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A B S T R A C T   

Collaboration such as resource sharing among logistics participants (LPs) can effectively increase the efficiency 
and sustainability of logistics operations, especially in the transportation and distribution of fresh and perishable 
products that require special infrastructure (e.g., refrigerated trucks/vehicles). This study tackles a collaborative 
multi-center vehicle routing problem with resource sharing and temperature control constraints (CMCVRP- 
RSTC). Solving the CMCVRP-RSTC by minimizing the total cost and the number of refrigerated vehicles returns a 
fresh logistics operational strategy that pinpoints how a multi-center fresh logistics distribution network can be 
reorganized to highlight potential collaboration opportunities. To find the solution to the CMCVRP-RSTC, we 
develop a hybrid heuristic algorithm that combines the extended k-means clustering and tabu search non- 
dominated sorting genetic algorithm-II (TS-NSGA-II) to search a large solution space. This hybrid heuristic al
gorithm ensures that the optimal solution is found efficiently through initial solution filtering and the combi
nation of local and global searches. Furthermore, we explore how to motivate individual LPs to collaborate by 
analyzing the benefits of collaboration to each LP. Using the minimum costs remaining savings method and the 
strictly monotonic path rule, a cost saving calculation model is proposed to find the best profit allocation scheme 
where each collaborating LP keeps benefiting from long-term collaboration. An empirical case study of 
Chongqing City, China indicates the efficiency of our proposed collaborative mechanism and optimization al
gorithms. Our study will help improve the efficiency of logistics operation significantly and contribute to the 
development of more intelligent logistics systems and smart cities.   

1. Introduction 

The optimization of fresh product logistics networks is always a 
challenging problem for operators and managers in the cold chain lo
gistics industry. In recent years, the demand for fresh products by urban 
and rural residents has been increasing. In a 2017 survey, China’s fresh 
product e-commerce transactions reached approximately 140 billion 
RMB and has been increasing by more than 50%/year, and the loss rate 
of fresh products has reached 30%/year in the fresh logistics distribution 
process (Winshang.com, 2018). In addition, the rapid development of 
on-demand distribution, the ever-increasing consumer demand (Yildiz 
& Savelsbergh, 2019), and the fact that different fresh product distri
butions require different temperature control conditions contribute to 

the unreasonable vehicle scheduling and facility coordination in the cold 
chain logistics industry. This trade-off between logistics cost and 
diversified temperature control conditions increases the difficulty of 
implementing efficient distribution and vehicle scheduling in fresh 
product logistics networks. Therefore, properly optimizing the fresh 
product logistics distribution network and devising a reasonable 
collaborative mechanism to coordinate multiple facilities have become 
particularly important for logistics operators. 

A collaborative multi-center fresh logistics distribution network 
(CMFLDN) includes several logistics facilities [e.g., fresh distribution 
centers (FDCs)] and a large number of customers. In this complicated 
network, multi-center vehicle routing optimization and the collabora
tive strategy among fresh logistics facilities should be considered by 
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logistics enterprises. The ultimate goal of CMFLDN optimization is to 
minimize the total logistics operation cost and the number of refriger
ated vehicles used in fresh logistics distribution networks (FLDNs). The 
cold chain infrastructure is generally insufficient in existing fresh lo
gistics networks. For example, the number of refrigerated trucks ac
counts for only 0.3% of the total number of trucks in China, while that of 
Japan reaches 2% (China.com, 2016). Independent and complete cold 
chain logistics transportation systems have not been established. For 
example, the trans-provincial transportation of fresh products is mostly 
normal-temperature transportation. Given the limited capacity of cur
rent fresh logistics facilities, resource sharing among fresh logistics fa
cilities through collaboration has become a critical issue in FLDNs. 
Typically, a third-party logistics service provider (LSP) or one of the 
collaborative alliance members is responsible for coordinating the lo
gistics facilities in collaboration and developing appropriate collabora
tion strategies for the alliance members (Wang et al., 2017a; Lin & 
Chang, 2018). This practice optimizes the logistics operations in a 
CMFLDN, effectively reduces the total cost, improves the distribution 
efficiency of fresh products, and reduces the loss due to product per
ishing during transportation. 

This paper formulates and solves the collaborative multi-center 
vehicle routing problem with resource sharing and temperature con
trol constraints (CMCVRP-RSTC), in which the distribution and delivery 
of fresh products can be coordinated among multiple FDCs via a 
collaborative optimization network framework (Lee & Jeong, 2009; 
Özen et al., 2012, Schmitt et al., 2015). In addition, resource sharing and 
temperature control constraints are considered in the problem to facil
itate the rational use of resources and reduce logistics operation costs. 
Integrating these two constraints also helps the third-party LSP coordi
nate logistics operations better (Abbasi & Nilsson, 2016; Centobelli 
et al., 2017; Fernández et al., 2018), including the sharing of refriger
ated vehicles during different service periods and the balance between 
temperature control and loss of value. To optimize the CMCVRP-RSTC, 
we first design a bi-objective mixed-integer linear model that minimizes 
the total logistics costs and the number of refrigerated vehicles. A 
customer clustering procedure is then employed to assign customers into 
different logistics facilities for service (Liu & Zhang, 2017; Wang, 2018). 
Then, a composite algorithm is developed to reduce the complexity of 
fresh distribution network optimization, facilitating the search for the 
near-best route for the CMCVRP-RSTC. Finally, a profit allocation 
strategy based on cooperative game theory is proposed to allocate profit 
among the collaborative participants in the CMFLDN. 

The remainder of this paper is organized as follows. In Section 2, 
related studies are reviewed and summarized. In Section 3, the problem 
description and a bi-objective optimization model formulation of the 
CMCVRP-RSTC are presented. In Section 4, a composite algorithm for 
solving the optimization, including an extended k-means clustering al
gorithm and a hybrid heuristic algorithm consisting of tabu search (TS) 
and NSGA-II, is described. Then, a model for calculating the minimum 
costs remaining savings (MCRS) with different collaborative partici
pants is introduced to allocate profits fairly. In Section 5, an empirical 
study of the CMFLDN optimization in Chongqing City, China is pre
sented and used to evaluate the effectiveness of the proposed model and 
algorithm. In Section 6, conclusions and future work are summarized 
and discussed. 

2. Literature review 

With the advent of the big data era and new technology, the opti
mization of CMFLDNs has become increasingly important and feasible. 
However, traditional approaches cannot deal with complex FLDNs 
effectively. Owing to the perishability of fresh products, the heteroge
neous quality decay and time dependent value loss of fresh products 
should be considered in the optimization of CMFLDNs, such as vehicle 
routing problems based on the minimum logistics operational cost and 
value loss of perishable food (Chen et al., 2009; Amorim & Almada- 

Lobo, 2014; Wang et al., 2016), time-dependent vehicle routing prob
lems with the minimum total heterogeneous fleet cost (Behrouz & 
Alireza, 2017; Hu et al., 2017), and vehicle scheduling problems for 
perishable products including the travel time of vehicles and the fresh
ness of products (Keizer et al., 2017; Rahbari et al., 2019). These pre
vious studies inspire us to introduce heterogeneous product quality 
decay, travel time, and logistics operating cost into the CMCVRP to 
improve the operational efficiency of CMFLDNs. 

A certain similarity exists between the CMCVRP-RSTC and the multi- 
depot vehicle routing problem with time windows (MDVRPTW). As an 
extension of MDVRPTW, resource sharing and temperature control 
constraints are further studied in the CMCVRP-RSTC (Li et al., 2016; Yu 
et al., 2017; Stellingwerf et al., 2018). Ju & Mu (2010) established a 
logistics service model based on a multi-temperature joint distribution 
system, providing a new scenario for the distribution and storage of 
multi-temperature-controlled products. Hsu & Liu (2011) proposed a 
multi-temperature joint distribution system, and achieved precise multi- 
temperature control logistics technology and food handling capacity to 
maximize costs and mitigate the negative impact of extreme tempera
tures on food quality. For years, the combination of the integer pro
gramming model and the hybrid heuristic algorithm has been used often 
to study the MDVRPTW under shared depot resources (Li et al., 2016), 
and address the cold chain perishable food distribution planning prob
lem with multi-item-multi-temperature vehicles (Yu et al., 2017). In 
addition, several extended problems have been used as references of 
fresh logistics distribution problems. For instance, Stellingwerf et al. 
(2018) developed an extension of the load-dependent vehicle routing 
problem model to study the temperature-controlled fresh food trans
portation problem. Wang et al. (2019) proposed a transportation 
resource sharing strategy to study the multi-depot green vehicle routing 
problem, including time-dependent speed and piecewise penalty cost. 

Customer clustering is performed according to attribute character
istics, such as the time window requirements, the spatial location of 
customers, the temperature control conditions of fresh products, and 
customer demands. With proper customer clustering approaches, a 
large-scale multiple centers logistics distribution network can be 
decomposed into small zones, and the vehicle routing problem can be 
further optimized within each small zone (Chen et al., 2012; Wang et al., 
2014, 2018a; Mesa-Arango & Ukkusuri, 2015). In addition, the time- 
space based clustering method is often extended to study the features 
of customer behaviors and various types of logistics services (Liu & 
Zhang, 2017; Wang, 2018). However, although clustering methods can 
reduce computational complexity (Kuo et al., 2016; Wang et al., 2019b), 
heuristic or combined heuristic algorithms show a high computational 
speed in solving the MDVRPTW and complicated problems in related 
fields (Narasimha et al., 2013; Song & Ko, 2016). For example, Ma et al. 
(2017) presented a hybrid ant colony algorithm consisting of local 
search operators to study the time-dependent vehicle routing problem 
for perishable product delivery. Li et al. (2018) proposed a hybrid ge
netic algorithm with adaptive local search to study the benefit of shared 
depot resources for MDVRPs. Diabat et al. (2019) established a bi- 
objective robust optimization model and devised a solution algorithm 
based on Lagrangian relaxation and the ε-constraint to investigate the 
impacts of disruptions on a perishable product supply chain network. 

The CMCVRP-RSTC optimization process usually involves multi- 
depot vehicle routing optimization and the problem of collaborative 
mechanism design. The coalition sequence and profit allocation rela
tionship among players can be used for analysis in collaborative mech
anism design (Hellström et al., 2015; Lai et al., 2017). Nguyen et al. 
(2014) presented a proportional cost allocation scheme among suppliers 
to study the delivery of perishable products based on freight consoli
dation strategies. However, the advantages of sharing economy moti
vate the formulation of coalitions based on the core stability and 
equilibrium strength in collaborative logistics operations (Guajardo & 
Rönnqvist, 2015; Kimms & Kozeletskyi, 2016). Furthermore, related 
research includes information resource sharing (Özener et al., 2011), 
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collaborative stability with transportation consolidation (Lai et al., 
2017), coalition sequence rules for multi-echelon supply chains (Liu & 
Papageorgiou, 2018), and fair profit allocation schemes for coalition 
formulation among participants (Fahimullah et al., 2019). 

However, previous research has encountered the following issues. 
(1) The timeliness and temperature control requirements in fresh 
product distribution have not been sufficiently accounted for, especially 
in collaborative fresh logistics networks. (2) Gaps exist in the study of 
resource sharing in CMFLDNs, that is, previous research did not consider 
the sharing of facilities and vehicles among multiple FDCs. The effect of 
resource sharing on the value loss of fresh products and the logistics cost 
is largely unexplored. (3) Collaborative mechanisms have constantly 
been overlooked by existing studies, which assume that collaboration is 
facilitated through external forces (e.g., government incentives). How 
collaborative alliances motivated by the benefit of collaboration itself 
could form in CMFLDNs, and how stable are these alliances remain 
important unanswered questions. 

The main contribution of this research is the development of an 
optimization modeling framework for collaborative FLDNs, which ad
dresses the three limitations of existing studies. (1) FDC and customer 
service time windows, temperature control requirements, resource 
sharing, and collaborative mechanisms are simultaneously incorporated 
in this modeling framework to formulate a holistic fresh product dis
tribution problem in a realistic setting. (2) A novel solution algorithm for 
this optimization problem is also proposed and tested, which out
performs existing solution algorithms. (3) A collaborative mechanism on 
the basis of the MCRS model and the SMP rule is developed to study the 
collaborative coalition sequences in CMFLDNs, sensitivity analysis is 
performed under different temperature conditions based on the Pareto- 
optimal principle, and the effectiveness of the proposed model and 
approach is evaluated in a real-world case study. Therefore, this study 
marks a significant advance in the state of practice of the fresh logistics 
industry. 

3. Problem statement and mathematical model 

3.1. Problem statement 

The recent surge of on-demand delivery of fresh products has 
strained logistics facilities and distribution resources. The CMCVRP- 
RSTC integrates and optimizes resource sharing and temperature con
trol to handle the CMCVRP of fresh products. The CMFLDN involves 
several FDCs and a certain number of customers. Each FDC has its own 
service area and customers. Each FDC also has a fixed number of iden
tical refrigerated vehicles, and can run multiple delivery routes during 
the planned service time periods. To effectively control the logistics cost 
of fresh product distribution, the CMCVRP-RSTC comprehensively 
considers the collaboration among multiple centers and the temperature 
control constraints of fresh products to optimize resource utilization and 
reduce the total operating cost. 

