
The Journal of Systems and Software 165 (2020) 110570

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

In Practice

Software-testing education: A systematic literature mapping

Vahid Garousi a , ∗, Austen Rainer a , Per Lauvås jr b , Andrea Arcuri b

a Queen’s University Belfast, Northern Ireland, UK
b Kristiania University College, Oslo, Norway

a r t i c l e i n f o

Article history:

Received 13 June 2019

Revised 20 February 2020

Accepted 8 March 2020

Available online 19 March 2020

Keywords:

Software testing

Software-testing education

Software-engineering education

Education research

Systematic literature review

Systematic literature mapping

a b s t r a c t

Context: With the rising complexity and scale of software systems, there is an ever-increasing demand

for sophisticated and cost-effective software testing. To meet such a demand, there is a need for a highly-

skilled software testing work-force (test engineers) in the industry. To address that need, many univer-

sity educators worldwide have included software-testing education in their software engineering (SE) or

computer science (CS) programs. Many papers have been published in the last three decades (as early as

1992) to share experience from such undertakings.

Objective: Our objective in this paper is to summarize the body of experience and knowledge in the area

of software-testing education to benefit the readers (both educators and researchers) in designing and

delivering software testing courses in university settings, and to also conduct further education research

in this area.

Method: To address the above need, we conducted a systematic literature mapping (SLM) to synthesize

what the community of educators have published on this topic. After compiling a candidate pool of 307

papers, and applying a set of inclusion/exclusion criteria, our final pool included 204 papers published

between 1992 and 2019.

Results: The topic of software-testing education is becoming more active, as we can see by the increasing

number of papers. Many pedagogical approaches (how to best teach testing), course-ware, and specific

tools for testing education have been proposed. Many challenges in testing education and insights on

how to overcome those challenges have been proposed.

Conclusion: This paper provides educators and researchers with a classification of existing studies within

software-testing education. We further synthesize challenges and insights reported when teaching soft-

ware testing. The paper also provides a reference (“index”) to the vast body of knowledge and experience

on teaching software testing. Our mapping study aims to help educators and researchers to identify the

best practices in this area to effectively plan and deliver their software testing courses, or to conduct

further education-research in this important area.

© 2020 Elsevier Inc. All rights reserved.

1

w

a

m

t

E

w

a

f

q

(

r

a

o

t

w

r

t

s

h

0

. Introduction

“Software is eating the world” (Andreessen, 2018). In other

ords, software systems have penetrated almost all industries

nd all aspects of our personal and professional lives. Further-

ore, many industrial sources are reporting that software sys-

ems are getting increasingly complex (Khushu, 2019 ; Algaze, 2017 ;

theredge, 2018). With the increasing complexity and scale of soft-

are systems, there is an ever-increasing demand for sophisticated

nd cost-effective software quality assurance. Software testing is a

undamental, and also the most widespread, activity to assure the
∗ Corresponding author.

E-mail addresses: v.garousi@qub.ac.uk (V. Garousi), a.rainer@qub.ac.uk

(A. Rainer), per.lauvas@kristiania.no (P. Lauvås jr), andrea.arcuri@kristiania.no

(A. Arcuri).

C

s

w

t

t

ttps://doi.org/10.1016/j.jss.2020.110570

164-1212/© 2020 Elsevier Inc. All rights reserved.
uality of software systems. A 2013 study by Cambridge University

 Britton et al., 2013) reported that the global cost of locating and

emoving defects from software systems has risen to $312 billion

nnually, and removing defects comprises, on average, about half

f the development costs of a typical software project.

To meet the ever-growing demand for cost-effective software

esting, there is the increasing need for a highly-skilled soft-

are testing work-force in the industry. But in the non-peer-

eviewed literature (grey-literature) such as online blogs and ar-

icles, many industrial sources are also reporting the shortage of

oftware testers, e.g., (ComputerWeekly, 2019 , Murrary, 2019 , uTest

ommunity Management 2010). Furthermore, in the context of

oftware testing talent shortage, it is often recruiting “quality” soft-

are testers (i.e., with the right skillset), not just recruiting “quan-

ity” (number of people available in the job market) (Baker, 2019)

hat is the challenge.

https://doi.org/10.1016/j.jss.2020.110570
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110570&domain=pdf
mailto:v.garousi@qub.ac.uk
mailto:a.rainer@qub.ac.uk
mailto:per.lauvas@kristiania.no
mailto:andrea.arcuri@kristiania.no
https://doi.org/10.1016/j.jss.2020.110570

2 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

S

s

p

t

l

s

2

s

t

i

a

2

i

i

d

s

i

n

i

5

s

w

c

w

t

g

n

t

s
To address the above needs and to train more highly-skilled

software testers, many software engineering (SE) and computer

science (CS) university programs worldwide have started to include

software testing in their education curricula. This is achieved by

either including distinct and separate software testing courses, or

alternatively blending (integrating) software testing concepts into

programming or other courses (Association for Computing Com-

puting Machinery (ACM), 2019). To share their experience from

such effort s, university educators write and publish papers about

their software-testing education activities. Papers are written in

this area to discuss and present more effective pedagogical ap-

proaches (e.g., how to better teach testing), new course proposals

(e.g., course designs), and specific tools for testing education. Also,

based on the educators’ experience, many papers have identified

a large number of challenges which educators and students could

face when teaching and learning about testing, as well as insights

into how to overcome those challenges.

Given such a large body of experience and knowledge in the

area of software-testing education, there is the need for a system-

atic review in this area, since it is often not possible for the in-

dividual educator to study all the papers and to synthesize all the

evidence presented. For example, for a new educator who wants to

teach a (new) course in software testing (in her/his university), it

would be very valuable to know, before teaching, about the chal-

lenges faced by educators when teaching testing and also about

insights on how to overcome those challenges. Thus, it would be

useful to synthesize and summarize reported experience and evi-

dence, as well as research topics and research questions (RQs) in

this area. Our objective and goal in this paper are to provide such

a synthesis and summary.

To address the above goal, we conducted a systematic literature

mapping (SLM) to synthesize what the community of educators

has published on this topic. Based on a systematic SLM process,

we systematically select a pool of 204 papers, and by investigating

nine RQs, we categorize and analyse various aspects of the subject

under study.

The contributions of this review paper are three-fold:

• The classification of the studies in this area, performed through

a systematic mapping, via RQs 1-8
• The synthesis of challenges faced during testing education (via

RQ 9.1) together with the synthesis of insights (recommenda-

tions) for testing education (via RQ 9.2).
Fig. 1. A context diagram modelling the relationship of software-
• The development of an index (repository) of the studies in

this area, which is accessible in an online Google spreadsheet

(goo.gl/DcEpMv)

The remainder of this paper is structured as follows.

ection 2 provides background and related work. Section 3 de-

cribes the research method, and then the design and execution

hases of the SLM. Section 4 presents the results of the litera-

ure review. Section 5 summarizes the findings and discusses the

essons learned. Finally, in Section 6 , we draw conclusions, and

uggest areas for future research.

. Background and related work

In this section, we provide a brief overview on the state of

oftware-testing education in universities versus software testing

raining in industry. We then briefly review related work, i.e., ex-

sting survey (review) papers in the areas of software engineering

nd software-testing education.

.1. Software-testing education in universities versus training in

ndustry

In addition to software-testing education in universities, there

s also high demand for software-testing training in industry. In-

ustry training is often provided through certification schemes,

uch as those provided by the International Software Testing Qual-

fications Board (ISTQB) (www.istqb.org), an organization that has

ational branches in more than 120 countries worldwide. Accord-

ng to its website, “As of December 2017, ISTQB has issued more than

70,0 0 0 certifications in over 120 countries world-wide ”.

To more clearly understand, characterize and distinguish

oftware-testing education in universities from training in industry,

e model the concepts as a context diagram, as shown in Fig. 1 . To

larify the focus of this SLM paper, we have highlighted our focus

ith a grey background in Fig. 1 . On the left-hand side of Fig. 1 are

he higher-education institutions that train students and produce

raduates. We further distinguish the SE, CS and IT degrees from

on-SE/CS/IT degrees.

Educators in universities may decide to include or not include

esting in their SE, CS, or IT curricula. As a result, on a world-wide

cale, we have graduates of SE, CS, and IT degrees with varying
testing education in universities versus training in industry.

http://www.istqb.org

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 3

Table 1

An indicative list of survey papers in the area of software engineering education.

Area / category Year Reference of the review paper Num. of papers

reviewed

Type of review

Regular survey SLM SLR

Software-testing education 2008 (Desai et al., 2008) 18 x

2015 (Valle et al., 2015) 25 x

2017 (Scatalon et al., 2017) 158 x

2018 (Lauvås Jr and Arcuri, 2018) 30 x

2019 (Scatalon et al., 2019) 293 x

2019 This SLM paper 204 x

Requirements-engineering education 2015 (Ouhbi et al., 2015) 79 x

Software process education 2015 (Heredia et al., 2015) 33 x

Other areas of software engineering

education

2011 (Caulfield et al., 2011) 36 x

2012 (Malik and Zafar, 2012) 70 x

2013 (Nascimento et al., 2013) 53 x

2014 (Marques et al., 2014) 173 x

2018 (Alhammad and Moreno, 2018) 127 x

2018 (d. A. Mauricio et al., 2018) 156 x

2019 (Wendt, 2019) 34 x

Automated assessment approaches of

programming assignments

2005 (Ala-Mutka, 2005) 65 x

2010 (Ihantola et al., 2010) 80 x

Computer science education 1977 (Austing et al., 1977) 200 x

1988 (Carbone and Kaasbøll, 1998) 17 x

l

s

e

w

o

i

a

t

n

m

s

t

s

t

t

2

e

e

h

o

e

s

c

v

a

2

y

t

a

c

t

fi

S

2

d

i

R

a

u

t

e

w

t

p

a

a

o

c

i

e

v

i

h

t

a

S

3

p

t

T

s

e

(

(

w

g

p

r

l

i

s

h

t

–

m
evels of opportunity to learn software testing during their univer-

ity studies. These graduates look for positions in industry and are

mployed as SE professionals. We also recognize that, in the soft-

are industry, many graduates of non -SE/CS/IT degrees (e.g., math,

r business) also work in software testing positions. For example,

n a survey of software testing practices in Canada in 2013 (Garousi

nd Zhi, 2013), based on a respondent population of 246 practi-

ioners, 92 respondents (37.3% of all respondents) reported having

on-SE/CS/IT degrees, e.g., business, MBA, industrial engineering,

athematics, English and sports administration.

To do a better job in software testing, and/or to find better po-

itions, university graduates and practicing SE professionals some-

imes also self-learn (self-train) (Hanson, 2018 ; Bradford, 2019) in

oftware testing by learning from books or online resources, or

hey attend industrial training and achieve certification in software

esting, e.g., those provided by ISTQB.

.2. Related works: secondary studies in software engineering

ducation

Many systematic review papers have been reported in the gen-

ral area of SE education, and CS education. Also, review papers

ave been reported on educational aspects for specific sub-areas

f SE, e.g., testing, or requirements engineering. Based on a (non-

xhaustive) literature search, we present in Table 1 a list of those

tudies. For each review paper, we also provide the year of publi-

ation, number of papers reviewed in the review and type of re-

iew: regular survey, Systematic Mapping Study (SMS) which is

lso called Systematic Literature Mapping (SLM) (Petersen et al.,

015), or Systematic Literature Review (SLR). Papers are sorted by

ear of publication, for each category.

Note that, because our focus is on software-testing education,

he search for review papers in this area was done more carefully,

nd thus we believe the five papers shown in the software-testing

ategory in Table 1 are all that have been published so far on this

opic. To keep our discussion focused, we discuss next only those

ve related review papers (Desai et al., 2008 ; Valle et al., 2015 ;

catalon et al., 2017 ; Lauvås Jr and Arcuri, 2018 ; Scatalon et al.,

019) and how this current SLM differs from them. To also help us

ifferentiate our SLM, we list in Table 2 the RQs raised and studied

n the five review papers. We also summarize in Table 2 how the

Qs of each previous review study relate to the RQs in this SLM.

A survey of evidence for Test-Driven Development (TDD) in

cademia was reported in (Desai et al., 2008). The work was a reg-
lar survey (not necessarily systematic). By reviewing 18 papers on

he topic, it presents the benefits of incorporating TDD in testing

ducation, “worries” (challenges) of doing so, and popular frame-

orks for that purpose.

A SLM on software-testing education (paper written in Por-

uguese) was reported in (Valle et al., 2015). It reviewed 25 pa-

ers on the topic, published as of 2015. The study identified the

pproaches of teaching software testing, as well as how to develop

nd evaluate them.

Another SLR (Scatalon et al., 2017) synthesized the challenges

f integrating software testing into introductory programming

ourses, as reported by 158 papers, which included: (1) Determin-

ng how programming and testing should be connected and deliv-

red together; (2) Dealing with students who do not appreciate the

alue of software testing; (3) Determining how the testing activ-

ty should be conducted in programming assignments; (4) How to

elp students become better testers; and (5) Choosing appropriate

ools. The study also discussed possible solutions to the challenges

s addressed in the literature.

Recent trends in software-testing education were studied via a

LR in (Lauvås Jr and Arcuri, 2018). The SLR analysed and reviewed

0 papers that were published between 2013 and 2017. The review

ointed out recent trends such as the use of gamification to make

he software testing more interesting and less tedious for students.

wo of the current authors were involved in that SLR.

The SLM reported in the current paper is a substantial exten-

ion to the SLR (Lauvås Jr and Arcuri, 2018), since: (1) we have

xtended the pool of papers under study from 30 to 204 papers;

2) we have also extended our analysis from only three RQs in

 Lauvås Jr and Arcuri, 2018) to nine RQs (discussed in Section 3.1).

A recent SLM was published in 2019 (Scatalon et al., 2019)

hich explored integration of software testing in introductory pro-

ramming courses. By populating a large pool of 293 papers, it

rovided a mapping on two RQs (as shown in Table 2).

We have summarized in Table 2 how the RQs of each previous

eview study relate to the RQs in this SLM. By comparing the RQs

isted in Table 2 , we can find out that the focus of our SLM (as

ndicated by our nine RQs) is wider than the focus of the previous

econdary studies in this area, since those previous review studies

ave had between one and four RQs, each.

In terms of a study’s substantive pool size, we believe our SLM

o be the largest review. The 2019 SMS study (Scatalon et al., 2019)

henceforth referred to as the SMS2019 study – has reviewed

ore primary studies (293), however after examining the paper

4 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Table 2

The RQ raised and studied in the survey papers in software-testing education.

Title of the paper ID in Fig. 2 Reference RQs How the RQs of each previous review relate to our RQs (discussed in

grey background)

A survey of evidence for test-driven

development in academia

SMS2017 (Desai et al., 2008) No formal RQ, since it was a regular survey paper. But the survey

extracted the following information from the primary studies:
• Type of student levels (junior, graduate, etc.)
• Number of subjects (students); Corresponds to one of the aspects

covered in our RQ 6 (Context under study)
• Evidence for increase in productivity of students
• Evidence for increase in quality of programs

A systematic mapping on

software-testing education (Paper is in

Portuguese)

– (Valle et al., 2015) (note: since the paper is in Portuguese, we used the Google Translate to

translate its RQ phrases into English)
• RQ1 - What are the types of approaches that have been used to aid

teaching software testing?

◦ This RQ covers only one aspect of the paper contribution types (RQ

1) in our study.
• RQ2 - What are the phases of software testing that have been

contemplated in teaching software testing?

◦ This RQ is similar to our RQ 5.1 (Type of test activities covered in the

course).
• RQ3 - What technologies have been used in the development of the

approaches identified in RQ1 and what are the target languages used

to aid the teaching of software testing?

◦ This RQ is similar to our RQ 5.2.
• RQ4 - What are the evaluations that have been carried out for the

validation of the approaches used to support the teaching of software

testing?

◦ This RQ is similar to our RQ 3.

Challenges to integrate software

testing into introductory programming

courses

– (Scatalon et al., 2017) One RQ: What are the challenges faced to integrate testing practices into

introductory programming courses?

This RQ has some similarity to our RQ 9.1 (Challenges in testing

education)

Recent trends in software-testing

education: a systematic literature

review

– (Lauvås Jr and Arcuri, 2018) • RQ1: What topics are addressed in the recent literature on

software-testing education?

◦ This RQ is similar to our RQ 1.
• RQ2: What kind of contributions are present in papers published on

software-testing education?

◦ This RQ is similar to our RQ 2.
• RQ3: What insight can be provided to lecturers that want to introduce

software testing as part of their teaching?

◦ This RQ is similar to our RQ 9.2.

Software testing in introductory

programming courses: a systematic

mapping study

SMS2019 (Scatalon et al., 2019) • RQ1: Which topics have researchers investigated about software

testing in introductory programming courses?

◦ This RQ is similar to our RQ 1.
• RQ2: What are the benefits and drawbacks about the integration of

software testing into introductory programming courses?

◦ This RQ has some similarity to our RQ 9.1 (Challenges in testing

education) and RQ 9.2 (Insights for testing education).

o

a

p

t

c

S

a

m

c

T

a

t

s

p

3

o

a
pool of the SMS2019 study, we conclude that the study (Scatalon

et al., 2019) included, in its pool of papers, many papers which had

not focused mainly on testing education, but were rather: papers

presenting experience in programming education together with, in

some cases, short discussions relating to testing, e.g., (Allen et al.,

2003 ; Allevato et al., 2009 ; Bennedsen and Caspersen, 2005 ; Llana

et al., 2012 ; Venables and Haywood, 2003); or papers focused on

automated assessment systems for student-written programs (as-

signments), e.g., (Ala-Mutka, 2005 ; Daly and Horgan, 2004 ; Spacco

et al., 2004 ; Higgins et al., 2002 ; Cheang et al., 2003 ; Choy et al.,

20 05 ; Sant, 20 09), a topic which we believe is not directly about

“teaching” software testing, and thus should not be included when

doing a SLR on software-testing. By contrast, for our SLM, we

only included papers with a clear focus on testing education. The

SMS2019 study (Scatalon et al., 2019) also included other “sec-

ondary” studies in its pool, i.e., a “secondary” study (Heaton, 2008)

is a study of studies (papers) and is another term used to refer to

survey/review studies. However, we question whether a secondary

study should include other secondary studies in its review pool.

If a study intends to review and synthesize secondary studies, it

would then become a “tertiary” study (Kitchenham et al., 2010 ;

Da SiLVA et al., 2011 ; Hanssen et al., 2011).
S
To further clarify the position of our SLM in relation to previ-

us review papers in this area, we provide a Venn-diagram visu-

lization in Fig. 2 . As software testing can sometimes be taught as

art of a programming course, our SLM reviews some publications

hat overlap with the teaching of programming. The figure indi-

ates two previous studies - SMS2017 and the already-mentioned

MS2019 (see Table 1) - that specifically focus on programming

nd testing. Software testing also provides a mechanism for auto-

ated assessment of students’ programming, so our SLM also in-

ludes some publications that overlap with automated assessment.

here are many other areas to software engineering education, in

ddition to programming and automated assessment. We present

wo areas in Fig. 2 , as examples: requirements engineering and

oftware process. Thus, we believe our SLM to be the most com-

rehensive SLR published to date on software-testing education.

. Design and execution of the SLM

Our research method in this paper is SLM. We present an

verview to our SLM process, the research questions of the SLM,

nd then other aspects related to the design and execution of the

LM.

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 5

Fig. 2. A Venn diagram showing the scope of our SLM and other review studies w.r.t. topic areas assessed.

s

e

o

e

2

c

p

S

3

e

q

w

s

s

t

c

a

c

a

u

o

w

t

t

s

s

fi

h

w

s

t

c

c

a

t

s

Using the well-known guidelines for conducting SMS and SLR

tudies in SE (e.g., (Petersen et al., 2015 ; Wohlin, 2014 ; Petersen

t al., 2008 ; Kitchenham and Charters, 2007)) and also based on

ur past experience in SLR studies, e.g., (Zhi et al., 2015 ; Garousi

t al., 2015 ; Do ̆gan et al., 2014 ; Häser et al., 2014 ; Felderer et al.,

015 ; Felderer and Fourneret, 2015), we developed our SLM pro-

ess, as shown in Fig. 3 . We discuss the SLM planning and design

hase (its goal and RQs) in the next section. We then present in

ection 4 each of the follow-up phases of the process.

.1. Goal and research questions

The goal of this study is to classify and summarize reported

xperience and evidence, as well as research topics and research

uestions, in the area of software testing education. By doing so,

e seek to provide a holistic view to the body of knowledge on

oftware testing education.

As discussed in Section 1 , the need for conducting this SLM

tudy was established by identifying the relevant stakeholders and

heir needs, as follows: (1) new and also experienced testing edu-

ators, and also (2) education researchers in this area, whose needs
re as follows. For a new educator who wants to teach a (new)

ourse in software testing (in her/his university), it would be valu-

ble to know, before teaching, about the challenges faced by ed-

cators when teaching testing and also about insights on how to

vercome those challenges. It would also be helpful for him/her

hether certain tools / evidence have been reported in this area

o support testing education. The authors have been involved in

eaching testing for many years. They clearly remember when they

tarted teaching, they were looking for experience and evidence

hared by others in the literature. In many occasions, they had to

nd many papers and review them individually. Having a single

olistic overview / classification (which is provided by this SLM)

ould have been helpful for such needs. The authors actually know

everal junior colleagues teaching courses in software testing and

hey have expressed interest in seeing results of our SLM study.

Furthermore, education researchers in this area need to have a

lear view on the state of the art to be able to properly plan and

onduct new research in the topic. Among many research aspects,

n education researcher in this area would need to know the con-

ribution types presented and research methods used in previous

tudies, e.g., experiments and empirical studies.

6 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Fig. 3. An overview of SLM process (represented as a UML activity diagram).

Based on the above goal, we raise the following research ques-

tions (RQs):

• RQ 1- Classification of studies by contribution types:

◦ RQ 1.1-What contributions to software-testing education

have been made by the papers in this area, and what are

their frequencies?

◦ RQ 1.2-What ‘clusters’ of papers are there (if any) and how

do they cluster? For example, during our reviews we have

identified particular tools around which several papers are

written, and particular sets of authors appear to write a col-

lection of papers together, over time.
• RQ 2- Classification of studies by research method types: What

research methods have been used in the papers and what are

their frequencies of use? Some papers have presented proposals

or demonstration of a course or a tool but share very little ex-

perience, while some other papers have shared more in-depth

experience of the proposed courses, such as students’ feedback.

Some papers have gone further and have conducted system-

atic experiments or empirical studies by raising Research Ques-

tions (RQs). The rationale for this RQ is that the education re-

searchers in this area who plan to design and conduct new em-

pirical research in the topic would benefit from rigorous empir-

ical studies which have already been published (to be identified

by this RQ).
• RQ 3- Data source (if any) used for the evaluation: What types

of data sources were used in the evaluations? For example, we

found that some papers used survey data (gathered from stu-

dents), while others analysed the quality of student-written au-

tomated tests.
• RQ 4- Research questions, or hypotheses, studied in the papers:

What research questions or hypotheses have been raised and

studied? Knowing about the RQs studied in the papers could
inspire readers (other researchers) to explore similar or other

research directions in future.
• RQ 5- Technical aspects of testing: What technical aspects of

testing (test activities) have been covered in testing education,

as reported in the primary studies? Our rationale for this RQ

is to assess the coverage of different technical testing topics

in the courses, as discussed in the papers, e.g., test process

planning, test-case design and test automation. We wondered

whether certain test activity types (e.g., test-case design) had

received more attention in terms of teaching coverage than oth-

ers, while certain activity types (such as test automation) has

received less attention: will the general landscape of research in

this area (as analysed by the SLM) support such propositions?
• RQ 6- Scale of the educational setting under study: What were

the number of the course offerings, and also the number of

students taking the course(s)? Our rationale was to get a mea-

sure of the scale/context of the software testing courses, used

for evaluations in the papers. According to the empirical soft-

ware engineering guidelines (Shull et al., 2007), one would ex-

pect that larger empirical contexts (e.g., having more students

as subjects of empirical studies) would lead to better/stronger

evidence in our subject matter.
• RQ 7- Different approaches to testing education: How many

of the papers have presented a single testing course and how

many have integrated testing across one or more programming

courses?
• RQ 8- Theories and theory-use in software-testing education:

What is the state of theories and theory-use in software-testing

education? As it has been recognized in the broad literature

of CS/SE education, e.g., (Nelson and Ko, 2018 ; Fincher and Pe-

tre, 2004 ; Fincher and Robins, 2019), it is important to use and

adapt theories from learning and education science in CS/SE ed-

ucation to increase research rigor in this area.

