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A B S T R A C T

An electric arc-furnace is a complex industry which demands high levels of electrical energy in order to heat iron
materials and other additives needed for the production of cast iron and/or steelmaking. The cost of the elec-
trical energy demanded by the factory during the production can be greater than 20% of the overall cost. This
kind of arc-furnace allows the production of steel with levels of scrap metal feedstock up to 100%. From an
electrical point of view, the factory size in terms of its maximum apparent power demanded from the grid is
designed to make use of the static capacity of the transmission line that supplies the energy. In that case, it is not
possible to increase the power of the factory above the static rating by adding new facilites without installing
new transmission infrastructures. This paper presents a methodology that allows an increase in net power of an
arc-furnace factory without installing new transmission lines. The novelty of the proposed solution is based on a
mix strategy that combines Demand-Side Management (DSM) methodologies and the use of ampacity techniques
according IEEE 738 and CIGRE TB601.

The application of DSM methodologies provides an improvement in the sustainability of not only the in-
dustrial customer but also in the overall grid. As a secondary effect, it reduces operational costs and the
greenhouse gas emissions.

The proposed methodology has been tested in an arc-furnace factory located in the North of Spain.

1. Introduction

An electric arc furnace (EAF) is a furnace that heats charged ma-
terial by using an electric arc. They are usually devoted to the pro-
duction of cast iron and/or steelmaking. From an energy point of view,
it is a load that it is intensive in terms of its power demanded from the
grid [1].

As the electrical energy consumption in an EAF based steel factory is
typically greater than 20% of the overall production cost, most of the
modeling effort has been devoted to the analysis of energy comsuption
considering cost minimization [2] as the main target [3]. From the
point of view of predicting the electrical energy consumption of Electric
Arc Furnaces using statistical Modeling it is possible to find several
approaches using both linear and non-linear models. Table 1 sum-
marizes several contributions in the field of EAF modeling.

Despite the fact that all the references provide useful methods for
predicting energy demand and other physical parameters related to the

EAF there is not any reference that provides a general approach con-
sidering not only the EAF but also the rest of loads included in the mill
factory. In addition, the models are not extended to the problem of
optimizing the value of the current demanded by the overall factory.

On the other hand, Demand Side Management (DSM) can be con-
sidered as a set of measures defined in order to improve the way in
which energy is demanded at the consumption side [18]. Although DSM
has traditionally been applied to residential loads, it has also been used
in industrial environments [19].

In [20], the potential of DSM methodologies was investigated in
applications specifically devoted to power-intensive industries. The
main conclusion in the case of EAF is that DSM potential is strictly
devoted to load shedding. The authors of [21] introduced an optimi-
zation method that can be applied to both batch and continuous-type
loads.

DSM does not provide a single solution, but an action plan that
includes several approaches: i) the improvement of energy efficiency by
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upgrading load technologies, ii) the reduction of energy cost by im-
proving energy tariffs with incentives for specific consumption patterns
[22,23] and iii) the application of complex real-time control meth-
odologies of distributed energy resources. In Palensky et al. [24] DSM is
categorized into the following list: Energy Efficiency (EE), Time of Use
(TOU), Demand Response (DR) and Spinning Reserve (SR).

Fig. 1 summarizes the basic architecture and components of a DSM
system that includes elements such as local generators, smart devices,
energy storage systems, sensors and energy management units (EMU)
[25]. All the elements must to be connected through a communication
infrastructure. An external connection via Internet can be provided
depending on security issues. The application of DSM can change the
operational conditions of the involved elements, forcing the network
operator to adjust the capacity ratings [26].

Load control algorithms have to deal with two main tasks:

1. Control the overall factory maintaining operational criteria.
2. Control each individual load to ensure that the total current de-

manded is below the dynamic rate. The individual control of loads
can be on/off or proportional depending on the load.