Different types of fresh products have different temperature control 
constraints and customer service time windows. A non-collaborative 
FLDN example is shown in Fig. 1, where each FDC must serve cus
tomers whose orders have similar temperature control requirements. 
Customer demands are served ineffectively in this non-collaborative 
network structure due to crisscross and long-distance transportation. 
Therefore, the collaboration among multiple FDCs and the sharing of 
resources, such as logistics facilities, customer services, and vehicles 
must be optimized in this non-collaborative FLDN structure. The opti
mized CMFLDN is shown in Fig. 2. 

As shown in Fig. 2, the operating hours of each FDC in the CMFLDN is 
divided into multiple service time periods to facilitate resource sharing 
and operation scheduling. Transshipping of fresh products among FDCs 
due to merged customer demands can be carried out by a fleet of 
refrigerated trucks. The optimization of the CMCVRP-RSTC aims to 
optimally serve customers under time window and temperature control 
constraints. Several key issues should be addressed when transitioning 
from a non-collaborative to a collaborative network: 1) the design of an 
optimal network structure with resource sharing in CMFLDN; 2) balance 
of the value loss of fresh products and the logistics operation cost; and 3) 
develop of a collaborative mechanism to allocate the benefits of 

Fig. 1. Non-collaborative FLDN.  
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collaboration. 
For each temperature control range (TCR), the temperature control 

cost (TCC) and value loss (VL) at different temperatures are shown in 
Table 1. For example, the TCCs are $15 and $18 per unit time for 0 ◦C 
and − 3◦C, respectively in the temperature control range (− 5◦C)–(0 ◦C). 
The total logistics operational cost (TLOC) includes the distribution cost 
(DCO), the penalty cost (PC), and the collaborative cost (CC). We assume 
that the transportation cost is $20 per unit time, and the PC (earliness 
and delay penalties) is $30 per unit time. The comparison of delivery 
time, TLOC, and number of vehicles before and after optimization is 
shown in Table 2. Significant decreases in the TLOC, the number of 
vehicles, and the total delivery time can be observed through an effec
tive collaborative mechanism and a reasonable temperature control 
design. 

3.2. Model formulation for the CMCVRP-RSTC optimization 

Some of the notations and definitions used to formulate the 
CMCVRP-RSTC optimization model are shown in Table 3. 

The optimization of the CMCVRP-RSTC is formulated as a bi- 
objective model aiming at minimizing the total cost and the number 
of refrigerated vehicles, where the total cost consists of the trans
portation cost, the TCC, the PC, and the VL. These costs are explained in 

detail in the remainder of this section. 
The transportation cost (TC1) consists of the following components: 

∑
i,j∈N∪I,i∕=j

∑
v∈V

∑
π∈Π

∑
w∈W(xπ

ijvw⋅βij⋅fvw⋅σq) is the DCO of fresh products 
from FDCs to customers, 

∑
n,a∈N,n∕=a

∑
k∈K

∑
w∈W

∑
π∈Π[Zπ

nakw⋅βna⋅(fkw⋅Bnaw)

⋅σc] is the centralized transportation cost of refrigerated trucks among 
FDCs, and CRn⋅γn⋅ICn expresses the cost reduction considering the dis
count from LSP incentives. 

TC1 =

⎧
⎪⎪⎨

⎪⎪⎩

∑

i,j∈N∪I,i∕=j

∑

v∈V

∑

π∈Π

∑

w∈W
(xπ

ijvw⋅βij⋅fvw⋅σq)+

∑

n,a∈N,n∕=a

∑

k∈K

∑

w∈W

∑

π∈Π
[Zπ

nakw⋅βna⋅(fkw⋅Bnaw)⋅σc] + CRn⋅γn⋅ICn

⎫
⎪⎪⎬

⎪⎪⎭

(1) 

The TCC (TC2) includes the following components: 
∑

i,j∈N∪I,i∕=j
∑

v∈V
∑

m∈M
∑

π∈Π
∑

w∈W(ctπw
ijv ⋅gmw⋅qmw

ijvπ) is the TCC for refrigerated 
vehicles to deliver fresh products from FDCs to customers, and 
∑

n,a∈N,n∕=a
∑

k∈K
∑

m∈M
∑

π∈Π
∑

w∈W(ctπw
nak⋅gmw⋅qmw

nakπ) is the TCC for refriger
ated trucks to transport fresh products among FDCs. 

TC2 =

⎧
⎪⎪⎨

⎪⎪⎩

∑

i,j∈N∪I,i∕=j

∑

v∈V

∑

m∈M

∑

π∈Π

∑

w∈W
(ctπw

ijv ⋅gmw⋅qmw
ijvπ)+

∑

n,a∈N,n∕=a

∑

k∈K

∑

m∈M

∑

π∈Π

∑

w∈W
(ctπw

nak⋅gmw⋅qmw
nakπ)

⎫
⎪⎪⎬

⎪⎪⎭

(2) 

Fig. 2. Collaborative FLDN.  

Table 1 
VL and TCC with different temperature control ranges.  

TCR Temperature TCC VL TCR Temperature TCC VL 

(− 13 ◦C)–(− 8◦C) − 13 ◦C $28 $7 (− 5◦C)–(0 ◦C) − 5◦C $20 $5 
− 12 ◦C $27 $8 − 4◦C $19 $6 
− 11 ◦C $26 $9 ¡3◦C $18 $7 
¡10 ◦C $25 $10 − 2◦C $17 $8 
− 9◦C $24 $11 − 1◦C $16 $9 
− 8◦C $23 $12 0 ◦C $15 $10  

(1 ◦C)–(3 ◦C) 1 ◦C $18 $6 (4 ◦C)–(5 ◦C) 4 ◦C $15 $9 
2 ◦C $17 $7 
3 ◦C $16 $8 5 ◦C $14 $10  
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The PC (TC3) consists of the following components: 
∑

i∈I
∑

π∈Π
∑

m∈M
∑

w∈W
∑

v∈Vψm1⋅Dw
imπ⋅

[
max

{
eiπ − rtv

iπ ,0
} ]

and 
∑

i∈I
∑

π∈Π 
∑

m∈M
∑

w∈W
∑

v∈Vψm2⋅Dw
imπ⋅

[
max

{
rtv

iπ − liπ,0
} ]

are the PCs of the earli
ness and delay of refrigerated vehicles in delivering fresh products to 
customers, respectively. 

∑
n,a∈N,n∕=a

∑
π∈Π

∑
m∈M 

∑
w∈W

∑
k∈Kψm1⋅Swπ

nam⋅
[
max 

{
eaπ − rtk

aπ , 0
} ]

and 
∑

n,a∈N,n∕=a
∑

π∈Π
∑

m∈M
∑

w∈W 
∑

k∈Kψm2⋅Swπ
nam⋅

[
max 

{
rtk

aπ − laπ, 0
} ]

are the PCs for earliness and delay for refrigerated trucks 
in transporting fresh products among the FDCs, respectively.   

The VL (TC4) consists of the following two components: 
∑

π∈Π
∑

i∈I
∑

m∈M
∑

w∈W
∑

v∈V
∑

n∈Nrmπ
iw ⋅(1 − ξm

w ⋅ctπw
niv)⋅Dw

imπ ⋅pm and 
∑

π∈Π ∑
n,a∈N,n∕=a

∑
m∈M

∑
w∈W

∑
k∈Krmπ

aw ⋅(1 − ξm
w ⋅ctπw

nak)⋅S
wπ
nam⋅pm are the VLs of 

perished fresh products in the process of delivery from the FDCs to the 
customers and transportation among FDCs, respectively. 

TC4 =

⎧
⎪⎪⎨

⎪⎪⎩

∑

π∈Π

∑

i∈I

∑

m∈M

∑

w∈W

∑

v∈V

∑

n∈N
rmπ

iw ⋅(1 − ξm
w ⋅ctπw

niv)⋅D
w
imπ⋅pm+

∑

π∈Π

∑

n,a∈N,n∕=a

∑

m∈M

∑

w∈W

∑

k∈K
rmπ

aw ⋅(1 − ξm
w ⋅ctπw

nak)⋅S
wπ
nam⋅pm

⎫
⎪⎪⎬

⎪⎪⎭

(4) 

In Eq. (5), the total cost (F1) includes the transportation cost, the 
TCC, the PC, and the VL. Eq. (6) derives the minimum number of 
refrigerated vehicles (F2) when resource sharing in multiple service time 
periods is considered. 

F1 = min{TC1 + TC2 + TC3 + TC4} (5)  

F2 = max
π∈Π

{

min
∑

v∈V
yπ

v min

{
∑

n∈N

∑

i∈I

∑

w∈W
xπ

nivw, 1

}}

(6) 

Subject to 
∑

i∈N∪I

∑

m∈M

∑

w∈W
yπ

ivw⋅Dw
imπ⩽Qv, ∀v ∈ V,∀π ∈ Π (7)  

∑

n,a∈N,n∕=a

∑

m∈M

∑

w∈W
Zπ

nakw⋅Swπ
nam⩽Qk,∀k ∈ K,∀π ∈ Π (8)  

∑

w∈W

∑

m∈M
Swπ

nam =
∑

i∈I

∑

w∈W

∑

m∈M
Zπ

nia⋅Dw
imπ ,∀n, a ∈ N, n ∕= a, ∀π ∈ Π (9)  

rtv
jπ = rtv

iπ + ctπw
ijv ,∀i, j ∈ N ∪ I, i ∕= j, ∀v ∈ V,∀w ∈ W,∀π ∈ Π (10)  

rtk
aπ = rtk

nπ + ctπw
nak,∀n, a ∈ N, n ∕= a, ∀k ∈ K,∀w ∈ W, ∀π ∈ Π (11)  

htv
nπ + ctπw

niv − RR
(
1 − xπ

nivw

)
⩽rtv

iπ,

∀n, i ∈ N ∪ I, ∀v ∈ V, ∀w ∈ W,∀π ∈ Π
(12)  

htv
nπ + ctπw

niv + RR
(
1 − xπ

nivw

)
⩾rtv

iπ,

∀n, i, j ∈ N ∪ I,∀v ∈ V, ∀w ∈ W,∀π ∈ Π
(13)  

htk
nπ + ctπw

nak − RR
(
1 − Zπ

nakw

)
⩽rtk

aπ ,

∀n, a ∈ N, n ∕= a, ∀k ∈ K, ∀w ∈ W,∀π ∈ Π
(14)  

htk
nπ + ctπw

nak + RR
(
1 − Zπ

nakw

)
⩾rtk

aπ ,

∀n, a ∈ N, n ∕= a, ∀k ∈ K, ∀w ∈ W,∀π ∈ Π
(15)  

∑

i,j∈Invπ ,i∕=j

∑

v∈V

∑

w∈W
xπ

ijvw = |Invπ | − 1, ∀Invπ⊆I (16)  

∑

π∈Π

∑

v∈V

∑

w∈W
yπ

ivw = 1,∀i ∈ I (17)  

∑

i∈N∪I,j∈I

∑

w∈W
xπ

ijvw⩽1, ∀v ∈ V, ∀π ∈ Π (18)  

∑

i∈N∪I

∑

w∈W
xπ

ijvw −
∑

i∈N∪I

∑

w∈W
xπ

jivw = 0, ∀j ∈ I,∀v ∈ V, ∀π ∈ Π (19)  

∑

i∈N∪I
xπ

ijvw = yπ
jvw, ∀j ∈ I, ∀v ∈ V,∀w ∈ W,∀π ∈ Π (20)  

∑

j∈N∪I
xπ

ijvw = yπ
ivw, ∀i ∈ I, ∀v ∈ V,∀w ∈ W,∀π ∈ Π (21)  

eaπ⩽htv
nπ⩽laπ (22)  

∑

i∈N∪I

∑

j∈I
ctπw

ijv ⩽Tmax,∀v ∈ V,∀w ∈ W, ∀π ∈ Π (23)  

xπ
ijvw = {0, 1},∀i ∈ N ∪ I, ∀j ∈ I, ∀v ∈ V,∀w ∈ W,∀π ∈ Π (24)  

rmπ
iw = {0, 1},∀i ∈ I,∀m ∈ M, ∀w ∈ W,∀π ∈ Π (25)  

rmπ
nw = {0, 1},∀n ∈ N,∀m ∈ M,∀w ∈ W, ∀π ∈ Π (26)  

Zπ
nia = {0, 1}, ∀n, a ∈ N, n ∕= a, ∀i ∈ I, ∀π ∈ Π (27)  

Zπ
nakw = {0, 1}, ∀n, a ∈ N, n ∕= a, ∀k ∈ K, ∀w ∈ W,∀π ∈ Π (28)  

yπ
ivw = {0, 1}, ∀i ∈ I, ∀v ∈ V, ∀w ∈ W,∀π ∈ Π (29)  

yπ
jvw = {0, 1}, ∀j ∈ I, ∀v ∈ V, ∀w ∈ W,∀π ∈ Π (30)  

yπ
v = {0, 1}, ∀v ∈ V, ∀π ∈ Π (31) 

Table 2 
Comparison before and after collaboration.  

