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a b s t r a c t

The investigation of anomalies is an important element in many scientific research fields. In recent
years, this activity has been also extended to social networking and social internetworking, where
different networks interact with each other. In these research fields, we have recently witnessed an
important evolution because, beside networks of people, networks of things are becoming increasingly
common. IoT and Multiple IoT scenarios are thus more and more studied. This paper represents a
first attempt to investigate anomalies in a Multiple IoT scenario (MIoT). First, we propose a new
methodological framework that can make future investigations in this research field easier, coherent,
and uniform. Then, in the context of anomaly detection in an MIoT, we define the so-called ‘‘forward
problem’’ and ‘‘inverse problem’’. The definition of these problems allows the investigation of how
anomalies depend on inter-node distances, the size of IoT networks, and the degree centrality and
closeness centrality of anomalous nodes. The approach proposed herein is applied to a smart city
scenario, which is a typical MIoT. Here, data coming from sensors and social networks can boost smart
lighting in order to provide citizens with a smart and safe environment.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In the Concise Oxford Dictionary,1 anomaly is defined as
‘‘something that deviates from what is standard, normal, or ex-
pected’’. If regularities allow investigating the general character-
istics of a complex system, anomalies allow the uncover and
analysis of unexpected features that might not be otherwise
discovered. For this reason, the detection of anomalies has be-
come very important in data analytics, and is widely investigated
both in statistics and machine learning [1–3]. The relevance
of anomaly detection is universally acknowledged, since data
anomalies are at basis of significant events and patterns. Example
application domains include: privacy and cybersecurity [4,5];
fault detection [6]; ecological disturbances [7]; communication
networks [8]; social media life [9–12]; and gene regulation [13,
14].
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In recent years, anomalies have been widely investigated in
social networks to detect fraudulent individuals [15,16], spam-
mers [17,18], malicious behavior, and so forth. Even more re-
cently, anomaly detection has been analyzed in contexts where
more social networks interact with each other [19], thus going
from social networking into social internetworking.

Social internetworking is certainly one of the frontiers of so-
cial network analysis, since people tend to have multiple social
network accounts and can, thus, become ‘‘social bridges’’. Further-
more, all sorts of networked objects are getting increasingly smart
and social, giving rise to the so-called Smart Objects (SOs) and
revolutionizing both the Internet of Things (IoT) and the Social
Internet of Things (SIoT) [20]. Also, several SIoTs and IoTs coop-
erate with each other through ‘‘bridge’’ objects, thus generating
new architectures, referred to in the literature as Multiple IoT
(MIoT) [21].

The detection of anomalies in a single-IoT environment has
been widely investigated [22–26], and many results involving
privacy, security and fault detection have been found. However,
to the best of our knowledge, no investigation on anomalies and

their possible detection in an MIoT has been performed so far.
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In this paper, we aim at filling this gap by proposing a new
methodological framework for anomaly detection and classifica-
tion in MIoTs. Our framework models anomalies and the cor-
responding issues in an MIoT by providing a multi-dimensional
view, based on three orthogonal taxonomies: (i) presence anoma-
lies vs success anomalies; (ii) hard anomalies vs soft anomalies;
nd (iii) contact anomalies vs content anomalies. Each combina-
ion of the possible values of these dimensions gives rise to a
pecific type of anomaly to investigate, for instance the Presence-
Hard-Contact anomalies. Furthermore, anomaly definitions are
orthogonal to specific anomaly detection approaches, past or fu-
ture, which may be applied (and will be combined) in the context
of our framework.

Together with the multi-dimensional taxonomy, another main
component of our framework is the extension of conventional
methodological frameworks to the MIoT case. Our framework has
been conceived to address two problems, known as the ‘‘forward
problem’’ and the ‘‘inverse problem’’, respectively. In the forward
problem, we aim to analyze the effects that multiple anomalies
have onto the MIoT. On the other hand, in the inverse problem,
which is traditionally more complex, we aim at detecting the
source of the anomalies (i.e., the objects that have generated
them) based on the effects that these have on the objects or their
connections.

In order to show the possible usage of our framework, we
present a case study centered around a smart city. Furthermore,
in order to evaluate our framework and extract knowledge, we
have conducted a series of tests, which we extensively present in
this paper. These allowed us to find several important knowledge
patterns about anomalies and their effects in an MIoT. Our most
important findings may be summarized as follows: (i) the effects
of the anomalies of a node rapidly decrease as the distance
from the node itself increases; (ii) anomalies are less evident
in an MIoT than in a single IoT; (iii) the number of anomalous
nodes increases as the number of IoTs increases, in a roughly
linear way; (iv) the outdegree of anomalous nodes has a great
impact on the spread of the anomaly over the MIoT; (v) closeness
entrality is even more important than degree centrality in the
pread of anomalies; (vi) the computation time necessary for the
etection of anomalous nodes is polynomial against the number
f MIoT nodes; (vii) the time necessary for evaluating the effects
f anomalies in an MIoT is quadratic against the number of its
odes.
Summarizing, the main contributions of this paper are the

ollowing:

• We present three different anomaly taxonomies, orthogo-
nal to each other, obtaining and formalizing eight kinds of
different anomalies.

• We present an approach to evaluate the spread and the
effects of an anomaly in an MIoT (forward problem) and
another one that, starting from the analysis of the effects
of one or more anomalies, aims at detecting the anomalous
node(s) (inverse problem).

• We present a case study regarding smart cities, which can
benefit from our framework, and illustrate several experi-
ments aimed at evaluating the proposed framework and at
deriving many knowledge patterns about anomalies in an
MIoT.

The rest of this paper is organized as follows. In Section 2, we
xamine related literature. In Section 3, we illustrate the MIoT
aradigm, which is the reference one for our framework. In Sec-
ion 4, we present our multi-dimensional taxonomy of anomalies
n an MIoT context. In Section 5, we introduce the specialization
f the forward and the inverse problems for MIoTs. In Section 6,
e illustrate our experiments. Finally, in Section 7, we draw

mportant conclusions and outline possible future developments.
2. Related work

Anomaly detection has been largely investigated in past lit-
erature. Here, anomalies have been defined in very different
ways, based on the reference domain and data model. A widely
accepted definition of anomaly is the one proposed by Hawkins
in [27], where an anomaly is defined as ‘‘an observation which
deviates so much from other observations as to arouse suspicions
that it was generated by a different mechanism’’. A definition of
anomaly specific for social networks can be found in [28], where
the authors define anomaly as ‘‘an observation which appears
to ignore interactions and relationships between individuals and
their peers’’. In [29], anomalies are referred to as ‘‘patterns in data
that do not conform to a well-defined notion of normal behavior’’.

Anomaly detection is an issue largely investigated in past
literature. The corresponding research studies can be grouped in
several ways. One approach distinguishes these studies into: (i)
surveys and taxonomies, (ii) approaches for anomaly detection in
generic networks, (iii) approaches for anomaly detection in social
networks, and (iv) other approaches.

If we consider this classification, our approach belongs to
class (iii). In this context, we introduce two main novelties, in
that: (i) we focus on networks of objects instead of networks
of people; (ii) we focus on multiple network scenarios instead
of single networks. In addition, our methodological framework
introduces two further novelties, namely: (i) the definition of
three new taxonomies specific for anomaly detection in MIoTs;
and (ii) the investigation of the so called forward and inverse
problems in this research context. Moreover, the study we are
presenting is orthogonal to other approaches for anomaly detec-
tion in network-based data, since we do not aim at proposing a
specific approach to address this last issue.

In the following, in order to give a better overview of the
literature, we first examine the four classes of research studies
on anomalies and, then, present a table comparing our approach
to methods introduced in the literature.