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 7

3

k

t

i

K

t

w

e

M

i

t

a

p

s

c

p

s

t

t

w

t

i

&

o

d

t

c

w

t

t

s

a

t

o

t

a

p

c

d

p

S

l

a

u

u

w

p

e

o

s

a

fi

c

a

a

h

i

e

e

c

F

a

a

r

2
• RQ 9- Empirical evidence collected and reported: What types of

empirical evidence have been collected and reported? We orga-

nize this RQ into two sub-RQs:

◦ RQ 9.1- Evidence-based challenges in testing education:

What challenges in testing education have been supported

by empirical evidence?

◦ RQ 9.2-Evidence-based insights (recommendations) for test-

ing education: What insights (recommendations) for testing

education have been supported by empirical evidence?

.2. The search process: selecting the source engines and search

eywords

For all steps of this SLM, we have followed the common prac-

ices employed in the SLR and SLM studies in software engineer-

ng (Petersen et al., 2015 ; Wohlin, 2014 ; Petersen et al., 2008 ;

itchenham and Charters, 2007). To find and select the papers for

he SLM, we used both Google Scholar and Scopus. These are both

idely used in many previous SLR and SLM papers in software

ngineering, e.g., (Lucas et al., 2009 ; Wohlin, 2014 ; Garousi and

äntylä, 2016 ; Garousi, 2015). The reason that we used Scopus

n addition to Google Scholar was that several sources have men-

ioned that: “it [Google Scholar] should not be used alone for system-

tic review searches ” (Haddaway et al., 2015) as it may not find all

apers.

All the authors did independent searches using the search

trings. During this search phase, the authors already applied in-

lusion/exclusion criteria for selecting only those papers which ex-

licitly addressed the study’s topic. We show in Table 3 our search

trings used in each search engine. For each case, we also display

he number of records (papers) returned, number of papers added

o the candidate pool, and number of papers not added (as they

ere already in the pool).

Furthermore, to ensure maximizing our chances of finding all

he relevant papers, we identified two well-known focused venues

n this topic: (1) the Conference on Software Engineering Education

 Training (CSEE&T), and (2) the ACM SIGCSE Technical Symposium

n Computer Science Education, and searched in their proceedings

irectly (see the URLs in Table 3).

These searches were conducted in January 2019. The data ex-

raction from the primary studies and their classifications were

onducted during the period of January-February 2019. As we
Table 3

Search engines and search strings.

Sources Search string

Search engines: scholar.google.com Software testing educatio

Teaching software testing

www.scopus.com (TITLE-ABS-KEY (software

testing education) OR

TITLE-ABS-KEY (teaching

software testing)) AND

SRCTITLE (software)

Focused venues in this

topic:

Conference on Software

Engineering Education &

Training (CSEE&T)

https://ieeexplore.ieee.

org/xpl/conhome.jsp?

punumber=1000686

testing

ACM SIGCSE Technical

Symposium on Computer

Science Education

https://dl.acm.org/event.

cfm?id=RE175

testing

Total in the initial pool:
anted to include all available papers on software testing educa-

ion regardless of when they were published, we did not restrict

he papers’ year of publication (e.g., only those published since a

pecific year, like for example since 20 0 0).

While performing the searches with the selected keywords, we

lso applied title filtering. We wanted to ensure that we would add

o our candidate paper pool only those papers that were obviously

r potentially relevant papers, while at the same time we wanted

o avoid wasting time analysing non-relevant papers. It would be

 waste of effort to add a clearly irrelevant paper to the candidate

ool and then remove it soon after. Our first inclusion/exclusion

riterion (discussed in Section 4.1.2) was used for this purpose (i.e.,

oes the source focus on software-testing education?). For exam-

le, Fig. 4 shows a screenshot of our search activity using Google

cholar in which obviously or potentially relevant papers are high-

ighted by red boxes. To ensure efficiency of our effort s, we only

dded such related studies to the candidate pool.

Google Scholar returned a very large number of results (papers)

sing the above keyword, at the time of our search phase (Jan-

ary 2019), i.e., more than 2 million papers. Analysing all of them

ould simply not be viable. We needed a clear, unbiased “stop-

ing” condition to determine how many papers should be consid-

red. To cope with this issue, we utilized the relevance ranking

f the search engine (Google’s PageRank algorithm) to restrict the

earch space. Fortunately, the PageRank algorithm is very effective

t ranking the relevant search results. Thus, we checked only the

rst n pages (i.e., somewhat like a search “saturation” effect). We

ontinued with further pages of results only if needed, e.g., when

t least one result in the n th page was still relevant (for example, if

t least one paper focused on software testing education). Similar

euristics have been reported in several other existing review stud-

es, guidelines and experience papers (Godin et al., 2015 ; Mahood

t al., 2014 ; Adams et al., 2016 ; Garousi and Mäntylä, 2016 ; Garousi

t al., 2017). At the end of our initial search and title filtering, our

andidate pool had 307 papers (as shown in our SLM process in

ig. 3).

There were high chances of duplications in the pool, as Scopus

nd Google Scholar databases are not independent. Therefore, we

dded a candidate paper to the paper pool only if it was not al-

eady in the candidate pool.

We conducted forward and backward snowballing (Wohlin,

014) on the set of papers already in the pool. The aim was to
of records

returned

of papers added to

the candidate pool

of papers not added

(already in the pool, or

immediately excluded)

n OR

∼ 4,390,000 226 N/A

 309 20 289

131 5 126

574 13 561

264 –

http://www.scopus.com
https://ieeexplore.ieee.org/xpl/conhome.jsp?punumber=1000686
https://dl.acm.org/event.cfm?id=RE175

8 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Fig. 4. A screenshot from the search activity using Google Scholar (directly- or potentially-relevant papers are highlighted by red boxes).

3

i

p

t

a

c

t

u

e

a

w

r

f

w

m

P

p

p

c

t
ensure to include all the relevant sources as much as possible,

as recommended by systematic review guidelines. Snowballing, in

this context, refers to using the reference list of a paper (backward

snowballing) or the citations to the paper to identify additional pa-

pers (forward snowballing) (Wohlin, 2014). Snowballing provided

11 additional papers. For example, we found [P14] and [P117] by

backward snowballing of [P114]. Note that the citations in the form

of [Pn] refer to the IDs of the primary studies (papers) reviewed

in our study. They are available in an online archived document

(Garousi et al., 2019).

Referring to the process of how we populated the pool of pa-

pers, as shown in Fig. 3 , we should clarify the case of 32 papers

which we added from the pool of papers of previously-published

review studies. Of course, the previously-published review studies

had reviewed considerably more than 32 papers. We went through

their pools of papers and only added to our pool the candidate pa-

pers which were not already in the initial pool of 275 papers (= 264

‘original’ papers + 11 ‘snowballed’ papers).

After compiling an initial pool of 307 candidate papers, a sys-

tematic voting (as discussed next) was conducted among the au-

thors, in which a set of defined inclusion/exclusion criteria were

applied to derive the final pool of the primary studies.

We should add that, although any secondary study like ours

seeks to apply comprehensive search processes and measures to

ensure that we are “not missing relevant [primary] studies ” (Cooper

et al., 2018), one can only minimize the chance of missing related

primary studies, and there is no absolute guarantee that we find all

papers. Indeed, there are papers outside the SE discipline that fo-

cus on the issue of effectiveness of search approaches, e.g., (Cooper

et al., 2018 ; Mallett et al., 2012 ; Misra and Agarwal, 2018). For

example, Cooper et al. mention in (Cooper et al., 2018) that: “…

comprehensive literature searching is implicitly linked to not miss-

ing relevant studies ”. By following such recommendations, we de-

signed and conducted our comprehensive search process, as dis-

cussed above.
i
.3. Application of inclusion/exclusion criteria and voting

We carefully defined a set of three exclusion criteria to ensure

ncluding all the relevant papers and excluding the out-of-scope

apers. Our exclusion criteria were as follows:

• Exclusion criterion #1 : Does the paper focus on software-testing

education in academia (universities)? Our scope was to exclude

papers reporting software-testing training in industry.
• Exclusion criterion #2 : Does the paper include a relatively sound

evaluation, e.g., at least based on some teaching experience?

We wanted to exclude purely opinion-based papers.
• Exclusion criterion #3 : Is the paper in English and can its full-

text be accessed on the internet?

For each of the exclusion criteria, we sought a binary answer

o the question: either Yes (value = 1) or No (value = 0). Our voting

pproach was as follows. One of the researchers voted on all the

andidate papers using the above criteria. The other researchers

hen peer reviewed all those votes. Disagreements were discussed

ntil consensus was reached for all papers.

When we were assessing the candidate papers using the above

xclusion criteria, we also carefully assessed the relationships (if

ny) among the papers, i.e., if they had similar topics, or were

ritten by the same author(s). We created a log of such “inter-

elated” papers, to form “clusters” of papers. For example, we

ound that 10 papers have been published focusing on a specific

eb-based system for automated testing and grading of program-

ing assignments (named Web-Cat), i.e., [P3, P65, P87, P90, P96,

130, P132, P200, P198, P204]. We also used the log of inter-related

apers later to answer RQ 1.2 (concerning the clusters of similar

apers in terms of topics), in Section 5.1.2.

We included only the papers which received 1’s for all the three

riteria, and excluded the rest. Application of the above criteria led

o the exclusion of 103 papers. Details on the 103 excluded papers

s provided with the study’s online spreadsheet. Excluded papers

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 9

Table 4

Statistics of excluded papers.

Exclusion reason # of excluded papers

due to this reason

Criterion #1 (Does the paper focus on

software-testing education?): Out of scope

71

Criterion #2 (Is the paper based on

experience?): Excluding purely opinion and

“position papers” and tutorials at conferences

21

Criterion #3 (Is the paper in English and can

its full-text be accessed on the internet?)

10

A longer version of the paper is already

included in the pool

1

w

T

t

2

a

W

i

s

c

c

m

p

s

c

s

(

t

d

“

w

(

3

p

2

y

a

w

g

F

(

J

l

i

u

2

e

p

r

b

c

I

t

t

t

d

t

H

u

g

a

s

f

s

s

h

s

3

t

t

s

d

ere classified based on the exclusion reasons, as summarized in

able 4 . 71 candidate papers were excluded for failing to satisfy

he inclusion criteria #1. For example, paper (Buffardi and Edwards,

013) was an empirical study whose goal was to reveal effective

nd ineffective software testing behaviours of novice programmers.

hile the paper studied students participating in software test-

ng, the paper’s focus was not on software testing education . As a

econd example, paper (Larson, 2006) presents an undergraduate

ourse on software bug detection tools and techniques. The paper

overed topics such as symbolic execution, constraint analysis, and

odel checking, but not testing. Two sentences in the paper ex-

licitly state, “This course is not to be confused with a course on

oftware testing ”, and “A separate course on software testing would

omplement this course ”.

21 candidate papers were excluded for failing to satisfy exclu-

ion criteria #2, e.g., (Edwards, 2013 ; Thornton et al., 2007). Paper

 Edwards, 2013) was a half-page document referring to a tutorial

itled “Adding software testing to programming assignments ” offered

uring a conference in 2005. Paper (Thornton et al., 2007) was a

position paper”. As our work is a secondary study (i.e., SLM) itself,

e only included “primary” studies and did not include secondary

literature review) studies in our pool of candidate papers.

.4. Final pool of the primary studies

As mentioned above, the references for the final pool of 204 pa-

ers can be found in an online archived document (Garousi et al.,

019). To provide transparency and enable replicability of our anal-

sis, full details of the extracted data from all the papers are also
Fig. 5. Growth of the field (software-testing education) and com
vailable in an online Google spreadsheet (goo.gl/DcEpMv). Once

e finalized the pool of papers, we first wanted to assess the

rowth of this field by the number of published papers each year.

or this purpose, we depict in Fig. 5 the annual number of papers

by their publication years).

As discussed in Section 4.1 , since we searched for the papers in

anuary 2019, the number of papers for 2019 is partial and thus

ow (only 2 papers). The earliest paper in this area was published

n 1992, and was titled “Assessing testing tools - in research and ed-

cation ” [P37]. Research activity in this area peaked up in early

0 0 0’s and, since the year 2010, about 13-16 papers are published

ach year.

To put things in perspective, we compare the annual trend of

apers with the trend data for five other software testing areas as

eported by five other SLM/SLR studies: (1) an SLR on testing em-

edded software (Garousi et al., 2018), (2) an SLR on web appli-

ation testing (Garousi et al., 2013), (3) an SLR on Graphical User

nterface (GUI) testing (Banerjee et al., 2013), (4) a survey on mu-

ation testing (Jia and Harman, 2011), and (5) an SLR on software

estability (Andreessen, 2018). Note that, as we can see in Fig. 5 ,

he trend data for the other different SLRs end in different years,

ue to timeline differences in the execution and publication of

hose survey papers, e.g., the survey on mutation testing (Jia and

arman, 2011) was published in 2011 and thus only has the data

ntil 2009. But still, the figure provides a comparative view of the

rowth of these six sub-areas of software testing.

As one can see in Fig. 5 , papers on testing embedded software

nd testability started a bit “earlier” (in the early 1980’s) than

oftware-testing education. This could be because it took a while

or educators to be involved in software-testing education and then

ee the value in sharing experience on this topic. “Technical” areas

uch as testing embedded software and mutation testing seem to

ave more annual papers than testing education, which seems rea-

onable due to more research activity taking place on those topics.

.5. Development of the systematic map

To answer each of our research questions, we developed a sys-

ematic map (also known as “classification scheme”). Then, we ex-

racted the relevant data from the papers in our pool, and clas-

ified them using our systematic map. Next, we discuss how we

eveloped such systematic map.
paring the growth with five other software testing areas.

10 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Table 5

Systematic map developed and used in our study.

RQ Sub-RQ Attribute Categories/metrics Single or Multiple

selections

Answering approach

1 1.1 Contribution type {Pedagogical Approaches (how to teach better),

Course-ware / new course proposal, (Proposing) a specific

tool for testing education, Gamification for testing

education, Status / overview / trends, Empirical study

only, “Other” contributions}

Multiple Systematic mapping

1.2 Clusters of papers on same topic,

often by the same authors team

List of authors, to be later used to find paper clusters Multiple Clustering

2 – Research-method type {1-Proposal with very little experience, 2-Experience /

Informal evaluation, 3-Experiment / empirical study,

Review (of practices)}

Single Systematic mapping

3 – Data source (if any) used for the

evaluation

{Survey (e.g., from students), Interview with students,

Student-written tests, Other}

Multiple Systematic mapping

4 – Research questions or hypothesis,

studied in the papers

Research questions or hypothesis, raised and studied in

each paper

Multiple Merging all the data

5 – Type of test activities covered in

the course

{Generic software testing, Test process, Test-case Design

(Criteria-based), Test-case Design (Human

knowledge-based), Test Automation, Test Execution, Test

evaluation, Other test activities}

Multiple Systematic mapping

6 – Context (classes) under study • The number of students taking the course
• The number of the times the course has been offered

Single Simple statistics

7 7.1 Independent testing course or

integration of testing across one

or more other courses: Share of

papers in each approach

{Independent testing courses, Teaching testing in one

programming /SE course, Teaching testing across SEVERAL

programming courses, Not clear or N/A}

Single Systematic mapping

7.2 Goal (purpose) of the evaluations

if testing is spread across

courses/program

Goal of each paper w.r.t. the issue Multiple Merging all the data

8 – Theories and theory use in

software-testing education

The list of theories (if any) used in a given paper and for

the purpose(s) they are used for

Multiple Their raw text

9 9.1 Empirical evidence / findings-

Challenges in testing education

Explanations about challenges in testing education Multiple Qualitative coding

(systematic review)

9.2 Empirical evidence / findings-

Insights for testing education

Explanations about insights when teaching testing Multiple Qualitative coding

(systematic review)

s

R

R

c

n

c

p

i

2

t

a

u

i

3

d

e

e

p

f

s

o

a

s

s

e

t

u
To develop our systematic map, we analysed the studies in the

pool and identified the initial list of relevant attributes. As shown

in Fig. 3 , the final map was derived by using attribute generaliza-

tion and iterative refinement, when necessary.

To facilitate further analyses, all relevant papers were recorded

in an online spreadsheet. Our next goal was then to categorize

these studies, in order to begin building a complete picture of the

research area and to answer the study RQs. We refined these broad

interests into a systematic map using an iterative approach.

Table 5 shows the final classification scheme that we developed

after applying the process described above. In the table, column 2

is the list of RQs, column 3 is the corresponding attribute/aspect,

and column 4 is the set of all possible values for the attribute.

The fifth column indicates, for an attribute, whether multiple se-

lections could be made. For example, for RQ 1.1 (contribution type),

the corresponding value in the last column is “Multiple”, indicating

that one study can be classified with more than one contribution

type (e.g., method, tool). In contrast, for RQ 2 (research-method

type), the corresponding value in the last column is “Single”, in-

dicating that one paper can be classified under only one research-

method type.

Among the research types, the least rigorous type is “Proposal”

in which a given paper only presents a course proposal with no

or very little educational experience of implementing that course

professionally. In levels 2 and 3 of research method types, we have:

(2)-Experience / Informal evaluation and (3)-Experiment / empiri-

cal study, with increasing levels of maturity as mentioned by the

wordings. We also observed that a few papers had conducted re-

views of practices when teaching testing, e.g., [P15] which pre-

sented an opinion survey on graduates’ curriculum-based knowl-

edge gaps in software testing.

The last column of Table 5 shows our approach to answer each

of the RQs or sub-RQs based on the extracted data. As we can see,
 t
ix of the RQs are addressed by classification. For two cases, the

Qs will be addressed by simply merging all the extracted data:

Q 4 and RQ 7.2. To answer RQ 6, concerning the scale of the edu-

ational setting under study, we used simple statistics to report the

umber of students in each paper and the number of the times the

ourses have been offered.

Last but not the least, for RQ 9.1 and RQ 9.2, we use a more so-

histicated approach for the analyses, i.e., qualitative coding, which

s a systematic qualitative data analysis approach (Miles et al.,

014), to synthesize challenges in and insights for testing educa-

ion, as reported in the papers. Thus, for these two RQs (RQ 9.1

nd RQ 9.2), the evidence synthesis approach that we selected to

se is systematic literature review. Our qualitative coding approach

s explained with some examples in Section 4.5 .

.6. Data extraction process and data synthesis

Once the classification scheme was developed, we first con-

ucted a “pilot” data extraction phase in which each researcher

xtracted data from five papers and we then peer-reviewed the

xtracted data to cross validate and refine our data extraction ap-

roach. This was done to ensure homogeneity of the work by dif-

erent team members and also to ensure the quality of our analy-

es. Having completed a pilot phase, we then partitioned the pool

f papers among all the researchers. Each researcher extracted and

nalysed data from the subset of the papers assigned to the re-

earcher. When recording the extracted data in a master spread-

heet, we included additional comments in each paper to make

xplicit why the given paper was classified for each attribute in

he specific way (see the example in Fig. 6).

Fig. 6 shows a snapshot of our online spreadsheet that we

sed to enable collaborative work and classification of papers with

raceability comments. In this snapshot, classification of papers for

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 11

Fig. 6. A screenshot from the online repository of papers (goo.gl/MhtbLD).

R

e

v

d

d

v

c

t

w

“

t

t

W

b

n

a

m

s

D

s

c

s

s

t

m

s

a

p

9

e

a

e

r

i

r

n

t

v

l

a

i

p

“

l

a

t

[

u

t

t

e

c

m

“

d

4

4

4

A
Q 2 (research method) is shown. One researcher has placed the

xact phrase from the [P31] as the comment to facilitate peer re-

iewing and also quality assurance of data extractions, afterward

uring peer-reviewing phase.

After all researchers finished their data extraction, we con-

ucted systematic peer reviewing in which researchers peer re-

iewed the results of each other’s analyses and extractions. In the

ase of disagreements, discussions were conducted. This was done

o ensure quality and validity of our results.

When synthesizing and reporting challenges for RQ 9.1, there

ere cases that we did not necessarily agree that the reported

challenge” is actually a challenge. For example, [P116] reported

hat: “Many of the students found JUnit to be too complicated for

hem ”, which is quite subjective to interpret as an actual challenge.

e therefore synthesized and report the challenges as they have

een reported in the papers. In reporting these challenges, we do

ot necessarily advocate for them as challenges.

As shown in Table 5 , to address two of the study’s RQs, RQ 9.1

nd 9.2, we conducted qualitative coding of data. To choose our

ethod of synthesis, we carefully reviewed the research synthe-

is guidelines in SE, e.g., (Cruzes and Dybå, 2010 , 2011 ; Cruzesa and

ybåb, 2011), and also other SLRs which had conducted synthe-

is of results, e.g., (Waliaa and Carverb, 2009 ; Ali et al., 2010). Ac-

ording to (Cruzes and Dybå, 2010), the key objective of research

ynthesis is to evaluate the included studies for heterogeneity and

elect appropriate methods for integrating or providing interpre-

ive explanations about them (Cooper et al., 2009). Since the pri-

ary studies have not reported similar-enough measures with re-

pect to interventions and quantitative outcome variables, meta-

nalysis was not applicable nor possible. As we examined our pa-

ers, we concluded that the best applicable method for RQ 9.1 and

.2 was qualitative coding using “open” and “axial coding” (Miles

t al., 2014).

In our initial screening of the extracted data for “challenges”

nd “insights”, a few initial groups emerged as a major challenge,

.g., testing often not well accepted among students. During the

est of our qualitative data analysis process, we found out that the
 s
nitial list of challenges and insights had to be expanded, thus, the

est of the factors emerged from the papers. The creation of the

ew factors in the “coding” phase was an iterative and interac-

ive process, which was conducted by one researcher and peer re-

iewed by all others. Basically, we first collected all the factors re-

ated to questions RQs 9.1 and 9.2 from the papers. Then we aimed

t finding factors that would accurately represent all the extracted

tems but at the same time not be too detailed so that it would still

rovide a useful overview, i.e., we chose the most suitable level of

abstraction” as recommended by qualitative data analysis guide-

ines (Miles et al., 2014).

Fig. 7 shows a screenshot from the datasheet, in which an ex-

mple of qualitative coding to answer RQ 9.1 (challenges when

eaching testing) is shown. From the example paper in this case,

P11], the reported challenges were extracted and grouped into two

nder column “Raw phrases”: (1) “It is challenging to teach software

esting in a way that is engaging for students, and to ensure that

hey practice effective testing sufficiently ”; “maintaining student inter-

st ”; (2) “setting the appropriate complexity for students ”. We then

oded the raw phrases in the right-hand side categories and re-

oved them from the raw phrases list after being coded (i.e., by

consuming” them). In the case of this example (Fig. 7), the raw

ata were coded under two categories as visualized.

. Findings of the SLM

Through Section 4, we present results of the study’s RQs.

.1. RQ 1-classification of studies by contribution types

RQ 1 consists of RQ 1.1 and RQ 1.2, as presented next.

.1.1. RQ 1.1-contribution types and their frequencies

Fig. 8 shows the classification of studies by contribution types.

s we discussed in the structure of the systematic map (Table 5),

ince each paper could have multiple contribution types, it could

12 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Fig. 7. A screenshot from the datasheet showing qualitative coding of data to answer RQ 9.1 (challenges when teaching testing).

Fig. 8. Classification of studies by contribution types.

w

p

i

o

(

r

n

i

d

T

p

m

y

t

p

p

m

t

r
thus be classified under more than one category in Fig. 8 . For ex-

ample, [P23] presented an automated tool to help students learn

how to write better test cases. The system was implemented for

Python programs, but as the paper explained, “the pedagogical prin-

ciples underlying it transcend any particular language ”. Thus, the pa-

per was marked under both Pedagogical approaches and Proposing

a specific tool for teaching testing.