Case DCO ($) PC ($) CC ($) TCC($) VL ($) TLOC ($) Number of vehicles Total delivery time 

Before collaboration 2140 660 0 1683 1106 5589 10 107 
After collaboration 1300 180 400 1245 500 3625 4 65  

TC3 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

i∈I

∑

π∈Π

∑

m∈M

∑

w∈W

∑

v∈V
ψm1⋅Dw

imπ⋅
[
max

{
eiπ − rtv

iπ, 0
} ]

+
∑

i∈I

∑

π∈Π

∑

m∈M

∑

w∈W

∑

v∈V
ψm2

⋅Dw
imπ⋅

[
max

{
rtv

iπ − liπ, 0
} ]

+
∑

n,a∈N,n∕=a

∑

π∈Π

∑

m∈M

∑

w∈W

∑

k∈K
ψm1⋅Swπ

nam⋅
[
max

{
eaπ − rtk

aπ, 0
} ]

+
∑

n,a∈N,n∕=a

∑

π∈Π

∑

m∈M

∑

w∈W

∑

k∈K
ψm2⋅Swπ

nam⋅
[
max

{
rtk

aπ − laπ , 0
} ]

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3)   
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Constraint (7) stipulates that the sum of customer demands on a 
single delivery route cannot exceed the capacity of each refrigerated 
vehicle. Constraint (8) ensures that the total fresh product trans
portation volume among FDCs does not exceed the capacity of a single 
refrigerated truck. Constraint (9) ensures that the amount of fresh 
product transported is equal to the total reassigned customer demands 
among FDCs. Constraints (10)–(11) ensure the continuity of the delivery 
process and that the unloading service time is excluded. Constraints 
(12)–(13) express the arrival time of a refrigerated vehicle departing 
from the FDC and arriving at the customers. Constraints (14)–(15) ex
press arrive time of a refrigerated truck at the FDCs. Constraint (16) 
eliminates sub-tours on a distribution route. Constraint (17) ensures that 
each customer is served by only one refrigerated vehicle. Constraint (18) 
ensures that each refrigerated vehicle serves only one distribution route 
within the πth service time period. Constraint (19) stipulates that a 
refrigerated vehicle must leave each customer after serving the customer 
within the πth service time period. Constraints (20)–(21) indicate that 
each customer is visited once. Constraint (22) ensures that the departure 
time of each refrigerated vehicle is within the time window of the FDC. 
Constraint (23) guarantees that the total travel time of a refrigerated 
vehicle does not exceed the maximum allowed en-route time. Con
straints (24)–(31) state the binary decision variables. 

3.3. Coefficient of performances at different temperatures 

In cold chain transportation, the in-vehicle temperature determines 
the TCC and the product VL. Given that different types of fresh products 
have different temperature control ranges, the refrigerated vehicles 
should be set to suitable refrigerating temperatures according to the 
characteristics of the fresh products. Considering the characteristics of 
heat change, the coefficient of performance (COP) (Song, et al., 2019) in 
Eq. (32) represents the conversion ratio between energy and heat. 

COP =
Q

W+
=

Tb

Ta − Tb
(32) 

In Eq. (32), Q refers to the heat required to transition from low 
temperature to high temperature, W+ represents the absorbed energy, Ta 
is the temperature of the ambient environment (e.g., 25 ◦C), and Tb 
represents the target temperature for temperature control (e.g., 5 ◦C). Ta 
and Tb must be calculated as absolute temperatures. The physical 
quantity corresponding to the absolute temperature is the thermody
namic temperature, represented as T(K). The corresponding unit is 
Kelvin (Vřešt’ál, et al., 2012) and the symbol is K. The relationship be
tween thermodynamic temperature T(K) and Celsius temperature t (◦C) 
is shown in Eq. (33). 

T(K) = 273 + t(◦C) (33) 

If the external ambient temperature is 25 ◦C, then the cooling cost at 
the control target temperature of 5 ◦C is 1 unit, and the cooling cost 

Table 3 
Notations and definitions in CMCVRP-RSTC optimization.  

Symbol Definition 

Sets 
N  Set of FDCs, N = {n|n = 1, 2,3, ...a}
Π Set of service time periods, Π = {π|π = 1,2, 3, ...g}
I  Set of customers, I = {i|i = 1,2, 3, ...j}
M  Set of product categories, M = {m|m = 1,2, 3, ...c}
K Set of refrigerated trucks, K = {k|k = 1,2, 3, ...d}
W Set of temperature control ranges, W = {w|w = 1,2, 3, ...f}
V  Set of refrigerated vehicles, V = {v|v = 1,2, 3, ...e}
Vπ  Set of refrigerated vehicles for serving customers within the πth service 

time period, π ∈ Π  
Invπ  Set of customers served by refrigerated vehicle v from FDC n within the πth 

service time period,n ∈ N, v ∈ V,π ∈ Π   

Parameters 
βij  Distance between customers i and j in the logistics distribution network 
βna  Distance between FDCs n and a 
Dw

imπ  Demand of customer i for fresh product m at temperature w within the πth 
service time period 

ψm1  Penalty factor per time unit of earliness for per unit fresh product m 
ψm2  Penalty factor per time unit of delay for per unit fresh product m 
Swπ

nam  Transport quantity of fresh product m from FDC n to a at temperature w 
within the πth service time period 

pm  Unit value of fresh product m 
Qk  Capacity of refrigerated truck k 
Qv  Capacity of refrigerated vehicle v 
ξm

w  Coefficient of freshness degradation over time for fresh product m at 
temperature w 

fvw  Average fuel consumption of refrigerated vehicle v per 100 miles at 
temperature w 

fkw  Average fuel consumption of refrigerated truck k per 100 miles at 
temperature w 

ctπw
ijv  Travel time of refrigerated vehicle v from customer i to j at temperature w 

within the πth service time period 
ctπw

niv  Travel time of refrigerated vehicle v from FDC n to customer i at 
temperature w within the πth service time period 

ctπw
nak  Transport time of refrigerated truck k from FDC n to a at the temperature w 

within the πth service time period 
gmw  Temperature control cost per unit fresh product m per time unit at 

temperature w 
rtviπ  Arrival time of refrigerated vehicle v at customer i within the πth service 

time period 
rtkaπ  Arrival time of refrigerated truck k at FDC a within the πth service time 

period 
htvnπ  Departure time of refrigerated vehicle v from FDC n within the πth service 

time period 
htknπ  Departure time of refrigerated truck k from FDC n within the πth service 

time period 
σq  Gasoline price (dollars/gallon) 
σc  Diesel price (dollars/gallon) 
γn  Incentive provided to FDC n by LSP 
ICn  Initial independent operational cost of FDC n with non-collaboration 
[eiπ , liπ ] Service time window of customer i within the πth service time period 
[eaπ , laπ ] Service time window of FDC a within the πth service time period 
|Invπ | Number of customers served by refrigerated vehicle v from FDC n within 

the πth service time period 
qmw

ijvπ  Quantity of fresh product m at temperature w on refrigerated vehicle v en 
route from customer i to j within the πth service time period 

qmw
nakπ  Quantity of fresh product m at temperature w on refrigerated truck k en 

route for transport from FDC n to a within the πth service time period 
RR  A large enough positive integer 
Tmax  Maximum en-route time allowed for a vehicle  

Decision variables 
Zπ

nakw  Equal to 1 if refrigerated truck k transports directly from FDC n to a at 
temperature w within the πth service time period, and 0 otherwise 

Zπ
nakw  Equal to 1 if customer i is reassigned from FDC n to a within the πth service 

time period, and 0 otherwise 
Bπ

nakw  Equal to 1 if temperature control range is w from FDC n to a, and 
0 otherwise  

Table 3 (continued ) 

Symbol Definition 

xπ
ijvw  Equal to 1 if refrigerated vehicle v travels directly from customer i to j at 

temperature w within the πth service time period, and 0 otherwise 
xπ

ijvw  Equal to 1 if refrigerated vehicle v travels directly from DC n to customer i 
at temperature w within the πth service time period, and 0 otherwise 

rmπ
iw  Equal to 1 if fresh product m is delivered to customer i at temperature w 

within the πth service time period 
rmπ
aw  Equal to 1 if fresh product m is transported to FDC a at temperature w 

within the πth service time period 
yπ

ivw  Equal to 1 if customer i is served by refrigerated vehicle v at temperature w 
within the πth service time period, and 0 otherwise 

yπ
ivw  Equal to 1 if customer j is served by refrigerated vehicle v at temperature w 

within the πth service time period, and 0 otherwise 
yπ

ivw  Equal to 1 if refrigerated vehicle v is selected for a delivery task within the 
πth service time period, and 0 otherwise 

CRn  Equal to 1 if FDC n agrees to collaborate with LSP, and 0 otherwise  
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coefficient (θmw) at 4 ◦C is 13.9/13.19 = 1.05, as shown in Table 5. The 
same method can be used to calculate the cooling cost coefficient under 
other temperature control conditions. In addition, the unit temperature 
control cost (gmw) at different temperature control conditions can be 
calculated using Eq. (34). We assume 27 temperature control ranges for 
w, and the corresponding control target is shown in Table 4. The cor
responding COP values and unit temperature control costs at different 
control target temperatures are shown in Table 5. 

gmw =

{
σc∙fkw∙θmw, if transported by refrigerated truck k

σq∙fvw∙θmw, if transported by refrigerated vehicle v (34)  

4. Research methodologies 

4.1. Hybrid heuristic algorithm for the CMCVRP-RSTC optimization 

The proposed CMCVRP-RSTC is essentially a multi-objective opti
mization problem, and the NSGA-II is a well-known evolutionary algo
rithm for solving this type of problem (Deb et al., 2002). The NSGA-II 
has the advantages of fast computation and can find the global opti
mum. Meanwhile, the tabu search (TS) algorithm focuses on neighbor
hood search and finding the local optimum (Zhan et al., 2013; Su et al., 
2017). We propose a TS-NSGA-II hybrid algorithm that combines k- 
means clustering, TS, and NSGA-II to effectively solve the CMCVRP- 
RSTC. The framework of the hybrid algorithm for solving the 
CMCVRP-RSTC is shown in Fig. 3. The parameters used in the algorithm 
are defined as follows: h and q are the numbers of FDCs and clustering 
units, respectively; genmax is the maximum number of generations in the 
NSGA-II algorithm; tsin is the maximum number of iterations in the TS 
algorithm; and gen and t denote the current generation and iteration, 
respectively. 

4.1.1. Customer clustering 
Customer clustering can effectively reduce the computational 

complexity of large-scale logistics network optimization problems by 
assigning customers to groups and treating customers in a group the 
same (Wang et al., 2017b; Markova et al., 2016). The extended k-means 
clustering algorithm is applied to customer clustering. The clustering 
features include each customer’s geographical coordinates, the tem
perature control characteristics of the customer’s demands, and the 
service time windows. 

In this paper, modified Manhattan distance is adopted as the distance 
function for clustering. The coordinates, the TCR, and the service time 
windows of customers are denoted as (x, y), (tp, cp), and (st, tm), 
respectively. The modified Manhattan distance between customers i and 

j is evaluated as dij = |xi – xj| + |yi –yj| + ΰ* |tpi – tpj| + ΰ* |cpi – cpj| + ἕ* | 
sti – stj| + ἕ* |tmi – tmj|, and coefficients ΰ and ἕ ensure that the different 
dimensions are at the same scale. The 4D clustering framework is dis
played in Fig. 4. 

In Fig. 4, the geographic location and the time window are repre
sented as X ,Y-axes, and the time-axis respectively. That is, customers 
can be first clustered based on the temperature range [t1, t2] and the time 
window [a5, a4]. Then the space range can be considered to cluster the 
above customers. The clustering algorithm is executed when the 
CMFLDN has at least two FDCs. The extended k-means clustering algo
rithm is shown in Table 6 as follows. 

4.1.2. TS-Nsga-II 
In the NSGA-II framework, fast non-dominated sorting is applied to 

find a good set of solutions that nearest the Pareto optimal front, the 
crowding distance is calculated to retain the diversity of the Pareto 
optimal solutions, and the elitism strategy is introduced to improve the 
convergence of solutions (Arora et al., 2015; Alikar et al., 2017). We 
propose an optimization method based on the combination of the NSGA- 
II framework with the local search by the TS algorithm. The TS strategy 
is documented and selected during the optimization process, and a 
flexible storage structure and the corresponding tabu criterion are pre
sented to avoid a roundabout search (Martínez-Puras & Pacheco, 2016, 
Silvestrin & Ritt, 2017; Li et al., 2019). The TS-NSGA-II hybrid algorithm 
explores the solution space both locally and globally to ultimately ach
ieve global optimization. Routes are first organized globally through 
NSGA-II, and then adjusted locally by local search using TS, as shown in 
Fig. 5. 