Despite the fact that DSM techniques are well known, it is difficult
to find references in which this methodology is applied to EAF appli-
cations [27] [28] [29] [30] [31]. Dalle et al. [32] analyzed how DSM
can improve the electrode degradation in EAF.

This paper proposes a non-classical application of DSM strategies in
which the function to optimize is not economic cost, but the maximum
current through the supply infrastructure considering that some loads
inside the factory are dispatchables.

In this paper, we propose a methodology that combines both DSM
techniques and dynamic line rating in order to increase the power ca-
pacity of a large electric arc-furnace factory without upgrading the
overhead transmission line that links the factory to the transmission
grid. This approach is especially useful in cases in which the factory is
near urban areas where the constraints related to the construction of
new transmission infrastructures are critical. The paper illustrates the
proposed methodology for a real case in which an electric arc-furnace
factory needs to increase its power demands, but the overhead infra-
structure that supplies energy is already operating following a classical
approach near the static limit. In the real case under study, the only
available solution is to install a new transmission line or repower the
existing one. In this research work, DSM combined with ampacity
techniques is shown to increase the capacity of existing factories. The
rest of this paper is organized as follows: Section 2 gives a general in-
troduction to the way in which electric arc-furnaces demand energy. In
Section 3, a demand-side management approach devoted to this type of
factories is defined. In Section 4 we introduce the ampacity formulation
that allows one to extend the capacity of the line according the weather
conditions. In Sections 5 and 6 we introduce the concept of Quality of
Service, that defines the impact of DSM and the optimization problem.
In Section 7 the proposed methodology is applied to a real case con-
sidering a year of sampled data. Finally, the paper summarizes our
conclusions and remarks on future directions.

2. Electric arc-furnace energy demand

A steel factory is a complex system that integrates two different sets
of loads:

• High-energy demand loads with poor power quality requirements
such as the electric arc-furnace.

• Medium and low-energy demand loads with restrictive power
quality preliminary conditions (e.g., electronic controllers, power
electronic devices, electrical drives, sensitive instrumentation).

Fig. 2 shows the basic architecture of the electric-arc furnace fac-
tory. The industry is supplied by two overhead lines at 220 kV and 55
kV . The 220 kV line supplies energy to the electric arc-furnace used
for steelmaking. This consumption is isolated from the rest of loads due
to the high level of disturbances produced. The 55 kV line supplies
energy with better power quality levels to several sets of loads:

• Auxiliary services . All the electrical consumption of the treatment
plant, including blowers, air filters, air compressors and other aux-
iliary elements.

• Hot-rolling mill . The steel billets manufactured by the electric arc-
furnace are processed by circulating through several sets of pairs of
rollers to reduce the thickness and making the thickness uniform.

The current rate of both lines has been defined considering a con-
servative approach. In the case of the 55 kV line, the current rate is 560
A. Considering a nominal voltage of =U 55 kVN , the maximum capacity
of this line is =S 53.34 MVAN . The aggregated consumption of this line
is summarized in the histogram shown in Fig. 3.

A parameter defined as AOM (Absolute Operation Margin) is de-
fined in order to measure the available capacity of the transmission line
that supplies energy to the steel factory. This parameter can be specified
in terms of current or power.

The orange area in Fig. 3 is the Absolute Operation Margin of the
current (AOMI) defined as the difference between the static rate of the
line ISR that supplies energy to the factory and the maximum value of
current Imax demanded by the factory.

=AOM I II SR max (1)

It is well known that achieving a uniform temperature distribution

Table 1
EAF models based on both linear and non-linear approaches. Abbreviations:
Multivariate Linear Regression (MLR); Partial Least Squares (PLS); Artificial
Neural Networks (ANN); Deep Neural Networks (DNN); Random Forest (RF);
Decision Tree (DT); Support Vector Machine (SVM).