As we can see in Fig. 8 , the top three types of contributions are:

(1) Pedagogical approaches (how to teach better) with 100 papers

(49.0% of the pool), (2) Proposing a specific tool for testing edu-

cation, with 62 papers (30.4% of the pool), and (3) Course-ware

/ new course proposal (except tool) with 49 papers (24.0% of the

pool). We discuss below a summary of each category by referring

to a few example papers in that category.

Multiple studies within the Pedagogical approaches category

discuss when to introduce software testing. We find papers report-

ing benefits of introducing testing early in introductory program-

ming courses, e.g. [P177]: “(…) the emphasis on testing has been

qualitatively beneficial for students in the introductory Java courses”.

We also find papers describing challenges in introducing testing

early: “Testing methods are impossible to understand by students
ithout programming experience, and their depth of programming

ractice is also a factor ” [P75].

It may be hard for a student to see the value of software test-

ng when a coding project is of limited size. Multiple studies in

ur pool therefore recommend using free or open-source projects

F/OSS) when we teach software testing, e.g. [P195] (on using a

eal-world project in a software testing course): “We have wit-

essed a significant increase in student enthusiasm in software test-

ng as a subject and a discipline ”. F/OSS projects will also give stu-

ents practice in testing code they have not written themselves.

his may also be achieved by having students write tests for code

roduced by fellow students [P12, P17, P23, P73, P95, P161, P199]. It

ight be more motivating to find other people’s bugs, rather than

our own: “When testing their own code, students are less motivated

o find bugs, as bugs expose their own failure to develop a correct

rogram ” [P23].

So within the pedagogical approaches category we find multi-

le suggestions for increasing the motivation for software testing -

otivation other than simply having testing as an evaluation cri-

erion when students produce software code. “Students need to di-

ectly experience benefits from writing test suites. Requiring students

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 13

t

d

e

p

i

d

t

[

u

p

l

w

i

l

T

w

w

c

s

i

w

g

t

s

e

a

t

m

P

a

v

m

a

t

d

i

W

w

t

t

d

C

w

o

i

d

i

a

e

P

e

(

t

t

i

4

t

t

i

e

o

a

o

T

y

t

c

i

c

r

P

r

v

l

i

f

P

t

i

i

i

(

c

“

o

l

d

r

a

a

l

r

m

b

p

f

T

[

d

v

i

t

a

m

s

t

s

d

s

s

4

2

t

t

e

P

fi

t
o write test cases simply because test suite quality will be graded

oes not help students learn the value of testing ” [P85].

As software testing may be a difficult topic for the inexperi-

nced programmer, the educator may use Specific tools for sup-

ort in the learning environment. As an example, when TDD

s used in an introductory course, WebIDE can guide the stu-

ents through a pre-defined path of steps in order to force them

o write tests and specifications before implementing solutions

P145]. Many tools have been developed for software testing in ed-

cation over several years. As some of these tools have multiple

apers associated with them, we describe them further in the fol-

owing section.

The Course-ware/new course proposal category holds papers

ith descriptions of courses or modules where software testing is

nvolved. The papers may include course evaluations and lessons

earned from delivered courses, or they may present new ones.

hese papers can provide valuable information to educators who

ant to include software testing practices to existing courses or

hen building a new course. Some papers also include URLs where

ourse materials can be accessed. As an example, [P33] presents

oftware testing laboratory courseware with descriptions of all labs

n a 13-week course on software testing. Within the descriptions,

e find learning objectives, different test activities, tools and lan-

uages involved along with student evaluations. The entire reposi-

ory for the course is available online through a provided URL.

Gamification may increase motivation for students studying

oftware testing. Educators can introduce the typical gamification

lements such as reward points, badges, and leader boards in

 learning environment [P82]. Gamification can also be achieved

hrough educational games: HALO (Highly Addictive sociaLly Opti-

ized Software Engineering) [P5, P133], Code Defenders [P11, P48,

83, P157, P163], PlayScrum (a physical card game) [P30], Bug Hide-

nd-Seek [P42], Testing Game [P64] and U-TEST [P66].

Studies within the Empirical results category report from in-

estigations performed in a software testing education environ-

ent. Some papers report on achieved improvements after course

djustments. The improvement can be in code quality after in-

roducing unit testing in a programming course [P34] or in stu-

ents’ conceptual understanding of software testing after introduc-

ng Software Testing Computer Assistant Education (STCAE) [P49].

ithin the category, we also find investigations into student soft-

are testing behaviour: The quality of student-written tests in

erms of the number of authentic, human-written defects those

ests can detect [P63], or software testing behaviours that stu-

ents exhibited in introductory computer science courses [P65].

ode coverage alone will not determine if student code is tested

ell enough. We may use mutation analysis to fix some problems

f code coverage in student assessments [P115].

In the Status, overview and trends category, we find papers

nvestigating the current state of software testing in education in

ifferent parts of the world: Australia [P14], Canada and Amer-

ca [P54], Hong Kong [P136], South Africa [179] and Brazil (and

broad) [152]. We also find papers describing graduates’ knowl-

dge gaps in software testing according to industry needs [P15,

179, P181]. A common conception within the papers in this cat-

gory is that “More testing should be taught ” [114]. As described in

 Desai et al., 2008): “In general, results indicated a deficiency for all

esting topics in practice activities. In particular, there were also nega-

ive gaps in topics such as test of web applications, functionality test-

ng and test case generation from client requirements/user stories ”.

.1.2. RQ 1.2: clusters of papers: on similar topics and by the same

eam of authors

When extracting data from our pool of papers, we observed

hat some papers were similar regarding both topic and authors

nvolved. When we found two similar papers, we kept both only if
ach of them provided new insight. Some papers were easily rec-

gnized as linked together as they all described a common tool or

rtefact. We found two tools and one game in a substantial amount

f papers: WReSTT-Cyle (7), Web-CAT (8) and Code Defenders (5).

Papers on WReSTT-Cyle (Web-Based Repository of Software

esting Tutorials: A Cyberlearning Environment) appear from the

ear 2010. “The main objective of the online portal is to increase

he number of users at academic institutions that currently have ac-

ess to vetted learning materials, including tutorials on software test-

ng tools, that support the integration of testing into programming

ourses ” [P196]. Subsequent papers describe insight into using the

epository in software-testing education [P8, P82, P89, P101, P103,

203]. “(…) WReSTT has evolved into a collaborative learning envi-

onment with social networking features such as the ability to award

irtual points for student social interaction about testing ” [P8]. The

earning environment is now called SEP-CyLE (Software Engineer-

ng and Programming Cyberlearning Environment).

Within our pool of papers, we find eight involving Web-CAT

rom the year 2003 to 2014 [P3, P65, P87, P90, P96, P132, P198,

200]. “Web-CAT is a web application with a plug-in architecture

hat can provide a variety of services for students. Its Grader plug-

n provides a highly configurable and customizable automated grad-

ng and assessment service ” [P87]. A motivation behind Web-CAT

s to “(…) encourage students to adhere to Test-Driven Development

TDD) ” [P3]. It is an adaptive feedback system where students

an submit code (multiple times) and receive automated feedback.

With each submission, students receive feedback including analysis

f code style, correctness, and testing quality. The correctness is calcu-

ated by the percent of instructor-written tests (obscured from the stu-

ent) that pass when run against the students’ code. Testing quality is

epresented by code coverage, or the percent of statements, condition-

ls, and branches executed by the student’s own unit tests. Addition-

lly, Web-CAT highlights the student’s code to reveal where coverage is

acking. After receiving feedback, students may correct their code and

esubmit to Web-CAT without punishment ” [P3]. The student sub-

issions in Web-CAT provide insight into common student testing

ehaviour, and how the behaviour may change when feedback is

rovided by Web-CAT .

The most recent cluster of papers (2016-2019) involves a game

or mutation testing: Code Defenders [P11, P48, P83, P157, P163].

he papers describe design and implementation details for the tool

P48] and how we can use it for educational purposes [P157] for

ifferent software testing methods [163]. Subsequent papers pro-

ide empirical data from the game in actual use and how it can be

ntegrated in a course on software testing [P83]. The game includes

wo game modules: “(…) duel, where each game consists of one

ttacker and one defender competing in a turn-based fashion, very

uch like a traditional board game; and battle, where each game con-

ists of a team of defenders and a team of attackers that play without

urns. Attackers use a code editor to introduce artificial faults. This re-

embles the idea of mutation testing, where artificial defects are pro-

uced automatically ” [P11]. The initial reports are promising with

tudents enjoying the game while improving their software testing

kills.

.2. RQ 2-classification of studies by research method types

In SLMs, e.g., (Zhi et al., 2015 ; Garousi et al., 2015 ; Do ̆gan et al.,

014 ; Häser et al., 2014 ; Felderer et al., 2015), it is also common

o classify primary studies by their types of research methods. As

he structure of the systematic map (Table 5) showed, based on

stablished review guidelines (Petersen et al., 2015 ; Wohlin, 2014 ;

etersen et al., 2008 ; Kitchenham and Charters, 2007), we classi-

ed the papers as follows: (1) Proposals of ideas or approaches for

esting education, with no explicitly-mentioned experience in the

14 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Fig. 9. Breakdown of primary studies by research-method types.

v

s

a

p

e

a

a

o

s

i

p

t

p

p

B

t

p

l

4

t

e

t

a

K
paper, (2) Experience / informal evaluation, and (3) Experiment /

empirical study.

Fig. 9 shows the breakdown of the primary studies by the above

research facets. As we can see, more than half of the papers (116

of 204) are experience papers. It is particularly encouraging to ob-

serve there are many empirical studies in the pool.

For the 10 papers which were in the form of proposals only,

we observed that although the authors had not shared any experi-

ence of applying the ideas / approaches in their testing courses, it

was clear that authors were active testing educators, and thus, at

least implicitly, they had tried or were going to try the ideas / ap-

proaches in their testing courses. We designed the categorization

of three research method types shown in Fig. 9 to be able to in-

terpret them as three “levels” of evidence: #1, #2, and #3. Studies

which reported empirical studies can generally be seen as having

the highest (most rigorous) level of evidence.

With the above breakdown, we can relate the research-methods

used in the studies to a hierarchy of evidence for software en-

gineering research, as proposed by (Goues et al., 2018), which is

shown in Table 6 . (We could have used the following more de-

tailed hierarchy of evidence in our work, but the hierarchy came

to our attention after we had carried out our work.)

4.3. RQ 3- data sources for evaluations

Different papers collected and used different data sources for

evaluations. We classify and show the frequencies of those data

sources in Fig. 10 . The majority of papers collected data from stu-

dents via surveys and then used those data to evaluate the test-

ing approaches presented in the papers. This is expected, as sur-
Table 6

A hierarchy of evidence for software engineering research, as proposed by (Goues

Type of study Level Evidence

Secondary or filtered studies 0 Systematic reviews with recom

Primary studies Systematic

evidence

1 Formal or analytic results with

2 Quantitative empirical studies

good statistical control

Observational

evidence

3 Observational results supporte

including well-designed case s

4 Surveys with good sampling an

mining

5 Experience from multiple proje

comparison; a tool, a prototype

artifact (that has been certified

6 Experience from a single proje

project; lessons learned; a solu

validated in the context of tha

report; a notation, a dataset, o

No design 7 Anecdotes on practice; a rule o

toy examples; a novel idea bac

position paper
eys are easier to perform and to analyse, compared to the other

ources. Furthermore, surveys can be included in the regular evalu-

tion forms of the courses, usually done at the end of the course to

rovide feedback. This is a common practice in many universities.

In 12 papers, for courses with practical exercises and exams,

valuations and conclusions were done based on production-code

nd automated tests developed by the students. For example, “To

ssess how ProgTest was able to help students, we record the status

f all students’ submissions ” [P158]. The quality of the implemented

oftware was also used as a metric to evaluate the impact of test-

ng education, e.g., “[…] while producing code with 45% fewer defects

er thousand lines of code ” [P201].

To gain an even better understanding of how the teaching of

esting impacts the students, interviews were reported in some pa-

ers. For example, in [P81]: “a series of guided group interviews with

roject teams was conducted. It included 113 students in 39 teams ”.

ut as interviews are often time-consuming to perform, compared

o surveys, it was not a common method among the analysed pa-

ers. There were also other less common data sources, such as on-

ine quizzes [P25].

.4. RQ 4- research questions or hypothesis, studied in the papers

In this section, we analyse the RQs and hypotheses studied in

he papers we reviewed. Quantifying the number of papers that

xplicitly investigate RQs and hypotheses provides a complement

o Section 5.2 and Fig. 9 , and provides another indication of the

mount of research being conducted on software-testing education.

nowing about the RQs investigated in those papers also helps
et al., 2018).

Categorization of research

methods in this paper

mendations for practice; meta-analyses –

 rigorous derivation and proof –

with careful experimental design and –

d by sound qualitative methods,

tudies

(3) Experiment / empirical

study

d good design; field studies; data

cts, with analysis and cross-project

, a notation, a dataset, or another

 as usable by others)

(2) Experience / informal

evaluation

ct: an objective review of a specific

tion to a specific problem, tested and

t problem; an in-depth experience

r an unvalidated artifact

f thumb; an evaluation with small or

ked by strong argumentation; a

(1) Proposals of ideas or

approaches for testing

education, with no

explicitly-mentioned

experience in the paper

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 15

Fig. 10. Data sources for collecting evaluation data.

Fig. 11. Frequencies of type of test activities covered in the courses.

o

r

p

c

p

h

4

a

p

t

u

e

R

i

o

s

s

c

i

4

i

e

i

i

i

i

w

c

i

t

i

P

m

o

i

e

t

h

a

a

s

a

4

f

a

p

i

t

f

s

b

u

m

a

i
thers to explore similar or contrasting research directions in their

esearch in the future.

46 out of the 204 papers (%22.5) explicitly stated RQs or hy-

otheses, suggesting that about a fifth of the papers we reviewed

onstitute research into software-testing education. From those 46

apers, we identified 121 RQs and hypotheses (H). Those RQs and

ypotheses are summarized in Table 7 . The vast majority of the

6 papers investigate RQs rather than hypotheses. The RQs and Hs

re numbered sequentially, although we use H0 to denote null hy-

otheses. To clarify some of the items in Table 6 , we provide addi-

ional contextual information in parentheses where needed.

We can see in Table 7 that a variety of RQs have been eval-

ated in previous studies. Using Easterbrook et al.’s (Easterbrook

t al., 2008) classification, we see that there are different types of

Qs in the list, e.g., exploratory RQs, relationship RQs and causal-

ty RQs. The number of RQs suggests that a considerable amount

f empirical data have been gathered and reported in previous re-

earch. While we take an initial step in this paper in synthesizing

ome of that evidence (see Section 5.8), further work is needed to

omprehensively synthesize evidence from similar or related RQs

n Table 7 .

.5. RQ 5- technical aspects of testing: type of test activities covered

n the course(s)

For RQ 5, we wanted to assess the types of test activities cov-

red in the educational courses. We acknowledge that the papers

n our set of primary studies are a (very) small sub-set of all test-

ng courses taught at universities world-wide. Clearly, not all test-

ng educators publish education papers about their teaching activ-

ties and experiences. Thus, RQ5 is not aiming to provide a world-

ide view on the type of test activities covered in “all” testing

ourses world-wide, but rather only in the set of the primary stud-
es under review in this work. In other words, we recognize that

here is an issue of generalizability for our analyses of RQ5.

To classify test activities, we re-used the process model for test-

ng from a previous paper, as shown in Fig. 12 (from (Garousi and

fahl, 2016)). Note that a paper could be classified according to

ore than one type. Fig. 11 summarizes the frequencies of type

f test activities covered in the courses. Four types of test activ-

ty are each studied by approximately 40% of the 204 papers we

xamined, i.e., generic software testing, test-case design, test au-

omation and test execution. Relatively speaking, test evaluation

as not been investigated (41 instances in 204 papers). Test evalu-

tion is an important higher-order function. Test scripting does not

ppear to have been investigated at all, though this may be sub-

umed within test automation, or alternatively may be understood

s a ‘low-level’ clerical or administrative activity.

.6. RQ 6- scale of the educational setting under study

115 papers mentioned the number of course instances that

ormed the basis of the published paper. We summarize those data

s a histogram in Fig. 13 . As we can see, in half the cases (59 pa-

ers, 51%), the papers discussed only one single instance of a test-

ng course. The paper with the most instances was [P65], in which

he evaluation included “data collected over five years (10 semesters)

rom 49,980 programming assignment submissions by 883 different

tudents ’. This is an impressive dataset. The average of the num-

er of instances of courses reported across the 115 paper was just

nder two course instances (1.92).

As with RQ 5, we acknowledge that the papers in our set of pri-

ary studies are a (very) small sub-set of all testing courses taught

t universities world-wide. Thus, like RQ 5, RQ 6 is also not aim-

ng to provide a world-wide view on the scale of the educational

16 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Table 7

Research questions or hypotheses investigated by different papers.

Paper ID RQs

[P8] • RQ1: Does the integration of SEP-CyLE have a significant and quantitative impact on the programming and testing knowledge gained by the

students?
• RQ2: Are SEP-CyLE testing-related assignments aligned with the needs and interests of the learners in understanding underlying programming

concepts?

[P9] • RQ1: Is it possible to take existing materials and tack on a TDD approach?
• RQ2: Is giving credit to tests the best way to teach TDD? Do students write more, higher quality tests if they get feedback through grades on tests?
• RQ3: Does the TDD approach affect the amount of time spent on projects, since students have to write test-code?
• RQ4: Does writing tests lead to higher quality code with respect to the number of acceptance tests passed?
• RQ5: If in-class examples are developed using a TDD approach, does it have a higher impact on students than those who do not see testing in class?

[P13] • RQ1: The main question that needs to be answered is whether (1) investing in an expensive (25.000 euros) physical infrastructure really creates a

substantial positive effect on ST learning.
• RQ2: A less critical question is whether one month offers enough time to overcome the non-technical background of CS students and really get focus

on testing.

[P15] • RQ1: What are the knowledge gaps in testing topics faced by graduates with respect to industry needs?

[P18] • RQ1: Can unit testing improve the quality of human computer interaction projects?
• RQ2: When introducing unit testing, what additional steps must be taken to ensure a positive learning experience?
• RQ3: What potential for regression of students’ unit testing model is possible, and how can that potential be mitigated?

[P20] Alternative hypothesis: post-test scores are significantly higher than pre-test scores on average. (Pre-test and post-test covered all the learning

objectives of the course described in the study. The description includes the pedagogical approach taken.)

[P26] • RQ1: Do unit-testing practices in CS1 assignments and labs really improve code quality?
• RQ2: Do CS1 students enjoy writing test cases?
• RQ3. Do unit-testing practices in CS1 enhance the student’s learning process?

[P27] • RQ1: Students’ attitude toward accepting non-traditional educational module is more positive than toward accepting traditional one?
• RQ2: If subjects were given training using non-traditionally-produced educational module would behave more uniformly, in the sense of fault

detection rate, than if they were given training using traditionally-produced module?
• H0: There is no difference in the fault detection rates uniformity of subjects given training using non-traditionally-produced module as compared to

subjects given training using traditionally-produced module.

[P28] • H1: Students who received test sets T1 and T2 will produce higher quality programs than students who received only the program specifications.

[P31] • RQ1: Is peer testing more effective than individual testing for the construction of test cases?
• RQ2: Is peer testing more efficient than individual testing for the construction of test cases?

[P38] • RQ1: How can (i) participation and (ii) performance in agile testing be measured?

[P40] • RQ1: Which test quality measures actually assess how much of the expected behaviour is checked by the tests?
• RQ2: What are the practical obstacles of using identified test quality measures in an educational setting?
• RQ3: How can we resolve the obstacles to apply the measures in classroom tools?
• RQ4: Which approach is more appropriate for open-ended assignments?
• RQ5: What measure works better for close-ended assignments?
• RQ6: What combination of the approaches works well as a hybrid measure to separately evaluate tests of the assignments having variable amounts

of design freedom?

[P41] • RQ1: How many bugs does each team find? (In a software testing competition using Bug Catcher – a web-based system for running software testing

competitions)
• RQ2: Do the students recommend this event for future students? (The software testing event using Bug Catcher)
• RQ3: Do the students report an increased interest in Computer Science? (After the event)
• RQ4: What are suggestions for improving the system? (Bug Catcher)

[P46] Hypothesis: Including software security testing techniques as part of the typical software testing exercises used in CS classrooms will expand students’

programming toolset and make them better equipped to tackle programming tasks.
• RQ1: Were student submissions unique? (Students wrote both submissions (defence programs) and test cases (attack programs) for an assignment

given in an introductory security class.)
• RQ2: Do multiple attacks benefit performance? (Did students acquire a better score if they submitted multiple attack submissions?)
• RQ3: What accounts for the difference between max and overall SAQ? (SAQ score: student attack quality as a student’s overall ability to attack all

monitors.)
• RQ4: Are attack/defense abilities correlated?

[P47] • RQ1: Whether either checked coverage or object branch coverage is a better indicator of test suite quality than a number of alternative

measures—that is, is either a more accurate predictor of a test suite’s ability to detect faults?

[P51] • RQ1: How to make writing tests more reasonable in the educational context?

[P63] • RQ1: How good are student-written tests at finding real bugs?
• RQ2: How much variation is there in the software tests written by students?

[P64] • RQ1: Does the Testing Game have good quality regarding motivation, user experience and learning, from students’ point of view? (Testing Game: an

educational game addressing the following topics: functional testing, structural testing and mutation testing.)
• RQ2: Does the Testing Game have good usability from the student’s point of view?

[P66] • RQ1: Is there any different in relative learning in the game higher than in the group that did not play?
• RQ2: Is the education game considered appropriate in terms of content relevancy, correctness, and degree of difficulty? Is the game considered

engaging?

[P67] • RQ1 (Testing Strategies): How did students test their software products?
• RQ2 (Enabling and Inhibiting Factors): What factors supported students in testing methodically and what factors hindered them?
• RQ3 (Testing Attitude): What did students think of testing methodically?
• RQ4 (Testing in the SWP process): How did students incorporate testing in their engineering process?

[P71] • RQ1: Can the mutation testing criterion facilitate the learning process of novice students in programming courses?
• RQ2: What are the trade-offs and recommendations of using mutation testing to support the learning process in programming courses?

[P72] • RQ1: Can ST knowledge help developers improve their programming skills in terms of delivering more reliable implementations?
• RQ2: Does ST knowledge impact on the effort invested by developers on their implementations?
• RQ3: Does ST knowledge impact on the complexity of the produced code?

[P74] • RQ1: What are the beneficial on-line services for successful testing course?
• RQ2: To what extent can a technically challenging CSE course be offered online?

(continued on next page)

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 17

Table 7 (continued)

Paper ID RQs

[P79] • RQ1. Is there a significant difference between the students’ performances under different testing techniques?
• RQ2. Does there exist a noticeable relationship between the tests results under different testing techniques?
• RQ3. What is the importance of the programming background when applying different testing techniques?
• RQ4. What is the influence of the gender factor on success in software testing assessments?
• RQ5. How do various teaching strategies over the years affect the exam results in the software testing?

[P80] • H1: Students will rate importance of skills and their corresponding strengths with a positive correlation
• H2: Students will rate helpfulness of and their adherence to behaviors with a positive correlation
• H3: Students more likely to adhere to TDD principles will rate TDD’s helpfulness more positively
• H4: Students with higher programming anxiety (according to WTAS) will adhere less to starting work early and to principles of TDD

• H5: Students with higher programming anxiety will rate Web-CAT as more helpful
• H6: Students with higher evaluation anxiety (according to BFNES) will rate Web-CAT as less helpful.

[P83] • RQ1: How do students engage with the game? (The Code Defenders game: Students compete over code under test by either introducing faults

(“attacking”) or by writing tests (“defending”) to reveal these faults.)
• RQ2: Does student performance improve over time?
• RQ3: Does student engagement correlate with exam grades?
• RQ4: Do students appreciate using Code Defenders in class?

[P84] • RQ1: Which testing tools and technologies are most used in the industry?
• RQ2: What are the current issues related to testing in the industry?
• RQ3: How should the learning goals, teaching methods and evaluation methods in a software testing course constructively aligned with current

industry practices?