The TS-NSGA-II hybrid algorithm is based on the result of extended 
k-means customer clustering. This algorithm follows the principle of 
“survival of the fittest” and has the advantages of strong search ability, 
parallel comparison and strong scalability. The pseudo code of the 
proposed TS-NSGA-II algorithm is shown in Table 7.  

1. Genetic manipulation process 

Considering the encoding method used, the refrigerated vehicles can 
simultaneously perform resource sharing and temperature control. 
Partial mapped crossover (PMC) is employed to generate an offspring 
population (Wang et al., 2019a), by exchanging the partial strings of two 
selected parents (Pa). The intermediate sequence is set to an indepen
dent chromosome, PMC is selected as a crossover operator, which means 
that the subsequence of each chromosome acts as a crossover region, and 
then, two crossover regions are exchanged to obtain two new offspring 
chromosomes (Ch). The crossover operation is illustrated in Fig. 6. 

Table 4 
Corresponding relationships between w and temperature.  

w of Set W 1 2 3 4 5 6 7 … 18 … 27 

Temperature (◦C) 5 4 3 2 1 0 − 1 … − 12 … − 21  

Table 5 
COP values, gmw, θmw of different temperature intervals.  

Temperature (◦C) 5 4 3 2 1 0 − 1 − 2 − 3 

COP 13.90 13.19 12.55 11.96 11.42 10.92 10.46 10.04 9.64 
θmw 1.00 1.05 1.11 1.16 1.22 1.27 1.33 1.38 1.44 
gmw 2.00 2.11 2.22 2.33 2.44 2.55 2.66 2.77 2.88 
Temperature (◦C) − 4 − 5 − 6 − 7 − 8 − 9 − 10 − 11 − 12 
COP 9.28 8.93 8.61 8.31 8.03 7.76 7.51 7.28 7.05 
θmw 1.50 1.56 1.61 1.67 1.73 1.79 1.85 1.91 1.97 
gmw 3.00 3.11 3.22 3.34 3.46 3.58 3.70 3.82 3.94 
Temperature (◦C) − 13 − 14 − 15 − 16 − 17 − 18 − 19 − 20 − 21 
COP 6.84 6.64 6.45 6.27 6.10 5.93 5.77 5.62 5.48 
θmw 2.03 2.09 2.16 2.22 2.28 2.34 2.28 2.47 2.54 
gmw 4.06 4.18 4.31 4.44 4.56 4.69 4.57 4.94   
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Fig. 3. Algorithm flowchart of CMCVRP-RSTC.  
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The chromosomes in the initial parent population are encoded as Pa1 
and Pa2 in Fig. 6. If i is the total number of customers served by a FDC, 
then i + 1 is added into the initial string to express customer quantity. 
The fresh products required by customers can be divided into different 
products types (i.e., a, b, and c) under the same temperature control 
range (e.g., a kind of temperature control range “(1 ◦C)–(5 ◦C)” through 
clustering). Two points (A and B) are selected on chromosomes Pa1 and 
Pa2. Then, the sequence between A and B is set as an independent 
chromosome, and PMX operation is carried out. The child chromosome 
(Ch) is generated, namely, multi-point mutation (MPM) is implemented 
on the parent chromosome (Pa), and the mutation operator is conducted 
with a small probability. Fig. 7 illustrates an illustration of the mutation 
operator. 

In Fig. 7, the fresh products required by customers are divided into 
different types (i.e., a and b) of products under the same TCR (e.g., a 
kind of temperature control range “(-5◦C)–(0 ◦C)”. First, four nodes (i.e., 
5, 7, 2, 9) are randomly selected in the Pa. Then, MPM is performed on 
the four nodes to generate Ch. For the blue nodes, if the value of the gene 
does not exceed 6, then the gene is the same as the original gene (e.g., 5 
remains unchanged in Ch). Moreover, for the orange nodes, if the value 
of the gene exceeds 6, then the value of the gene is randomly 

Fig. 4. Extended k-means customer clustering diagram.  

Table 6 
Procedure of extended k-means clustering algorithm.  

Arithm 1: Extended k-means clustering 

Step 1: Create the temperature control TS G of fresh products, and select customers 
whose product demand attributes cannot satisfy G. 

Step 2: Import the customer’s corresponding 4D data and the geographic coordinates 
of h FDCs to generate a data matrix. 

Step 3: Convert the 4D data matrix into data vector. 
Step 4: Determine initial clustering number q, and set q = h; then, cluster and select q 

cluster centers. 
Step 5: Select the customers who must be clustered by the customer product demand 

data. 
Step 6: Check if the selected and clustered customers satisfy TS G in each clustering 

unit. 
If G is satisfied, then the selected customers are assigned to the nearest clustering unit that 

not satisfy G. Otherwise, set q = q + 1, generate new clustering units, and update the 
clustering center.Else, return to Step 4.EndStep 7: Determine if the existing customers 
must be clustered.If existing customers must be clustered, repeat Steps 5–7 until the 
cluster relationship is constant.Else, assign the clustering unit to the corresponding FDC 
according to the customer product demand attributes. 

End 
End  

Fig. 5. General diagram of algorithm optimization.  
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regenerated from 7. To avoid duplication with existing genes, 7 can be 
changed to 9, 8 can be changed to 7, and 9 can be changed to 8. 

4.2. Profit allocation and coalition stability evaluation 

Let N be a set of FDCs, then 2N − 1 subsets of N exist, excluding the 
null set (Wang et al., 2017b). Let S be one of the 2N − 1 subsets, that is, a 
coalition. The notations related to profit allocation are listed in Table 8. 

4.2.1. Cost savings calculation and MCRS model 
Through CMCVRP-RSTC optimization, each FDC has the potential to 

achieve significant cost savings by joining a coalition. The LSP will 
retain a certain percentage of the total profit as a charge for organizing 
the collaboration, before distributing the rest of the profit to each 
participant. The retained percentage is called the coordination 
requirement and defined as χ ∊ [0,1]. The cost savings and the LSP’s 
income can be calculated according to Eq. (35). The LSP receives this 
profit as PLSP, and fresh logistics facilities share v+(S) according to Eq. 
(36). 

PLSP = χ⋅
∑

n∈S
C0(n) − C(S) (35)  

v+(S) =
{ (1 − χ)⋅

∑

n∈S
C0(n) − C(S), if

∑

n∈S
C0(n) − C(S)⩾0

0, otherwise
(36) 

The corresponding cost savings for each coalition (v+(S)) is calcu
lated as the gap between initial cost C0(n) and optimization cost C(S). If 
∑

n∈SC0(n) − C(S) < 0, then alliance S will not be formed, resulting in 
zero profit. 

The MCRS is a quadratic assignment method of achieving fair cost or 
profit allocation in alliance problems (Tijs & Driessen, 1986; Wang et al., 
2017a, 2018). This method is bi-level. The method first allocates a 
portion of the profit directly and then distributes the residual profit. We 
set N as the set of all participants, and N = {1,2,⋯,n}. First, the upper 
bound (ynmax) and the lower bound (ynmin) of profit yn are determined. 
Then, distribution vectors Ymin and Ymax can be respectively expressed 
as Ymin={y1min, y2min,…, ynmin} and Ymax={y1max, y2max,…, ynmax}. The 
upper and lower bounds are related by Eq. (37). Coefficient λ in Eqs. (37) 
and (38) is determined by the ratio of the difference between the 
maximum and minimum benefits for member n to the sum of all member 
income differences. The limits of distribution vector Y can be derived 
using Eq. (39). 

Y = Ymin + λ
∑

n∈N
ynmax −

∑

n∈N
ynmin (37)  

Table 7 
Procedure of TS-NSGA-II.  

Arithm 2: TS-NSGA-II 

Step 1: Initialize the corresponding parameters, generate the initial population, and 
set the tabu list containing the temperature control of fresh products.# Set the 
appropriate population size (popsize), the maximum number of generations (genmax), 
and the maximum number of iterations (tsin) in TS. 

# Set the genetic parameters: selection probability Ps, crossover probability Pc, and 
mutation probability Pm. 

for FDC = 1: hStep 2: Calculate the objective function value of each chromosome in the 
initial population. 

# Step 3: Conduct fast non-dominated sorting and calculation of crowding distance in 
the population. 

# Step 4: Perform selection, partial mapped crossover (PMC), and multi-point 
mutation (MPM) operations to generate the offspring population. 

Step 5: Evaluate the objective value of each chromosome in the offspring population, 
and update the tabu list. 

Step 6: Combine the parent and offspring populations to generate a new population 
and ensure that the current best chromosomes are added to the population. 

Step 7: Apply the TS strategy to the initial solution based on NSGA-II and set t = 1. 
(7.1) Initialize the NSGA-II optimization solution and define the neighborhood 
movement to obtain the neighbor solution of the TS new population. (7.2) Calculate 
the objective function value of each chromosome in the current new population, 
perform new population neighborhood selection, and record the optimal solution to 
determine the candidate solution.(7.3) Determine whether the TS stop rule is 
satisfied.If the TS stop rule is satisfied, then update the current optimal solution, use 
it as the initial solution for the next iteration, and execute t = t + 1.Else, perform 
(7.4). (7.4) Combine the tabu attribute of the candidate solution, find the optimal 
solution from the current candidate solution, use it as the initial solution for the next 
iteration, and execute t = t + 1. (7.5) Determine if t is greater than or equal to tsin.If t 
is greater than or equal to tsin, gn = gn + 1 is executed according to the new 
optimized solution generated by the TS strategy.Else, perform Step 4 in the 
clustering process. EndStep 8: Determine if the number of iterations gn is less than or 
equal to the maximum number of iterations (genmax). If gn is less than or equal to 
genmax, return to Step 2. Else, perform Step 9.Step 9: Find the optimal solution in all 
Pareto fronts and output the final optimization solution. 

End  

Fig. 6. Partial Mapped Crossover process.  

Fig. 7. Multi-Point Mutation operator.  

Table 8 
Related notations in profit allocation.  

C0(n) Cost for player n without coalition 

C(S) Total cost in coalition S 
v+(S) Profit in coalitions S 

χ  Coordination requirement of LSP 
Λ  Set of possible sequences of forming the grand coalition N 
φ(N,v+) MCRS value allocated to a certain player in the coalitions 

ω(n) Rank of player 
η(n,ω, u) Cost reduction percentages to player n on step u in sequenceω   
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λ =
ynmax − ynmin

∑
n∈Nynmax −

∑
n∈Nynmin

(38)  

Ymin⩽Y⩽Ymax (39) 

Furthermore, the hyper-plane is determined by Eq. (40), and the 
profit allocation by MCRS value φ (N, v+) can be expressed as Eq. (41). 
∑

n∈N
yn = v+(N) (40)  

φn(N, v+) = ynmin +
ynmax − ynmin

∑
n∈N(ynmax − ynmin)

× v+(N) −
∑

n∈N
ynmin (41) 

We can respectively calculate ynmax and ynmin through the following 
linear programming Eqs. (42) and (43). v+(S) is the cost reduction for 
the players who participate in collaborative alliance S, and S⊆N. v+(N) 
denotes the total cost reduction after forming a grand coalition that 
consists of all customers and FDCs. Eqs. (44) and (45) set the bounds of 
the profit of each coalition and that of each participant. 

ynmax = v+(S) − v+(S − {n}) (42)  

ynmin = v+(n) (43) 

Subject to 

yn⩾v+(n) (44)  

∑

n∈S
yn⩾v+(S) (45)  

4.2.2. Monotonic path selection strategy 
Grand coalition N is formed with multiple different sequences, and 

the profit assigned to participants varies with each sequence. The best 
sequence of entry into the coalition is determined according to the 
monotonic path selection rules (Cruijssen et al., 2007). Set ω as one of 
these sequences and let ω(n) indicate that player n joins ω as the ω(n)’th 
member. The cost saving percentage for player n in sequence ω when the 
uth player joins the coalition is denoted as η(n, ω, u), which can be 
calculated using Eq. (46). 

η(n,ω, u) =
φn

(
∪ω(μ)⩽u,μ∈Nμ, v

)

C0(n)
, u⩾ω(n) (46) 

If Λ is the set of sequences to form grand coalition N, then Λ has |N|!

different sequences. Coalition sequences that follow the strictly mono
tonic path (SMP) rule are considered stables (Lozano et al., 2013; Wang 
et al., 2017b). An optimal coalition sequence is stable and allocates the 
total profit fairly among coalition members. 