Linear MLR Köhle [4], Bowman [5], Kleimt [6], Köhle [7]
Kirschen [8], Conejo [9], Czapla [10]

Nonlinear PLS Sandberg [11]
ANN Baumert [12], Gajic[13], Haupt[14]
DNN Chen[15]
RF Haupt[14]
DT Kordos[17]
SVM Yuan[16]

Fig. 1. Architecture of a DSM system.
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in the billets is not a trivial task. The factory is considering an increase
in the power demanded by the 55 kV line that will be produced by a
new intermediate Induction Reheating Oven (IRO) ( in 2) with a
nominal power of 6 MW. The purpose of this oven is to compensate the
radial temperature gradient in the billets. In addition, it restores the
optimum rolling temperature. The estimated histogram of the active
power consumption is summarized in Fig. 4.

Fig. 4 shows that the increase in the power demanded by the factory
moves the value of AOMI from a positive to a negative one, AOMI . In
this new operating condition, the maximum current >I Imax SR is inside
the overcurrent zone, and thus the overhead line protection will be
trigged.

The operational margin AOM can be incremented in two main ways:

1. By increasing the transmission line static rate SSR. Ampacity tech-
niques can increase the dynamic capacity of transmission lines
without the need to upgrade the infrastructure.

2. By reducing the maximum value of the demanded apparent power
Smax . Demand-side management techniques can be used to control
the overall set of loads inside the factory [33]. This technique has to
be applied considering a trade-off between current reduction and
Quality of Service.

The methodology is summarized in Fig. 5.
Both techniques are reviewed in the next sections.

3. Demand-side management techniques

From a general point of view, all the electric loads that can be found
in the factory can be classified in three main sets according to the way
in which they are controlled, the constrains defined by the manu-
facturing process, and the quality of service [25]:

1. Fixed.
2. Shiftable.
3. Elastic.

The classical approach followed by the company in the past for the
billet pre-heating, was to perform this task with a natural gas oven. This
strategy is not as efficient as the equivalent one based on induction,
because of the way in which the billet is heated. Induction heating is
more efficient and also more flexible since the billet is heated in a more
homogeneus way, and the system can be switched on and off quickly.

Considering that time is sampled in slots, then for each time slot
n , the total active power pn

TOT can be computed as follows

= + +p p p p nn
TOT

f
fn

s
sn

e
en

(2)

where pfn is the power demanded by fixed devices, psn is the power
consumption of shiftable loads and pen is the power demanded by elastic
loads.

3.1. Fixed loads

A fixed load is defined as a device or set of devices that cannot be
controlled by the end-users. Both power consumption and operational
time have fixed values (e.g., devices devoted to security issues, lights).
Each device with a fixed active power f is characterized by its
active power pfn , considering all the time slots of the period that is
analized n .

Fig. 2. Simplified electric diagram of an electric arc-furnace factory with
measurement points.

Fig. 3. Histogram of the current demand at 55 kV line.
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3.2. Shiftable loads

A shiftable load is a device or set of devices with an active power
consumption that has a fixed profile where its starting time can be
controlled in a certain range. These loads are represented by , and
each device s has a length of Ds slots. The power profile lsd of a
device s in the d-th time slot of each individual profile (with

= …d D D{1, 2, , }s s ) can be considered as constant. The main task of
the DSM during the operation of shiftable loads is to define, for each
device s , the sample at which the device starts to run. The oper-
ating condition will continue during a set of consecutive time slots

s . The set s must be in a range defined by a minimum
starting-time slot STs and a maximum end-time slot ETs defined by the
production schedule.

The scheduling decision problem of each shiftable device s is
defined by a binary variable xsn for each sample n . The binary
variable xsn is one if the load s starts in the sample n and zero otherwise
so x {0, 1}sn . In addition, it is necessary to define a constraint that
makes compulsory the operation of s one time within the time slot s
[34,35].