[P88] • RQ1: Is the level of CS program exposure related to the quality of test cases generated with black-box and white-box methods by undergraduate and

graduate students?

[P89] • RQ1: If the availability and knowledge of the use of code coverage tools positively impacts and increases students’ propensity to improve the quality

of their black-box test suites.
• RQ2: If an increase in code coverage during white-box testing results in an increase in the number of bugs students find during testing.
• RQ3: If students find WReSTT a useful learning resource for testing techniques and tools.
• RQ4: If students find that WReSTT supports collaborative learning.

[P90] • H1: The experimental group will have significantly greater average TMSM and average coverage than the control group. (TMSM: average

test-methods-per-solution-method. The experimental group used a plugin for Web-CAT that provides adaptive feedback based on how well the

student is adhering to incremental unit testing.)
• H2: The experimental group will have significantly greater project correctness and coverage scores than the control group.
• H3: The experimental group’s average TMSM and average coverage will increase over time relative to the control group’s average TMSM and average

coverage trends.
• H4: Students’ perceptions of the helpfulness of test-first and unit testing will have a positive correlation with their self-reported adherence to the

same behaviors.
• H5: The experimental group will value the helpfulness of test- first and unit testing behaviors significantly higher than the control group.
• H6: The experimental group will score significantly lower on WTAS (project anxiety) scale relative to their BFNES (fear of negative evaluation) scale

when compared to the control group.
• H7: The experimental group will respond more positively to following TDD in the future than the control group.

[P93] • RQ1: Can TDD be integrated into early programming courses with minimal effort on the part of instructors?
• RQ2: What effect does the grading of test-code have on students’ tests?
• RQ3: What effects does TDD have on quality of code and productivity of students?

[P95] • H1: Written test cases based on pair programming increase the number of killed mutants.
• H2: Written test cases based on pair programming provide better code coverage.

[P115] • RQ1: What are the possible strengths and weaknesses of mutation analysis when compared to code coverage based metrics?
• RQ2: Can mutation analysis be used to give meaningful grading on student-provided test suites requested in programming assignments?

[P123] • RQ1: Can POPT help students to obtain more correct implementations than traditional approach based on blind

testing? (POPT: A Problem-Oriented Programming and Testing Approach for Novice Students)
• RQ2: Do students adopting POPT submit fewer versions than the ones using traditional approach?
• RQ3: Do POPT programmers spend more time to deliver the implementation than traditional programmers?

[P125] • RQ1: What common mistakes do students make when learning software testing?
• RQ2: Which software testing topics do students find hardest to learn?
• RQ3: Which teaching methods do students find most helpful?

[P126] • RQ1: Can we lead students towards the habit of writing tests in software projects using introductory programming exercises?
• RQ2: Can these exercises be implemented in a highly automated, yet student-centered manner?

[P137] • RQ1: Is the effectiveness in the detection of defects affected by the use of a CVE? (CVE: collaborative virtual environment)

[P143] • RQ1: Does the use of code coverage tools motivate students to improve their test suites during testing?
• RQ2: Do the results generated by the code coverage tools support the subsumes relation between branch coverage and statement coverage, i.e., does

branch coverage subsume statement coverage?
• RQ3: Do students find WReSTT a useful learning resource for testing techniques and tools?
• RQ4: Do students find the features in WReSTT support collaborative learning?

[P145] • H1: Students who used WebIDE perform better on programming tasks than students who used traditional static labs.
• H2: Students who used Web-IDE spend more time on labs (because of the lock-step aspect) than students who used traditional static labs.

[P157] • H1: Through the use of a mutation testing game, students will be able to grasp all relevant mutation testing concepts while having fun, and in the

end become better software developers and testers, who produce higher quality software.

[P158] • H1: The proposed tool (ProgTest) helps novice programmers to increase the quality of their programs and test suites.

[P167] • RQ1: Does the use of Coding Dojo methodology to teach TDD improve the code coverage of students when compared to solo programming?
• RQ2: Does the use of Coding Dojo methodology improve motivation and grow the interest in learning TDD when compared with solo programming?

[P168] • RQ1: Does TFD have any effect on the learning process?
• RQ2: Does it impact the way inexperienced students code?
• RQ3: Will this experience have long-lasting effects on students?

[P182] • RQ1: Can ST knowledge help developers improve their programming skills in terms of delivering more reliable implementations?
• RQ2: Does ST knowledge impact on the effort invested by developers on their implementations?
• RQ3: Does ST knowledge impact on the complexity of the produced code?

[P190] • H0: Is the code correctness using instructor-provided test cases equal to that with student-written test cases?

[P204] • H0: There would be no significant difference between the performances in terms of scores of students on the first programming assignment from

2001 and 2003. (To assess the effectiveness of Web-CAT and TDD.)

18 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Fig. 12. Overview of a typical software test process and its activities (from (Garousi and Pfahl, 2016)).

Fig. 13. Histogram of the number of course offerings (n = 115 papers).

Fig. 14. Boxplots of the number of students enrolled in testing courses (n = 102

papers). Right: The same data while excluding the outlier, [P2].

a

a

w

c

i

c

l

F

g

A

o

c

w

o

c

a

a

i

o
settings in “all” testing courses world-wide, but rather only in the

set of the primary studies under review in this work.

102 papers report the number of students enrolled in the test-

ing courses discussed in each paper. Fig. 14 summarizes the num-

ber of students per paper as boxplots. The number reported in one

paper [P2] is clearly an outlier: it reported that, “nearly 4,0 0 0 stu-

dents from more than 300 universities in China were enrolled ” in the

course. Thus, we have visualized the boxplot with and without the

outlier in Fig. 14 .

4.7. RQ 7- different approaches to testing education: offering

separate testing courses or integrating testing in other courses

We looked at whether software testing was taught as a distinct

course, separate from other courses, or whether software testing

was integrated in some way with other courses. Our classification

is shown in Fig. 15 .

As can be seen in Fig. 15 , there is a relative balance among the

different approaches to testing education. In nearly one third of

the papers, there was a dedicated course on software testing. How-

ever, there were more cases in which testing was taught as part of
 regular programming course. Both approaches have advantages

nd disadvantages. On the one hand, a dedicated course on soft-

are testing would allow more time and resources to cover this

omplex subject in more detail. On the other hand, software test-

ng is often considered “tedious” (see RQ 8), and a full dedicated

ourse might face challenges in motivating students, e.g., students

ack the opportunity to appreciate the value of software testing.

urthermore, what is learned in a single course might be easily for-

otten, if it is then not used nor required in any following course.

t times, it might simply not be practical to have a separate course,

r alternatively an integrated course, due to time constrains in the

urriculum, e.g., “It is not practical to offer a separate course in soft-

are testing, so relevant test experiences need to be given through-

ut core courses ” [P10]. And even if it was viable to have a dedi-

ated course on software testing, several authors argued that just

 single testing course is not enough, e.g., “Our conclusion is that

 separate course in software testing should not be the only place to

ncorporate testing into the curriculum ” [P138].

A possible solution for these problems is to spread the teaching

f software testing across several programming courses, starting al-

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 19

Fig. 15. Frequencies of papers based on how teaching is taught (single testing course or testing across courses/program).

Fig. 16. Diagrammatic representation of the types of papers found in CS education (based on Pasteur’s quadrant) (as presented in (Fincher and Petre, 2004)).

r

i

i

r

s

r

c

m

p

s

i

“

p

g

g

d

[

4

2

o

c

t

s

(

K

t

t

i

o

l

t

d

q

(

T

F

p

l

c

P

b

e

e

r

t

S

c

o

u

P

m

f

a

A

a

s

eady in the early programming courses, e.g., “there is a need to

ntroduce testing early in the sequence of programming courses, and

ntegrate and continue reinforcing it across all programming courses,

ather than delegating it to a single course ” [P154]. Software testing

hould become a required common task throughout the whole cur-

iculum, e.g., “the approach must be systematically applied across the

urriculum in a way that makes it an inherent part of the program-

ing activities in which students participate ” [P130]. But this also

rovides several challenges, e.g., “it is not immediately apparent to

tudents and instructors how to best use tools like JUnit and how to

ntegrate testing across a computer science curriculum ” [P202] and

Several educators and researchers have investigated innovative ap-

roaches that integrate testing into programming and software en-

ineering (SE) courses with some success. The main problems are

etting other educators to adopt their approaches and ensuring stu-

ents continue to use the techniques they learned in previous courses ”

P203].

.8. RQ 8-theories and theory use in software-testing education

Previous research (Nelson and Ko, 2018 ; Fincher and Petre,

004 ; Fincher and Robins, 2019) has argued for the importance

f using and adapting theories from CS and SE education to in-

rease research rigor. In their book, for example, Fincher and Pe-

re (Nelson and Ko, 2018) argue that papers in CS education re-

earch can be understood to have two dimensions: argumentation

or theory) and empirical evidence. Fincher and Petre (Nelson and

o, 2018) develop a diagrammatic representation, based on Pas-

eur’s quadrant (Smith et al., 2013), of the relationship between

heory and evidence. A version of this diagram is reproduced

n Fig. 16 .
In the top-left of Fig. 17 , there are papers that contain a lot

f arguments, but little or no empirical evidence. For the bottom-

eft quadrant, Fincher and Petre (Fincher and Petre, 2004) argue

hat the quadrant should be empty: ideally papers with no evi-

ence and no argument should not be published. The bottom-right

uadrant denotes the papers that are mainly based on evidence

experience), but are rather weak on argumentation or “theory”.

hese types of papers are descriptive and mostly experience-based.

incher and Petre (Fincher and Petre, 2004) argue that experience

apers are the most common types of papers in the CS education

iterature. Finally, the top-right quadrant represents papers that

onsider both theory and evidence. Fincher and Petre (Fincher and

etre, 2004) argue that most CS education research papers should

elong to this quadrant (but don’t).

As with Fincher and Petre (Fincher and Petre, 2004), our RQ 8

xplores the state of theories and theory-use in software-testing

ducation. During our process of data extraction from papers, we

ecorded any paper that used a theory from learning and educa-

ion science. To clarify, we did not consider “technical” theories of

E, e.g., software-testing theory. Neither did we consider theoreti-

al concepts such as graph theory used in testing. We focused only

n theory-use related to the educational aspects of testing.

Surprisingly, only eight of the 204 papers in the pool (3.9%) had

sed theories. We list those instances of theory-use in Table 8 .

opular educational science theories such as constructive align-

ent theory (Biggs, 2011) have been used in a few papers.

The situation in software-testing education literature is there-

ore similar to the broad literature of CS education, according to

rguments of Fincher and Petre’s book (Fincher and Petre, 2004).

lso, similar to Fincher and Petre’s recommendations of (Fincher

nd Petre, 2004), we argue for more theory use in future papers in

oftware-testing education.

20 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Fig. 17. Challenges in testing education, as presented in the papers.

W

t

e

a

l

i

f

o

s

r

a

P

a

c

o

t

t

e

w

e

w

a

a

4

t

t

I

r

“

n

d

o
4.9. RQ 9-empirical evidence/findings

We organize RQ 9 into RQ 9.1 and RQ 9.2, and discuss the two

sub-questions in the following subsections.

4.9.1. RQ 9.1- challenges in testing education

As discussed in Section 3.6 , we extracted the discussions about

challenges when teaching testing, as reported in the respective pa-

pers. We then used qualitative coding to synthesize the qualita-

tive data. 82 of the 204 papers (40.1%) explicitly presented some

form of challenges. We identified 123 text phrases from those pa-

pers. As discussed in Section 3.6 , in synthesizing and reporting

challenges, there were cases where we did not necessarily agree

that the reported “challenge” is actually a challenge. For example,

[P116] reports that: “Many of the students found JUnit to be too com-

plicated for them ”. In all cases, we report the challenges as they

have been presented in the source paper, and we report these chal-

lenges without advocating the efficacy of the challenge. We present

in Fig. 17 the list of challenges, in which we have organized them

into several categories, e.g., those that relate to instructors, instruc-

tors and students, and course-design. We discuss each of the chal-

lenge categories below and provide a few example papers, which

have discussed those challenges.

When extracting qualitative and descriptive data from the pa-

pers about the challenges for testing education, it was important to

pay a close attention to the “level” of empirical evidence which a

given paper had used to extract and report the corresponding chal-

lenges. It was important that the reported challenges were indeed

based on empirical evidence. We had already classified each paper

in terms of the type of research method used, according to the fol-

lowing three categories, (see Section 4.2): (1) Proposals of ideas or

approaches for testing education, with no explicitly-mentioned ex-

perience in the paper, (2) Experience / informal evaluation, and (3)

Experiment / empirical study. We thus analysed that data for the

subset of 82 of all the 204 papers, which had reported challenges.
e show in Fig. 18 the barchart of that subset of papers according

o the above three levels of research method.

47 of the 82 challenge-reporting papers had “experience”-based

vidence to support the challenges that they had reported. For ex-

mple, the authors of [P18] mentioned that: “the most difficult chal-

enge incorporating unit testing in an experiential course was ensur-

ng students over-come their negative bias to discover the benefits of

unctional testing ”. The authors had come to that observation based

n their experience of including unit testing exercises in a univer-

ity course. As discussed in Section 4.2 , we designed the catego-

ization of the above three research method types in a way to be

ble to interpret them as three increasing “levels” of evidence: (1)

roposals with no explicitly-mentioned experience, (2) experience,

nd (3) empirical study. Studies which reported empirical studies

an generally be seen as having the highest (most rigorous) level

f evidence. 29 of the 82 challenge-reporting papers synthesized

he challenges of testing education, based on the empirical studies

hat they had designed and conducted.

Only 6 of the 82 papers reporting challenges did not contain

xplicit empirical evidence. Similar to the discussion in Section 4.2 ,

e observed that although the authors had not shared any experi-

nce of applying the ideas / approaches in their testing courses, it

as clear that these authors are active testing educators, and thus

t least implicitly, they had tried or were going to try the ideas /

pproaches in their testing courses.

.9.1.1. Challenges related to both instructors and students.

4.9.1.1.1. Testing often not well accepted among students, low mo-

ivation. By far, the most common challenge in teaching software

esting is that students do not like learning about software testing.

n students’ responses to the surveys reported in the papers we

eviewed, it is not uncommon to see software testing described as

tedious” and “boring”. Students taking a degree in software engi-

eering, or related disciplines, are often much more interested in

eveloping software, and less interested in the systematic testing

f what they have developed, e.g., “While students often derive a

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 21

Table 8

Theories used in the papers in the review pool.

Paper ID Theories used Contexts of theory use

[P8] Cognitive load theory (Sweller, 1988).: This theory offers a method of

constructing course pedagogy to help students learn effectively by using

an awareness of the limited amount of information that working

memory can hold at one time

This paper presents an initial investigation of the impact of integrating

the software testing principles with fundamental programming courses

by applying cognitive load theory.

[P17] Constructive alignment theory (Biggs, 2011): Constructive alignment is

a principle used for devising teaching and learning activities, and

assessment tasks, that directly address the intended learning outcomes

in a way not typically achieved in traditional lectures, tutorial classes

and examinations. There are two basic concepts behind constructive

alignment: (1) Learners construct meaning from what they do to learn;

and (2) The teacher makes a deliberate alignment between the planned

learning activities and the learning outcomes.

The course utilized constructive alignment theory by demonstrating

continuously the concrete expectation for both the final product (code)

and its development process thus allowing students to adapt to match

these over the course of the semester.

[P20] Theory of the zone of proximal development (Vygotsky, 1978): The

distance between the actual developmental level as determined by

independent problem solving and the level of potential development as

determined through problem solving under adult guidance or in

collaboration with more capable peers.

The challenge of testing education w.r.t. Skill Level and Task challenges

was explored by the application of the appropriate teaching approaches

to maintain the learners within the zone of proximal development.

[P30] Constructivist learning theory (Ben-Ari, 2001): This theory is based on

the belief that learning occurs as learners are actively involved in a

process of meaning and knowledge construction.

The paper presented an experimental card game for software testing,

based on the constructivist learning theory.

[P67] Diffusion of Innovations theory (Rogers, 2010) : It describes how

innovations, tools, ideas, or practices perceived as new are adopted by

individuals and organizations, and how they diffuse in social systems.

Testing can be regarded as one such idea or practice. Testing is often not

taught alongside programming, thus adopting testing practices requires a

change in behaviour for no immediate or guaranteed benefit. The

question, then, is: how can we expose students, novices, or junior

developers to experiences that help them adopt testing practices?

[P92] Constructivist learning theory : Definition was provided above.

Bruner’s discovery learning theory : Discovery Learning is a method of

inquiry-based instruction, discovery learning believes that it is best for

learners to discover facts and relationships for themselves (Bruner,

1961).

CDIO educational theory (Conceive, Design, Implement, Operate) : The

CDIO Initiative is an educational framework that stresses engineering

fundamentals set in the context of conceiving, designing, implementing

and operating real-world systems and products (Crawley et al., 2014).

Implemented a software testing course based on those three theories.

[P94] Theory of cooperative learning : Cooperative learning is an educational

approach which aims to organize classroom activities into academic and

social learning experiences. It is based on social interdependence theory

(Johnson and Johnson, 2002).

It is important to ensure that all members of student groups actively

participate in doing the practical exercise. To achieve this goal, the

theory of cooperative learning can be explored. Scholars agree that

cooperative group learning when used as a teaching strategy improves

problem-solving skills of students. An essential element of cooperative

learning is positive interdependence. In order to achieve positive

interdependence it is suggested to structure the practical exercises as

group exercises such that each member of the group has a specified role

and all roles will be linked together.

[P162] CDIO theory : Definition was provided above (Crawley et al., 2014). The authors developed a new method for teaching software testing

based on CDIO, which has these basic characteristics: a project is the

main focus, with the teacher as the guide and students are the target.

Fig. 18. Barchart of the papers, according to the level of empirical evidence for reporting challenges in testing education.

22 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

r

s

i

“

i

t

w

a

t

r

i

‘

t

t

m

t

c

f

o

s

m

f
great deal of satisfaction from seeing a program that they wrote solve

a problem, they do not derive that same sense of satisfaction from

exposing flaws in their own programs ” [P23]. And [P20] observes,

“A major challenge was to dispel the stigma of software testing and

maintenance as an unholy alliance of arguably the two least favoured

tasks within the realm of the sof tware life cycle ”. [P4 4] states, “Sof t-

ware engineering students typically dislike testing… testing can be

seen as tangential to what really matters: developing and document-

ing a design addressing the requirements, and constructing a system

in conforming to the design ”.

[P183] observed a more general aim in software testing edu-

cation: “The challenge for the lecturer is to instill a desire in the stu-

dents to learn more about the topic and encourage the practice of this

specific discipline once they get into industry ”.

4.9.1.1.2. Tool-related challenges. To do (automated) testing, stu-

dents need to learn new tools and libraries, which are often not

easy to learn, especially in the earlier (first or second) years of

a degree. Using testing tools is a challenge for beginners, espe-

cially when they might still struggle with basic programming con-

cepts, e.g., “Often times, students become overwhelmed with the soft-

ware testing tools they need to learn to conduct automated testing ”

[P165]. Software testing, and especially its automation, requires a

good knowledge of programming: “Testing methods are impossible

to understand by students without programming experience, and their

depth of programming practice is also a factor ” [P75] and “testing is

a programming intensive activity. The students whose programming

skills are rusty have a difficult time with the programming aspects

of testing ” [P104]. Furthermore, although nowadays most languages

have good support for unit testing, more complex testing often

lacks good, easy-to-use tools, e.g., “Unfortunately, students and in-

structors continue to be frustrated by the lack of support provided

when selecting appropriate testing tools ” [P196].

4.9.1.1.3. Increased cognitive load for learning testing. Another

factor affecting students’ attitudes toward software testing may

be the increased cognitive load placed on learning about testing.

[P21] stated: “This [TDD] does require a change in thinking and does

not come naturally to all students. ”. [P51] made a similar obser-

vation, “Research has noticed that imparting TDD-like testing to an

early computing curriculum is challenging because it increases techni-

cal and cognitive load for the students. ” [P119] reflected that: “Learn-

ing to program is hard. Why make it harder, by requiring students to

learn additional syntax in order to express their test cases? ”

[P123] argued that teaching software testing skills for first year

students in CS courses can be particularly challenging, since be-

sides learning the programming basic structures, students have to

deal with peculiarities of the specific techniques and tools for soft-

ware testing.

4.9.1.2. Challenges related to instructors.

4.9.1.2.1. Challenges related to course-design.

• Alignment with industrial skill-set needs (theory vs. practice):

There is recognition of the value of making software testing

courses practical and close to industrial needs, but in doing

so there is also the ongoing challenge of keeping the courses

that “remain” aligned with industry. [P125] recognized this

challenge, stating that “From the educator’s perspective, it is

hard to keep a testing course up-to-date with the novelties of the

field as well as to come up with exercises that are realistic ”. Also,

it has been reported that testing concepts in some university

courses are only taught theoretically, with no or little practical

experience, e.g., “University courses do not seem to provide

practical knowledge or experience, and students do not develop a

habit of testing… Although testing is taught in courses, students

have no practical experiences in testing and even so, students

may have forgotten how to test correctly ” [P67] and “However,
they complained about software-testing education being too much

theoretical, with a lack of practical scenarios to show students

how the concepts should be applied and how software testing

would have an impact in the medium and long term ” [P15].

This approach simply does not work, as testing is intrinsically

a practical activity, e.g., “Disconnection between theory and

practice leads to less interest by students ” [P162]. But teaching

the practice of testing faces the issue of finding the right case

studies, which should be of enough complexity to warrant the

need for testing, but not so complex as to overwhelm the stu-

dents. Using real software projects as case studies would help,

but finding (e.g., on open-source repositories) or implementing

(by the instructor) the right projects to use in software-testing

education is not trivial.
• Issue of “scale” / complexity: One aspect of realism is scale:

testing large-scale software systems, and conducting large scale

tests of a software system. [P53] states, “Students perceived test

writing to be irrelevant due to the small size of the program-

ming tasks ”. [P147] stated: “The problem is that rigorous test-

ing is more costly than beneficial in the small-scale projects and

exercises that are usually given in software engineering courses ”.

Another paper, [P146], stated that: “… developing software tests

for programs that have significant graphical user interfaces is be-

yond the abilities of typical students (and, for that matter, many

educators) ”. When only dealing with the coding of small pro-

grams/functions, students might not fully understand the bene-

fits and necessity of software testing, e.g., “Students perceived

test writing to be irrelevant due to the small size of the pro-

gramming tasks ” [P53] and “The problem is that rigorous test-

ing is more costly than beneficial in the small-scale projects and

exercises that are usually given in software engineering courses ”

[P147].
• Other issues related to course design: [P100] observed that:

“Learners need constant and concrete feedback on how to improve

their performance on testing at many points throughout the de-

velopment of a solution rather than just once at the end of an as-

signment ”. [P108] recognized the need to respond differently for

students with differing abilities: “Weaker students need contin-

uous feedback that they’re on the right track, while stronger ones

prefer freedom .”

4.9.1.2.2. Time and resource constraints. A number of papers

ecognized the time and resource constraints that impact the de-

ign, delivery and assessment of software, for example: “[There

s] not enough time to teach testing in programming courses ” [P9],

Many studies have cited limited time (both preparation time and

nstruction time) as one of the major barriers to teaching software

esting ” [P23], “It is challenging to evaluate thousands of assignments

ithin limited time ” [P50] and “The overriding challenge is that there

re usually too many topics to be covered in [software] courses and

here is little or not time to teach testing ” [P103].

4.9.1.2.3. Challenges related to assessing students’ work. Authors

ecognized challenges in assessing students work on software test-

ng. [P11] recognised the negative side of gamification: students

game’ the assessment system. [P16] expressed concerns around

he opportunity for instructors to assess the quality of the software

esting and not just the tested correctness of a program. The [P16]

entioned that: “Care must be taken to avoid an observed tendency

o approach assignments in a tick list fashion ”. [P40] recognised that

urrent assessment techniques based on automated grading tools

or evaluating student-written software tests are imperfect. [P108]

bserves that grading exercises requires a lot of effort, effort that

hould instead be used on supporting the learning process.