Surveys and taxonomies. Recently, several surveys have proposed
structured and comprehensive overviews of anomalies to cope
with the need of providing usable taxonomies. A first classifi-
cation of anomalies can be found in [29], which is considered
a pioneering paper in this sense. Besides a formal definition
of different kinds of anomalies, the authors highlight the chal-
lenges related to anomaly detection. In particular, for each class
of anomalies introduced, they focus on existing techniques and
application domains. Based on their nature, anomalies have been
also classified as Point, Contextual and Collective anomalies. Some
applications related to these categories are reported in [30–33].

A significant amount of work has been carried out on anomaly
detection in individual IoTs, as captured by a number of survey
papers [22,24,34]. On the contrary, to the best of our knowl-
edge, no investigation or categorization of possible anomalies in
the context of networks and layered networks (mostly related
to MIoTs) has been proposed so far. Works presenting relevant
aspects are described in the following.

In [30,35], the authors investigate anomalies in graph-based
environments. Specific analyses of this topic can be found in [36]
for social networks, in [37–40] for intrusion detection, in [41] for
traffic modeling, and in [13,14] for gene regulation.

We characterize anomalies as being either static or dynamic,
and as being labeled or unlabeled. In [15], the authors survey
the state-of-the-art related to the detection of different types of
anomalies in social networks. Here, they show that anomalous
users’ behaviors in social networks are due to a change in their
patterns of interaction or in their ways of interacting with the
network, which markedly differ from the ones of their peers.
The impact of this anomalous behavior can be observed in the



324 F. Cauteruccio, L. Cinelli, E. Corradini et al. / Future Generation Computer Systems 114 (2021) 322–335

h
h
g
l
r
d
o
n
n
t
t
t
t
i

w
l
d
i
n
w
t
p

w

h
o

n
w

F

M

H

N

resulting structure, allowing anomalies to be characterized as
static or dynamic, labeled or unlabeled. For instance, fraudulent
individuals may create a network of collaborations to enhance
their reputation in a social network. However, when individuals
behave in this way, they show an increased level of interaction in
the network and tend to form highly interconnected sub-regions
therein.

Anomalies in generic networks. In [17], the authors analyze the
detection of e-mail spam in a static, unlabeled network context.
In particular, they note that spam and other viral materials are
typically sent from a single malicious individual to many tar-
gets. As a consequence, detecting a specific star-like structure
in a network can be a symptom of malicious behavior. Another
approach to spam detection is proposed in [18]. In [16], the
authors show that both near-stars and near-cliques are indicators
of anomalous behaviors in networks. They focus on anomaly
detection in weighted graphs. Their approach can be applied to
different contexts, such as intrusion detection, spammer detec-
tion, anomalies in social networks, and so forth. They also address
the problem of anomaly detection in static, labeled networks. In
this context, they consider some ego-networks, each one centered
on an individual and, when the sum over a particular label is
disproportionately high with respect to the number of edges in
the network, they conclude that the corresponding individual
has a potentially anomalous behavior. In [42], a universal coding
method for unlabeled graphs is introduced and is adopted for
anomaly detection in static, unlabeled graphs.

In [43], the authors propose an approach to anomaly detection
in dynamic networks. This exploits the analysis of sub-structures,
such as maximal cliques, for detecting community-based anoma-
lies, i.e., unexpected variations of communities. In this work,
a community coincides with a maximal clique. This approach
considers grown, shrunken, merged, split, born and vanished
communities, respectively.

In [44], an approach to detect anomalies on dynamic labeled
networks in a big data context is presented. Big data is usually
equipped with significant amounts of metadata. This approach
exploits both raw data and metadata to detect anomalous events.
It is based on the probability of an edge to occur between any two
nodes. This probability is a function of the linear combination of
node attributes.

Anomalies in social networks. In recent years, social networks
ave been able to attract the interest of many researchers, who
ave started to study them from many points of view. A recent
uide to research methods, applications and software tools re-
ated to social network analysis can be found in [45], while a
eview of social network analysis problems (including anomaly
etection) and related applications is presented in [46]. A review
f research methods for figurative language analysis in social
etworks can be found in [47], while the application of social
etwork analysis to extract critical information after a disas-
er is considered in [48]. Plenty of applications and software
ools are also available on this topic. For example, [49] discusses
he integration of heterogeneous social networks; [50] analyzes
he search of opinion leaders in social networks; while [51]
nvestigates recommendation techniques in this context.

Recently, some authors have started to study scenarios in
hich several social networks interact with each other to al-

ow their users to achieve certain goals [19]. In past literature,
ifferent terms have been used to refer to this context, includ-
ng multilayer social networks [28], cross platform online social
etworks [52], multi social networks [53], and Social Internet-
orking Scenarios [19]. This is a highly investigated field, since
he number of users who simultaneously interact with multi-
le social networks is constantly growing. For instance, in [28],
new forms of anomalies emerging in multi-layer social networks
are investigated. In [52], the authors propose an approach that
exploits an intelligent-sensing model for analyzing behavioral
variations in multiple social networks. In it, controlled faulty data,
referred to as cognitive tokens, are intentionally introduced in
the information flow for attracting anomalous users. The authors
show that the same approach could also be applied to a single IoT
scenario.

The MIoT environment used in this paper represents the ex-
tension to smart objects and the IoTs of social internetworking
scenarios [21]. Indeed, users joining multiple social networks can
be assimilated to objects belonging to different IoTs, although the
data type and nature, and the kind of issues to be addressed, are
rather different.

Other approaches. Several recent approaches on anomaly detec-
tion exploit classification through machine learning-based and/or
neural network-based engines [34,54–59]. Due to the intrinsic
nature of these engines, the corresponding approaches do not
construct an explicit model of anomalies. This way of proceeding
is complementary and dual with respect to the one adopted in
our approach which, indeed, aims at modeling anomalies in new
MIoT scenarios.

Classification of our approach. After having examined the liter-
ature about anomalies, we can compare our approach with the
most related ones, which have been introduced above. For this
purpose, we consider some comparison properties, namely: (i)
the ability of handling more networks; (ii) the usage of a unified
scheme; (iii) the ability of managing labeled networks; (iv) the
ability of handling dynamic networks; (v) the exploitation of
additional metadata; and (vi) the usage of structural properties.
Based on these features, our approach compares to the and the
most related studies, as shown in Table 1.

3. The MIoT paradigm

In this section, we provide an overview of the MIoT paradigm,
described in detail in [21], since this is the reference case for our
study. An MIoT M consists of a set of m IoTs. Formally speaking:

M = {I1, I2, . . . , Im} (3.1)

here Ik, with k ∈ [1,m], is a single IoT.
Let oj be an object of M. We assume that if oj belongs to Ik it

as an instance ιjk , representing it in Ik. The instance ιjk consists
f a virtual view (or, better, a software interface) representing oj

in Ik. For example, it provides all the other instances of Ik, and the
users interacting with this IoT, with all the necessary information
about oj. The information stored in ιjk is represented according to
the format and the conventions adopted in Ik.

An MIoTM can also be represented by means of a graph-based
otation. In particular, a graph Gk = ⟨Nk, Ak⟩ may be associated
ith an IoT, Ik of M. In this case:

• Nk is the set of nodes of Gk; there is a node njk for each
instance ιjk ∈ Ik, and vice versa. Since there is a biunivocal
correspondence between a node and an instance, in the
following we shall use these two terms interchangeably.

• Ak is the set of the arcs of Gk; there is an arc, ajqk = (njk , nqk )
if there exists any form of relationship from njk to nqk .

inally:

= ⟨N, A⟩ (3.2)

ere:

=

m⋃
Nk A = AI ∪ AC (3.3)
k=1
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Table 1
Comparison between our approach and the most related ones.