=

=
=

+ x s

x s n

1

0 , \
n ST
ET D

sn

sn s

1
s

s s

(3)

According to Eq. (3) the power psn demanded by each shiftable load
s in each time slot n can be computed as

= +p l x s n· ,sn
d D d n

sd s n d
:

( 1)
s (4)

3.3. Elastic loads

An elastic load is a device or set of devices, , whose instantaneous
power demand can be managed by the DSM controller. Each device
e is represented by pen in each time slot n . There are two main
types of elastic loads e [36,37].

• Energy-based elastic loads (e ,EB EB ).
• External-based elastic loads (e ,XB XB ).

The elastic load fulfills the condition

= EB XB (5)

3.3.1. Energy-based elastic loads
Energy-based elastic loads are sets of devices with a prescribed

energy requirement. They are defined by a subset EB . All the
appliances that belong to this group e EB demand a total amount of
energy Ee TOT,

EB
in the range of time slots e

EB
defined by the range

of time slots [ ]ST ET,e e
EB EB

. The energy Ee TOT,
EB

can be computed as

=
=

E µ p ee TOT

n ST

ET

en
EB

,
EB

e
EB

e
EB

EB

(6)

where µ is a parameter equivalent to the time that depends on the
duration of time slot Tn with µ Tn.

3.3.2. External-based elastic loads
Weather-based elastic loads are sets of devices which power demand

depends on an external parameter. This external dependency is mainly
based on weather conditions. They are defined by a subset XB . The
external-based power pen

XB
can be represented as

=p p n·en en en
XB XB XB NOM,

(7)

where 1en
XB

is the external conversion function representing the
external parameter or set of parameters which modulate for each
n the power demanded by each load e XB.

Fig. 4. Histogram of the new demand at 55 kV line.

Fig. 5. Methodology for the increment of capacity in industrial factories using
combined DSM and DLR.
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3.4. Local energy generators

Some industries have generation systems based on both renewable
energies and classical internal combustion engines supplied by gas and
fuel. In the case of renewable energy, the total amount of energy sup-
plied, n , is only a prediction for each sample n . Weather forecast
is one of the most useful tools available for this task. It is assumed that
energy produced is only for local consumption. If the energy produced
is greater than the demand, then the difference zn will be injected into
the grid for each n . The difference zn is equal or small that the net
value zn

net, where

= max µ p n[0, · ]n
net

n n
TOT (8)

3.5. Energy storage systems

Energy storage systems (ESS) provides a flexible tool to the DSM
controller in order to modulate the energy consumption. The ESS can be
in one of two states of the set : i) charging ( bn) and ii) discharging
(1 bn). It is considered that a slot n in which there is no charge or
discharge can be considered a discharging state at near-zero dischar-
ging rate. The charging rate is defined by rbn

C while discharging rate is
represented by rbn

D .

3.6. Energy balancing

Once we know all the elements involved in the energy flux it is
possible to define the balance condition for all the values of n
according the power flow summarized in Fig. 6.

+ + = + +y µ r z µ r µ p·n n
b

bn
D

n
b

bn
C

n
TOT

(9)

In the proposed approach, it is not considered any type of fore-
casting in level of load at the demand-side [38] as the industrial process
is defined in advanced based on production orders.

4. Ampacity

From a classical point of view, overhead transmission lines are op-
erated with a fixed value ISR that is computed using conservative
weather conditions (wind speed of 0.6 m/s and an ambient temperature
of 40 °C). Using another approach, the thermal rating of overhead lines
is a parameter that defines their capacity at low current densities
(<1.5 A/mm2) and low temperatures (< °100 C). The analysis of capacity
can be carried out in static or dynamic conditions. The static rating does
not consider variations in weather conditions or current with time. This
approach is widely considered from an statistical point of view. When
the weather conditions and/or the current change with time it is ne-
cessary to extend the analysis to include the thermal capacity of the
conductor. The standards IEEE Std 738:2012 [39] and CIGRE TB
601:2012 [40] define a methodology for calculating the thermal rating
of overhead lines. They propose methods suitable to compute the
temperature in the conductors that are based on the steady state heat
balance concept. In spite of the fact that both documents do not provide
the same set of equations, the results are rather similar [41]. This ap-
proach stablishes that heat gain is equal to heat loss. Additionally both
of them take into account meteorological parameters influencing the
thermal state of the conductor including the ambient temperature, solar
radiation, and wind velocity. However, both methods represent dif-
ferent methodologies of calculation of the heat balance equation. The
CIGRE model stablishes the steady-state heat balance equation that is
shown in Eq. (10),