A common approach is to check the code coverage of the imple-

ented tests. But code coverage alone is not a satisfactory measure

or test quality. For example, a student could write tests with no

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 23

a

n

n

s

t

b

w

o

t

c

e

c

i

t

c

a

a

d

d

g

e

d

S

c

fi

i

c

a

i

f

4

w

E

t

[

E

fi

d

i

o

s

4

t

w

p

t

r

p

i

r

r

i

f

o

a

t

e

(

a

t

l

p

b

t

e

a

i

p

h

l

r

b

T

s

fi

s

t

t

i

o

g

c

s

c

t

t

i

t

b

o

g

c

4

t

t

t

s

i

c

s

o

f

g

t

f

o

v

a

4

t

a

fl

[

e

m

a

t

t

i

n

d
ssertions on the expected outputs, and such a major issue would

ot be detected by code coverage alone. Advanced testing tech-

iques like mutation testing (Jia and Harman, 2011) could help in

uch regard, but, unfortunately, it is not so well known outside of

est specialists, and tool support is still rather unsatisfactory (and

oth reasons could explain why mutation testing is still not so

idespread). There is a dire need to be able to evaluate the quality

f the test cases automatically . Educators have often limited time

o evaluate students’ assignments. Also having to evaluate the test

ases manually would be often not viable, e.g., “It is challenging to

valuate thousands of assignments within limited time ” [P50].

4.9.1.2.4. Challenges related to integrating software testing in other

ourses. Papers also reported a number of challenges related to

ntegrating software testing in other courses. [P10] mentioned

hat in their university program, there was no compulsory testing

ourse and, given program constraints, it was not practical to offer

 separate course in software testing.

[P114] argued that “any discussion of how best to teach testing

t the undergraduate level is complicated because there are several

ifferent types of software-related undergraduate programs, all with

iffering goals and priorities ”. For example, universities offer pro-

rams in CS, computer engineering, SE, and information science,

ach emphasizing different aspects of software, and each having

ifferent amounts of time available to devote to testing and other

E issues. Furthermore, it mentioned that: “what to include in other

ourses and how much to split off into V&V specific courses is a dif-

cult question in curriculum design ”. Authors of [P142] also found

t challenging to determine “the optimal progression through a SE

ourse structure in regard to software testing ”. [P191] reported that

 critical issue for the success of the integrated teaching of test-

ng and programming foundations is how to provide appropriate

eedback and how to evaluate the student’s performance.

.9.1.3. Other challenges. There were other reported challenges,

hich could not be classified under the above challenge categories.

ight papers reported such challenges. For example, [P21] men-

ioned that: “textbooks do not cover test automation [very well] ”.

P75] stated that, “Unfortunately, no definitive ‘Theory of Software

ngineering’ exists unlike the theoretical concepts that underpin other

elds in computer science that are more amenable to mathematical

escriptors ”. And [P161] provided an interesting point by mention-

ng that it is difficult to interest student programmers in thor-

ughly testing their own programs since “every fault found repre-

ents a psychological blow to their programming ego ”.

.9.2. RQ 9.2- insights, observations, and recommendations for

esting education

Similar to our analysis of the challenges in testing education,

e extracted the insights, observations and/or recommendations

resented in the papers for effective teaching of testing. We found

hat many important and interesting insights, observations and/or

ecommendations for testing education were provided in the pa-

ers, which were based on experience and/or evidence. As defined

n the English dictionary, an insight is “the capacity to gain an accu-

ate and deep understanding of something or someone ”. Many papers

eport such understandings.

Similar to the discussions in Section 4.9.1, when extracting qual-

tative and descriptive data from the papers about the insights

or testing education, it was again important to consider the level

f empirical evidence which a given paper had used to extract

nd present the reported insights. We used the same classifica-

ions as used above: (1) Proposals of ideas or approaches, with no

xplicitly-mentioned experience in the paper, (2) Experience, and

3) Empirical study. We analysed the data for the subset of 152 of

ll the 204 papers, which had reported insights. We show in Fig. 19

he barchart of that subset of papers according to the above three
evels of empirical evidence. As we can see, once again, a large pro-

ortion of insight -reporting papers have used either “experience”-

ased (79 papers) or empirical-study-based evidence (67 papers)

o derive and support the insights that they have reported. For

xample, the authors of [P3] conducted an empirical study, by

nalysing students’ programming projects and also by interview-

ng students at the end of the academic term. From the findings,

aper [P3] identified potential for influencing student testing be-

aviours. Based on empirical study results, [P3] presented the fol-

owing insights that: “The students who expressed particularly strong

eticence to follow Test-Driven Development (TDD) also happened to

e students who were especially confident in their programming skills .

he proximity of testing and its frequent association with debugging

uggest that within students’ mental models, testing is a process for

xing problems rather than proactively avoiding them. In order for

tudents to adopt different behaviours, this mental model would have

o change ”.

We then synthesized the extracted data about insights, observa-

ions and recommendations using qualitative coding (as discussed

n Section 3.6). 152 of the 204 papers (74.5%) presented some form

f insights, observations and/or recommendations. This is a much

reater percentage than papers reporting challenges (∼40%, as dis-

ussed in Section 4.9.1). 233 text phrases were identified from that

ubset of 152 papers. Fig. 20 presents the results of our qualitative

oding of insights.

The surveyed papers presented many types of insights into the

eaching of software testing, especially regarding how to address

he previously-discussed challenges. The most common category of

nsights, observations and recommendations was those related to

he introduction of a teaching approach or technique, supported

y evidence to claim its effectiveness at improving the learning

utcome of the students. We briefly review next each of the cate-

ories, shown in Fig. 20 , and provide a few example papers in each

ategory.

.9.2.1. Insights showing the evidence on effectiveness of presented

eaching approaches. The most common case was the introduc-

ion of a teaching approach or technique, supported by evidence

o claim its effectiveness at improving the learning outcome of the

tudents. For example, [P28] reported that: “The results provide ev-

dence that the reuse of test cases during introductory programming

ourses may help to increase the quality of the programs generated by

tudents, motivating them to apply software testing during the devel-

pment of the programs”. Another paper, [P46], reported that: “We

ound evidence that students who learn to write good defensive pro-

rams can write effective attack programs, but the converse is not

rue… our results indicate that a greater pedagogical emphasis on de-

ensive security may benefit students more than one that emphasizes

ffense ”, and [P176] reported: “The results of our empirical study pro-

ide evidence in favour of greater formal training in software testing

s part of CS programs ”.

.9.2.2. Insights related to addressing students’ motivation/interest in

esting. As noted earlier, many students find testing to be “tedious”

nd “boring”. Students’ attitudes toward testing can also be in-

uenced by their attitudes to university assessment. For example,

P20] reported: “We found that students placed a strong emphasis on

xtrinsic motivation such as grades ”.

Many educators report on the initiatives they have imple-

ented to seek to change students’ attitudes to software testing,

nd to improve the experience of testing and the learning about

esting. Gamification seems to be a promising initiative to improve

he experience of (learning about) testing, by trying to make test-

ng like a “fun” activity, e.g., papers [P5,P30,P48]. As students may

ot have the appropriate mindset for testing their own software,

ifferent educators report benefits of having them test software

24 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Fig. 19. Barchart of the papers, according to the level of empirical evidence for deriving insights for testing education.

Fig. 20. Insights, observations and recommendations for testing education, as presented in the papers.

w

i

t

t

i

m

v

d

c

a

s

s

4

A

e

i

t

a

w

s

s

s

W
written by their peers. For example, [P18] reported that: “It is

often easier to convince a programmer to test someone else’s code

rather than try to convince them that their code requires testing ”,

[P23] reported, “When testing their own code, students are less mo-

tivated to find bugs, as bugs expose their own failure to develop a

correct program ”, and [P199] reported, “Peer review, or peer testing,

in which students attempt to break code written by their peers, has

the potential to address all of these problems. Because it is compet-

itive, it can be fun and exciting ”. Using real-world software (e.g.,

[P50,P74,P195]), or even just guest lectures from industry [P13],

can be very beneficial to make the students more motivated. Just

requiring students to do testing as part of their assignment is not

enough: “Students need to directly experience benefits from writing

test suites. Requiring students to write test cases simply because test

suite quality will be graded does not help students learn the value of

testing ” [P85].

4.9.2.3. Insights related to student learning/testing behaviour. Re-

lated to student motivation is student learning and testing be-

haviour. Changing students’ mental models of the purpose of soft-

ware testing can help to motivate students, and also help students

to adapt their behaviour both for learning about software testing

and then applying that learning into real situations. For example,

[P3] reported: “The proximity of testing and its frequent association
ith debugging suggest that within students’ mental models, test-

ng is a process for fixing problems rather than proactively avoiding

hem. In order for students to adopt different behaviours, this men-

al model would have to change ”, [P16] reported: “… software test-

ng tends to move students towards a reflective approach to program-

ing, and away from a trial and error approach ”, and [P124] pro-

ided a cautionary note: “… stellar performance on examinations

oesn’t mean that students can transfer the knowledge beyond the

lassroom ”. [P125] is an example of an investigation that identifies

 range of common testing mistakes made by students, the topics

tudents find hard (or hardest) to learn, and the teaching methods

tudents find most helpful.

.9.2.4. Insights related to course design, delivery and assessment.

uthors also discussed course design, delivery and assessment. In-

vitably, there are connections here with making software testing

nteresting and meaningful to students, and encouraging students

o adopt appropriate mental models and behaviours for effective

nd efficient software testing. Earlier in this paper (e.g., Fig. 9),

e identified a proportion of papers that report on proposals for

oftware testing, and one would expect such proposals to con-

ider course design, delivery and assessment at some level of ab-

traction. [P32] reflected: “Where do we cut previous content?, and:

hen, and to what extent, do we cover the theory of software testing

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 25

i

I

r

c

g

b

4

p

p

S

u

v

t

g

“

e

o

4

p

t

t

p

t

c

n

o

t

d

c

o

d

b

o

d

c

4

(

n

h

v

j

i

t

o

i

o

p

a

4

t

T

a

m

s

t

e

T

f

u

v

t

p

o

d

i

[

t

s

k

s

d

y

f

t

t

4

a

a

c

t

4

w

e

p

s

s

s

a

b

w

p

l

g

4

w

s

F

m

a

l

c

a

s

5

a

(

r

t

5

o

r

s

d

w

b

b

h

t
n our teaching? Another, more content related question is: How do

 know that I’ve written the right tests, and enough of them? ”. [P58]

eported that: “It is imperative to limit the scope and depth of the

ourse. Software testing is too wide a field to be covered in one sin-

le course, much less for people who do not have a computer science

ackground. ”

.9.2.5. Insights about test tools. A common approach adopted in

revious studies is to use a tool, or tools, as a vehicle for sup-

orting the teaching and the assessment of software testing.

ection 4.1.2 identifies a number of testing tools that have been

sed more frequently in previous studies. [P37], made an obser-

ation that applies more widely: “Despite the weaknesses of these

esting tools, we found them indispensable. ... would our software en-

ineering courses have been so rich [without them] ”. [P84] advised:

Use popular, widely used testing tools rather than tools designed for

ducation, in order to teach students the correct use and configuration

f real environments. ”

.9.2.6. Insights. related to integrating testing in other SE/

rogramming courses. We have already contrasted, in Section 4.7 ,

he teaching of software testing as a separate course compared

o integrating the teaching of software testing into other courses,

articularly programming courses. Here we provide some illustra-

ive quotes from papers. [P29] stated: “Because students tend to

ompartmentalize knowledge to a single course, and not transfer it to

ew situations, we felt that an incremental, just-in-time introduction

f testing practices would work better than a separate course. The

esting activity is inserted in a value-added manner that does not

isrupt or compromise course content or flow ”. [P52] stated: “It is

lear that there is a need to integrate software-testing education with

ther disciplines along the CS undergraduate courses. ” [P67] took a

ifferent perspective: “Just as they had been taught programming

efore, our results suggest that there is a need for purely testing-

riented projects that let students focus on this part of software

evelopment… Educators might need to consider providing additional

ourses solely focused on testing... ”

.9.2.7. Insights on how to make teaching of testing more practical

like real-world). Authors appreciated the value of real-world sce-

arios for software testing, for example to motivate students and to

elp ensure students gained relevant experience and learned rele-

ant skills. A notable perspective is presented in [P179]: “The ma-

ority of students do not have the level of understanding required by

ndustry to test their systems. This proves that their understanding of

he tests used by industry in software testing is not in line with those

f industry. Significant differences were found between software test-

ng skills required by industry and those claimed by students ”. As an-

ther example, [P44] stated that: “Students need the opportunity to

ut what they learn into practice, using testing techniques and tools

t all levels, from the individual unit to the system as a whole. ”

.9.2.8. Insights specific to using test-driven development (TDD) in

esting courses. A recurrent topic among the analysed papers is

est-Driven Development (TDD) (Desai et al., 2008). Although its

pplication in industry is not so widespread (Causevic et al., 2011),

any educators investigate whether it can be useful for teaching

oftware testing. Like TDD’s application in industry, opinions on

he use of TDD in education are mixed. On the one hand, some

ducators reported positive experience with TDD, e.g., “I believe

DD is useful in education because it provides the student with timely

eedback during development and helps them complete assignments

sing small, focused steps ” [P21], “Introducing TDD early will pro-

ide multiple positive outcomes ” [P9], and “The results have been ex-

remely positive, with students expressing clear appreciation for the

ractical benefits of TDD on programming assignments ” [P96].On the
ther hand, there are many challenges to the use of TDD as a di-

actic tool, e.g., “[...] students particularly struggle with TDD because

ts test-first approach is ’almost like working backwards’ ” [P3], “This

TDD] does require a change in thinking and does not come naturally

o all students ” [P21], “The test-first aspect of TDD garners more re-

istance than unit testing ” [P80] and “TDD is not cost-free. It requires

nowledge of testing frameworks and skills in their use, an under-

tanding of refactoring, and an unlearning of old habits from test-last

evelopment. Rigorous evaluation of the purported benefits of TDD

ield mixed results ” [P172]. It appears that TDD can be beneficial

or didactic purposes, but educators that want to introduce TDD in

heir courses must be aware of its challenges, and properly address

hem.

.9.2.9. Insights about textbooks. Only two papers provided hints

bout textbooks. [P58] mentioned that: “Pre-class readings from an

ppropriate textbook facilitate the learning process ”, which is a rather

ommon recommendation in education. [P75] raised the “impor-

ance of good textbooks ” in testing courses.

.9.2.10. Other insights. In addition to specific insights on soft-

are testing, authors also occasionally commented on more gen-

ral experiences of teaching and educating. [P21] stated: “Through

atience and reinforcement of incremental development using small

teps such as continuous refactoring, my experience has been that

tudents eventually get better at it and begin to come to me with

mall, focused problems instead of bringing me a complete application

nd asking me: ‘Why doesn’t this work?’ ”. [P92] stated that: “Project-

ased learning within small groups dramatically improved their team-

ork and communication capabilities, as well as development and

roject management capabilities ”. [P197] stated: “One of the strongest

essons we have learned is that our students need more math back-

round. ”

.9.3. Relating challenges and insights

To better understand how challenges and insights are related,

e analysed the semantic relationship among challenges and in-

ights presented in the papers and visualize those relationships in

ig. 21 . Challenges and insights clearly relate to each other, and

ay affect each other. For example, introducing a new element to

 course, such as increasing the realism of the software testing, can

ead to an increase in complexity and scale, which can increase the

ognitive load on students, require more resources of instructors,

nd therefore reduce the resources available to effectively assess

tudent learning.

. Discussions

In this section, we first summarize the research findings

nd discuss implications and recommendations for educators

 Section 5.1). Then, we present suggestions for further education

esearch in this area in Section 5.2 , and finally we discuss poten-

ial threats to validity of this review (Section 5.3).

.1. Recommendations for educators

Given the large body of experience and knowledge in the area

f software-testing education (204 papers were included in our

eview), it is often not possible for an educator or researcher to

tudy all the papers and synthesize all the experience and evi-

ence presented in all the papers. For example, for a new educator

ho wants to teach a (new) course in software testing, it would

e valuable to know, before teaching, about the challenges faced

y educators when teaching testing and also about insights into

ow to address those challenges. We recommend new educators of

esting to review the list of challenges faced when teaching testing

26 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

Fig. 21. Relationship among challenges and insights presented in the papers (green-backed rectangles are insights and pink-backed rectangles are challenges.

u

i

l

e

l

w

w

5

d

b

c

s

o

s

(

i

i

q

b

o

5

m
and also consider the insights on how to address those challenge

(Section 4.8).

An important decision which has to be made in a given SE-

related undergraduate degree program is whether there should be

a single testing course or whether testing should be integrated

across one or more other (typically programming) courses. As we

reviewed in Section 4.7 , there are advantages and disadvantages

associated with each approach. We therefore recommend that edu-

cators and curriculum designers use the suggestions from this SLM,

and the primary studies that we have cited in Section 4.7 , to help

them make an appropriate decision for their context.

The other RQs that we investigated provide suggestions for ed-

ucators, e.g., RQ 5.1 (type of test activities covered in the courses).

For example, we found that most courses have taught criteria-

based test-case design, and fewer courses are teaching exploratory

test-case design. By contrast, exploratory testing is quite popular

in industry (Pfahl et al., 2014) and research has also reported ben-

efits with exploratory testing (Itkonen and Rautiainen, 2005). We

thus recommend more coverage of exploratory testing in software-

testing education. But to clarify: not all software-testing educators

publish papers from their education effort s, and our review paper

draws on only a sample of education and is therefore at best a

partial “lens” into software-testing education in universities.

As based on our investigation of the RQs in this study, we ob-

served the emergence of the idea for a “design framework” for

software testing courses, which would consider all “design” aspects

of a given testing course. Such a “design framework” would have

multiple dimensions (e.g., choices of the degree of theory versus

practice, and choices of pedagogical approach) that will enable ed-

ucators to systematically design and deliver a given testing course.

Similar design frameworks have been proposed in other areas of CS

education research, e.g., (Zhang et al., 2010 , Bernhart et al., 2006),

but we are not aware of any for testing education, in particular.

While this SLM provides some insights about such a design task,

we recognize the need for such a framework in future works.

As a general comment, each of the challenges and insights pro-

vides a kind of ‘recommendation’, i.e., in the design, delivery and

assessment of a given testing course; and we encourage testing ed-

t
cators to consider the synthesized list of challenges and insights

n Section 4.9. For example, to address the widely-discussed chal-

enge of “Testing often not well accepted among students”, testing

ducators are recommended to seek ways to motivate students to

earn about software testing, and to change students’ attitudes to-

ards and their expectations of the reasons for, and value of, soft-

are testing.

.2. Suggestions for further education research in this area

Research into software-testing education may be understood as

esign-science (Engström et al., 2019), where researchers seek a

etter understanding of the nature of software testing and its edu-

ation, whilst also seeking to change the way we educate students

o that they can become better software testers

Each of the 120-odd RQs presented in Table 6 provides the

pportunity for replication or extension to the research. Key re-

earch questions, that fall across the spectrum of design science

 Engström et al., 2019), could be:

• How do we motivate students to engage actively with courses

on software testing?
• How do we change the mental models of students so that they

appreciate the value of software testing?
• What additional measures, or metrics, could be developed to

help educators assess the quality of software testing beyond

‘just’ code coverage?

At a more conceptual level, and as we discussed in Section 4.8 ,

t was surprising to find out that only eight of the 204 papers

n the pool (3.9%) had used education theories. This low ratio is

uite similar to the broad literature of CS education, as discussed

y (Fincher and Petre, 2004). Thus, there is the need for more use

f education theory in future papers in software-testing education.

.3. Potential threats to validity

This SLM paper has the same kind of threats to validity com-

on to any SLR in the SE literature. In particular, there are poten-

ial issues with how data was extracted, limitations in the search

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 27

t

a

d

1

w

c

i

m

e

f

t

t

t

m

a

S

r

i

a

p

c

t

t

s

t

s

r

v

r

a

w

a

s

c

l

v

o

i

fi

a

6

t

O

t

s

A

e

t

t

s

a

2

s

a

t

h

s

t

t

r

C

w

i

i

t

(

c

i

a

e

s

c

t

i

b

e

o

r

P

ation

d bas

ent te

oftwar

are De

t the c

: A Ca

ive ap

ials, 2

ent,”

ing,”

g a so

50-54.
erms that might have missed important papers, and bias in the

pplied exclusion/inclusion criteria. In this section, the threats are

iscussed using the standard classification in the literature (Bruner,

961).

Internal validity : to make sure that the study can be repeated,

e used a systematic approach with precise search terms and in-

lusion/exclusion criteria, as described in Section 3 . However, there

s a potential threat that relevant articles have been missed. To

itigate and minimize this threat, we used two different search

ngines (Google Scholar and Scopus) and we snowballed. There-

ore, if there are any relevant papers missing from our sample,

heir rate should be low to negligible. Also, inclusion/exclusion cri-

eria and their application could also be affected by the bias of

he researchers, depending on their judgment and experience. To

inimize this threat, we used a joint voting and peer reviewing

mong the authors. Furthermore, as discussed for RQ5 and RQ6,

LMs and SLRS are not primarily a tool for exploring the occur-

ence of a phenomenon (unless that particular issue has been stud-

ed in the primary studies), but for exploring existing knowledge

bout a phenomenon. Consequently, neither RQ5 or RQ6 aim to

rovide a globally generalisable view on the type of test activities

overed in “all” testing courses, but instead the RQs focus only on

he set of the primary studies under review in this work. Thus,

he generalizability and implications of the results relating to the

tudy’s RQs should be treated carefully. This is an issue common

o SLMs and SLRs, and not specific to only this study.

Conclusion validity : Conclusion validity of a literature review

tudy is asserted when correct conclusions are reached through

igorous and repeatable treatment. In order to ensure conclusion

alidity, all related primary studies were selected and all authors

eviewed the terminology used in the defined schema to avoid any

mbiguity. Data extracted from the primary studies by one author

ere peer reviewed by another author to mitigate bias. Each dis-

greement between authors was resolved by consensus among re-

earchers. By following the systematic approach and described pro-

edure, we ensured replicability of this study and strengthened the

ikelihood that results from similar studies will not have major de-

iations from our classification decisions.

External validity : This study provides a comprehensive review

n the field of software-testing education (overall 204 papers are

ncluded). Also, note that our findings in this study are within the

eld of software-testing education. We have no intention to gener-

lize our results beyond this subject area.

[P1] S. Tiwari, V. Saini, P. Singh, and A. Sureka, “A case study on the applic

Software Engineering Conference, 2018, p. 11.

[P2] W. Zheng, Y. Bai, and H. Che, “A computer-assisted instructional metho

Engineering Education, vol. 26, no. 5, pp. 1150-1158, 2018.

[P3] K. Buffardi and S. H. Edwards, “A formative study of influences on stud

science education, 2014, pp. 597-602.

[P4] S. K. Sowe, I. Stamelos, and I. Deligiannis, “A framework for teaching s

Open Source Systems, 2006: Springer, pp. 261-266.

[P5] S. Sheth, J. Bell, and G. Kaiser, “A Gameful Approach to Teaching Softw

9, p. 91, 2015.

[P6] M. H. Goldwasser, “A gimmick to integrate software testing throughou

[P7] F. B. V. Benitti, “A Methodology to Define Learning Objects Granularity

1-20, 2018.

[P8] V. Ramasamy, H. Alomari, J. Kiper, and G. Potvin, “A minimally disrupt

International Workshop on Software Engineering Education for Millenn

[P9] C. Desai, “A pedagogical approach to introducing test-driven developm

2008.

[P10] E. L. Jones and C. L. Chatmon, “A perspective on teaching software test

[P11] G. Fraser, A. Gambi, and J. M. Rojas, “A preliminary report on gamifyin

of European Conference of Software Engineering Education, 2018, pp.
. Conclusions and future work

We conducted a systematic literature mapping (SLM) to iden-

ify the state-of-the-art in the area of software-testing education.

ur SLM provides a classification of studies in this area, a syn-

hesis of both challenges faced during testing education and in-

ights for testing education, and an index to studies in this area.

ll three contributions can benefit educators in the design, deliv-

ry and assessment of software testing courses in university set-

ings, and can provide a foundation of previous research to inform

he design and conduct of further research on software testing and

oftware-testing education.