Capability of
handling more
networks

Usage of a
unified scheme

Capability of
managing
labeled
networks

Capability of
handling
dynamic
networks

Exploitation of
additional
metadata

Usage of
structural
properties

Our approach ✓ ✓ ✓ ✓ ✓ ✓
[17] – ✓ – – – ✓
[16] – – ✓ – – ✓
[42] – – – – – ✓
[43] – – ✓ ✓ – ✓
[44] – – ✓ ✓ ✓ –
[28] ✓ – – – – ✓
[52] ✓ – ✓ ✓ – –
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where:

AI =

m⋃
k=1

Ak AC = {(njk , njq )|njk ∈ Nk, njq ∈ Nq, k ̸= q} (3.4)

AI is the set of the inner arcs (hereafter, i-arcs) of M; they link
nstances of different objects belonging to the same IoT. AC is the
et of cross arcs (hereafter, c-arcs) of M; they link instances of
he same object belonging to different IoT. A node connected to
t least one c-arc is called c-node; otherwise, it is called i-node.
In M, an object oj has associated a set MDj of metadata. Our

etadata model refers to the one of the IPSO (Internet Protocol
or Smart Object) Alliance.2 Specifically, MDj consists of three
ubsets, namely: (i) MDD

j , i.e., the set of descriptive metadata; (ii)
DT
j , i.e., the set of technical metadata; (iii) MDB

j , i.e., the set
f behavioral metadata. All details about these metadata can be
ound in [21].

Given a pair of instances ιjk of oj and ιqk of oq in Ik, our model
aves the set TrSjqk of the transactions from ιjk to ιqk . It is defined
s:

rSjqk = {Trjqk1 , Trjqk2 , . . . , Trjqkv } (3.5)

A transaction Trjqkz ∈ TrSjqk is represented as follows:

rjqkz = ⟨stjqkz , fhjqkz , okjqkz , ctjqkz ⟩ (3.6)

Here:

• stjqkz denotes the starting timestamp of Trjqkz .
• fhjqkz indicates the ending timestamp of Trjqkz .
• okjqkz denotes whether Trjqkz was successful or not; it is set

to true in the affirmative case, to false in the negative
one, and to NULL if it is still in progress.

• ctjqkz indicates the set of the content topics considered by
Trjqkz . Specifically, it consists of a set of w keywords:

ctjqkz = {kw1
jqkz

, kw2
jqkz

, . . . , kww
jqkz

} (3.7)

An important subset of TrSjqk is TrOkSjqk , which stores the
uccessful transactions of TrSjqk . It is defined as:

rOkSjqk = {Trjqkz |Trjqkz ∈ TrSjqk , okjqkz = true} (3.8)

In other words, this set comprises all the transactions through
hich ιqk gave a positive answer to a request of ιjk , thus providing
his last one with services, information or data it required.

Now, we can define the set TrSjk of the transactions activated
y ιjk in Ik. Specifically, let ι1k , ι2k , . . . , ιwk be all the instances
elonging to Ik. Then:

rSjk =

⋃
q=1..w,q̸=j

TrSjqk (3.9)

2 https://www.omaspecworks.org/.
This means that the set TrSjk of the transactions of an instance
ιjk is given by the union of the sets of the transactions from ιjk to
all the other instances of Ik.

We should note that, herein, we have reported only those
aspects of the MIoT paradigm that are strictly necessary for this
paper. The interested reader can find further details in [21].

We can now introduce the concept of neighborhood of an
instance ιjk in Ik. Specifically, the neighborhood Nbhjk of ιjk is
defined as:

Nbhjk = ONbhjk ∪ INbhjk (3.10)

where:
ONbhjk = {nqk |(njk , nqk ) ∈ AI , |TrSjqk |> 0}
INbhjk = {nqk |(nqk , njk ) ∈ AI , |TrSqjk |> 0}

(3.11)

In other words, Nbhjk comprises those instances directly con-
ected to ιjk through an incoming or an outgoing arc, which
hared at least one transaction with it.
Finally, we can define the concept of neighborhood of an i-arc

jqk = (njk , nqk ) ∈ AI . Specifically, the neighborhood Nbhjqk of the
-arc ajqk is defined as:

bhjqk = ONbhjqk ∪ INbhjqk (3.12)

here:
ONbhjqk = {(nqk , nrk )|(nqk , nrk ) ∈ AI}

INbhjqk = {(nlk , njk )|(nlk , njk ) ∈ AI}
(3.13)

Hence, ONbhjqk contains all the arcs of AI having nqk as source
ode, whereas INbhjqk comprises all the arcs of AI having njk as
arget node.

. Modeling anomalies in an MIoT

In this section, we propose a model allowing for the repre-
entation and management of anomalies in MIoTs. The core of
ur model consists of some possible taxonomies characterizing
nomalies in this scenario. Each one will correspond to differ-
nt analysis viewpoints. Borrowing a terminology typical in data
nalysis, these taxonomies can be seen as different dimensions
f a multi-dimensional model, through which the fact ‘‘anomalies
n an MIoT’’ can be investigated. In this paper, we consider three
f these taxonomies, namely: (i) presence anomalies vs success
nomalies; (ii) hard anomalies vs soft anomalies; (iii) contact
nomalies vs content anomalies. However, we do not exclude that
ther taxonomies may also be possible in future works.
Continuing with the analogy between our taxonomies and the

imensions of a multi-dimensional model, we have that each
ombination of the possible values of these dimensions gives
ise to a specific type of anomaly to study. Therefore, we have
he Presence-Hard-Contact Anomalies, the Success-Hard-Content
nomalies, and so on. In the following subsections, we briefly
llustrate each taxonomy and, then, provide a formalization for

https://www.omaspecworks.org/
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some types of combined anomalies. We point out again that the
description of our taxonomies is orthogonal to specific anomaly
detection techniques. In order to keep the formalization as clear
as possible, we will focus on a simple anomaly detection scheme
based on frequencies. However, more complex detection schemes
may certainly be applied to our taxonomies.

4.1. Definition of anomaly taxonomies

4.1.1. Presence anomalies vs success anomalies
A presence anomaly denotes that there is a strong variation

(i.e., increase or decrease) in the number of transactions carried
out from an instance ιjk to an instance ιqk in a unit of time.
A success anomaly shows that, although there is no presence
anomaly from ιjk to ιqk , there is a strong decrease in the number
f successful transactions from ιjk to ιqk in a unit of time.

.1.2. Hard anomalies vs soft anomalies
A hard anomaly indicates that the frequency of successful

ransactions carried out from an instance ιjk to an instance ιqk is
higher than (or lower than) a certain threshold. A soft anomaly
happens when the frequency of the (successful) transactions
ranges between the maximum and the minimum thresholds but,
for several consecutive instances of time, it is higher (resp., lower)
than the mean of these two thresholds and it shows a monotone
increasing (resp., decreasing) trend. The rationale underlying this
taxonomy is that hard anomalies are indicators of faults, whereas
soft anomalies are indicators of a slow, but constant, degradation.
Soft anomalies are extremely precious in applications such as
predictive maintenance.

4.1.3. Contact anomalies and content anomalies
A contact anomaly from an instance ιjk to an instance ιqk con-

siders only the presence or the absence of transactions. By con-
trast, a content anomaly takes the content exchanged in the cor-
responding transactions into account.3 Here, we assume that we
are capable of identifying possible synonymies or homonymies
relating terms. This is a well-known problem in the cooperative
information system research field and several thesauruses have
been proposed for this purpose. In this paper, unless otherwise
specified, we will refer to Babelnet [60], which is among the most
advanced thesauruses. As far as content anomalies are concerned,
a reference content set, consisting of some keywords, is necessary
for verifying variations with respect to the content of the involved
transactions. Two variants of content anomalies can be consid-
ered, namely: (i) the strict content anomalies, where the whole
set of the reference keywords must be present in the involved
transactions, and (ii) the loose content anomalies, where at least
one of the reference keywords must be present therein.

