the fog node
 5.3: If TM < TF and TM > TC,
 The task will be uploaded to the cloud datacenter
 5.4: If TM <= TF and TM <= TC,

 The task will not be offloaded to either fog node or
 cloud datacenter

6: Similarly, compare CM with CF and CC
7: Also, calculate EF and EC
8: Compare it with EM
9: Based upon the above comparisons and the weighted

value of each factor (execution time, cost & energy),
we decide to offload the task from mobile device to
fog node or cloud node is beneficial or not take
decision based upon that. (Based upon how much
value or importance is given to each factor by user)

IV. CONCLUSION
Fog computing is the lifeline of IoT in today’s world

scenario. IoT can be implemented without fog computing, too,
but with the help of fog computing, the efficiency of IoT
increases considerably. So to achieve very high efficiency, we
integrate fog computing with cloud computing.

The energy requirement of fog is very less as compared to the
energy required to process the same task in a cloud datacenter.
This can help us in reducing the total co2 emission to save the
environment too.

In this paper, we proposed a method for task offloading to fog
nodes and cloud datacenter using various parameters. In this,
the involvement of users is also very high.

This is a theoretically proposed algorithm, so in the future, we
would like to implement this proposed algorithm in a real fog
computing environment or in a simulated environment using
FogSim simulation toolkit and also provide node to node
migration of task in fog computing environment and along with
a better way to handle the task on cloud datacenter whether if
the task is offloaded from a mobile device or any fog node

148 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence)

REFERENCES

[1] S. Zahra, M. Alam, Q. Javaid, A. Wahid, N. Javaid, S.U.R. Malik and
M.K. Khan, “Fog computing over IoT: A secure deployment and formal
verification,” IEEE Access 5 (2017): 27132-27144.

[2] M.A. Rodrigue and R. Buyya, “A taxonomy and survey on scheduling
algorithms for scientific workflows in IaaS cloud computing
environments,” Concurrency and Computation: Practice and Experience,
29(8), 2017.

[3] H.A. Khattak, H. Arshad, S.U. Islam, G. Ahmed, S. Jabbar, A.M. Sharif
and S. Khalid, “Utilization and load balancing in fog servers for health
applications." EURASIP Journal on Wireless Communications and
Networking 2019.1 (2019): 91.

[4] S. Khan, S. Parkinson and Y. Qin, "Fog computing security: a review of
current applications and security solutions," Journal of Cloud
Computing 6.1 (2017): 19.

[5] D. Poola, M.A. Salehi, K. Ramamohanarao and R. Buyya, “Fog
computing: A taxonomy, survey and future directions,” Internet of
Everything (pp. 103-130). Springer, 2016.

[6] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito and O. Rana, “ Fog
computing for the Internet of Things: A Survey,” ACM Transactions on
Internet Technology, Vol. 19, No. 2, Article 18, 2019 .

[7] A. Mohammad, and E. N. Huh. "Fog computing micro datacenter based
dynamic resource estimation and pricing model for IoT." 2015 IEEE

29th International Conference on Advanced Information Networking
and Applications. IEEE, 2015.

[8] S. Delfin, S.P. Sivasanker, N. Raj and A. Anand, “Fog computing: A
new era of cloud computing." 2019 3rd International Conference on
Computing Methodologies and Communication (ICCMC). IEEE, 2019.

[9] F. Haouari, R. Faraj and J.M. Alja’am, “Fog computing potentials,
applications, andcChallenges," 2018 International Conference on
Computer and Applications (ICCA). IEEE, 2018.

[10] J. K. Zao, T. T. Gan, C. K. You, C. E. Chung, Y. T. Wang, S.J.R.
Méndez, et al., “Pervasive brain monitoring and data sharing based on
multi-tier distributed computing and linked data technology.” Frontiers
in human neuroscience, 8, 370, 2014.

[11] R. Jindal, N. Kumar, and H. Nirwan, “A survey on cloud to fog
evolution” unpublished.

[12] Y. Sun, and N. Zhang, “A resource-sharing model based on a repeated
game in fog computing.” Saudi journal of biological sciences, 24(3),
687-694, 2017.

[13] M. Aazam, S. Zeadally, and K. A. Harras. "Offloading in fog computing
for IoT: Review, enabling technologies, and research opportunities."
Future Generation Computer Systems 87: 278-289,2018.

[14] A. Khakimov, A. Muthanna, and M. S. A. Muthanna. "Study of fog
computing structure." IEEE Conference of Russian Young Researchers
in Electrical and Electronic Engineering (EIConRus). IEEE, 2018.

10th International Conference on Cloud Computing, Data Science & Engineering (Confluence) 149