All profit allocation schemes can be represented as a polygon, with 
each of its boundary indicating a profit allocation scheme. The geo
metric center of this polygon (called the “core center”) is theoretically 
the fairest profit allocation scheme among all schemes. Eq. (47) is used 
to calculate the position of the core center, where α is a parameter for 
controlling the scope of the core. 

v+(N) − v+(N − {n} )
v+(N)

× α+
∑c∕=n

c∈N
yc = v+(N − {n} ) (47)  

5. Implementation and analysis 

5.1. Algorithms comparison 

To test the performance of the proposed TS-NSGA-II, comparisons 
with well-known heuristic algorithms are made on solving benchmark 
problems. The proposed TS-NSGA-II algorithm, multi-objective particle 
swarm optimization (MOPSO) (He et al., 2019), and hybrid genetic 
algorithm-tabu search (HGA-TS) (Xiao et al., 2018) are implemented 
with 20 selected experimental data instances for comparison based on 

the Solomon datasets (Solomon, 1987) and the MDVRPTW instances1. 
All customer product demands are assigned into 2–4 temperature con
trol ranges. For example, in Data instances 1–4, the temperature control 
range of the first 40 customers is (− 5℃)–(0℃), and the temperature 
control range of the last 40 customers is (1℃)–(5℃). Each temperature 
control range has one type of fresh products and one corresponding 
product price. The experimental data instances are described in Table 9. 

The parameters utilized in the comparison of the algorithm perfor
mance are set as follows: popsize = 150, genmax = 500, Ps = 0.9,Pc = 0.8, 
Pm = 0.1, tsin = 50 in TS-NSGA-II and HGA-TS. The swarm sizepopsize =

150, inertia weight inw = 0.5, maximum number of iterations itmax =

500 in MOPSO. The optimization results have four aspects, that is, the 
total cost, the VL, the minimal number of refrigerated vehicles, and the 
computation time of three algorithms are compared. The three algo
rithms are executed 10 times with the known optimal solutions for the 
20 data instances selected, and the comparison of results is shown in 
Table 10. 

The optimization results show that TS-NSGA-II exhibits the best 
performance in most of the 20 data instances. In the same instance, TS- 
NSGA-II always returns the smallest cost and VL among the three al
gorithms and outperforms or ties with the other two algorithms in 
minimizing the number of vehicles. However, the computation of TS- 
NSGA-II is slower than that of HGA-TS. On the average, our proposed 
TS-NSGA-II approach produces significantly (p-value < 0.05) better 
optimization results at the price of higher computation time than HGA- 
TS. Considering that optimizing fresh logistics networks involves long- 
term decisions and thus has low real-time requirement, the proposed 
TS-NSGA-II has clear advantages over the other two algorithms in 
practical applications. 

5.2. Data source 

The applicability and feasibility of the proposed CMCVRP-RSTC is 
studied in the context of the real logistics network of Chongqing City. 
Chongqing City is located in Southwestern China and serves as a na
tional transportation hub and a trade center in the upper Yangtze River. 
Consequently, the logistics network in the city is complex. The logistics 
network consists of five FDCs (i.e., FDC1, FDC2, FDC3, FDC4, FDC5) and 

Table 9 
Characteristics of the datasets.  

Data 
instances 

No. of 
customers 

No. of 
FDCs 

Temperature 
control range 

Product 
type 

Product 
price 

1–4 80 8,6,4,2 (− 5 ◦C)–(0 ◦C) 
(1 ◦C)–(5 ◦C) 

Cc1 
Dd1 

6 
4 

5–8 100 8,6,4,2 (− 5 ◦C)–(0 ◦C) 
(− 13 ◦C)–(− 8 
◦C) 

Cc1 
Bb1 

6 
9 

9–12 120 9,7,5,3 (− 5 ◦C)–(0 ◦C) 
(1 ◦C)–(5 ◦C) 
(− 13 ◦C)–(− 8 
◦C) 

Cc1 
Dd1 
Bb1 

6 
4 
9 

13–16 150 9,7,5,3 (− 5 ◦C)–(0 ◦C) 
(− 13 ◦C)–(− 8 
◦C) 
(1 ◦C)–(5 ◦C) 
(− 20 ◦C)–(− 15 
◦C) 

Cc1 
Bb1 
Dd1 
Aa1 

6 
9 
4 
11 

17–20 180 10,8,6,4 (− 5 ◦C)–(0 ◦C) 
(− 13 ◦C)–(− 8 
◦C) 
(1 ◦C)–(5 ◦C) 
(− 20 ◦C)–(− 15 
◦C) 

Cc1 
Bb1 
Dd1 
Aa1 

6 
9 
4 
11  

1 http://neo.lcc.uma.es/vrp/vrp-instances/multiple-depot-vrp-with-time-win 
dows-instances/ 
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150 representative customers (i.e., C1, C2, …, C150) as illustrated in 
Fig. 8. Ten types of fresh products are distributed in four temperature 
control ranges. Each temperature control range has 2–3 types of fresh 
products. The correspondence of each type of fresh products with the 
temperature control range is given in Table 11. For example, fresh 
product types Aa1 and Aa2 require a temperature control range of (− 20 
◦C)–(− 15 ◦C). 

The initial customer assignment to each FDC and the temperature 
control ranges required by each FDC are shown in Table 12. Additional 
information includes customer service time windows, customer de
mands, fresh product prices, temperature control ranges, fresh product 

Table 10 
Comparison of algorithm performance.  

Instance TS-NSGA-II MOPSO HGA-TS 

Cost Loss of 
value 

No. of 
vehicles 

Time (s) Cost Loss of 
value 

No. of 
vehicles 

Time (s) Cost Loss of 
value 

No. of 
vehicles 

Time 
(s) 

1 2013 389 13 172 1979 409 13 175 2223 462 15 167 
2 1971 395 12 164 2002 421 13 162 2336 477 14 160 
3 1995 392 12 160 2068 433 12 160 2385 481 13 156 
4 2140 408 12 156 2152 445 12 153 2416 495 12 149 
5 2252 469 16 182 2491 489 17 185 2563 533 18 178 
6 2281 485 15 176 2514 502 16 182 2653 551 17 167 
7 2305 490 15 178 2493 496 15 177 2679 560 16 161 
8 2395 504 14 171 2579 524 15 165 2721 579 14 154 
9 2588 577 18 192 2616 595 18 193 2853 640 20 185 
10 2694 590 18 186 2632 597 18 189 2915 651 19 181 
11 2612 581 17 190 2701 617 17 191 2950 679 18 176 
12 2761 627 16 175 2852 658 16 172 3042 702 17 163 
13 3011 651 22 202 3356 692 23 203 3352 794 23 195 
14 3029 664 21 192 3299 681 22 201 3389 813 22 187 
15 3135 676 22 180 3495 704 21 182 3442 829 21 179 
16 3197 682 20 170 3508 726 20 173 3511 864 20 174 
17 3578 711 26 219 3715 792 27 220 3965 901 28 209 
18 3599 723 25 203 3827 845 26 208 4062 939 26 201 
19 3653 736 26 199 3899 861 26 201 4114 976 26 189 
20 3710 752 25 190 4009 925 25 193 4130 981 25 178 
Average 2746 575 18 183 2909 621 19 184 3085 695 19 175 
t-test − 5.98 − 4.77 – − 1.94 − 23.02 − 9.17 – 6.53     
p-value 3.8E− 06 5.8E− 05 – 3.3E− 02 3.6E− 16 6.6E− 09 – 1.1E− 06      

Fig. 8. Geographical distribution of customers and FDCs.  

Table 11 
Different product types under the four temperature control ranges.  

Temperature control 
range 

(− 20 ◦C)– 
(− 15 ◦C) 

(− 13 ◦C)– 
(− 8 ◦C) 

(− 5 ◦C)– 
(0 ◦C) 

(1 ◦C)–(5 
◦C) 

Fresh product type Aa1, Aa2 Bb1, Bb2, 
Bb3 

Cc1, Cc2, 
Cc3 

Dd1, Dd2  
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types, and FDCs’ service time windows, which can be found in Tables A1 
and A2 in Appendix A. Prior to optimization, the service coverage areas 
of the FDCs intersect with each other. Customers are assigned to FDCs 
without considering their geographical locations, increasing the loss of 
value of perished fresh products, transportation costs, and thus the total 
logistics operational costs. Therefore, effective collaborative mechanism 
and rational resource configuration are studied in this case to optimize 
vehicle routing/scheduling and the temperature control ranges of fresh 
products by solving the CMCVRP-RSTC. 

5.3. Parameter setting and optimization results 

The goal of CMFLDN optimization is to find the routing solution with 
the lowest total cost and number of refrigerated vehicles. The parameter 
values in the optimization model and the TS-NSGA-II initialization are 
determined based on existing research (Govindan et al., 2014; Wang 
et al., 2015) and are set as follows: σq = 4.4, σc = 3.4, fvw = 3.2, fkw =

6.6, Qv = 1800, Qk = 200. When persuading FDCs to collaborate, the 
following incentives offered by the LSP: γ1 = 0.1; γ2 = 0.09; γ3 = 0.1; 

Ta
bl

e 
12

 
Co

rr
es

po
nd

en
ce

 a
m

on
g 

fa
ci

lit
ie

s,
 c

us
to

m
er

s,
 a

nd
 te

m
pe

ra
tu

re
 c

on
tr

ol
 r

an
ge

s.
  

Fa
ci

lit
y 

FD
C1

 
FD

C2
 

FD
C3

 
FD

C4
 

FD
C5

 

Cu
st

om
er

 
C1

C2
C3

C4
C5

C 
6C

7C
8C

9C
10

C1
 

1C
12

C1
3C

14
C1

5C
1 

6C
17

C1
8C

19
C2

0C
2 

1C
22

C2
3C

24
C2

5C
26

C2
7C

28
 

C2
9C

30
C3

1C
32

 
C3

3C
34

C3
5C

36
C 

37
C3

8C
39

C4
0C

4 
1C

42
C4

3C
44

C4
5C

4 
6C

47
C4

8C
49

C5
0C

51
 

C5
2C

53
C5

4C
55

C5
6C

 
57

C5
8C

59
C6

0 
C6

1C
62

C6
3 

C9
6C

97
C9

8C
99

C 
10

0C
10

1C
10

2C
10

3C
 

10
4C

10
5C

10
6C

10
7C

10
8C

 
10

9C
11

0C
11

1C
11

2 
C1

13
C1

14
C1

15
C1

16
C1

17
 

C1
18

C1
19

C1
20

C1
21

C1
22

C1
23

 

C6
4C

65
C6

6C
67

C6
8C

69
C7

0C
71

 
C7

2C
73

C7
4C

75
C7

6C
77

C7
8C

79
 

C8
0C

81
C8

2C
83

C8
4C

85
C8

6C
87

 
C8

8C
89

C9
0C

91
C9

2C
93

C9
4C

95
 

C1
24

C1
25

C1
26

C1
27

C1
28

C1
29

 
C1

30
C1

31
C1

32
C1

33
C1

34
C1

35
 

C1
36

C1
37

C1
38

C1
39

C1
40

C1
41

 
C1

42
C1

43
C1

44
C1

45
C1

46
C1

47
 

C1
48

C1
49

C1
50

 

Te
m

pe
ra

tu
re

 c
on

tr
ol

 r
an

ge
 

(−
5 

◦
C)

–(
0 

◦
C)

 
(1

 ◦
C)

–(
5 

◦
C)

 
(−

5 
◦
C)

–(
0 

◦
C)

 
(−

13
 ◦

C)
–(
−

8 
◦
C)

 
(−

20
 ◦

C)
–(
−

15
 ◦

C)
 

(−
5 

◦
C)

–(
0 

◦
C)

 
(−

13
 ◦

C)
–(
−

8 
◦
C)

 
(1

 ◦
C)

–(
5 

◦
C)

 
(−

20
 ◦

C)
–(
−

15
 ◦

C)
 

(−
13

 ◦
C)

–(
−

8 
◦
C)

  

Table 13 
Comparison between initial and optimized networks for each coalition scenario.  