4.2. Formalization of anomalies

The combination of the three taxonomies introduced above
gives rise to eight possible kinds of anomaly. In the following,
we provide the formal definition for representative cases. We
recall that, for the sake of clarity, in these definitions we consider
frequencies as the basic factor for anomaly detection. However,
we point out that, even if frequencies are a well-accepted and
widely adopted factor, even more complex factors could easily
be incorporated into our taxonomies.

In the next subsections, we present a formalization of a rep-
resentative selection of the eight anomaly types, providing the

3 Recall that, given a transaction Trjqkz , the corresponding content ctjqkz
consists of a set of w keywords.
 o
method for computing their anomaly degrees. We have not in-
cluded the formalization for all cases, due to brevity. Yet, their
definition would be analogous and straightforward.

The kinds of anomaly that we formalize below include: (i)
Presence-Hard-Contact anomalies, (ii) Success-Hard-Contact
anomalies, (iii) Presence-Soft-Contact anomalies, and (iv)
Presence-Hard-Content anomalies. In many of these definitions,
the variable ‘‘time’’ plays a key role.

4.2.1. Presence-Hard-Contact anomalies
Let t be a time instant and let ∆t be a time interval (consisting

of one or more time units). The frequency TrFrjqk (t, ∆t) of the
transactions from ιjk to ιqk can be defined as follows:

TrFjqk (t, ∆t)

=
|{Trjqkz | Trjqkz ∈ TrSjqk , stjqkz ≥ t, fhjqkz ≤ (t + ∆t)}|

∆t
(4.1)

In other words, TrFjqk is given by the ratio between the number
f transactions from ιjk to ιqk exchanged in the time interval
t, t + ∆t] to the length of this time interval (i.e., ∆t).

We say that there is a Presence-Hard-Contact anomaly from
jk to ιqk in the time interval [t, t + ∆t] if:

• TrFjqk is higher than a certain threshold thmax, in which case
the anomaly degree is defined as αjqk (t, ∆t) =
TrFjqk (t,∆t)−thmax

thmax
, or

• TrFjqk is lower than a certain threshold thmin and this in-
equality does not hold in the time instants preceding t .
This last condition is necessary to avoid that the lack of
transactions from ιjk to ιqk is erroneously interpreted as a
presence anomaly, as it would the case for instance when
two instances have never performed transactions between
them in the past. In this case, the anomaly degree is defined
as αjqk (t, ∆t) =

thmin−TrFjqk (t,∆t)
thmin

.

If no Presence-Hard-Contact anomaly is detected, αjqk (t, ∆t) is
set to 0.

Here and in the following, the thresholds thmax and thmin can
either be static or are dynamically computed over the previous
observations. For instance, they could be computed considering
both the mean and the standard deviation observed for TrFjqk
in a predefined period of time. However, their actual definition
depends on the application domain.

Presence-Hard-Contact anomalies focus on anomalies detected
in the number of transactions (presence) occurring between two
instances in an MIoT without considering the content they share
(contact) and focusing on sharp variations of observed values
(hard).

Their detection could be particularly relevant, for example, to
identify faults concerning the ability of an MIoT object to send
data. This may happen, for instance, because an object is no
longer working.

Here and in the following, thanks to the concept of MIoT,
anomalies between pairs of instances can be used to compute
anomalies between the corresponding pairs of objects. In par-
ticular, given two objects oj and oq, let IS jq be the set of IoTs
containing instances of both oj and oq connected by an i-arc. The
anomaly degree αjq(t, ∆t) between the pair of objects oj and oq
in an MIoT can be defined as:

αjq(t, ∆t) =

∑
Ik∈ISjq

αjqk (t, ∆t)

|IS jq|
(4.2)

This way of computing anomalies between pairs of objects in
n MIoT, starting from the anomalies of the corresponding pairs
f instances, is valid for all kinds of anomalies.
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4.2.2. Success-Hard-Contact anomalies
Similarly to what we have done for Presence-Hard-Contact

anomalies, we first define the frequency TrOkFjqk (t, t +∆t) of the
ransactions from ιjk to ιqk that occurred successfully in the time
nterval [t, t + ∆t] as:

rOkFjqk (t, ∆t)

=
|{Trjqkz | Trjqkz ∈ TrOkSjqk , stjqkz ≥ t, fhjqkz ≤ (t + ∆t)}|

∆t
(4.3)

Now, we can say that, in the time interval [t, t + ∆t], there is
Success-Hard-Contact anomaly if:

• there is no Presence-Hard-Contact anomaly in the same
time interval;

• TrOkFjqk is lower than a certain threshold th′

min.

In this case, the anomaly degree is defined as αjqk (t, ∆t) =
th′

min−TrOkFjqk (t,∆t)
th′

min
. Otherwise, αjqk (t, ∆t) = 0.

Success-Hard-Contact anomalies are very similar to Presence-
Hard-Contact anomalies. However, they focus on the fraction of
successful transactions occurring between two instances in an
MIoT (success); they disregard the content exchanged by transac-
tions (contact) and focus on sharp variations of observed values
(hard).

The detection of this kind of anomaly might be particularly rel-
evant, for example, in recognizing possible difficulties of an MIoT
object to deliver requested data. Differently from the previous
case, this may happen because there is an issue in the network
rather than in the object itself.

4.2.3. Presence-Soft-Contact anomalies
Let t be a time instant, let ∆t be a time interval and let τ be

positive integer representing the number of time units after t
nto consideration (generally, τ ≫ ∆t), and let thavg =

thmin+thmax
2 .

e can say that, in the time interval [t, t+τ ], there is a Presence-
oft-Contact anomaly if, for each time instant θ such that t ≤ θ ≤

+ τ , the following conditions hold:

• thmin ≤ TrFjqk (θ, ∆t) ≤ thmax, which implies that no
Presence-Hard-Contact anomaly exists in the time interval
into consideration;

• TrFjqk (θ, ∆t) > thavg (resp., TrFjqk (θ, ∆t) < thavg ), which
denotes that the frequency of the transactions from ιjk to ιqk
is always higher (resp., smaller) than the average between
thmin and thmax;

• TrFjqk (θ + 1, ∆t) ≥ TrFjqk (θ, ∆t) (resp., TrFjqk (θ + 1, ∆t) ≤

TrFjqk (θ, ∆t)), which implies that the frequency of the trans-
actions from ιjk to ιqk is monotonically increasing (resp.,
decreasing) in the time interval ∆t of interest.

If an anomaly is detected, the corresponding anomaly degree
jqk (t, ∆t) is set to αjqk (t, ∆t) =

|TrFjqk (t+τ ,∆t)−thavg |

thavg
. Otherwise,

αjqk (t, ∆t) = 0.
Presence-Soft-Contact anomalies focus on a smooth (soft) de-

rease in the number of all (presence) the transactions exchanged
etween two instances of an MIoT, without considering the ex-
hanged content (contact).
The detection of this kind of anomaly may be useful in iden-

ifying a slowly but constantly changing behavior of an object.
or instance, it could regard an object that is wearing out, an
quipment whose battery has a very low charge level, and so
orth.
4.2.4. Presence-Hard-Content anomalies
Let ct be a content consisting of (presumably very few) key-

words. We define the set sTrCtSjqk (ct) of the transactions from ιjk
to ιqk strictly adherent to ct , i.e., the set of the transactions from
ιjk to ιqk that contain all the keywords of ct as follows:

sTrCtSjqk (ct) = {Trjqkz | Trjqkz ∈ TrSjqk , ct ⊆ ctjqkz } (4.4)

As previously pointed out, here we assume that we are capa-
ble of identifying possible synonymies or homonymies relating
a term of ct with a term of ctjqkz . For this purpose, we use
Babelnet [60].