After compiling an initial pool of 307 papers, we then applied

 set of inclusion and exclusion criteria to reduce our final pool to

04 papers (published between 1992 and 2019). Our SLM demon-

trates that software-testing education is an active and increasing

rea of research. Many pedagogical approaches (e.g., how to best

each testing), course-ware, and specific tools for testing education

ave been proposed. Challenges and insights into the teaching of

oftware testing have also been identified and discussed.

We suggest future work in the following directions: (1) Using

he findings of this SLM in software testing courses, and evaluating

he findings; (2) Comparing the findings from this SLM with the

esults of previous review studies, as reviewed in Section 2.2 ; (3)

omparing the state of software-testing education in universities

ith training in industry (as per the conceptual diagram presented

n Fig. 1); (4) Using the findings of this SLM for developing a flex-

ble framework to enable software testing educators to “design”

heir courses based on the evidence and experience in this SLM;

5) assessing the extent to which the results of this SLM (classifi-

ation and synthesis of data) meet the SLM’s needs (as put forward

n Section 3.1) by asking the opinion of a sample set of appropri-

te beneficiaries, e.g., educators of software testing, and also the

ducation researchers in this area.; (6) deriving guidelines from a

ynthesis of the literature for how the teaching of testing should be

onducted; and (7) further synthesizing the evidence presented in

he papers that we have reviewed, as we have conducted a prelim-

nary SLM in this paper. Whilst it is encouraging to see the num-

er of experience reports on software-testing education, we also

ncourage the community to seek to conduct more, and more rig-

rous, evaluations of the interventions (e.g., tools, courseware, cur-

iculum) used in the courses.

ool of studies in the systematic literature mapping

of case-based learning in software testing,” in Proceedings of Innovations in

ed on machine learning in software testing class,” Computer Applications in

sting behaviors,” in Proceedings of ACM technical symposium on Computer

e testing using F/OSS methodology,” in IFIP International Conference on

sign and Software Testing,” Computer Games and Software Engineering, vol.

urriculum,” in ACM SIGCSE Bulletin, 2002, vol. 34, no. 1: ACM, pp. 271-275.

se Study in Software Testing,” Informatics in Education, vol. 17, no. 1, pp.

proach of integrating testing into computer programming courses,” in

018, pp. 1-7.

Master of Science thesis, Faculty of California Polytechnic State University,

Journal of Computing Sciences in Colleges, vol. 16, no. 3, pp. 92-100, 2001.

ftware testing course with the Code Defenders testing game,” in Proceedings

(continued on next page)

28 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

[P12] A. Gaspar, S. Langevin, N. Boyer, and R. Tindell, ‘A preliminary review of undergraduate programming students’ perspectives on writing tests, working

with others, & using peer testing,” in Proceedings of the ACM SIGITE conference on Information technology education, 2013: ACM, pp. 109-114.

[P13] N. Silvis-Cividjian, “A safety-aware, systems-based approach to teaching software testing,” in Proceedings of ACM Conference on Innovation and

Technology in Computer Science Education, 2018, pp. 314-319.

[P14] Z. Zakaria, “A State-of-Practice on Teaching Software Verification and Validation,” in Conf. of the American Society for Engineering Education, 2009.

[P15] L. P. Scatalon, M. L. Fioravanti, J. M. Prates, R. E. Garcia, and E. F. Barbosa, “A survey on graduates curriculum-based knowledge gaps in software testing,”

in Annual Frontiers in Education Conference, 2018.

[P16] J. L. Whalley and A. Philpott, “A unit testing approach to building novice programmers’ skills and confidence,” in Proceedings of the Australasian

Computing Education Conference, 2011, pp. 113-118.

[P17] A. Gaspar and S. Langevin, “Active learning in introductory programming courses through student-led live coding and test-driven pair programming,” in

International Conference on Education and Information Systems, Technologies and Applications, 2007.

[P18] C. Brown, R. Pastel, M. Seigel, C. Wallace, and L. Ott, “Adding unit test experience to a usability centered project course,” in Proceedings of the technical

symposium on Computer science education, 2014, pp. 259-264.

[P19] T. Hynninen, A. Knutas, and J. Kasurinen, “Aligning Software Testing Activities to V-Model Phases,” in Proceedings of the Koli Calling International

Conference on Computing Education Research, 2018, p. 28.

[P20] V. Thurner and A. Battcher, “An objects first, tests second approach for software engineering education,” in IEEE Frontiers in Education Conference,

2015: IEEE, pp. 1-5.

[P21] M. Allison and S. F. Joo, “An adaptive delivery strategy for teaching software testing and maintenance,” in International Conference on Computer Science

& Education, 2015, pp. 237-242.

[P22] B. Carlson, “An agile classroom experience: Teaching TDD and refactoring,” in Agile 2008 Conference, 2008: IEEE, pp. 465-469.

[P23] O. Ochoa and S. Salamah, “An approach to enhance students’ competency in software verification techniques,” in IEEE Frontiers in Education Conference,

2015, pp. 1-9.

[P24] R. Smith, T. Tang, J. Warren, and S. Rixner, “An Automated system for interactively learning software testing,” in Proceedings of ACM Conference on

Innovation and Technology in Computer Science Education, 2017, pp. 98-103.

[P25] J. Collofello and K. Vehathiri, “An environment for training computer science students on software testing,” in Proceedings Frontiers in Education

Conference, 2005: IEEE, pp. T3E-6.

[P26] D. S. Janzen, J. Clements, and M. Hilton, “An evaluation of interactive test-driven labs with WebIDE in CS0,” in Proceedings of the International

Conference on Software Engineering, 2013: IEEE Press, pp. 1090-1098.

[P27] E. G. Barriocanal, M. S. Urbn, I. A. Cuevas, and P. D. Perez, “An experience in integrating automated unit testing practices in an introductory

programming course,” ACM SIGCSE Bulletin, vol. 34, no. 4, pp. 125-128, 2002.

[P28] E. F. Barbosa, S. d. R. S. de Souza, and J. C. Maldonado, “An experience on applying learning mechanisms for teaching inspection and software testing,” in

Conference on Software Engineering Education and Training, 2008, pp. 189-196.

[P29] M. A. Brito, J. L. Rossi, S. R. de Souza, and R. T. Braga, “An experience on applying software testing for teaching introductory programming courses,” CLEI

Electronic Journal, vol. 15, no. 1, pp. 5-5, 2012.

[P30] E. L. Jones, “An experiential approach to incorporating software testing into the computer science curriculum,” in Conference Proceedings of Frontiers in

Education Conference. Impact on Engineering and Science Education, 2001, vol. 2, pp. F3D-7.

[P31] A. Soska, J. Mottok, and C. Wolff, “An experimental card game for software testing: Development, design and evaluation of a physical card game to

deepen the knowledge of students in academic software testing education,” in IEEE Global Engineering Education Conference, 2016, pp. 576-584.

[P32] J. R. Barbosa, P. Valle, J. Maldonado, M. Delamaro, and A. M. Vincenzi, “An experimental evaluation of peer testing in the context of the teaching of

software testing,” in International Symposium on Computers in Education, 2017, pp. 1-6.

[P33] V. Garousi, “An open modern software testing laboratory courseware: an experience report,” in IEEE Conference on Software Engineering Education and

Training, 2010, pp. 177-184.

[P34] P. Lauvas, “Analyzing student code after introducing portfolio assessment and automated testing," in Norwegian Conference on Organizations’ Use of IT

(NOKOBIT), 2015, vol. 23, no. 1.

[P35] S. M. Rahman, “Applying the tbc method in introductory programming courses," in Annual Frontiers In Education Conference-Global Engineering, 2007:

IEEE, pp. T1E-20-T1E-21.

[P36] A. ÄŒau ̊A¡eviÄ‡ , “Appreciate the journey not the destination-Using video assignments in software testing education," in Proceedings of the Workshops

of the German Software Engineering Conference, 2018, vol. 2066, pp. 4-7.

[P37] J. R. Horgan and A. P. Mathur, “Assessing testing tools in research and education," IEEE Software, vol. 9, no. 3, pp. 61-69, 1992.

[P38] J. Bowyer and J. Hughes, “Assessing undergraduate experience of continuous integration and test-driven development," in Proceedings of the

international conference on Software engineering, 2006, pp. 691-694.

[P39] C. Kaner, “Assessment in the software testing course," in Workshop on the Teaching of Software Testing, 2003.

[P40] Z. Shams, “Automated assessment of students’ testing skills for improving correctness of their code," in Proceedings of companion publication for

conference on Systems, programming, & applications: software for humanity, 2013, pp. 37-40.

[P41] R. Bryce et al., “Bug catcher: a system for software testing competitions,” in Proceeding of the ACM technical symposium on Computer science

education, 2013, pp. 513-518.

[P42] K. Buffardi and P. Valdivia, “Bug Hide-and-Seek: An Educational Game for Investigating Verification Accuracy in Software Tests,” in IEEE Frontiers in

Education.

[P43] S. Elbaum, S. Person, J. Dokulil, and M. Jorde, “Bug hunt: Making early software testing lessons engaging and affordable,” in Proceedings of the

international conference on Software Engineering, 2007, pp. 688-697.

[P44] D. E. Krutz and M. Lutz, “Bug of the day: Reinforcing the importance of testing,” in IEEE Frontiers in Education Conference, 2013, pp. 1795-1799.

[P45] G. Joshi and P. Desai, “Building software testing skills in undergraduate students using spiral model approach,” in International conference on technology

for education, 2016, pp. 244-245.

[P46] S. Hooshangi, R. Weiss, and J. Cappos, “Can the security mindset make students better testers?,” in Proceedings of the ACM Technical Symposium on

Computer Science Education, 2015, pp. 404-409.

[P47] Z. Shams and S. H. Edwards, “Checked coverage and object branch coverage: New alternatives for assessing student-written tests,” in Proceedings of the

ACM Technical Symposium on Computer Science Education, 2015, pp. 534-539.

[P48] J. M. Rojas and G. Fraser, “Code defenders: a mutation testing game,” in IEEE International Conference on Software Testing, Verification and Validation

Workshops, 2016, pp. 162-167.

[P49] P. J. Clarke, J. Pava, Y. Wu, and T. M. King, “Collaborative web-based learning of testing tools in SE courses,” in Proceedings of ACM technical symposium

on Computer science education, 2011, pp. 147-152.

[P50] Z. Chen, A. Memon, and B. Luo, “Combining research and education of software testing: a preliminary study,” in Proceedings of the ACM Symposium on

Applied Computing, 2014, pp. 1179-1180.

[P51] V. Lappalainen, J. Itkonen, V. Isomattaen, and S. Kollanus, “ComTest: a tool to impart TDD and unit testing to introductory level programming,” in

Proceedings of the conference on Innovation and technology in computer science education, 2010, pp. 63-67.

[P52] P. H. D. Valle, E. F. Barbosa, and J. C. Maldonado, “CS curricula of the most relevant universities in Brazil and abroad: Perspective of software testing

education,” in International Symposium on Computers in Education, 2015, pp. 62-68.

(continued on next page)

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 29

[P53] V. Isomnen and V. Lappalainen, “CSI with games and an emphasis on TDD and unit testing: piling a trend upon a trend,” ACM Inroads, vol. 3, no. 3, pp.

62-68, 2012.

[P54] V. Garousi and A. Mathur, “Current state of the software testing education in North American academia and some recommendations for the new

educators,” in IEEE Conference on Software Engineering Education and Training, 2010, pp. 89-96.

[P55] B. Zhu and S. Zhang, “Curriculum reform and practice of software testing,” in International Conference on Education Technology and Information System,

2013.

[P56] R. Mao, M. Wang, X. Wang, and Y. Zhang, “Curriculum Reform on Software Testing Courses to Strengthen Abilities of Engineering Practice,” International

Journal of Science, vol. 4, no. 10, pp. 16-19, 2017.

[P57] G. Lopez, F. Cocozza, A. Martinez, and M. Jenkins, “Design and implementation of a software testing training course,” in ASEE Annual Conference &

Exposition, 2015.

[P58] M. J. A. M. J. Rodriguez and E. Rojas, “Designing a blended software testing course for embedded C software engineers,” in International Conference on

Computers and Advanced Technology in Education.

[P59] R. Agarwal, S. H. Edwards, and M. A. Perez-Quines, “Designing an adaptive learning module to teach software testing,” in ACM SIGCSE Bulletin, 2006, vol.

38, no. 1, pp. 259-263.

[P60] D. Middleton, “Developing students’ testing skills: covering space: nifty assignment,” Journal of Computing Sciences in Colleges, vol. 30, no. 5, pp. 29-31,

2015.

[P61] D. Middleton, “Developing students’ testing skills: distinguishing functions,” Journal of Computing Sciences in Colleges, vol. 28, no. 5, pp. 73-74, 2013.

[P62] A. Alelaiwi, “Direct assessment methodology for a software testing course,” Life Science Journal, vol. 11, no. 6s, 2014.

[P63] S. H. Edwards and Z. Shams, “Do student programmers all tend to write the same software tests?,” in Proceedings of conference on Innovation &

technology in computer science education, 2014, pp. 171-176.

[P64] P. H. D. Valle, A. M. Toda, E. F. Barbosa, and J. C. Maldonado, “Educational games: A contribution to software testing education,” in IEEE Frontiers in

Education Conference, 2017: IEEE, pp. 1-8.

[P65] K. Buffardi and S. H. Edwards, “Effective and ineffective software testing behaviors by novice programmers,” in Proceedings of the ACM conference on

International computing education research, 2013: ACM, pp. 83-90.

[P66] M. Thiry, A. Zoucas, and A. C. da Silva, “Empirical study upon software testing learning with support from educational game,” in Proceedings of the

International Conference on Software Engineering & Knowledge Engineering, 2011, pp. 481-484.

[P67] R. Pham, S. Kiesling, O. Liskin, L. Singer, and K. Schneider, “Enablers, inhibitors, and perceptions of testing in novice software teams,” in Proceedings of

the ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2014: ACM, pp. 30-40.

[P68] J. J. Li and P. Morreale, “Enhancing CS1 curriculum with testing concepts: a case study,” Journal of Computing Sciences in Colleges, vol. 31, no. 3, pp.

36-43, 2016.

[P69] J. Maldonado and E. Barbosa, “Establishing a mutation testing educational module based on IMA-CID,” in Workshop on Mutation Analysis, part of ISSRE

Conf., 2006: IEEE, pp. 14-14.

[P70] J. C. Carver and N. A. Kraft, “Evaluating the testing ability of senior-level computer science students,” in IEEE-CS Conference on Software Engineering

Education and Training, 2011: IEEE, pp. 169-178.

[P71] R. A. Oliveira, L. B. Oliveira, B. B. Cafeo, and V. H. Durelli, “Evaluation and assessment of effects on exploring mutation testing in programming courses,”

in IEEE Frontiers in Education Conference, 2015: IEEE, pp. 1-9.

[P72] O. A. L. Lemos, F. C. Ferrari, F. F. Silveira, and A. Garcia, “Experience report: Can software testing education lead to more reliable code?,” in IEEE

International Symposium on Software Reliability Engineering, 2015: IEEE, pp. 359-369.

[P73] T. Y. Chen and P.-L. Poon, “Experience with teaching black-box testing in a computer science/software engineering curriculum,” IEEE Transactions on

Education, vol. 47, no. 1, pp. 42-50, 2004.

[P74] J. Kasurinen, “Experiences from a web-based course in software testing and quality assurance,” International Journal of Computer Applications, vol. 166,

no. 2, 2017.

[P75] J. Timoney, S. Brown, and D. Ye, “Experiences in software testing education: some observations from an international cooperation,” in International

Conference for Young Computer Scientists, 2008: IEEE, pp. 2686-2691.

[P76] S. H. Edwards and M. A. Perez-Quiones, “Experiences using test-driven development with an automated grader,” Journal of Computing Sciences in

Colleges, vol. 22, no. 3, pp. 44-50, 2007.

[P77] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K. Hollingsworth, and N. Padua-Perez, “Experiences with marmoset: designing and using an advanced

submission and testing system for programming courses,” in ACM SigCSE Bulletin, 2006, vol. 38, no. 3: ACM, pp. 13-17.

[P78] Z. Bin and Z. Shiming, “Experiment teaching reform for software testing course based on CDIO,” in International Conference on Computer Science &

Education, 2014: IEEE, pp. 488-491.

[P79] D. Mishra, S. Ostrovska, and T. Hacaloglu, “Exploring and expanding students’ success in software testing,” Information Technology & People, vol. 30, no.

4, pp. 927-945, 2017.

[P80] K. Buffardi and S. H. Edwards, “Exploring influences on student adherence to test-driven development,” in Proceedings of ACM conference on Innovation

and technology in computer science education, 2012: ACM, pp. 105-110.

[P81] B. TomiÄ‡ and S. Vlaji, “Functional testing for students: a practical approach,” ACM SIGCSE Bulletin, vol. 40, no. 4, pp. 58-62, 2008.

[P82] Y. Fu and P. Clarke, “Gamification based cyber enabled learning environment of software testing,” in Proceedings of ASEE Annual Conference and Expo,

2016.

[P83] G. Fraser, A. Gambi, M. Kreis, and J. M. Rojas, “Gamifying a Software Testing Course with Code Defenders,” in ACM Technical Symposium on Computer

Science Education, 2019.

[P84] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale, “Guidelines for software testing education objectives from industry practices with a constructive

alignment approach,” in Proceedings of ACM Conference on Innovation and Technology in Computer Science Education, 2018: ACM, pp. 278-283.

[P85] J. Spacco and W. Pugh, “Helping students appreciate test-driven development (TDD),” in ACM SIGPLAN symposium on Object-oriented programming

systems, languages, and applications, 2006: ACM, pp. 907-913.

[P86] P. Zhang, J. White, and D. C. Schmidt, “HoliCoW: automatically breaking team-based software projects to motivate student testing,” in IEEE/ACM

International Conference on Software Engineering Companion, 2016: IEEE, pp. 436-439.

[P87] A. Allowatt and S. H. Edwards, “IDE Support for test-driven development and automated grading in both Java and C ++ ,” in Proceedings of the OOPSLA

workshop on Eclipse technology eXchange, 2005: ACM, pp. 100-104.

[P88] O. S. Gomez, S. Vegas, and N. Juristo, “Impact of CS programs on the quality of test cases generation: An empirical study,” in Proceedings of the

International Conference on Software Engineering Companion, 2016: ACM, pp. 374-383.

[P89] P. J. Clarke, D. L. Davis, R. Chang-Lau, and T. M. King, “Impact of using tools in an undergraduate software testing course supported by WRESTT,” ACM

Transactions on Computing Education (TOCE), vol. 17, no. 4, p. 18, 2017.

[P90] K. Buffardi and S. H. Edwards, “Impacts of adaptive feedback on teaching test-driven development,” in Proceeding of the ACM technical symposium on

Computer science education, 2013: ACM, pp. 293-298.

[P91] K. Buffardi and S. H. Edwards, “Impacts of Teaching test-driven development to Novice Programmers,” International Journal of Information and Computer

Science, vol. 1, no. 6, p. 9, 2012.

[P92] Z. Yinnan and W. Xiaochi, “Implementation of Software Testing Course Based on CDIO,” in International Conference on Computer Science & Education,

2011: IEEE, pp. 107-110.

(continued on next page)

30 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

[P93] C. Desai, D. S. Janzen, and J. Clements, “Implications of integrating test-driven development into CS1/CS2 curricula,” in ACM SIGCSE Bulletin, 2009, vol.

41, no. 1: ACM, pp. 148-152.

[P94] R. Aziz, “Improving high order thinking skills in software testing course,” International Journal of Computer Science and Information Security, vol. 14,

no. 8, p. 966, 2016.

[P95] I. Alazzam and M. Akour, “Improving software testing course experience with pair testing pattern,” International Journal of Teaching and Case Studies,

vol. 6, no. 3, pp. 244-250, 2015.

[P96] S. H. Edwards, “Improving student performance by evaluating how well students test their own programs,” Journal on Educational Resources in

Computing (JERIC), vol. 3, no. 3, p. 1, 2003.

[P97] V. Subbian, N. Niu, and C. C. Purdy, “Inclusive and evidence-based instruction in software testing education,” in Annual conference of the American

Society for Engineering Education, 2016.

[P98] V. Garousi, “Incorporating real-world industrial testing projects in software testing courses: Opportunities, challenges, and lessons learned,” in IEEE-CS

Conference on Software Engineering Education and Training, 2011: IEEE, pp. 396-400.

[P99] S. K. Bajaj and S. Balram, “Incorporating software testing as a discipline in curriculum of computing courses,” in International United Information

Systems Conference, 2009: Springer, pp. 404-410.

[P100] E. F. Barbosa, M. A. Silva, C. K. Corte, and J. C. Maldonado, “Integrated teaching of programming foundations and software testing,” in Annual Frontiers in

Education Conference, 2008: IEEE, pp. S1H-5-S1H-10.

[P101] P. Yujian Fu, P. J. Clarke, and N. Barnes Jr, “Integrating Software Testing to CS Curriculum Using WRESTT-CyLE,” in Annual Conference of the American

Society for Engineering Education, 2015.

[P102] S. Frezza, “Integrating testing and design methods for undergraduates: teaching software testing in the context of software design,” in Annual Frontiers

in Education, 2002, vol. 3: IEEE, pp. S1G-S1G.

[P103] P. J. Clarke, D. Davis, T. M. King, J. Pava, and E. L. Jones, “Integrating testing into software engineering courses supported by a collaborative learning

environment,” ACM Transactions on Computing Education (TOCE), vol. 14, no. 3, p. 18, 2014.

[P104] E. L. Jones, “Integrating testing into the curriculum arsenic in small doses,” ACM SIGCSE Bulletin, vol. 33, no. 1, pp. 337-341, 2001.

[P105] E. F. Barbosa, J. C. Maldonado, R. LeBlanc, and M. Guzdial, “Introducing testing practices into objects and design course,” in Proceedings Conference on

Software Engineering Education and Training, 2003: IEEE, pp. 279-286.

[P106] A. Patterson, M. Kolling, and J. Rosenberg, “Introducing unit testing with BlueJ,” ACM SIGCSE Bulletin, vol. 35, no. 3, pp. 11-15, 2003.

[P107] V. K. Proulx and R. Rasala, “Java IO and testing made simple,” in ACM SIGCSE Bulletin, 2004, vol. 36, no. 1: ACM, pp. 161-165.

[P108] H. Trotteberg and T. Aalberg, “JExercise: a specification-based and test-driven exercise support plugin for Eclipse,” in OOPSLA workshop on eclipse

technology eXchange, 2006, vol. 22, no. 23, pp. 70-74.

[P109] M. Wahid and A. Almalaise, “JUnit framework: An interactive approach for basic unit testing learning in Software Engineering,” in International Congress

on Engineering Education, 2011: IEEE, pp. 159-164.

[P110] B. Talon, D. Leclet, A. Lewandowski, and G. Bourguin, “Learning software testing using a collaborative activities oriented platform,” in IEEE International

Conference on Advanced Learning Technologies, 2009: IEEE, pp. 443-445.

[P111] J. Snyder, S. H. Edwards, and M. A. Perez-Quiones, “LIFT: taking GUI unit testing to new heights,” in Proceedings of ACM technical symposium on

Computer science education, 2011: ACM, pp. 643-648.

[P112] Q. Li and B. W. Boehm, “Making winners for both education and research: Verification and validation process improvement practice in a software

engineering course,” in IEEE-CS Conference on Software Engineering Education and Training, 2011: IEEE, pp. 304-313.

[P113] D. Towey, T. Y. Chen, F.-C. Kuo, H. Liu, and Z. Q. Zhou, “Metamorphic testing: A new student engagement approach for a new software testing paradigm,”

in IEEE International Conference on Teaching, Assessment, and Learning for Engineering, 2016: IEEE, pp. 218-225.

[P114] T. Shepard, M. Lamb, and D. Kelly, “More testing should be taught,” Communications of the ACM, vol. 44, no. 6, pp. 103-108, 2001.

[P115] K. Aaltonen, P. Ihantola, and O. Sepp, “Mutation analysis vs. code coverage in automated assessment of students’ testing skills,” in Proceedings of the

ACM international conference companion on Object oriented programming systems languages and applications companion, 2010: ACM, pp. 153-160.