Coalitions Initial network Optimized network 

Total 
cost 

No. of 
vehicles 

Value 
loss 

Total 
cost 

No. of 
vehicles 

Value 
loss 

{DC1} 1019 5 172 917 5 164 
{DC2} 891 6 141 811 6 133 
{DC3} 1175 5 191 1058 5 183 
{DC4} 1098 5 180 999 5 175 
{DC5} 979 4 149 871 4 140 
{DC1, DC4} 2117 10 352 1542 9 198 
{DC1, DC5} 1998 9 321 1388 9 173 
{DC2, DC4} 1989 11 321 1554 10 191 
{DC2, DC5} 1870 10 290 1325 9 169 
{DC3, DC4} 2273 10 371 1736 10 190 
{DC3, DC5} 2154 9 340 1567 9 175 
{DC1, DC2} 1910 11 313 1342 9 166 
{DC1, DC3} 2194 10 363 1783 9 199 
{DC2, DC3} 2066 11 332 1552 9 164 
{DC4, DC5} 2077 9 329 1624 9 170 
{DC1, DC2, 

DC4} 
3008 16 493 2268 15 255 

{DC1, DC2, 
DC5} 

2889 15 462 2128 13 244 

{DC1, DC3, 
DC4} 

3292 15 543 2281 14 258 

{DC1, DC3, 
DC5} 

3173 14 512 2360 14 252 

{DC2, DC3, 
DC4} 

3164 14 517 2312 15 243 

{DC2, DC3, 
DC5} 

3045 15 481 2260 13 237 

{DC1, DC4, 
DC5} 

3096 14 501 2118 13 251 

{DC2, DC4, 
DC5} 

2968 15 470 2148 14 246 

{DC3, DC4, 
DC5} 

3252 14 520 2083 13 254 

{DC1, DC2, 
DC3} 

3085 16 504 2171 15 257 

{DC1, DC2, 
DC4, DC5} 

3987 20 642 2570 18 283 

{DC1, DC3, 
DC4, DC5} 

4271 19 692 2735 18 305 

{DC2, DC3, 
DC4, DC5} 

4143 20 661 2650 18 290 

{DC1, DC2, 
DC3,DC4} 

4183 21 684 2827 19 311 

{DC1,DC2, 
DC3,DC5} 

4064 20 653 2685 17 302 

{DC1,DC2, 
DC3,DC4, 
DC5} 

5162 25 833 3030 23 363  
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γ4 = 0.09; γ5 = 0.11. Regarding the algorithm parameters, many tests 
have been performed for TS-NSGA-II to calibrate the population size 
(popsize), the maximum number of iterations (genmax), the crossover 
probability (pc) and the mutation probability (pm). The calibrated pa
rameters are as follows: popsize = 150, genmax = 300, Ps = 0.9, Pc =

0.8, Pm = 0.1. Let N = {FDC1, FDC2, FDC3, FDC4, FDC5} denote that 
each subset within S is a subset of N and represent a type of coalition. 

Assuming all facilities agree to collaborate, a total of (25–1) coalition 
scenarios exist, excluding the null one. Note that A coalition can have a 
single participant. The optimization results for each coalition scenario 
are summarized in Table 13 and illustrated in Fig. 9. 

In all scenarios, we observe a significant reduction in total cost and 
the number of vehicles when the network is optimized. For example, the 
grand coalition reduces the total cost from $5162 to $3030. In reality, 
this reduction in total cost must be distributed reasonably among lo
gistics facilities, meaning that each participating logistics facility can 
benefit from the coalition. 

The four types of costs – transportation cost (TC1), temperature 
control costs (TC2), penalty cost (TC3), and value losses (TC4), and the 
total cost (TC) for each facility are listed in Table 14. TC1 and TC3 in 

Table 14 are the costs for each facility when a grand coalition {DC1, 
DC2, DC3, DC4, DC5} is formed and the CMFLDN is optimized, resulting 
in a total cost for all facilities of $3030. TC2 and TC4 in each facility vary 
by product type and temperature control range, and are thus further 
decomposed. For instance, DC1 distributes five types of fresh product (i. 
e., Cc1, Cc2, Cc3, Dd1 and Dd2), which belong to two temperature 
control ranges in the grand coalition. TC2 and TC4 of fresh products Cc1 
are $31 and $10, respectively. TC1, TC3, and the total cost at DC1 are 
$202, $71 and $486, respectively. 

5.4. Sensitivity analysis based on different temperatures 

With everything else being equal, changes in the controlled tem
perature within the temperature control range will lead to opposite 
changes in TCC (TC2) and VL (TC4). Thus, we must balance TC2 and TC4 
and find the equilibrium temperature that leads to the minimum sum of 
TC2 and TC4. Fresh products Aa1, Bb1, Cc1 and Dd1 with four temper
ature control ranges (− 20 ◦C)–(− 15 ◦C), (− 13 ◦C)–(− 8 ◦C), (− 5 ◦C)–(0 
◦C), and (1 ◦C)–(5 ◦C), respectively are selected for analysis. Eqs. (32) 
and (34) are respectively applied to calculate gmw and COP, and thus TC2 

Fig. 9. Comparison between initial and optimized cost and number of vehicles.  

Table 14 
Decomposed costs for DC1, DC2, DC3, DC4 and DC5 in the grand coalition after CMFLDN optimization.  

Facility TC2 and TC4 of all fresh product types TC1 TC3 TLOC ($) 

Cc1 ($) Cc2 ($) Cc3 ($) Dd1 ($) Dd2 ($) 

DC1 TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 202 71 486 
31 10 28 13 34 16 27 10 29 15     

DC2 Bb1 ($) Bb2 ($) Bb3 ($) Cc1 ($) Cc2 ($) Cc3 ($)    
TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 388 153 807 
41 21 29 14 20 12 34 19 25 11 26 14     

DC3 Aa1 ($) Aa2 ($) Cc1 ($) Cc2 ($) Cc3 ($)    
TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 258 122 635 
42 15 45 22 32 14 31 13 29 12     

DC4 Bb1 ($) Bb2 ($) Bb3 ($) Dd1 ($) Dd2 ($)    
TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 214 94 512 
44 19 23 10 13 7 35 15 26 12     

DC5 Aa1 ($) Aa2 ($) Bb1 ($) Bb2 ($) Bb3 ($)    
TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 TC2 TC4 245 141 590 
40 21 48 25 24 12 13 6 10 5     

Y. Wang et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 165 (2021) 113838

15

and TC4 at different temperatures. The controlled temperature of the 
refrigerated vehicle is set to vary in the corresponding temperature 
control ranges, and the variations of TC2 and TC4 are shown in Fig. 10. 

Fig. 10(a) indicates that low temperature leads to low TC4 but high 
TC2, while high temperature leads to high TC4 but low TC2. As any 
temperature within the temperature control range can satisfy the con
sumer’s demand for product freshness, an optimal control temperature 
for product Cc1 exists. The same is true for fresh products Dd1, Bb1, and 
Aa1 as shown in Fig. 10(b)–(d), respectively. The relationship between 
TC2 and TC4 for each fresh product is illustrated in Fig. 11. 

In each sub-figure of Fig. 11, point B is optimal based on the Pareto- 
optimal principle (Tang et al., 2013; Pires et al., 2019). None of the 
remaining points (e.g., A or C) can satisfy the Pareto optimality. In 
Fig. 11(a), for example, − 3◦C is the best controlled temperature for 
distributing fresh product Cc1 at TCR (− 5 ◦C)–(0 ◦C). Moreover, 
different scenarios that consider different controlled temperatures and 
whether facilities collaboration are explored for each TCR, and the 
comparison of the number of vehicles, number of time window viola
tions, total delivery time, TCC, VL, and TLOC among these scenarios is 
summarized in Table 15. 

Significant reductions in TCC, TLOC, and number of time window 
violations are observed in Table 15, when collaboration and the optimal 
controlled temperature are adopted. For example, the TLOC, TCC, and 
VL for fresh products Cc1, Cc2, and Cc3 with a controlled temperature of 
− 5◦C decrease to $1202, $353, and $185 from $1628, $502, and $211, 
respectively, when the FLDN changes from non-collaborative to 
collaborative network. In the collaborative network, the three costs can 
be further reduced to $1032, $270, and $122 from $1202, $353, and 
$185, respectively when optimal controlled temperatures (− 3 ◦C, − 1◦C, 

and − 2 ◦C for fresh products Cc1, Cc2, and Cc3, respectively) are 
adopted. The results demonstrate that reasonable temperature control 
design and the collaborative mechanism play an important role in 
reducing the total logistics operational cost and loss of product values. 

5.5. Analysis and discussion 

5.5.1. Comparison of different profit allocation methods 
Game -theory-based methods are commonly used to allocate profit 

among participants (Wang et al., 2017b; Fernández et al., 2018). We 
apply the MCRS, the Shapley value model, the cost gap allocation model 
(CGA), and the equal profit method model (EPM) to obtain the optimal 
profit allocation plan in the grand coalition. The profit allocated to each 
of the five DCs affects the stability of the formed coalition. Therefore, the 
profit allocation scheme is optimized to promote long-term stable 
collaboration among logistics facilities. Table 16 shows the profit allo
cation using different allocation schemes. 

According to snowball theory (Frisk et al., 2010; Lozano et al., 2013), 
the proximity of a profit allocation scheme to the core center determines 
the stability of the alliance under the allocation scheme. The scheme 
closest to the core center is the optimal profit allocation scheme and thus 
has the most stable alliance happen. According to Eq. (47), the core 
center is calculated as (368, 343, 408, 436, 449). Table 16 lists the 
resulting profit allocation schemes using the four methods, and the 
distance between each scheme and the core center. Compared with 
those of the other three methods, the result of MCRS is closest to the core 
center. Therefore, MCRS is identified as the best allocation method for 
fairly allocating profit among participants in the grand coalition. 

Fig. 10. Temperature control cost and loss of value of different fresh products.  
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5.5.2. MCRS model application and coalition sequence selection 
In practice, an alliance’s appeal to logistics facilities depends on 

whether the logistics facilities derive profit from the network operation 
as the operation strategies of most logistics companies are financially 
driven. The assumed minimum savings during the whole service time 
period to motivate an LSP to join an alliance is 6% of total cost saved. In 
other words, the coordination requirement is set to χ = 0.06. Combining 
the aforementioned model and the optimization algorithm, the cost 
saving for a LSP is calculated as the gap between the total costs in the 
initial and optimized networks. Table 17 summarizes the profit alloca
tion results for all non-empty coalitions using the MCRS model. 

When DC1, DC2, DC3, DC4, and DC5 operate independently within 
one service time period, they can earn $96, $75, $110, $93, and $101, 
respectively. In the grand coalition, their profits increase to $372, $340, 
$418, $429 and $445. The result indicates that a grand alliance not only 
increases the total profit, but also benefits each alliance participant. In 
this paper, we assume that logistics facilities DC3 and DC4 are tied 
together regardless of the alliance is formed. The cost reduction per
centages for all possible coalition formation sequences are shown in 
Fig. 12. 

The stability of the grand alliance is studied by looking at whether 
existing alliance members can continuously benefit from new members 
joining the alliance. The benefit for a DC is measured by the cost 
reduction percentage calculated using Eq. (46) when a new member 
joins the alliance. In Fig. 12, the same final may have different coalition 
sequences, and the order in which each participant joins the coalition 

affects the profit allocation and the coalition stability, thus affecting the 
long-term willingness of DCs to collaborate. We compare the optimal 
coalition sequences starting from DC1, DC2, DC3, and DC4 based on the 
SMP rule. The resulting cost reduction percentages for the DCs in each 
optimal coalition sequence are shown in Table 18. 

The four coalition sequences satisfy the SMP shown in Table 18. 
Whenever a new logistics facility joins the alliance, the cost reduction 
percentages for existing members increase. The diagonal values of each 
table suggest that the best coalition sequence is ω = {DC3, DC4, DC1, 
DC5, DC2}. The resulting best collaboration strategy is as follows. The 
cost for DC3 is reduced by 9.4% when it joins the coalition as the first 
member; DC4 subsequently joins the alliance, making the costs for DC3 
and DC4 reduced by 22.0% and 22.4%, respectively; DC1 then enters the 
coalition, and DC3, DC4, and DC1 achieve cost reduction percentages of 
31.1%, 28.0%, and 27.1%; DC5 participates as the fourth member and 
increases cost reductions to 32.6%, 34.4%, 31.6%, and 36.9%; and 
eventually, with the participation of DC2, the grand coalition is estab
lished. At this time, the costs for the five DCs are reduced by 35.6%, 
39.1%, 36.5%, 45.5%, and 38.2%. This collaboration strategy ensures 
that every DC continuously benefits from collaboration, and thus 
prompts a strong willingness for each DC to collaborate with each other. 

5.6. Management insights 

The collaborative mechanism discussed above can effectively moti
vate multiple fresh logistics to join the collaborative alliance, and thus 

Fig. 11. Relationship between temperature control cost and loss of value for fresh products Cc1, Dd1, Bb1, and Aa1.  
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lead to resource sharing and a reasonable temperature control design 
among fresh logistics facilities. This benefits the logistics network and 
the society from three aspects. First, it reduces the operational cost for 
not only the entire network, but also each logistics facility. Second, it 
decreases the value loss of perishable fresh products and thus improves 
customer satisfaction. Third, it reduces emissions from fresh logistics 
operation and leads to a more sustainable logistics. The management 
insights presented in this paper are summarized as follows. 

Resource sharing in fresh product distribution can effectively avoid the 
overlapping of delivery routes of long-distance transportation, and thus 
improve resource utilization in the CMFLDN. Resource sharing enables the 
reallocation of limited resources based on customer demand character
istics, improving service synchronization and allowing logistics facilities 
to serve customers efficiently in the distribution of fresh products. In 
non-collaborative FLDNs, long-distance transportation, overlapping 

delivery routes and empty truck backhaul resulting from the indepen
dent operation of logistics facilities leads to high TCC and VL in the fresh 
product distribution process. These problems can be solved by the 
rationalized allocation of limited resources among multiple FDCs and 
the reasonable division of time periods in a collaborative logistics 
network. Reduced transportation and temperature control costs also 
promote the sustainable development of urban fresh logistics. 