Consider, now, a content ct consisting of some keywords. We
define the set lTrCtSjqk (ct) of the transactions from ιjk to ιqk that
are loosely adherent to ct , i.e., the set of the transactions from ιjk
to ιqk that contain at least one keyword of ct as follows:

lTrCtSjqk (ct) = {Trjqkz | Trjqkz ∈ TrSjqk , (ct ∩ ctjqkz ) ̸= ∅} (4.5)

Let t be a time instant and let ∆t be a time interval. By
applying the same approach described for Presence-Hard-Contact
anomalies, it is possible to define the frequency sTrCtFjqk (ct)
(resp., lTrCtFjqk (ct)) of the transactions from ιjk to ιqk strictly
(resp., loosely) adherent to ct . Then, it is possible to state that,
in the time interval [t, t + ∆t], there is a strict (resp., loose)
Presence-Hard-Content anomaly from ιjk to ιqk against ct if:

• sTrCtFjqk (ct) (resp., lTrCtFjqk (ct)) is higher than a certain
threshold thmax, or

• sTrCtFjqk (ct) (resp., lTrCtFjqk (ct)) is lower than a certain
threshold thmin and this inequality does not hold in the time
instants preceding t .

Analogously to what we have done for Presence-Hard-Contact
anomalies, if the first condition is verified, the anomaly degree
αjqk (t, ∆t) can be defined as αjqk (t, ∆t) =

sTrCtFjqk (ct)−thmax
thmax

, for

strictly adherent anomalies, and αjqk (t, ∆t) =
lTrCtFjqk (ct)−thmax

thmax
,

for loosely adherent ones. Instead, if the second condition is
verified, then αjqk (t, ∆t) =

thmin−sTrCtFjqk (ct)
thmin

, for strictly adherent

anomalies, and αjqk (t, ∆t) =
thmin−lTrCtFjqk (ct)

thmin
for loosely adherent

ones. αjqk (t, ∆t) = 0 in all the other cases.
Presence-Hard-Content anomalies focus on sharp variations

(hard) in the number of transactions (presence) exchanged be-
tween two instances in an MIoT, with regard to a certain set of
contents (content).

The study of content variations paves the way to a wide variety
of analyses, ranging from variations in the interests of a user
who is adopting the MIoT objects, to variations in the sentiment
of a user on a specific topic/service provided through the MIoT
objects.

The other kinds of anomaly, whose formalization we have not
reported in this paper because they are very similar to the ones
considered above, would provide four further viewpoints of the
possible anomalies existing in an MIoT. It would be straightfor-
ward to see how these extra anomalies would allow us to model
other possible real-world cases, which shows the generic applica-
bility of our approach (three taxonomies and a multi-dimensional
perspective).

5. Investigating the origins and effects of anomalies in an
MIoT

After providing a multi-dimensional taxonomy of the possible
anomalies present in an MIoT, in this section we aim at inves-
tigating their origins and effects. For this purpose, we address
two problems that, according to what happens in several other



328 F. Cauteruccio, L. Cinelli, E. Corradini et al. / Future Generation Computer Systems 114 (2021) 322–335

o
n
a

a
a
o
o
t
S

δ

f
w
t
s
s
f
p
w
M
O
e

o
l
w
t
t
m

5

m
w
t
e
(
o
t

a
o
n
i
a
o
t

a
n
a
c
t
u

o
p
t
t
t
I
n
O
o

m
i
t
a
f
o

b
a
I
d
r
t
s

research fields, we dubbed ‘‘forward problem’’ and ‘‘inverse prob-
lem’’, respectively. In the forward problem, given one or more
anomalies, we aim at analyzing their effects on an MIoT. In the
inverse problem, which is traditionally more complex than the
forward one, given the effects of one or more anomalies on the
nodes and the arcs of an MIoT, we aim at detecting the origin(s)
of them, i.e., the node(s) or the arc(s) from which anomalies have
started.

5.1. Forward problem

As previously pointed out, this problem aims at understanding
the effects that one or more anomalies have on the nodes of
an MIoT. In the following, we will investigate the forward prob-
lem for one kind of anomaly, namely the Presence-Hard-Contact
anomaly. However, all our results can be extended to all the other
cases introduced in Section 4.

First, given a node njk of an IoT Ik, along with the anomaly
degrees of its outgoing arcs, in the forward problem we want to
compute the overall effects of these anomalies over the corre-
sponding IoT, Ik. Specifically, the degree δjk (t, ∆t) of the anoma-
lies of njk in the time instant t and in the time interval ∆t depends
n the number of nodes belonging to ONbhjk and, for each of these
odes nqk , on the degree δqk (t, ∆t) of the anomalies involving it
nd on the anomaly degrees measured for the corresponding arcs.
We wish to observe that, by saying that the degree of the

nomalies of a node njk recursively depends on the degree of the
nomalies of the nodes belonging to ONbhjk , we introduce a way
f proceeding that is similar to the one underlying the definition
f the PageRank [61]. Thus, to compute δjk , it is possible to adapt
he formula for the computation of the PageRank to our scenario.
pecifically:

jk (t, ∆t) = γ + (1 − γ ) ·

∑
nqk∈ONbhjk

δqk (t, ∆t) · αjqk (t, ∆t)∑
nqk∈ONbhjk

αjqk (t, ∆t)
(5.1)

This formula says that the degree δjk (t, ∆t) of the anomalies
of njk in the time instant t and in the time interval ∆t is obtained
by summing two components:

• The former component, γ , is the damping factor generally
existing in each approach based on PageRank. It ranges in
the real interval [0,1] and denotes the minimum absolute
anomaly degree that can be assigned to a node of the MIoT.

• The second component, is a weighted sum of the anomaly
degree δqk (t, ∆t) of the nodes nqk directly connected to njk
and, therefore, belonging to ONbhjk . The weight of each
anomaly degree δqk (t, ∆t) is given by the value of the pa-
rameter αjqk , which considers the fraction of anomalous
transactions performed from njk to nqk .

In this formula, δjk (t, ∆t) ranges in the real interval [0,1].
The above formula allows us to determine the effects of a

aulty node over the corresponding IoT, and consequently on the
hole MIoT (as will become clearer next). However, we observe
hat the current formalization is valid only in the presence of a
ingle faulty node. When multiple nodes simultaneously exhibit
ome anomalous behavior in one IoT (of the MIoT), our approach
ails to distinguish among the contributions of each anomaly,
articularly when the effects are measured in a single node. We
ish to point out that this is our very first attempt to investigate
IoT anomalies, proposing a method to evaluate their effects.
ur next priority as a follow-up of the present study, will be
xtending our method accordingly.
Having investigated the effects of an anomaly of an instance

in an IoT, we can now exploit the features of the MIoT paradigm
to analyze the effects of an anomaly of an object in an MIoT.
In particular, the anomaly degree δj(t, ∆t) of an object oj can
be computed starting from the anomaly degrees of its instances.
Specifically, given the set IS j of the IoT containing instances of
oj, δj(t, ∆t) can be computed as:

δj(t, ∆t) =

∑
Ijk∈ISj

δjk (t, ∆t)

|IS j|
(5.2)

We observe that the value of δj(t, ∆t), if compared with the
ne of δjk (t, ∆t), can provide very useful information. In particu-
ar, if δj(t, ∆t) is very similar to δjk (t, ∆t) for each IoT Ijk ∈ IS j,
e can conclude that oj is really a source of anomaly. Instead, if
he standard deviation of δj(t, ∆t) is high, then we can conclude
hat oj is involved in, or affected by, some anomalies in one or
ore IoTs, but not in some other ones.