[P116] M. Hilton and D. S. Janzen, “On teaching arrays with test-driven learning in WebIDE,” in Proceedings of ACM annual conference on Innovation and

technology in computer science education, 2012: ACM, pp. 93-98.

[P117] T. Shepard, “On teaching software verification and validation,” in Conference on Software Engineering Education, 1995: Springer, pp. 375-385.

[P118] R. A. Oliveira, L. Oliveira, B. B. Cafeo, and V. Durelli, “On using mutation testing for teaching programming to novice programmers,” in International

Conference on Computers in Education, 2014, pp. 394-396.

[P119] J. Clements and D. Janzen, “Overcoming obstacles to test-driven learning on day one,” in International Conference on Software Testing, Verification, and

Validation Workshops, 2010: IEEE, pp. 448-453.

[P120] N. Clark, “Peer testing in software engineering projects,” in Proceedings of the Australasian Conference on Computing Education, 2004: Australian

Computer Society, Inc., pp. 41-48.

[P121] C. Li, “Penetration testing curriculum development in practice,” Journal of Information Technology Education: Innovations in Practice, vol. 14, no. 1, pp.

85-99, 2015.

[P122] S. A. Brian, R. N. Thomas, J. M. Hogan, and C. Fidge, “Planting Bugs: A System for Testing Students’ Unit Tests,” in Proceedings of the ACM Conference on

Innovation and Technology in Computer Science Education, 2015: ACM, pp. 45-50.

[P123] V. L. Neto, R. Coelho, L. Leite, D. S. Guerrero, and A. P. Mendon, “POPT: a problem-oriented programming and testing approach for novice students,” in

international conference on software engineering, 2013: IEEE, pp. 1099-1108.

[P124] C. Kaner and S. Padmanabhan, “Practice and transfer of learning in the teaching of software testing,” in IEEE Conference on Software Engineering

Education & Training, 2007, pp. 157-166.

[P125] M. Aniche, F. Hermans, and A. van Deursen, “Pragmatic Software Testing Education,” in ACM Technical Symposium on Computer Science Education,

2019, pp. 414-420

[P126] C. Matthies, A. Treffer, and M. Uflacker, “Prof. CI: Employing continuous integration services and GitHub workflows to teach test-driven development,” in

IEEE Frontiers in Education Conference, 2017: IEEE, pp. 1-8.

[P127] D. M. De Souza, J. C. Maldonado, and E. F. Barbosa, “ProgTest: An environment for the submission and evaluation of programming assignments based on

testing activities,” in IEEE-CS Conference on Software Engineering Education and Training, 2011: IEEE, pp. 1-10.

[P128] D. Almog, H. Chasidim, and S. Mark, “Quality and testing-new teaching approaches for software engineers,” in World Transactions on Engineering and

Technology Education, 2018, vol. 16, pp. 140-145.

[P129] L. Fu, “Research on case teaching of software testing course with open source software,” Advances in Information Sciences and Service Sciences, vol. 4,

no. 13, 2012.

[P130] S. H. Edwards, “Rethinking computer science education from a test-first perspective,” in ACM conference on Object-oriented programming, systems,

languages, and applications, 2003: ACM, pp. 148-155.

[P131] A. Allevato and S. H. Edwards, “RoboLIFT: engaging CS2 students with testable, automatically evaluated android applications,” in Proceedings of the ACM

technical symposium on Computer Science Education, 2012: ACM, pp. 547-552.

[P132] S. H. Edwards, Z. Shams, M. Cogswell, and R. C. Senkbeil, “Running students’ software tests against each others’ code: new life for an old gimmick,” in

Proceedings of ACM technical symposium on Computer Science Education, 2012: ACM, pp. 221-226.

[P133] J. Bell, S. Sheth, and G. Kaiser, “Secret ninja testing with HALO software engineering,” in Proceedings of the international workshop on Social software

engineering, 2011: ACM, pp. 43-47.

(continued on next page)

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 31

[P134] A. J. A. Wang, “Security testing in software engineering courses,” in Annual Frontiers in Education Conf., 2004: IEEE, pp. F1C-13.

[P135] S. Åoi, O. Risti, K. Mitrovi, and D. Miloevi, “Software Testing Course in IT Undergraduate Education in Serbia,” Information Technology, vol. 4, no. 6, p. 8.

[P136] F. Chan, T. Tse, W. Tang, and T. Chen, “Software testing education and training in Hong Kong,” in International Conference on Quality Software, 2005:

IEEE, pp. 313-316.

[P137] J. P. U. Pech, R. A. A. Vera, and O. S. Gomez, “Software testing education through a collaborative virtual approach,” in International Conference on

Software Process Improvement, 2017: Springer, pp. 231-240.

[P138] E. L. Jones, “Software testing in the computer science curriculum–a holistic approach,” in Proceedings of the Australasian conference on Computing

education, 2000: ACM, pp. 153-157.

[P139] B. Hang, “Software Testing Training in Vocational Technical Education,” in Education and Educational Technology: Springer, 2011, pp. 567-574.

[P140] G. Fisher and C. Johnson, “Specification-Based Testing in Software Engineering Courses,” in Proceedings of the ACM Technical Symposium on Computer

Science Education, 2018: ACM, pp. 800-805.

[P141] E. L. Jones, “SPRAE: A Framework for Teaching Software Testing in the Undergraduate Curriculum,” in International Workshop on Agents and Data

Mining Interaction (ADMI), 2000.

[P142] T. Cowling, “Stages in teaching software testing,” in Proceedings of the International Conference on Software Engineering, 2012: IEEE Press, pp.

1185-1194.

[P143] D. L. Davis and R. C. Lau, “Student Learning and Use of Tools in an Undergraduate Software Testing Class,” in Annual conference of the American Society

for Engineering Education, vol. 24, p. 1.

[P144] N. J. Wahl, “Student-run usability testing,” in Conference on Software Engineering Education and Training, 2000: IEEE, pp. 123-131.

[P145] T. Dvornik, D. S. Janzen, J. Clements, and O. Dekhtyar, “Supporting introductory test-driven labs with WebIDE,” in IEEE-CS Conference on Software

Engineering Education and Training, 2011: IEEE, pp. 51-60.

[P146] M. Thornton, S. H. Edwards, R. P. Tan, and M. A. Perez-Quines, “Supporting student-written tests of gui programs,” in ACM SIGCSE Bulletin, 2008, vol. 40,

no. 1: ACM, pp. 537-541.

[P147] H. B. Christensen, “Systematic testing should not be a topic in the computer science curriculum!,” in ACM SIGCSE Bulletin, 2003, vol. 35, no. 3: ACM, pp.

7-10.

[P148] R. M. Snyder, “Teacher specification and student implementation of a unit testing methodology in an introductory programming course,” Journal of

Computing Sciences in Colleges, vol. 19, no. 3, pp. 22-32, 2004.

[P149] H. Liu, F.-C. Kuo, and T. Y. Chen, “Teaching an end-user testing methodology,” in IEEE Conference on Software Engineering Education and Training, 2010:

IEEE, pp. 81-88.

[P150] D. Hoffman, P. Strooper, and P. Walsh, “Teaching and testing,” in Proceedings of Conference on Software Engineering Education, 1996: IEEE, pp. 248-258.

[P151] T. Xie, J. de Halleux, N. Tillmann, and W. Schulte, “Teaching and training developer-testing techniques and tool support,” in Proceedings of the ACM

international conference companion on Object oriented programming systems languages and applications companion, 2010: ACM, pp. 175-182.

[P152] T. Y. Chen, F.-C. Kuo, and Z. Q. Zhou, “Teaching automated test case generation,” in International Conference on Quality Software, 2005: IEEE, pp.

327-332.

[P153] T. Chen and P. Poon, “Teaching black box testing,” in International Conference Software Engineering: Education and Practice, 1998: IEEE, pp. 324-329.

[P154] S. S. Bhattacharyya, W. Plishker, A. Gupta, and C.-C. Shen, “Teaching cross-platform design and testing methods for embedded systems using DICE,” in

Proceedings of the Workshop on Embedded Systems Education, 2011: ACM, pp. 38-45.

[P155] S. Schaub, “Teaching CS1 with web applications and test-driven development,” ACM SIGCSE Bulletin, vol. 41, no. 2, pp. 113-117, 2009.

[P156] C. Kaner, “Teaching domain testing: A status report,” in Conference on Software Engineering Education and Training, 2004: IEEE, pp. 112-117.

[P157] J. M. Rojas and G. Fraser, “Teaching Mutation Testing using Gamification,” in European Conference on Software Engineering Education, 2016.

[P158] D. M. De Souza, S. Isotani, and E. F. Barbosa, “Teaching novice programmers using ProgTest,” International Journal of Knowledge and Learning, vol. 10,

no. 1, pp. 60-77, 2015.

[P159] J. P. Sauve and O. L. Abath Neto, “Teaching software development with ATDD and EasyAccept,” in ACM SIGCSE Bulletin, 2008, vol. 40, no. 1: ACM, pp.

542-546.

[P160] O. Gotel, C. Scharff, and A. Wildenberg, “Teaching software quality assurance by encouraging student contributions to an open source web-based system

for the assessment of programming assignments,” ACM SIGCSE Bulletin, vol. 40, no. 3, pp. 214-218, 2008.

[P161] D. Carrington, “Teaching software testing,” in Proceedings of the Australasian conference on Computer science education, 1997: ACM, pp. 59-64.

[P162] S. Jia and C. Yang, “Teaching software testing based on CDIO,” World Transactions on Engineering and Technology Education, vol. 11, no. 4, pp. 476-479,

2013.

[P163] B. S. Clegg, J. M. Rojas, and G. Fraser, “Teaching software testing concepts using a mutation testing game,” in IEEE/ACM International Conference on

Software Engineering: Software Engineering Education and Training Track, 2017: IEEE, pp. 33-36.

[P164] N. B. Harrison, “Teaching software testing from two viewpoints,” Journal of Computing Sciences in Colleges, vol. 26, no. 2, pp. 55-62, 2010.

[P165] I. A. Buckley and W. S. Buckley, “Teaching software testing using data structures,” International Journal Of Advanced Computer Science And Applications,

vol. 8, no. 4, pp. 1-4, 2017.

[P166] D. Mishra, T. Hacaloglu, and A. Mishra, “Teaching Software Verification and Validation Course: A Case Study,” International Journal of Engineering

Education, vol. 30, pp. 1476-1485, 2014.

[P167] Y. Lee, D. B. Marepalli, and J. Yang, “Teaching test-drive development using dojo,” Journal of Computing Sciences in Colleges, vol. 32, no. 4, pp. 106-112,

2017.

[P168] M. Missiroli, D. Russo, and P. Ciancarini, “Teaching test-first programming: Assessment and solutions,” in IEEE Annual Computer Software and

Applications Conference, 2017, vol. 1: IEEE, pp. 420-425.

[P169] J. Paul, “Test-driven approach in programming pedagogy,” Journal of Computing Sciences in Colleges, vol. 32, no. 2, pp. 53-60, 2016.

[P170] J. Adams, “Test-driven data structures: revitalizing CS2,” in ACM SIGCSE Bulletin, 2009, vol. 41, no. 1: ACM, pp. 143-147.

[P171] V. K. Proulx, “Test-driven design for introductory OO programming,” in ACM SIGCSE Bulletin, 2009, vol. 41, no. 1: ACM, pp. 138-142.

[P172] C. G. Jones, “Test-driven development goes to school,” Journal of Computing Sciences in Colleges, vol. 20, no. 1, pp. 220-231, 2004.

[P173] D. Janzen and H. Saiedian, “Test-driven learning in early programming courses,” in ACM SIGCSE Bulletin, 2008, vol. 40, no. 1: ACM, pp. 532-536.

[P174] D. S. Janzen and H. Saiedian, “Test-driven learning: intrinsic integration of testing into the CS/SE curriculum,” in ACM SIGCSE Bulletin, 2006, vol. 38, no.

1: ACM, pp. 254-258.

[P175] M. Ricken and R. Cartwright, “Test-first Java concurrency for the classroom,” in Proceedings of the ACM technical symposium on Computer science

education, 2010: ACM, pp. 219-223.

[P176] C. Leska, “Testing across the curriculum: square one!,” Journal of Computing Sciences in Colleges, vol. 19, no. 5, pp. 163-169, 2004.

[P177] W. Marrero and A. Settle, “Testing first: emphasizing testing in early programming courses,” in ACM SIGCSE Bulletin, 2005, vol. 37, no. 3: ACM, pp. 4-8.

[P178] J. A. Rosiene and C. Pe Rosiene, “Testing in the small’,” Journal of Computing Sciences in Colleges, vol. 19, no. 2, pp. 314-318, 2003.

[P179] E. Scott, A. Zadirov, S. Feinberg, and R. Jayakody, “The alignment of software testing skills of IS students with industry practicesâ€“a South African

perspective,” Journal of Information Technology Education: Research, vol. 3, pp. 161-172, 2004.

[P180] D. H. Steinberg, “The effect of unit tests on entry points, coupling and cohesion in an introductory java programming course,” in XP Universe, 2001, vol.

8: Citeseer.

[P181] T. Astigarraga, E. M. Dow, C. Lara, R. Prewitt, and M. R. Ward, “The emerging role of software testing in curricula,” in IEEE Conf. on Transforming

Engineering Education 2010: IEEE, pp. 1-26.

(continued on next page)

32 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

of Sof

tion S

Journa

eaturi

in an

ing in

evalua

resear

ting c

rcia, “

EE, p

Barbo

EE, pp

ents,”

perie

M, pp

oftwar

d proj

 a web

ct ori

pplica

rogram

 softw

nd-err

viding

s: tec

s the

eSTT

.

sters

R

A

A

A

A

A

A

A

A

B

[P182] O. A. L. Lemos, F. F. Silveira, F. C. Ferrari, and A. Garcia, “The impact

of Systems and Software, vol. 137, pp. 497-511, 2018.

[P183] L. Palmer, “The inclusion of a software testing module in the Informa

83-86, 2008.

[P184] C. D. Allison, “The simplest unit test tool that could possibly work,”

[P185] D. I. Alkadi and G. Alkadi, “To C ++ or to Java, that is the question! F

in Proceedings of Aerospace Conference 2002, vol. 7, pp. 7-3679,

[P186] G. Braught and J. Midkiff, “Tool design and student testing behavior

Computing Science Education, 2016: ACM, pp. 449-454.

[P187] T. Briggs and C. D. Girard, “Tools and techniques for test-driven learn

2007.

[P188] Z. Shams and S. H. Edwards, “Toward practical mutation analysis for

international ACM conference on International computing education

[P189] C. Mao, “Towards a question-driven teaching method for software tes

Engineering, 2008, vol. 5: IEEE, pp. 645-648.

[P190] L. P. Scatalon, J. M. Prates, D. M. De Souza, E. F. Barbosa, and R. E. Ga

Conference on Software Engineering Education and Training, 2017: IE

[P191] D. M. de Souza, B. H. Oliveira, J. C. Maldonado, S. R. Souza, and E. F.

software testing,” in IEEE Frontiers in Education Conference, 2014: IE

[P192] D. Blaheta, “Unci: a C ++ -based unit-testing framework for intro stud

Education, 2015: ACM, pp. 475-480.

[P193] A. Martinez, “Use of JiTT in a graduate software testing course: an ex

Engineering: Software Engineering Education and Training, 2018: AC

[P194] G. Lopez and A. Martinez, “Use of Microsoft Testing Tools to Teach S

Engineering Education Annual Conference and Exposition, 2014.

[P195] D. E. Krutz, S. A. Malachowsky, and T. Reichlmayr, “Using a real worl

symposium on Computer science education, 2014: ACM, pp. 49-54.

[P196] P. J. Clarke, A. A. Allen, T. M. King, E. L. Jones, and P. Natesan, “Using

Proceedings of the ACM international conference companion on Obje

ACM, pp. 193-200.

[P197] J. Offutt, N. Li, P. Ammann, and W. Xu, “Using abstraction and Web a

Engineering Education and Training, 2011: IEEE, pp. 227-236.

[P198] S. Edwards, “Using Industrial Tools to Test and Grade Resolve/C ++ P

[P199] J. Smith, J. Tessler, E. Kramer, and C. Lin, “Using peer review to teach

computing education research, 2012: ACM, pp. 93-98.

[P200] S. H. Edwards, “Using software testing to move students from trial-a

pp. 26-30.

[P201] S. H. Edwards, “Using test-driven development in the classroom: Pro

of the international conference on education and information system

[P202] M. Wick, D. Stevenson, and P. Wagner, “Using testing and JUnit acros

[P203] P. J. Clarke, J. Pava, D. Davis, F. Hernandez, and T. M. King, “Using WR

symposium on Computer Science Education, 2012: ACM, pp. 307-312

[P204] A. R. Shah, “Web-cat: A web-based center for automated testing,” Ma

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

CRediT authorship contribution statement

Vahid Garousi: Conceptualization, Methodology, Data curation,

Validation, Writing - original draft. Austen Rainer: Methodology,

Data curation, Validation, Writing - original draft. Per Lauvås jr:

Conceptualization, Methodology, Data curation, Validation, Writing

- original draft. Andrea Arcuri: Conceptualization, Methodology,

Data curation, Validation, Writing - original draft.

Acknowledgment

Andrea Arcuri is supported by the Research Council of Norway

(project on Evolutionary Enterprise Testing, grant agreement No

274385). We thank the anonymous reviewers and the editor for

their constructive comments.

Supplementary materials

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.jss.2020.110570 .
tware Testing education on code reliability: An empirical assessment,” Journal

ystems Honours course,” South African Computer Journal, vol. 12, no. 1, pp.

l of Computing Sciences in Colleges, vol. 23, no. 1, pp. 183-189, 2007.

ng a test plan and an automated testing assistant for object oriented testing,”

introductory java course,” in Proceedings of the ACM Technical Symposium on

 CS1,” Journal of Computing Sciences in Colleges, vol. 22, no. 3, pp. 37-43,

ting the quality of student-written software tests,” in Proceedings of the

ch, 2013: ACM, pp. 53-58.

ourse,” in International Conference on Computer Science and Software

Towards the role of test design in programming assignments,” in IEEE

p. 170-179.

sa, “Towards the use of an automatic assessment system in the teaching of

. 1-8.

in Proceedings of the ACM Technical Symposium on Computer Science

nce report,” in Proceedings of the International Conference on Software

. 108-115.

e Testing: An Experience Report,” in Proceedings of the American Society for

ect in a software testing course,” in Proceedings of the 45th ACM technical

-based repository to integrate testing tools into programming courses,” in

ented programming systems languages and applications companion, 2010:

tions to teach criteria-based test design,” in IEEE-CS Conference on Software

s,” Blacksburg, VA March 22-23, 2006, p. 6, 2006.

are testing,” in Proceedings of the international conference on International

or to reflection-in-action,” in ACM SIGCSE Bulletin, 2004, vol. 36, no. 1: ACM,

 students with automatic, concrete feedback on performance,” in Proceedings

hnologies and applications, 2003: Citeseer.

curriculum,” ACM SIGCSE Bulletin, vol. 37, no. 1, pp. 236-240, 2005.

in SE courses: An empirical study,” in Proceedings of the ACM technical

Theses, Virginia Tech, 2003.

eferences

dams, J., et al., 2016. Searching and synthesising ‘grey literature’ and ‘grey infor-

mation’ in public health: critical reflections on three case studies. Systematic

Rev. J. Artic. 5 (1), 164. doi: 10.1186/s13643- 016- 0337- y .
la-Mutka, K.M. , 2005. A survey of automated assessment approaches for program-

ming assignments. Comput. Sci. Edu. 15 (2), 83–102 .
lgaze, B., “Software is increasingly complex. that can be dangerous,” https://

www.extremetech.com/computing/259977-software-increasingly-complex-
thats-dangerous , 2017, Last accessed: Feb. 2019.

Alhammad, M.M. , Moreno, A.M. , 2018. Gamification in software engineering educa-
tion: A systematic mapping. J. Syst. Softw. 141, 131–150 .

Ali, S. , Briand, L.C. , Hemmati, H. , Panesar-Walawege, R.K. , 2010. A systematic review

of the application and empirical investigation of searchbased test case genera-
tion. IEEE Trans. Softw. Eng. 36 (6), 742–762 .

llen, E. , Cartwright, R. , Reis, C. , 2003. Production programming in the classroom.
ACM SIGCSE Bull. 35 (1), 89–93 .

llevato, A. , Edwards, S.H. , Pérez-Quiñones, M.A. , 2009. Dereferee: Exploring pointer
mismanagement in student code. ACM SIGCSE Bull. 41 (1), 173–177 .

ndreessen, M., 2018. Why software is eating the world. Wall Str. J. https://

www.wsj.com/articles/SB10 0 01424053111903480904576512250915629460 . Last
accessed: Feb. 2019 .

ssociation for Computing Machinery (ACM), “ACM curricula recommendations,”
https://www.acm.org/education/curricula-recommendations , Last accessed: Oct.

2019.
usting, R.H. , Barnes, B.H. , Engel, G.L. , 1977. A survey of the literature in computer

science education since curriculum’68. Commun. ACM 20 (1), 13–21 .

Baker, J., “2018 ′ s software engineering talent shortage— It’s quality, not just
quantity,” https://hackernoon.com/2018s- software- engineering- talent- shortage-

its- quality- not- just- quantity- 6bdfa366b899 , Last accessed: Feb. 2019.
anerjee, I. , Nguyen, B. , Garousi, V. , Memon, A. , 2013. Graphical user interface

(gui) testing: systematic mapping and repository. Inf. Softw. Technol. 55 (10),
1679–1694 .

https://doi.org/10.13039/501100005416
https://doi.org/10.1016/j.jss.2020.110570
https://doi.org/10.1186/s13643-016-0337-y
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0018
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0018
https://www.extremetech.com/computing/259977-software-increasingly-complex-thats-dangerous
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0015
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0076
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0076
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0076
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0076
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0076
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0022
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0023
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0023
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.acm.org/education/curricula-recommendations
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0020
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0020
https://hackernoon.com/2018s-software-engineering-talent-shortage-its-quality-not-just-quantity-6bdfa366b899
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0069
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0069
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0069
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0069
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0069

V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570 33

B

B

B

B

B

B

B

B

C

C

C

P

C

C

C

C

C

C

C

C

C

M

D

D

D

D

E

E

E

E

F

F

F
F

G

G

G

G

G

G

G

G

G

G

G

G

H

H

H

H

H

H

H

I

I

J

J

K

K

K

L

L

L

L

M

M

en-Ari, M. , 2001. Constructivism in computer science education. J. Comput. Math.
Sci. Teach. 20 (1), 45–73 .

ennedsen, J. , Caspersen, M.E. , 2005. Revealing the programming process. ACM
SIGCSE Bull. 37 (1), 186–190 .

ernhart, M. , Grechenig, T. , Hetzl, J. , Zuser, W. , 2006. Dimensions of software engi-
neering course design. In: Proceedings of international conference on Software

engineering, pp. 667–672 .
iggs, J.B. , 2011. Teaching for quality learning at university: What the student does.