An optimal temperature control design method can effectively reduce the 
value loss of fresh products, and multi-center collaboration can improve the 
operation efficiency of FLDNs. Different fresh products have different 
perishability and thus different temperature control and timeliness re
quirements. The freshness of fresh products, their value losses and thus 
the reliability of fresh products distribution service can be significantly 
improved by assigning each fresh product to a desired temperature 
control condition. This assignment is optimally implemented under 
resource sharing among multiple centers, which reduces the separate 
operation cost of FLDNs on temperature control and improves the sta
bility and reliability of collaborative alliances. Therefore, an optimal 
temperature control design and a multicenter collaborative mechanism 
serve as the basis of a collaborative FLDN. 

The government and enterprises should leverage emerging technologies to 
promote collaboration and facilitate the sustainable development of the fresh 
logistics industry. The government and logistics enterprises should 
continually optimize the layout of existing fresh logistics infrastructures, 

Table 15 
Comparison of different temperature control ranges.  

Temperature control range Scenario No. of refrigerated 
vehicles 

No. of time 
window 
violations 

Total delivery 
time (min) 

TCC 
($) 

VL 
($) 

TLOC 
($) 

Temperature control range 
(− 5◦C)–(0 ◦C) 

Non-collaborative network for fresh products Cc1, Cc2, 
and Cc3 with − 5◦C, − 5◦C, and − 5◦C, respectively 

7 7 82 502 211 1628 

Non-collaborative network for fresh products Cc1, Cc2, 
and Cc3 with 0 ◦C, 0 ◦C and 0 ◦C, respectively 

7 7 81 439 265 1611 

Collaborative network for fresh products Cc1, Cc2, and 
Cc3 with − 5◦C, − 5◦C, and − 5◦C, respectively 

7 2 66 353 185 1202 

Collaborative network for fresh products Cc1, Cc2, and 
Cc3 with 0 ◦C, 0 ◦C, and 0 ◦C, respectively 

6 2 65 244 201 1129 

Collaborative network for fresh products Cc1, Cc2, and 
Cc3 with − 3◦C, − 1◦C, and − 2◦C, respectively 

6 2 62 270 122 1032  

Temperature control range 
(1 ◦C)–(5 ◦C) 

Non-collaborative network for fresh products Dd1 and 
Dd2 with 1 ◦C and 1 ◦C, respectively 

6 8 69 391 118 1043 

Non-collaborative network for fresh products Dd1 and 
Dd2 with 5 ◦C and 5 ◦C, respectively 

5 8 69 340 165 1004 

Collaborative network for fresh products Dd1 and Dd2 
with 1 ◦C and 1 ◦C, respectively 

5 3 55 125 48 511 

Collaborative network for fresh products Dd1 and Dd2 
with 5 ◦C and 5 ◦C, respectively 

5 3 54 95 77 494 

Collaborative network for fresh products Dd1 and Dd2 
with 2 ◦C and 3 ◦C, respectively 

5 2 52 117 52 455  

Temperature control range 
(− 13 ◦C)–(− 8 ◦C) 

Non-collaborative network for fresh products Bb1 and 
Bb2, and Bb3 with − 13 ◦C, − 13 ◦C, and − 13 ◦C, 
respectively 

6 4 75 416 217 1312 

Non-collaborative network for fresh products Bb1 and 
Bb2, and Bb3 with − 8◦C, − 8◦C, and − 8◦C, respectively 

6 5 77 368 276 1379 

Collaborative network for fresh products Bb1 and Bb2, 
and Bb3 with − 13 ◦C, − 13 ◦C, and − 13 ◦C, respectively 

6 1 59 254 84 901 

Collaborative network for fresh products Bb1 and Bb2, 
and Bb3 with − 8◦C, − 8◦C, and − 8◦C, respectively 

6 1 58 198 142 892 

Collaborative network for fresh products Bb1 and Bb2, 
and Bb3 with − 10 ◦C, − 12 ◦C, and − 9◦C, respectively 

6 1 57 217 106 863  

Temperature control range 
(− 20 ◦C)–(− 15 ◦C) 

Non-collaborative network for fresh products Aa1 and 
Aa2 with − 20 ◦C and − 20 ◦C, respectively 

7 5 64 428 186 1235 

Non-collaborative network for fresh products Aa1 and 
Aa2 with − 15 ◦C and − 15 ◦C, respectively 

7 6 62 370 241 1289 

Collaborative network for fresh products Aa1 and Aa2 
with − 20 ◦C and − 20 ◦C, respectively 

6 2 50 229 62 734 

Collaborative network for fresh products Aa1 and Aa2 
with − 15 ◦C and − 15 ◦C, respectively 

6 2 50 153 115 705 

Collaborative network for fresh products Aa1 and Aa2 
with − 17 ◦C and − 16 ◦C, respectively 

6 2 49 175 83 680  

Table 16 
Comparison of profit allocation methods.  

Methods Profit allocation schemes Core center Distance 

Shapley (386, 336, 424, 427, 431) (368, 343, 408, 436, 449) 32 
CGA (348, 307, 419, 455, 475) 53 
MCRS (372, 340, 418, 429, 445) 14 
EPM (405, 317, 464, 392, 426) 87  
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formulate effective collaborative mechanisms and develop incentive 
measures to encourage fresh logistics enterprises to actively collaborate. 
Emerging information technologies such as the internet of things, big 
data, cloud computing, and blockchain bring opportunities to overcome 
obstacles to collaboration, and should be leveraged to encourage logis
tics enterprises to collaborate. 

6. Conclusions 

We study a vehicle routing problem with time windows and tem
perature control constraints in a collaborative FLDN and develop a so
lution algorithm for this optimization problem. First, extended k-means 
clustering is employed to reduce the computational complexity, and TS- 
NSGA-II is applied to optimize the CMFLDN composed of multiple FDCs 
and many customers. Then, a profit allocation method based on the 
MCRS model is proposed to allocate the benefits from the collaboration 
among FDCs. Finally, we find the optimal coalition sequence and discuss 
the stability of the alliance. In addition, we conduct temperature 
sensitivity analysis based on the principle of Pareto optimization. 

The CMCVRP-RSTC is formulated as a bi-objective mixed-integer 
linear programming model to minimize the cost and number of vehicles 
under the time windows and temperature control constraints. The re
sults of the case study on Chongqing show the comprehensiveness and 
high performance of the proposed solution algorithm. That is, the 
optimized CMCVRP-RSTC achieves a cost savings of $2004. Meanwhile, 
the LSP plays an important role in facilitating the collaboration among 
FDCs. We explore profit allocation as a mechanism to motivate FDCs to 
collaborate. MCRS is selected to allocate profit over CGA, Shapley, and 
EPM. Alliance sequences and the profit allocation scheme affect the 
stability of a collaboration alliance. Finally, the best coalition sequence 
ω = {DC3, DC4, DC1, DC5, DC2}, with respective allocated profits of 
$372, $340, $418, $429, and $445 from the SMP rule is the most stable 
mechanism for the grand coalition. 

The sensitivity analysis of controlled temperature indicates that the 

Table 17 
Profit allocation results in collaborative FLDN.  

S 
∑

n∈SC0(n) C(S) v+(S) φ(S, v+)

{DC1} 1019 917 96 (96; ▪; ▪; ▪; ▪) 
{DC2} 891 811 75 (▪; 75; ▪; ▪; ▪) 
{DC3} 1175 1058 110 (▪; ▪; 110; ▪; ▪) 
{DC4} 1098 999 93 (▪; ▪; ▪; 93; ▪) 
{DC5} 979 871 101 (▪; ▪; ▪; ▪; 101) 
{DC1, DC4} 2117 1542 541 (278; ▪; ▪; 263; ▪) 
{DC1, DC5} 1998 1388 573 (284; ▪; ▪; ▪; 289) 
{DC2, DC4} 1989 1554 409 (▪; 198; ▪; 211; ▪) 
{DC2, DC5} 1870 1325 512 (▪; 240; ▪; ▪; 272) 
{DC3, DC4} 2273 1736 505 (▪; ▪; 259; 246; ▪) 
{DC3, DC5} 2154 1567 552 (▪; ▪; 272; ▪; 280) 
{DC1, DC2} 1910 1342 534 (281; 253; ▪; ▪; ▪) 
{DC1, DC3} 2194 1783 386 (190; ▪; 196; ▪; ▪) 
{DC2, DC3} 2066 1552 483 (▪; 229; 254; ▪; ▪) 
{DC4, DC5} 2077 1624 426 (▪; ▪; ▪; 205; 221) 
{DC1, DC2, DC4} 3008 2268 696 (231; 211; ▪; 253; ▪) 
{DC1, DC2, DC5} 2889 2128 715 (233; 212; ▪; ▪; 271) 
{DC1, DC3, DC4} 3292 2281 950 (277; ▪; 366; 307; ▪) 
{DC1, DC3, DC5} 3173 2360 764 (221; ▪; 287; ▪; 256) 
{DC2, DC3, DC4} 3164 2312 801 (▪; 220; 316; 265; ▪) 
{DC2, DC3, DC5} 3045 2260 738 (▪; 199; 285; ▪; 254) 
{DC1, DC4, DC5} 3096 2118 919 (280; ▪; ▪; 311; 329) 
{DC2, DC4, DC5} 2968 2148 771 (▪; 222; ▪; 266; 283) 
{DC3, DC4, DC5} 3252 2083 1099 (▪; ▪; 403; 338; 358) 
{DC1, DC2, DC3} 3085 2171 859 (265; 244; 350; ▪; ▪) 
{DC1, DC2, DC4, DC5} 3987 2570 1332 (316; 291; ▪; 370; 354) 
{DC1, DC3, DC4, DC5} 4271 2735 1444 (322; ▪; 384; 378; 361) 
{DC2, DC3, DC4, DC5} 4143 2650 1403 (▪; 294; 379; 373; 357) 
{DC1, DC2, DC3, DC4} 4183 2827 1275 (298; 274; 355; 348; ▪) 
{DC1, DC2, DC3, DC5} 4064 2685 1296 (306; 282; 365; ▪; 343) 
{DC1, DC2, DC3, DC4, 

DC5} 
5162 3030 2004 (372; 340; 418; 429; 

445)  

Fig. 12. Cost reduction percentages for all alliances.  
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TCC and VL of fresh products have a trade-off relationship. Sensitivity 
analysis highlights that environmental conditions must be considered 
when optimizing controlled temperature and evaluating all kinds of 
cost. Using the Pareto optimization method (Tang et al., 2013; Pires 
et al., 2019), we obtain the optimal controlled temperatures for fresh 
products Cc1, Dd1, Bb1, and Aa1 are − 3 ◦C, 2 ◦C, − 10 ◦C, and − 17 ◦C, 
respectively. The optimal controlled temperatures and effective collab
oration are identified to be two critical factors affecting cost savings and 
the ability to meet freshness requirements for LSPs. 

Compared with the existing research on optimizing multi-center 
FLDNs, our proposed approach has the following theoretical contribu
tions. (1) Resource sharing and temperature control are both incorpo
rated in a CMFLDN to obtain systematic optimization schemes. (2) A 
hybrid heuristic algorithm and a profit allocation method based on 
cooperative game theory are integrated into the CMCVRP-RSTC, opti
mizing vehicle scheduling, the control temperatures of various fresh 
products, and the profit allocations among FDCs. (3) A collaborative 
mechanism that facilities the fair allocation of profits, stabilizes the 
collaborations, and ensures the reliability of the optimized CMFLDN is 
designed and tested. Therefore, studying the CMCVRP-RSTC can 
improve the efficiency and robustness of FLDNs, providing theoretical 
support for managing the operation of collaborative multi-echelon 
multiple-center fresh FLDNs, and propelling the sustainable develop
ment of the food supply chain and the construction of intelligent urban 
cold chain logistics distribution systems. 

Future research can follow several directions. (1) An interesting topic 
is to consider the CMFLDN optimization problem with service time 
window assignment. (2) On the basis of combining the sharing of 
transportation vehicles and storage facilities, state–space–time 

distribution network problems are also worth studying. (3) The inte
gration of the pickup and delivery of fresh products in multi-service time 
periods is another prospective direction for future research. (4) The 
environmental impact of collaboration can be considered in model 
construction, which is a potential research direction for CMFLDNs. 
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Appendix A  

Table A1 
Basic information of customers’ fresh product demands.  

Customer Time window Demand Product 
type 

Product 
price 

Temperature 
control range 

Customer Time window Demand Product 
type 

Product 
price 

Temperature 
control range 

C1 [300 360] 18 Dd1 4 (1 ◦C)–(5 ◦C) C76 [300 360] 25 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C2 [300 360] 16 Cc1 4 (− 5 ◦C)–(0 ◦C) C77 [300 360] 37 Dd1 4 (1 ◦C)–(5 ◦C) 
C3 [300 360] 24 Dd1 4 (1 ◦C)–(5 ◦C) C78 [200 500] 30 Dd1 4 (1 ◦C)–(5 ◦C) 

(continued on next page) 

Table 18 
Best sequential coalitions starting from D1 D2, D3, and D4 for SMP-based grand coalition.  