.2. Inverse problem

As previously pointed out, the inverse problem is traditionally
ore complex than the forward one. For this reason, in this paper,
e will focus only on the simplest scenario, i.e., the case in which
here is only one anomaly in the MIoT. In the future, we plan to
xtend our investigation to more complex scenarios. Let ajqk =

njk , nqk ) be an i-arc of an MIoT presenting an anomaly whose
rigin is not known. In the inverse problem we want to detect
his origin.

First of all, we must verify if the origin of the anomaly is just
jqk . For this purpose, we consider the ‘‘siblings’’ of ajqk , i.e., the
ther arcs having njk as the source node and the other arcs having
qk as the target node. If none of these present anomalies, then
t is possible to conclude that ajqk is the origin of the observed
nomaly and that this last one did not affect other nodes or arcs
f the MIoT. In this case, the inverse problem has been solved and
he investigation terminates.

However, the situation described above is very particular and,
lso, quite rare. More typically, anomalies tend to affect multiple
odes and arcs. In that case, given an anomaly found in an
rc ajqk , in order to detect its origin, the first step consists in
omputing the anomaly degrees of njk and nqk and to choose
he maximum between the two. This becomes the current node
nder investigation.
At this point, an iterative process, aiming at finding the origin

f the observed anomaly, is activated. During each step of this
rocess, we apply the PageRank-based formula for the computa-
ion of the anomaly degree of a node, as discussed in Section 5.1,
o all the nodes of the ONbh and the INbh of the current node. Af-
er this, we select the node having the maximum anomaly degree.
f the degree of this node is higher than the one of the current
ode, it becomes the new current node and a new iteration starts.
therwise, our approach concludes that the current node is the
rigin of the anomaly under consideration.
Clearly, the approach described above is greedy and, therefore,

ust be intended as a heuristic that could return a local max-
mum, instead of a global one. However, it is possible to apply
o this approach all the techniques for improving the accuracy of
greedy approach already proposed in past literature, spanning

rom meta heuristics, such as hill climbing [62], to evolutionary
ptimization algorithms [63].
For instance, if the MIoT is not excessively large, it could

e possible to compute the anomaly degree of all its nodes by
pplying the PageRank-based approach described in Section 5.1.
n this case, the node having the maximum value of anomaly
egree would be selected as the anomaly origin. This would cor-
espond to applying an approach returning the optimum solution
o the inverse problem, instead of one returning an approximate
olution.
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On the opposite extreme, if the network is very large, and the
anomaly is affecting a vast portion of it, the greedy approach may
be prohibitive. In this case, we will need to find an additional
way to stop the iterative process, particularly when resources are
limited and the process does not stop because, at each iteration, it
continues to return a new current node with an anomaly degree
higher than the one of the previous iteration. For instance, we
could define a maximum number of iterations or a minimum
increase of the anomaly degree necessary to activate a further
iteration. Furthermore, this required minimum increase could be
dynamic and could vary based on the number of steps already
performed.

We conclude this section with an important consideration.
Since this is our first paper that investigates the inverse problem,
we had the necessity to limit our analysis to only one case, i.e., the
one in which, in a certain time instant, there is only one anomaly
in the MIoT. If at a given time instant, there are more anomalies in
the MIoT, the search of the corresponding origins becomes much
more complex, because the anomalies could interfere with each
other. These interferences could make the search of the anomaly
sources extremely complex.

For instance, we argue that, in presence of two anomalies
whose source nodes are not known, in case these two nodes were
relatively close to each other, the examination of the anomaly
degree of their neighbors could be extremely beneficial. In fact, in
this scenario, some of these neighbors are influenced only by one
anomaly; other ones are influenced only by the other anomaly; a
third group of neighbors is influenced by both anomalies; finally,
a fourth group is not influenced by any anomalies. By deeply
analyzing what happens in these four groups of nodes, it could be
possible to derive precious information leading us to identify the
sources of the two anomalies. In the future, we plan to conduct
specific and accurate investigations about this case, and several
other ones possibly characterizing the inverse problem.

6. Use case and experiments

6.1. A smart city use case

All of the devices installed in urban infrastructures, such as
smart lighting systems and traffic management ones, contribute
to the ecosystem of a so called smart community. This last one
integrates a series of technological solutions for the definition
and implementation of innovative models for the smart man-
agement of urban areas. One of the main challenges of the next
generation of Information and Communication Technologies (ICT)
applied to smart communities is the collection, integration and
exploitation of information gathered from heterogeneous data
sources, including autonomous smart resources, like SO, sen-
sors, surveillance systems, etc., and human resources, such as
posts in social networks. Another key challenge is the application
of artificial intelligence tools, such as the ones based on auto-
mated reasoning, to advance state-of-the-art in smart community
management [64].

The use case we focus on in this section refers to a smart
lighting system in a smart city. In particular, we consider a data-
centric platform integrated in a smart city environment, in which
data coming from sensors and social networks can boost smart
lighting, by operating and tuning different smart lighting objects
located in the smart city area. The aim of the whole system is to
provide citizens with a smart and safe environment.

Data are gathered from three different main sources, namely
sensors, social networks and alerts exchanged among citizens on
a dedicated social platform. Sensors data are gathered from a
set of sensors installed on each smart lamp and handle different
measures, such as temperature and humidity, but also several
events, such as the presence of a person or the presence of rain.
Sensors and smart lamps are organized in a Wireless Sensor
Area Network (WSAN). Social networks data include geo-localized
tweets from Twitter and posts from specific Facebook pages and
are generated by smart personal devices.

All these data are stored in a data lake, which is directly
accessed by a data mining module. This last module includes
both sentiment analysis and anomaly detection tasks. The former
focuses on the analysis of the data gathered from social posts. A
polarity score, i.e., a positiveness/negativeness degree, is assigned
to each keyword that can be extracted from a post, and is used to
intercept crucial information from the citizens moving around the
city. In order to unambiguously single out significant information
for the application context, keywords are mapped onto a specific
urban taxonomy; this task is also carried out with the support
of Babelnet [60]. Furthermore, thanks to the geo-localization of
posts, information regarding a specific area of the smart city can
be analyzed and assigned to the correct area.

Some data mining tasks are also carried out in order to iden-
tify, among other things, situations requiring a variation in the
intensity of illumination for some area, for instance because of a
variation in the security level perceived by citizens therein. Each
smart lamp can communicate with neighboring ones in order
to report variations in lighting parameters, as received by the
mining module.

Anomaly detection works on both temporal data, gathered
from sensors, and polarity scores, extracted by sentiment anal-
ysis, in order to detect potential anomalies. It exploits the tax-
onomies and the techniques presented in this paper (Sections 4
and 5).

In our scenario, the urban area is modeled as an MIoT consist-
ing of a set of IoTs {I1, I2, . . . , Im}, each one associated with a
portion of the area. The set of the objects of M comprises both
the set of sensors, installed in the various smart lamps, and the set
of personal devices of people who are moving around them. If an
object oj of the MIoT is active in the kth portion of the urban area,
it has an instance ιjk in the IoT Ik. Clearly, when a person with
smart device oj moves around different portions of the urban
rea, each one corresponding to a single IoT, oj will have different
nstances, one for each IoT. An object oj corresponding to a smart
amp sensor in the kth urban area is fixed, and will contain only
ne instance ιjk in the corresponding IoT Ik.
A transaction Trjqki between two object instances ιjk and ιqk can

be generated in different ways. First of all, when citizens move
around the various IoTs, they generate posts and alerts with their
mobile devices. In this case, the transaction is associated with
each post or alert. Sensors send transactions to the platform for
sensed data, and smart lamps communicate with each other for
parameter adjustments. Each of these events is translated into a
transaction Trjqkz . Even the data mining module may send mes-
sages to the various smart lamps, thus generating transactions
Trjqkz in the MIoT.