McGraw-hill education (UK) .

radford, L., “11 steps to becoming a software engineer (without a CS degree),”
https://learntocodewith.me/posts/become- a- software- engineer/ , Last accessed:

Feb. 2019.
ritton, T., Jeng, L., Carver, G., Cheak, P., and Katzenellenbogen, T., “Reversible debug-

ging software,” University of Cambridge, Judge Business School, Tehnical Report,
2013.

runer, J.S. , 1961. The act of discovery. Harvard Edu. Rev. 31, 21–32 .

uffardi, K. , Edwards, S.H. , 2013. Effective and ineffective software testing behav-
iors by novice programmers. In: Proceedings of the Annual International Acm

Conference On International Computing Education Research. ACM, pp. 83–90 .
arbone, A. , Kaasbøll, J.J. , 1998. A survey of methods used to evaluate computer

science teaching. ACM SIGCSE Bull. 30 (3), 41–45 .
aulfield, C. , Xia, J.C. , Veal, D. , Maj, S. , 2011. A systematic survey of games used for

software engineering education. Mod. Appl. Sci. 5 (6), 28–43 .

ausevic, A. , Sundmark, D. , Punnekkat, S. , 2011. Factors limiting industrial adoption
of test driven development: A systematic review. In: IEEE International Confer-

ence on Software Testing, Verification and Validation, pp. 337–346 .
fahl, D. , Yin, H. , Mäntylä, M.V. , Münch, J. , 2014. How is exploratory testing used? A

state-of-the-practice survey. In: Proceedings of the ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, p. 5 .

heang, B. , Kurnia, A . , Lim, A . , Oon, W.-C. , 2003. On automated grading of

programming assignments in an academic institution. Comput. Edu. 41 (2),
121–131 .

hoy, M. , Nazir, U. , Poon, C.K. , Yu, Y.-T. , 2005. Experiences in using an automated
system for improving students’ learning of computer programming. In: Interna-

tional Conference on Web-Based Learning. Springer, pp. 267–272 .
omputerWeekly, “Industry warned it faces a “dire shortage of IT testers”,”

https://www.computerweekly.com/feature/Industry- warned- it- faces- a- dire-

shortage- of- IT- testers , Last accessed: Feb. 2019.
ooper, H. , Hedges, L.V. , Valentine, J.C. , 2009. The Handbook of Research Synthesis

and Meta-Analysis, 2nd ed Sage Foundation, Russell .
ooper, C. , Booth, A. , Varley-Campbell, J. , Britten, N. , Garside, R. , 2018. Defining

the process to literature searching in systematic reviews: a literature review of
guidance and supporting studies. BMC Med. Res. Method. 18 (1), 85 .

rawley, E.F. , Malmqvist, J. , Östlund, S. , Brodeur, D.R. , Edström, K. , 2014. The CDIO

approach,. In: Rethinking Engineering Education. Springer, pp. 11–45 .
ruzes, D.S. , Dybå, T. , 2010. Synthesizing evidence in software engineering research.

In: Proceedings of the ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement .

ruzes, D.S. , Dybå, T. , 2011. Recommended Steps for Thematic Synthesis in Software
Engineering. Proc. International Symposium on Empirical Software Engineering

and Measurement 275–284 .
ruzesa, D.S. , Dybåb, T. , 2011. Research synthesis in software engineering: A tertiary

study. Inf. Softw. Technol. 53 (5), 440–455 .

auricio, R.d.A. , Veado, L. , Moreira, R.T. , Figueiredo, E. , Costa, H. , 2018. A systematic
mapping study on game-related methods for software engineering education.

Inf. Softw. Technol. 95, 201–218 .
a SiLVA, F.Q. , Santos, A.L. , Soares, S. , França, A.C.C. , Monteiro, C.V. , Maciel, F.F. , 2011.

Six years of systematic literature reviews in software engineering: An updated
tertiary study. Inf. Softw. Technol. 53 (9), 899–913 .

aly, C. , Horgan, J.M. , 2004. An automated learning system for Java programming.

IEEE Trans. Educ. 47 (1), 10–17 .
esai, C. , Janzen, D. , Savage, K. , 2008. A survey of evidence for test-driven develop-

ment in academia. Acm SIGCSE Bull. 40 (2), 97–101 .
o ̆gan, S. , Betin-Can, A. , Garousi, V. , 2014. Web application testing: a systematic

literature review. J. Syst. Softw. 91, 174–201 .
asterbrook, S. , Singer, J. , Storey, M.-A. , Damian, D. , 2008. Selecting Empirical Meth-

ods for Software Engineering Research. In: Shull, F., Singer, J., Sjøberg, D.K.

(Eds.). In: Guide to Advanced Empirical Software Engineering, 11. Springer, Lon-
don, pp. 285–311 ch .

dwards, S.H. , 2013. Adding software testing to programming assignments. In: Inter-
national Conference on Software Engineering Education and Training (CSEE&T).

IEEE, pp. 371–373 .
ngström, E., Storey, M.-A., Runeson, P., Höst, M., and Baldassarre, M.T., “A re-

view of software engineering research from a design science perspective,” arXiv

preprint arXiv: 1904.12742 , 2019.
theredge, J., “Software complexity is killing us,” https://www.simplethread.com/

software-complexity-killing-us/ , 2018, Last accessed: Feb. 2019.
elderer, M., Fourneret, E., 2015. A systematic classification of security regression

testing approaches. Int. J. Softw. Tools Technol. Trans. 17 (3), 305–319. doi: 10.
1007/s10009-015-0365-2 .

elderer, M., Zech, P., Breu, R., Büchler, M., Pretschner, A., 2015. Model-based secu-

rity testing: a taxonomy and systematic classification. Softw. Test. Verif. Reliab.
doi: 10.1002/stvr.1580 .

incher, S. , Petre, M. , 2004. Computer Science Education Research. CRC Press .
incher, S.A. , Robins, A.V. , 2019. The Cambridge Handbook of Computing Education

Research. Cambridge University Press .
arousi, V. , Mäntylä, M.V. , 2016. When and what to automate in software testing?
A multivocal literature review,. Inf. Softw. Technol. 76, 92–117 .

arousi, V. , Mäntylä, M.V. , 2016. In: Citations, Research Topics and Active Countries
in Software Engineering: a Bibliometrics Study, 19. Elsevier Computer Science

Review, pp. 56–77 .
arousi, V. , Pfahl, D. , 2016. When to automate software testing? A decision-support

approach based on process simulation. Wiley J. Softw. 28 (4), 272–285 .
arousi, V. , Zhi, J. , 2013. A survey of software testing practices in Canada. J. Syst.

Softw. 86 (5), 1354–1376 .

arousi, V. , Mesbah, A. , Betin-Can, A. , Mirshokraie, S. , 2013. A systematic map-
ping study of web application testing. Elsevier J. Inf. Softw. Technol. 55 (8),

1374–1396 .
arousi, V. , Amannejad, Y. , Betin-Can, A. , 2015. Software test-code engineering: a

systematic mapping. J. Inf. Softw. Technol. 58, 123–147 .
arousi, V. , Felderer, M. , Hacalo ̆glu, T. , 2017. Software test maturity assessment and

test process improvement: A multivocal literature review. Inf. Softw. Technol.

85, 16–42 .
arousi, V., Felderer, M., Karapıçak, Ç.M., Yılmaz, U., 2018. Testing embedded soft-

ware: A survey of the literature. Information and Software Technology. In Press
doi: 10.1016/j.infsof.2018.06.016 .

arousi, V., Rainer, A., Lauvås, P., and Arcuri A., “Supplementary material for the
systematic literature review (SLR) on software-testing education,” 10.5281/zen-

odo.2677470, Last accessed: May 2019.

arousi, V. , 2015. A bibliometric analysis of the Turkish software engineering re-
search community. Springer J. Scientometr. 105 (1), 23–49 .

odin, K., Stapleton, J., Kirkpatrick, S.I., Hanning, R.M., Leatherdale, S.T., Oct 22 2015.
Applying systematic review search methods to the grey literature: a case study

examining guidelines for school-based breakfast programs in Canada. (in Eng),.
Systematic Rev. 4, 138–148. doi: 10.1186/s13643-015-0125-0 .

oues, C.L. , Jaspan, C. , Ozkaya, I. , Shaw, M. , Stolee, K.T. , 2018. Bridging the gap: from

research to practical advice. IEEE Softw. 35 (5), 50–57 .
äser, F. , Felderer, M. , Breu, R. , 2014. Software paradigms, assessment types and

non-functional requirements in model-based integration testing: a systematic
literature review. In: presented at the Proceedings of the International Confer-

ence on Evaluation and Assessment in Software Engineering .
addaway, N.R., Collins, A.M., Coughlin, D., Kirk, S., 2015. The role of google scholar

in evidence reviews and its applicability to grey literature searching. PLoS One

10 (9). doi: 10.1371/journal.pone.0138237 .
anson, L., “How I became a self-taught software engineer at a major

tech company,” https://code.likeagirl.io/thoughts- on- becoming- a- self- taught-
software- engineer- c8d8e7bde704 , 2018, Last accessed: Feb. 2019.

anssen, G.K. , Šmite, D. , Moe, N.B. , 2011. Signs of agile trends in global software en-
gineering research: A tertiary study. In: IEEE International Conference on Global

Software Engineering. IEEE, pp. 17–23 .

eaton, J. , 2008. Secondary analysis of qualitative data: An overview. Hist. Soc. Res.
33–45 .

eredia, A. , Palacios, R.C. , de Amescua Seco, A. , 2015. A Systematic Mapping
Study on Software Process Education. In: Proceedings of the International

Workshop on Software Process Education, Training and Professionalism,
pp. 7–17 .

iggins, C. , Symeonidis, P. , Tsintsifas, A. , 2002. The marking system for coursemas-
ter. ACM SIGCSE Bull. 34 (3), 46–50 .

hantola, P. , Ahoniemi, T. , Karavirta, V. , Seppälä, O. , 2010. Review of recent sys-

tems for automatic assessment of programming assignments. In: Proceedings of
Koli Calling International Conference on Computing Education Research. ACM,

pp. 86–93 .
tkonen, J. , Rautiainen, K. , 2005. Exploratory testing: a multiple case study. Int.

Symp. Empir. Softw. Eng. 10 .
ia, Y., Harman, M., 2011. An analysis and survey of the development of mutation

testing. IEEE Trans. Softw. Eng. 37 (5), 649–678. doi: 10.1109/TSE.2010.62 .

ohnson, D.W. , Johnson, R.T. , 2002. Cooperative learning and social interdependence
theory. In: Theory and Research on Small Groups. Springer, pp. 9–35 .

hushu, A., “Increasing complexity of software in automotive industry,”
https://www.mathworks.com/videos/increasing-complexity-of-software-in-

automotive-industry-120313.html , Last accessed: Feb. 2019.
itchenham, B. , Charters, S. , 2007. Guidelines for Performing Systematic Literature

Reviews in Software engineering. Technical report, School of Computer Science.

Keele University EBSE-2007-01 .
itchenham, B. , et al. , 2010. Systematic literature reviews in software engineering–a

tertiary study. Inf. Softw. Technol. 52 (8), 792–805 .
arson, E. , 2006. An undergraduate course on software bug detection tools and tech-

niques. ACM SIGCSE Bull. 38 (1), 249–253 .
auvås Jr, P. , Arcuri, A. , 2018. Recent Trends in Software Testing Education: A Sys-

tematic Literature Review. The Norwegian Conference on Didactics in IT educa-

tion .
lana, L. , Martin-Martin, E. , Pareja-Flores, C. , 2012. FLOP, a free laboratory of pro-

gramming. In: Proceedings of the Koli Calling International Conference on Com-
puting Education Research. ACM, pp. 93–99 .

ucas, F.J. , Molina, F. , Toval, A. , 2009. A systematic review of UML model consistency
management. Inf. Softw. Technol. 51 (12), 1631–1645 .

ahood, Q., Van Eerd, D., Irvin, E., 2014. Searching for grey literature for systematic

reviews: challenges and benefits. Res. Synth. Methods 5 (3), 221–234. doi: 10.
1002/jrsm.1106 .

alik, B. , Zafar, S. , 2012. A systematic mapping study on software engineering edu-
cation. In: Proceedings of World Academy of Science, Engineering and Technol-

ogy, 6, pp. 3343–3353 .

http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0085
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0085
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0024
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0094
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0094
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0094
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0094
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0094
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0082
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0082
https://learntocodewith.me/posts/become-a-software-engineer/
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0087
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0087
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0063
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0063
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0063
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0021
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0011
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0090
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0090
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0090
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0090
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0091
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0091
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0091
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0091
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0091
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0030
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0031
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0031
https://www.computerweekly.com/feature/Industry-warned-it-faces-a-dire-shortage-of-IT-testers
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0077
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0077
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0077
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0077
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0060
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0088
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0088
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0088
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0088
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0088
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0088
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0072
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0072
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0072
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0073
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0073
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0073
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0074
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0074
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0074
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0016
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0035
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0027
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0004
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0042
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0079
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0079
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0079
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0079
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0079
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0065
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0065
http://arxiv.org/abs/1904.12742
https://www.simplethread.com/software-complexity-killing-us/
https://doi.org/10.1007/s10009-015-0365-2
https://doi.org/10.1002/stvr.1580
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0048
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0048
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0048
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0049
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0049
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0049
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0058
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0058
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0058
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0052
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0052
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0052
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0080
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0080
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0080
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0002
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0068
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0068
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0068
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0068
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0068
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0041
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0059
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0059
https://doi.org/10.1016/j.infsof.2018.06.016
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0053
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0053
https://doi.org/10.1186/s13643-015-0125-0
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0078
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0078
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0078
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0078
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0078
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0078
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0043
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0043
https://doi.org/10.1371/journal.pone.0138237
https://code.likeagirl.io/thoughts-on-becoming-a-self-taught-software-engineer-c8d8e7bde704
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0036
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0033
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0010
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0029
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0019
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0092
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0092
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0092
https://doi.org/10.1109/TSE.2010.62
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0089
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0089
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0089
https://www.mathworks.com/videos/increasing-complexity-of-software-in-automotive-industry-120313.html
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0039
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0034
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0064
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0064
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0007
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0025
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0050
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0050
https://doi.org/10.1002/jrsm.1106
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0012
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0012

34 V. Garousi, A. Rainer and P. Lauvås jr et al. / The Journal of Systems and Software 165 (2020) 110570

W

W

W

Z

N

r

H

i

a

i

p

h

a

i

a

c

a

s

n

I

J

A

C

t

c

i

t

s

P

h

d

t

l

t

d

s

M

Mallett, R. , Hagen-Zanker, J. , Slater, R. , Duvendack, M. , 2012. The benefits and chal-
lenges of using systematic reviews in international development research. J.

Dev. Eff. 4 (3), 445–455 .
Marques, M.R., Quispe, A., Ochoa, S.F., 2014. A systematic mapping study on practi-

cal approaches to teaching software engineering. In: IEEE Frontiers in Education
Conference, pp. 1–8. doi: 10.1109/FIE.2014.7044277 22-25 Oct. 2014.

Miles, M.B. , Huberman, A.M. , Saldana, J. , 2014. Qualitative Data Analysis: A Methods
Sourcebook, Third Edition ed SAGE Publications Inc .

Misra, D.P. , Agarwal, V. , 2018. Systematic reviews: challenges for their justification,

related comprehensive searches, and implications. J Korean Med. Sci. 33 (12),
92–98 .

Murray, J., “Firms face shortage of software testers: Higher salaries alone
might not solve the problem,” https://www.computing.co.uk/ctg/news/1817750/

firms- shortage- software- testers , Last accessed: Feb. 2019.
Nascimento, D.M. , et al. , 2013. Using open source projects in software engineering

education: a systematic mapping study. In: Frontiers in Education Conference,

2013 IEEE. IEEE, pp. 1837–1843 .
Nelson, G.L. , Ko, A.J. , 2018. On Use of Theory in Computing Education Research.

In: Proceedings of Conference on International Computing Education Research.
ACM, pp. 31–39 .

Ouhbi, S. , Idri, A. , Fernández-Alemán, J.L. , Toval, A. , 2015. Requirements engineering
education: a systematic mapping study. Requir. Eng. 20 (2), 119–138 .

Petersen, K. , Feldt, R. , Mujtaba, S. , Mattsson, M. , 2008. Systematic mapping studies

in software engineering. presented at the International Conference on Evalua-
tion and Assessment in Software Engineering (EASE) .

Petersen, K., Vakkalanka, S., Kuzniarz, L., 2015. Guidelines for conducting systematic
mapping studies in software engineering: An update. Inf. Softw. Technol. 64,

1–18. doi: 10.1016/j.infsof.2015.03.007 .
Rogers, E.M. , 2010. Diffusion of Innovations. Simon and Schuster .

Sant, J.A. , 2009. Mailing it in: email-centric automated assessment. ACM SIGCSE

Bull. 41 (3), 308–312 .
Scatalon, L.P. , Barbosa, E.F. , Garcia, R.E. , 2017. Challenges to integrate software test-

ing into introductory programming courses. In: IEEE Frontiers in Education Con-
ference, pp. 1–9 .

Scatalon, L.P. , Carver, J.C. , Garcia, R.E. , Barbosa, E.F. , 2019. Software Testing
in Introductory Programming Courses: A Systematic Mapping Study. In: in

Proceedings of the ACM Technical Symposium on Computer Science Education,

pp. 421–427 .
Shull, F. , Singer, J. , Sjøberg, D.I. , 2007. Guide to Advanced Empirical Software Engi-

neering. Springer .
Smith, G.J., Schmidt, M.M., Edelen-Smith, P.J., Cook, B.G., 2013. Pasteur’s quadrant as

the bridge linking rigor with relevance. Except. Child. 79 (2), 147–161. doi: 10.
1177/0 0144029130790 0202 .

Spacco, J. , Hovemeyer, D. , Pugh, W. , 2004. An Eclipse-based course project snapshot

and submission system. In: Proceedings of OOPSLA workshop on eclipse tech-
nology eXchange. ACM, pp. 52–56 .

Sweller, J. , 1988. Cognitive load during problem solving: effects on learning. Cogn.
Sci. 12 (2), 257–285 .

Thornton, M. , Edwards, S.H. , Tan, R.P. , 2007. Helping students test programs that
have graphical user interfaces. In: International Conference on Education and

Information Systems, Technologies and Applications, pp. 164–169 .
uTest Community Management, “The coming shortage of software testers,” https:

//www.utest.com/articles/the- coming- shortage- of- software- testers , 2010, Last

accessed: Feb. 2019.
Valle, P. , Barbosa, E.F. , Maldonado, J. , 2015. A Systematic Mapping on Software Test

Teaching (Um mapeamento sistemático sobre ensino de teste de software). Braz.
Symposium Comput. Edu. 26 (1), 71 .

Venables, A. , Haywood, L. , 2003. Programming students NEED instant feedback!.
In: Proceedings of Australasian conference on Computing education. Australian

Computer Society, Inc., pp. 267–272 .

Vygotsky, L.S. , 1978. Mind and Society: The Development of Higher Mental Pro-
cesses. Harvard University Press, Cambridge, MA 1978 .

Waliaa, G.S. , Carverb, J.C. , 2009. A systematic literature review to identify and clas-
sify software requirement errors. Inf. Softw. Technol. 51 (7), 1087–1109 .
endt, K. , 2019. Audience and content areas of online software engineering educa-
tion and training: a systematic review. In: Proceedings of Hawaii International

Conference on System Sciences .
ohlin, C. , 2014. Guidelines for snowballing in systematic literature studies and a

replication in software engineering. In: presented at the Proceedings of the 18th
International Conference on Evaluation and Assessment in Software Engineer-

ing. London, England, United Kingdom .
ohlin, C. , 2014. Guidelines for snowballing in systematic literature studies and a

replication in software engineering. In: presented at the Proceedings of the In-

ternational Conference on Evaluation and Assessment in Software Engineering .
hang, Y. , Wang, Z. , Xu, L. , 2010. A global curriculum design framework for embed-

ded system education. In: Proceedings of IEEE/ASME International Conference
on Mechatronic and Embedded Systems and Applications, pp. 65–69 .

Zhi, J. , Garousi, V. , Sun, B. , Garousi, G. , Shahnewaz, S. , Ruhe, G. , 2015. Cost, benefits
and quality of software development documentation: a systematic mapping. J.

Syst. Softw. 99, 175–198 .

Vahid Garousi is a Senior Lecturer (Associate Professor) of Software Engineering
in Queen’s University Belfast, Northern Ireland, UK. He has an international profile,

as he previously worked as an academic and consultant in three continents: the
etherlands (2017-2019), Turkey (2015-2017), and Canada (2001-2014). Dr. Garousi

eceived his Ph.D. in Software Engineering in Carleton University, Canada, in 2006.

is research expertise are: software engineering, software testing, empirical stud-
es, action-research, and industry-academia collaborations. Dr. Garousi was selected

s a Distinguished Speaker for the IEEE Computer Society from 2012 to 2015. He
s a member of the IEEE and the IEEE Computer Society, and is also a licensed

rofessional engineer (PEng) in the Canadian province of Alberta. In parallel to
is academic career, he is a practicing software engineering consultant and coach,

nd has provided consultancy and corporate training services in several countries
n the areas of software testing and quality assurance, model-driven development,

nd software maintenance. During his career so far, Vahid has served as the prin-

ipal investigator (PI) for several research grants and has been active in initiating
 number of major R&D software engineering projects with software companies in

everal countries including Canada and Turkey. He has been involved as an orga-
izing or program committee member in many international conference, such as

CST, ICSP, CSEE&T, MoDELS and the Turkish National Software Engineering Confer-
ence. Among his awards is the prestigious Alberta Ingenuity New Faculty Award in

une 2007.

usten Rainer is a Professor in the School of Electronics, Electrical Engineering and
omputer Science at Queen’s University Belfast in Northern Ireland. He co-authored

he first disciple-specific book on case study research in software engineering, and
o-founded Software Innovation NZ, the national network of software researchers

n New Zealand. He has multidisciplinary teaching and research interests, with par-

icular focus on team innovation, human values and the impact of software and
oftware engineering on society.

er Lauvås is an associate professor at Kristiania University College in Oslo where
e has been a faculty member since 2013. Prior to that, he worked as a software

eveloper for nine years after graduating from the University of Oslo in 2004. Per
eaches courses within software development. His main research interests are IT

education and didactics of informatics.”

Andrea Arcuri is a Professor of Software Engineering at Kristiania University Col-
ege, Oslo, Norway. His main research interests are in software testing, especially

est case generation using evolutionary algorithms. Having worked 5 years in in-

ustry as a senior engineer, a main focus of his research is to design novel research
olutions that can actually be used in practice. Dr. Arcuri is the main-author of Evo-

aster and a co-author of EvoSuite, which are open-source tools that can automat-
ically generate test cases using evolutionary algorithms. He received his Ph.D. in

software testing from the University of Birmingham, UK, in 2009.

http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0061
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0061
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0061
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0061
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0061
https://doi.org/10.1109/FIE.2014.7044277
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0071
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0071
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0071
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0071
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0062
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0062
https://www.computing.co.uk/ctg/news/1817750/firms-shortage-software-testers
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0013
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0047
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0009
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0038
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0038
https://doi.org/10.1016/j.infsof.2015.03.007
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0086
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0086
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0032
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0006
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0008
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0046
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0046
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0046
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0046
https://doi.org/10.1177/001440291307900202
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0028
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0083
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0083
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0066
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0066
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0066
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0066
https://www.utest.com/articles/the-coming-shortage-of-software-testers
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0005
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0026
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0084
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0084
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0075
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0075
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0075
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0017
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0037
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0051
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0051
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0093
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0093
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0093
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0093
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0040
http://refhub.elsevier.com/S0164-1212(20)30051-0/sbref0040

	Software-testing education: A systematic literature mapping
	1 Introduction
	2 Background and related work
	2.1 Software-testing education in universities versus training in industry
	2.2 Related works: secondary studies in software engineering education

	3 Design and execution of the SLM
	3.1 Goal and research questions
	3.2 The search process: selecting the source engines and search keywords
	3.3 Application of inclusion/exclusion criteria and voting
	3.4 Final pool of the primary studies
	3.5 Development of the systematic map
	3.6 Data extraction process and data synthesis

	4 Findings of the SLM
	4.1 RQ 1-classification of studies by contribution types
	4.1.1 RQ 1.1-contribution types and their frequencies
	4.1.2 RQ 1.2: clusters of papers: on similar topics and by the same team of authors

	4.2 RQ 2-classification of studies by research method types
	4.3 RQ 3- data sources for evaluations
	4.4 RQ 4- research questions or hypothesis, studied in the papers
	4.5 RQ 5- technical aspects of testing: type of test activities covered in the course(s)
	4.6 RQ 6- scale of the educational setting under study
	4.7 RQ 7- different approaches to testing education: offering separate testing courses or integrating testing in other courses
	4.8 RQ 8-theories and theory use in software-testing education
	4.9 RQ 9-empirical evidence/findings
	4.9.1 RQ 9.1- challenges in testing education
	4.9.2 RQ 9.2- insights, observations, and recommendations for testing education
	4.9.3 Relating challenges and insights

	5 Discussions
	5.1 Recommendations for educators
	5.2 Suggestions for further education research in this area
	5.3 Potential threats to validity

	6 Conclusions and future work
	Pool of studies in the systematic literature mapping
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	Supplementary materials
	References