+ + + = + +P P P P P P PJ M S I C R W (10)

where PJ is the Joule heating, PM the magnetic heating, PS the solar
heating, PI the corona heating, PC the convective cooling, PR the ra-
diative cooling, and PW the evaporative cooling.

On the other hand the heat balance equation according to the IEEE
standard doesn’t consider magnetic heating, corona heating and eva-
porative cooling because their impact is usually insignificant compared
with the other terms.

The simplified IEEE equation for non-steady-state heat balance in-
cludes the total heat capacity of the conductor mCp, as shown below

+ + = + +P P P P P mC dT
dtJ S I C R p

c
(11)

In addition, the IEEE equation for steady-state heat balance neglects
magnetic, corona and evaporative heat losses. In steady-state conditions

= 0dT
dt

c , so the current rating IDR can be computed as

= +I P P P P
R T( )DR

C R J S

c avg, (12)

The overhead line O1 (see Fig. 2) is operated following a static ap-
proach in which the capacity is defined in steady-state considering an
ambient temperature of °40 C and a wind speed of 0, 6 m/s.

If the line is operated in dynamic mode, then the increment of ca-
pacity =I I IDR DR SR depends on the weather conditions. The values
obtained acording Eq. (12) are theoretical values that have to be limited
taking into account the maximum operational limits of underground
cable sections, breakers, current transormers, and all the elements
connected in series with the overhead cable.

The transmission capacity of the line SDR can be computed as

=S V I3DR LL DR (13)

5. Quality of service

The Quality of Service QS is a parameter that refers to the ability of
the Energy Control System (ECS) to fulfills all the requirements defined
by the set of loads. The total value of the system QSTOT reaches its
maximum value when there are no constraints limiting the power de-
manded by all the loads included in the factory. If the ECS introducesFig. 6. Power flows in the factory.
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any constrains in the behavior of the loads and the rest of the sub-
systems (generators and storage devices), then the QSn

TOT at any time n
will be defined by Eq. 14

= + +QS QS QS QS nn
TOT

f
fn

s
sn

e
en

(14)

QS is used in order to define a weight for each load as not all the loads
play a role with the same importance in the industrial process.

6. Optimization

Considering a power factor almost equal to 1.0, the active power is
numerically identical to the apparent power so P SDR DR. Even in a case

in which the PF is not equal to one, it is still possible to extend the
formulation of the problem by applying the Boucherot’s theorem to
compute both the active and reactive power. After that, the apparent
power can be translated to rms current directly. For any time slot n the
dynamic power capacity pn

DR defines the upper limit of the power that
can be handled by the infrastructure (see Fig. 7). The mixed constrained
minimization problem may be written as

y z
y z P

minimize max[| |]
subject to | | ·

n n n

n n n
DR

(15)

where is the security margin. The optimization process is summarized
in Algorithm 1. In the proposed methodology the optimization can be

Fig. 7. Profile of the active power demanded by the factory.

Optimize max y z{| |}m m
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performed using several techniques. In this paper the optimization is
carried out using Monte Carlo [42] and Simulated Annealing [43]. It is
assumed that Monte Carlo provides a near-optimal solution by sampling
variables according specific probability distribution functions. This
approach can be useful when the optimization problem has several
local optima, the constraints are difficult to define, and the number or
type of parameters is high. In spite of the fact that the solution is near-
optimal, the computational burden of this method is low enough to be
applied in real-time applications. Shabani et al. [44] propose a prob-
abilistic methodology that can be applied to the computation of power
cable ampacity by considering uncertainty of parameters and economic
constraints in isolated conductors.