6.2. Experiments

In this section, we present the experiments carried out to
evaluate the performance of our approach from several view-
points. Specifically, in Section 6.2.1, we illustrate our testbed. In
Section 6.2.2, we analyze the forward problem from different per-
spectives. Finally, in Section 6.2.3, we focus on the experiments
concerning the inverse problem.
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Table 2
Parameter values for our simulator.
Parameter Value

Number of nodes 1,256
Number of relationships 6,860
Mean outdegree 5.44
Mean indegree 5.58

6.2.1. Description of the testbed
To perform this analysis, we considered a reference scenario

elated to a smart city context. To model it, and to test our
pproach, we constructed a prototype. Furthermore, we realized
n MIoT simulator.
In order to make ‘‘concrete’’ and ‘‘plausible’’ the simulated

IoT, our simulator needs to generate MIoTs having the charac-
eristics specified by the user, whilst being as close as possible
o real-world scenarios. In the simulator design, and in the con-
truction of the MIoT used in the experiments, we followed the
uidelines outlined in [65–67], where the authors highlight that
ne of the main factors used to build links in an IoT is node
roximity.
In order to reproduce the creation of transactions among ob-

ects, we decided to leverage information about a simulated smart
ity context. As for a dataset containing real-life paths in a smart
ity, we selected the one reported in http://www.geolink.pt/
cmlpkdd2015-challenge/dataset.html. This regards movements
f objects, in terms of routes, in the city of Porto from July 1st
013 to June 30th 2014. Each route contains several Points of
nterest, corresponding to the GPS coordinates of each object as
t moves in Porto. With this information at hand, our simulator
ssociates an object (thus, creating a node) with one of the routes
ecorded in the dataset. Furthermore, it creates an arc between
wo nodes when the distance between the corresponding routes
s less than a certain threshold thd, for a predefined time interval
ht . The value of thd and tht can be specified through the construc-
tor interface. Clearly, the higher is this value the more connected
the constructed MIoT will be. When we defined the distribution
of the transactions among the nodes, we leveraged scientific
literature and used the corresponding results to properly tune our
simulator. In particular, we adopted the values reported in [68].

The interested reader can find the MIoT created by our simu-
lator for the experiments described in this paper at the Web ad-
dress http://daisy.dii.univpm.it/miot/datasets/anomaly-detection.
It consists of 1,256 nodes and six IoTs having 128, 362, 224, 280,
98 and 164 nodes, respectively. The constructed MIoT is returned
in a format that can be directly processed by the cypher-shell of
Neo4J. Some statistics about our dataset are reported in Table 2.

We carried out all the tests presented in this section on a
server equipped with an Intel I7 Quad Core 7700 HQ processor
and 16 GB of RAM, with the Ubuntu 16.04 operating system. To
implement our approach, we adopted Python, as programming
language, and Neo4J (Version 3.4.5), as underlying DBMS.

6.2.2. Analysis of the forward problem
Let us preliminarily define the concept of ‘‘number of hops’’

hjqk between the node njk and another node nqk as the minimum
umber of arcs of the MIoT that must be traversed in order to
each nqk from njk .

In a first step we analyzed the effects that the anomalous be-
avior of an object oj had on the nodes of an MIoT. As pointed out
n Section 5.1, given a node njk of the IoT Ik, its anomaly degree
s represented by the parameter δjk . This anomaly may propagate
hrough the MIoT, thus affecting other nodes. To investigate this
ropagation, given an anomalous instance of an object oj and the
oT I , we measured the anomaly degree δ of n and the average
k jk jk t
f the anomaly degrees δqk of all the nodes nqk , grouped by the
umber of hops from njk to nqk . Moreover, we computed the same
alues but averaged through the IoT belonging to the MIoT. The
ame test has been run over 100 randomly chosen nodes, and
esults have been averaged over the runs.

Fig. 1 shows the results obtained for Presence-Hard-Contact
nomalies, while Fig. 2 presents those regarding Presence-Soft-
ontact anomalies. From the analysis of these figures it is possible
o observe that the effects of an anomaly on a node spread
ver the surrounding nodes, even if they rapidly decrease against
he number of hops. The corresponding trend follows a power
aw distribution. If we compare the left and the right distribu-
ions of Figs. 1 and 2, we can observe that anomalies propa-
ate more slowly on an MIoT than on a single IoT. However,
his difference is negligible. Furthermore, there are no signifi-
ant differences between Presence-Hard-Contact anomalies and
resence-Soft-Contact anomalies, except that the latter ones are
lightly smaller than the former ones. This trend can be justified
y considering that Presence-Soft-Contact anomalies are more
ifficult to be observed than Presence-Hard-Contact ones, since
he former ones are not only required to show values higher
resp., lower) than a given threshold, but should also exhibit a
rend that is monotonically increasing (resp., decreasing), within
he time interval of interest. As the trends are very similar,
n the following tests we focus only on Presence-Hard-Contact
nomalies, without loss of generality.
Next, we investigated the effects that the anomaly of an object

as on the other objects connected to it. In particular, given an
bject oq, whose instances belong to the ONbh of the instances
f an anomalous object oj in at least one IoT of the MIoT, we
omputed the value and the standard deviation,4 of δj and δq.
e repeated this task 100 times with different pairs of objects

j and oq. Then, we averaged the values obtained over the runs.
he corresponding results are shown in Fig. 3 under the category
LL. As we can observe, the standard deviation of δj is very low.
his result can be explained by the fact that all the instances of
he anomalous object oj present anomalies and, consequently, the
orresponding anomaly degrees are almost uniform. By contrast,
he value of δq is lower than the one of δj, exhibiting a very
igh standard deviation. This is explained by observing that the
nstances of oq are not in the neighborhoods of the instances of oj
in all the IoTs of the MIoT. In fact, in some of them, they can be
2, 3 or more hops away from the instances of oj. In some cases,
they may even be disconnected from the instances of oj.

As a next step, we repeated the previous experiment, en-
forcing some extra constraints, which defined three different
scenarios. In the first (resp., second, third) one, all the instances of
oq were 1 (resp., 2, more than 2) hop(s) far from the instances of
oj; the third scenario includes also instances of oq not connected
to instances of oj. The results obtained are shown in Fig. 3 under
the labels S1, S2 and S3, respectively. Looking at the data labeled
as ALL, these results are coherent with both the ones of Fig. 1 and
the ones of Fig. 3. We can see that the effects of a single anomaly
are rapidly reduced as soon as we move away from its origin.
Furthermore, this experiment confirms what we pointed out in
Section 5.1, i.e., that the anomaly degree δ is a parameter that
really helps detecting the object that has caused the anomaly in
the first place.