Algorithm 1.

7. Results

The proposed methodology has been applied to the electric arc-
furnace factory described in Section 2. The analysis has been carried out
measuring weather conditions over the course of one year. Fig. 8
summarizes the values of ampacity IDR during one year of measure-
ments considering several degrees of aggregation (season, ambient
temperature, and solar radiation).

Fig. 8 shows that the ampacity is greater that the static rating ISR
and the maximum demand Imax most of the time. The aggregated data
during a year is summarized in Fig. 9.a.

Fig. 9.b shows the period during which the DTR IDR is smaller than

the required maximum current Imax , and where tDSM is equal to 650 h a
year, considering that the current demanded by the factory is Imax all
the time. In a real case the current is fluctuating below that value so the
proposed methodology for DSM will only have to be applied during a
small percentage of this period tDSM .

Fig. 10 shows the time evolution of the total active power during
one month with the simulation of the increase produced by adding the
new induction reheating oven PIRO. The values located in areas and
in Fig. 10 produce overcurrents that have to be avoided. The points

Fig. 8. Dynamic capacity of the transmission line aggregated by season, solar radiation and ambient temperature.

Fig. 9. (a) Density plot of Ampacity; (b) Hourly distribution of DTR in the line under study.

Fig. 10. Simulation of the time evolution of the apparent power with the new
induction reheating oven.
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and show operation and maintenance operations that stop the fac-
tory.

During the periods in which the DTR IDR is smaller than the required
maximum current Imax the DSM methodology can be applied. Fig. 11
shows the result of applying two different optimization techniques
(Monte Carlo and Simulated Annealing). If the current demanded by the
factory has to be reduced down to the Static Rate ISR then it is necessary
to decresase the total Quality of Service QS of the factory to QSA equal
to 68.6 if the optimization is performed by means of Monte Carlo or QSB
equal to 82.9 when Simulated Annealing is applied.

8. Conclusions

Demand side management has the potential to provide important
benefits to both the distribution network and the consumers. This
technique is particularly useful when the loads inside the factory can be
aggregated in several sets acording to their behaviour.

In the case of EAF and due to the peak-load demanded by the
melting arc furnace, the DSM potential is mainly devoted to load
shedding. This is due to the fact that the main aim is to minimize the
electricity bill by tracking the time-varying energy price.

This paper presents a novel strategy based on the combination of
demand side management and dynamic capacity management of
overhead transmission lines. It has been shown that the combined
strategy can be sucesfully applied to a practical problem.

The proposed methodology has been tested in a real electric arc-
furnace factory, where power demand is near the static rating of the
overhead transmission line that supplies the energy to the industry. This
factory is planning to install a new facility with an active power of
6 MW, so the total power demanded will be greater than the available
capacity of the transmission line.

The simulations carried out show that the proposed methodology is
able to handle the growth of the power demanded by the factory
without the necessity of installing new transmission lines. From a the-
oretical point of view, DTR increases the capacity of existing trans-
mission infrastructure in a significative way, even during the Summer
period in which ambient temperature and wind availability reduce their
cooling capacity.

The classical approach with static rating shows that the factory is
not able to increase its power by adding a new facility. If 6 MW of
additional power are added to the demanded power, then the total
power will be above that limit.

The application of ampacity techniques allows the factory to op-
erate without the restriction of power demanded during 8,110 h a year
(92.5% of the time). During the periods in which the DTR is below the
current demanded by the factory the DSM technique can be applied.
Two different optimization techniques have been applied. Simulated

Annealing provides better results with a loss of Quality of Service equal
to 17.1% in the worst case. The results show that the proposed meth-
odology avoids the installation of a new line or the repowering of the
existing one.
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