At this point, we investigated the number of nodes in an
MIoT that turn out to be anomalous as a consequence of a single
anomaly of an object oj. Again, we repeated this experiment 100
times. Each time, we selected an anomalous object of the MIoT.
The selected objects had different number of instances in the

4 Recall that δj and δq are computed by averaging the anomaly degrees of all
he instances of o and o .
j q

http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
http://daisy.dii.univpm.it/miot/datasets/anomaly-detection
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Fig. 1. Values of δjk (corresponding to 0 hops) and average values of the anomaly degrees of all the nodes of Ik (on the left) and of the MIoT (on the right) being
, 2 and 3 hops far from njk in case of Presence-Hard-Contact anomalies.
Fig. 2. Values of δjk (corresponding to 0 hops) and average values of the anomaly degrees of all the nodes of Ik (on the left) and of the MIoT (on the right) being
, 2 and 3 hops far from njk in case of Presence-Soft-Contact anomalies.
IoT, ranging from 1 to 6. For each run, we computed the number
f anomalous nodes detected in the MIoT. Then, we computed the
verages, by grouping the cases based on the number of instances
f the anomalous objects and, therefore, based on the number of
oTs of the MIoT involved in the anomaly.

The results obtained are shown in Fig. 4, which shows how the
umber of anomalous nodes increases against the number of IoTs
n a roughly linear way. This trend can be explained by consid-
ring that, even when the number of objects having instances in
any IoTs is usually limited with respect to the number of objects
aving instances in few IoTs, their anomalous behavior affects
umerous nodes across several IoT and, consequently, their effect
s amplified. On the contrary, anomalies observed on an object
aving instances in only one or two IoTs are more frequent. Yet,
his is counterbalanced by the fact that each of these nodes only
xerts a limited and localized impact, which affects only few
odes.
Then, we aimed to characterize which of the node properties

mpacted the spread of anomalies the most. We repeated the
revious experiment; but instead of choosing anomalous nodes
andomly, we selected them based on their characteristics. A first
haracteristic that we considered was the outdegree of a node,
.e., the number of its outgoing arcs. In the various runs, we
elected nodes with different outdegrees ranging from 10 to 60.
or each of these values, we measured the average number of
nomalous nodes throughout the MIoT detected by our approach.
he results are illustrated in Fig. 5, which clearly shows that
he outdegree of anomalous nodes has a significant impact on
he spread of the anomaly over the network. This result was
ot surprising, since it is consistent with the results about the
nformation diffusion in social network analysis [69].

However, we argue that there is another form of centrality
n social network analysis, which could be very promising as a
ode property to impact the spread of anomalies. This measure
Fig. 3. Anomaly degrees and the corresponding standard deviations in different
scenarios.

Fig. 4. Average number of nodes affected by anomalies against the number of
IoT which an anomalous object participates to.
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n

Fig. 5. Average percentage of anomalous nodes against their degree centrality.

Fig. 6. Average percentage of anomalous nodes against their closeness centrality.

is closeness centrality. We recall that the closeness centrality of a
node is defined as the reciprocal of the sum of the lengths of the
shortest paths between the node itself and all the other nodes of
the network.

Thus, we repeated the previous experiment; but this time we
selected the anomalous nodes based on their closeness centrality.
The values of this parameter for the nodes selected ranged from
0.05 to 0.45. The results obtained are shown in Fig. 6, where we
can observe that our intuition was right. Closeness centrality is
really a key parameter in the spread of anomalies in an MIoT. It
is even more important than degree centrality in this task. In our
opinion, this result is extremely interesting because the impact
of closeness centrality on anomaly diffusion is substantial, whilst
the role of this parameter was a-priori much less obvious than
the one of degree centrality.

As a final test on the forward problem, we evaluated the
running time necessary to compute the anomaly degree δj of an
object oj in an MIoT against the number of its nodes. The results
obtained are reported in Fig. 7, where we can observe a polyno-
mial (specifically, a quadratic) dependency of the running time
against the number of nodes of the MIoT. This can be explained
by the fact that, during the computation of the recursive formula
of δjk , the values of αjqk tend to 0 rapidly while moving away from
the node njk .

6.2.3. Analysis of the inverse problem
In this section, we present the results of the tests we carried

out to validate our approach for solving the inverse problem. We
recall that our solution to this problem starts from an i-arc of
an MIoT that presents an anomaly whose origin is not known.
It applies a greedy algorithm, which aims at detecting the node
that originated the anomaly.
Fig. 7. Running time (in seconds) needed to compute δj in an MIoT against the
umber of its nodes.

Fig. 8. Percentage of times when our approach correctly detects the anomaly
source (indicated by the label 0) or terminates in a node being 1, 2 or more
than 2 hops far from it.

During this test, we repeated 100 times the following tasks.
We simulated an anomaly on an object and, then, we randomly
selected an anomalous i-arc from the whole MIoT. We applied
our solution of the inverse problem on this arc and computed the
following:

• the number of hits, i.e., the percentage of times our ap-
proach detected the anomaly source correctly (we call S0
this scenario);

• the percentage of times our approach terminated in a node
belonging to the ONbh of the anomalous node and, therefore,
being 1 hop away from it (we call S1 this scenario);

• the percentage of times our approach terminated in a node
being 2 hops far from the anomalous node (we call S2 this
scenario);

• the percentage of times our approach terminated in a node
being more than 2 hops away from the anomalous node (we
call S3 this scenario).

The results obtained are reported in Fig. 8. They show that our
approach is capable of correctly identifying the anomaly source
in most cases. In a fraction of cases it stops very near to the
anomalous node, i.e., 1 or 2 hops away from it. The slightly higher
frequency of the fourth case can be explained by the fact that the
starting i-arc of the test is chosen randomly and, therefore, can be
very far from the anomalous node. As a consequence, it comprises
a relatively high number of cases (3, 4, 5 or more hops away from
the anomalous object).

Next, we computed the average running time of our approach.
Similarly to what we have done for the forward problem, we
evaluated this time against the number of the MIoT nodes. The
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Fig. 9. Average running time (in seconds) of our approach for solving the inverse
problem.

results obtained are shown in Fig. 9, where we can observe that
the running time increases polynomially against the number of
MIoT nodes. This result can be explained by the fact that the
greedy algorithm underlying our approach reaches the correct
node, or a near one, in few iterations and by the fact that, on
average, an anomaly on an i-arc can be observed only when this
is not too far away from the node where the anomaly originated.

7. Conclusion

In this paper, we have presented a first attempt to investigate
and classify anomalies in an MIoT. Our proposal consists of two
main components. The first one is a new methodological frame-
work that can make future investigations in this research field
easier, more coherent and more uniform. Indeed, our framework
extends existing methods to the case of anomaly detection in an
MIoT, whilst also allowing the definition of new cases. Another
important contribution is the extension to the anomaly detection
in MIoT of the so-called forward problem and inverse problem,
which have been largely investigated and employed in scientific
literature but were never analyzed in this research field. We also
introduced a use case on a smart lighting system for an MIoT
deployed in a smart city.

Our experiments have provided interesting outcomes about
the capability of detecting anomalies and their effects in an MIoT.
For instance, they revealed that: (i) the effects of an anomaly
n a node spread over the surrounding nodes, even though they
apidly decrease against the distance; (ii) the anomaly degree δ

defined in this paper is a parameter that really helps the detection
of the anomalous object in a network; (iii) the number of nodes
ffected by an anomaly increases against the number of IoTs
n a roughly linear way; (iv) degree centrality and, even more,
loseness centrality are really key parameters in the spread of
nomalies in an MIoT.
In the future, we can foresee several developments of this

esearch. First of all, we would like to extend our framework
o social networking and/or social internetworking scenarios,
here humans and objects simultaneously inter-operate. In fact,
he investigation of mixed networks, consisting of humans and
mart/social objects, is attracting increasing interest among re-
earchers. Next, we plan to extend our studies on MIoT anomalies
or predictive maintenance, in such a way as to optimize the
aintenance of production lines. Last, but not least, we think that
everal results obtained for MIoTs can be further exploited by
pplying some sort of ‘‘feedback’’, to identify new topics and new
pproaches for the investigation of human behavior in Online

ocial Networks.
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