ω1 = {DC1, DC3, DC4, DC5, DC2}  ω2 = {DC3, DC4, DC1, DC5, DC2}  

Player n DC1 DC3 DC4 DC5 DC2 Player n DC3 DC4 DC1 DC5 DC2 

η(n,ω,1) 9.4%     η(n,ω,1) 9.4%     
η(n,ω,2) 18.6% 16.7%    η(n,ω,2) 22.0% 22.4%    
η(n,ω,3) 27.1% 31.1% 28.0%   η(n,ω,3) 31.1% 28.0% 27.1%   
η(n,ω,4) 31.6% 32.6% 34.4% 36.9%  η(n,ω,4) 32.6% 34.4% 31.6% 36.9%  
η(n,ω,5) 36.5% 35.6% 39.1% 45.5% 38.2% η(n,ω,5) 35.6% 39.1% 36.5% 45.5% 38.2%  

ω3= {DC2, DC4, DC3, DC5, DC1}  ω4 = {DC4, DC3, DC1, DC5, DC2}  

Player n DC2 DC4 DC3 DC5 DC1 Player n DC4 DC3 DC1 DC5 DC2 

η(n,ω,1) 8.4%     η(n,ω,1) 8.5%     
η(n,ω,2) 22.2% 19.2%    η(n,ω,2) 22.4% 22.0%    
η(n,ω,3) 24.8% 24.1% 26.9%   η(n,ω,3) 28.0% 31.1% 27.1%   
η(n,ω,4) 32.9% 34.1% 32.3% 36.5%  η(n,ω,4) 34.4% 32.6% 31.6% 36.9%  
η(n,ω,5) 38.2% 39.1% 35.6% 45.5% 36.5% η(n,ω,5) 39.1% 35.6% 36.5% 45.5% 38.2%  
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Table A1 (continued ) 

Customer Time window Demand Product 
type 

Product 
price 

Temperature 
control range 

Customer Time window Demand Product 
type 

Product 
price 

Temperature 
control range 

C4 [300 360] 39 Dd1 4 (1 ◦C)–(5 ◦C) C79 [200 500] 25 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C5 [300 360] 38 Cc1 4 (− 5 ◦C)–(0 ◦C) C80 [200 500] 22 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C6 [300 360] 29 Cc1 4 (− 5 ◦C)–(0 ◦C) C81 [200 340] 38 Bb3 8 (− 13 ◦C)–(− 8 
◦C) 

C7 [300 360] 39 Cc2 5 (− 5 ◦C)–(0 ◦C) C82 [200 500] 18 Dd1 4 (1 ◦C)–(5 ◦C) 
C8 [200 500] 39 Cc1 4 (− 5 ◦C)–(0 ◦C) C83 [200 500] 11 Dd2 5 (1 ◦C)–(5 ◦C) 
C9 [200 500] 15 Cc3 7 (− 5 ◦C)–(0 ◦C) C84 [300 360] 33 Bb1 10 (− 13 ◦C)–(− 8 

◦C) 
C10 [200 500] 34 Dd2 5 (1 ◦C)–(5 ◦C) C85 [200 500] 24 Bb2 9 (− 13 ◦C)–(− 8 

◦C) 
C11 [200 500] 29 Cc1 4 (− 5 ◦C)–(0 ◦C) C86 [300 360] 18 Bb3 8 (− 13 ◦C)–(− 8 

◦C) 
C12 [200 500] 31 Dd1 4 (1 ◦C)–(5 ◦C) C87 [300 360] 26 Dd1 4 (1 ◦C)–(5 ◦C) 
C13 [200 500] 40 Cc2 5 (− 5 ◦C)–(0 ◦C) C88 [300 360] 14 Dd1 4 (1 ◦C)–(5 ◦C) 
C14 [200 500] 35 Cc3 7 (− 5 ◦C)–(0 ◦C) C89 [200 500] 21 Dd1 4 (1 ◦C)–(5 ◦C) 
C15 [200 500] 36 Dd2 5 (1 ◦C)–(5 ◦C) C90 [200 350] 15 Bb2 9 (− 13 ◦C)–(− 8 

◦C) 
C16 [300 360] 35 Cc3 7 (− 5 ◦C)–(0 ◦C) C91 [200 500] 36 Dd1 4 (1 ◦C)–(5 ◦C) 
C17 [200 500] 40 Dd2 5 (1 ◦C)–(5 ◦C) C92 [200 500] 34 Bb1 10 (− 13 ◦C)–(− 8 

◦C) 
C18 [300 360] 36 Cc3 7 (− 5 ◦C)–(0 ◦C) C93 [200 500] 13 Dd1 4 (1 ◦C)–(5 ◦C) 
C19 [300 360] 19 Dd2 5 (1 ◦C)–(5 ◦C) C94 [200 500] 28 Bb2 9 (− 13 ◦C)–(− 8 

◦C) 
C20 [300 360] 37 Dd2 5 (1 ◦C)–(5 ◦C) C95 [300 360] 31 Dd2 5 (1 ◦C)–(5 ◦C) 
C21 [300 460] 37 Cc3 7 (− 5 ◦C)–(0 ◦C) C96 [320 600] 17 Cc1 4 (− 5 ◦C)–(0 ◦C) 
C22 [200 500] 16 Cc3 7 (− 5 ◦C)–(0 ◦C) C97 [340 600] 35 Cc1 4 (− 5 ◦C)–(0 ◦C) 
C23 [200 500] 24 Cc1 4 (− 5 ◦C)–(0 ◦C) C98 [300 360] 16 Aa1 10 (− 20 ◦C)–(− 15 

◦C) 
C24 [200 500] 23 Dd2 5 (1 ◦C)–(5 ◦C) C99 [300 360] 30 Cc2 5 (− 5 ◦C)–(0 ◦C) 
C25 [200 500] 35 Dd2 5 (1 ◦C)–(5 ◦C) C100 [300 360] 37 Aa1 10 (− 20 ◦C)–(− 15 

◦C) 
C26 [200 500] 29 Cc2 5 (− 5 ◦C)–(0 ◦C) C101 [300 360] 30 Aa1 10 (− 20 ◦C)–(− 15 

◦C) 
C27 [200 500] 19 Cc2 5 (− 5 ◦C)–(0 ◦C) C102 [300 360] 29 Cc2 5 (− 5 ◦C)–(0 ◦C) 
C28 [200 500] 16 Cc1 4 (− 5 ◦C)–(0 ◦C) C103 [300 360] 15 Aa2 7 (− 20 ◦C)–(− 15 

◦C) 
C29 [200 500] 16 Bb1 10 (− 13 ◦C)–(− 8 

◦C) 
C104 [300 360] 13 Cc2 5 (− 5 ◦C)–(0 ◦C) 

C30 [200 500] 18 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C105 [200 500] 32 Aa1 10 (− 20 ◦C)–(− 15 
◦C) 

C31 [200 500] 31 Cc1 4 (− 5 ◦C)–(0 ◦C) C106 [200 500] 23 Aa2 7 (− 5 ◦C)–(0 ◦C) 
C32 [200 500] 28 Cc1 4 (− 5 ◦C)–(0 ◦C) C107 [200 500] 30 Aa1 10 (− 20 ◦C)–(− 15 

◦C) 
C33 [200 500] 35 Bb1 10 (− 13 ◦C)–(− 8 

◦C) 
C108 [200 500] 37 Cc3 7 (− 5 ◦C)–(0 ◦C) 

C34 [200 500] 20 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C109 [200 500] 39 Cc1 4 (− 5 ◦C)–(0 ◦C) 

C35 [200 500] 13 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C110 [200 500] 20 Cc1 4 (− 5 ◦C)–(0 ◦C) 

C36 [200 500] 33 Bb3 8 (− 13 ◦C)–(− 8 
◦C) 

C111 [200 500] 30 Cc1 4 (− 5 ◦C)–(0 ◦C) 

C37 [200 500] 23 Cc1 4 (− 5 ◦C)–(0 ◦C) C112 [200 500] 37 Aa1 10 (− 20 ◦C)–(− 15 
◦C) 

C38 [200 500] 20 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C113 [310 360] 33 Cc1 4 (− 5 ◦C)–(0 ◦C) 

C39 [200 500] 10 Bb3 8 (− 13 ◦C)–(− 8 
◦C) 

C114 [200 500] 22 Cc1 4 (− 5 ◦C)–(0 ◦C) 

C40 [200 500] 38 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C115 [300 360] 30 Aa2 7 (− 20 ◦C ◦C)– 
(− 15 ◦C) 

C41 [200 500] 26 Bb3 8 (− 13 ◦C)–(− 8 
◦C) 

C116 [300 360] 31 Cc1 4 (− 5 ◦C)–(0 ◦C) 

C42 [200 500] 20 Bb3 8 (− 13 ◦C)–(− 8 
◦C) 

C117 [300 360] 33 Aa2 7 (− 20 ◦C)–(− 15 
◦C) 

C43 [200 500] 30 Cc1 4 (− 5 ◦C)–(0 ◦C) C118 [300 360] 36 Aa1 10 (− 20 ◦C)–(− 15 
◦C) 

C44 [200 500] 25 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C119 [300 360] 28 Cc1 4 (− 5 ◦C)–(0 ◦C) 

C45 [200 500] 26 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C120 [300 360] 29 Aa1 10 (− 20 ◦C)–(− 15 
◦C) 

C46 [200 500] 26 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C121 [300 360] 36 Aa2 7 (− 20 ◦C)–(− 15 
◦C) 

C47 [200 500] 17 Cc2 5 (− 5 ◦C)–(0 ◦C) C122 [300 360] 34 Aa2 7 (− 20 ◦C)–(− 15 
◦C) 

(continued on next page) 
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Table A1 (continued ) 

Customer Time window Demand Product 
type 

Product 
price 

Temperature 
control range 

Customer Time window Demand Product 
type 

Product 
price 

Temperature 
control range 

C48 [200 500] 27 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C123 [300 360] 21 Cc1 4 (− 5 ◦C)–(0 ◦C) 

C49 [360 420] 18 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C124 [200 500] 22 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C50 [300 360] 33 Cc2 5 (− 5 ◦C)–(0 ◦C) C125 [300 360] 12 Aa1 10 (− 20 ◦C)–(− 15 
◦C) 

C51 [300 360] 14 Cc2 5 (− 5 ◦C)–(0 ◦C) C126 [300 360] 11 Aa2 7 (− 20 ◦C)–(− 15 
◦C) 

C52 [200 500] 35 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C127 [300 360] 21 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C53 [200 500] 37 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C128 [310 500] 27 Bb3 8 (− 13 ◦C)–(− 8 
◦C) 

C54 [300 360] 40 Cc2 5 (− 5 ◦C)–(0 ◦C) C129 [320 360] 18 Aa1 10 (− 20 ◦C)–(− 15 
◦C) 

C55 [200 500] 39 Bb3 8 (− 13 ◦C)–(− 8 
◦C) 

C130 [320 500] 28 Aa2 7 (− 20 ◦C)–(− 15 
◦C) 

C56 [300 360] 13 Cc3 7 (− 5 ◦C)–(0 ◦C) C131 [320 500] 31 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C57 [300 360] 20 Cc3 7 (− 5 ◦C)–(0 ◦C) C132 [320 500] 18 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C58 [200 500] 39 Cc3 7 (− 5 ◦C)–(0 ◦C) C133 [320 500] 37 Aa1 10 (− 20 ◦C)–(− 15 
◦C) 

C59 [200 500] 15 Cc1 4 (− 5 ◦C)–(0 ◦C) C134 [320 500] 32 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C60 [200 500] 28 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C135 [290 500] 25 Aa1 10 (− 20 ◦C)–(− 15 
◦C) 

C61 [200 500] 29 Cc1 4 (− 5 ◦C)–(0 ◦C) C136 [290 500] 17 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C62 [200 500] 40 Cc1 4 (− 5 ◦C)–(0 ◦C) C137 [290 500] 13 Aa1 10 (− 20 ◦C)–(− 15 
◦C) 

C63 [300 360] 14 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C138 [290 500] 23 Aa2 7 (− 20 ◦C)–(− 15 
◦C) 

C64 [300 360] 38 Bb3 8 (− 13 ◦C)–(− 8 
◦C) 

C139 [290 500] 31 Aa2 7 (− 20 ◦C)–(− 15 
◦C) 

C65 [200 350] 12 Dd1 4 (1 ◦C)–(5 ◦C) C140 [290 500] 25 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C66 [200 500] 31 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C141 [290 500] 28 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C67 [200 500] 32 Dd2 5 (1 ◦C)–(5 ◦C) C142 [290 500] 26 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C68 [200 350] 15 Dd2 5 (1 ◦C)–(5 ◦C) C143 [290 500] 30 Aa2 7 (− 20 ◦C)–(− 15 
◦C) 

C69 [200 500] 14 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C144 [290 500] 16 Bb3 8 (− 13 ◦C)–(− 8 
◦C) 

C70 [200 500] 39 Dd2 5 (1 ◦C)–(5 ◦C) C145 [290 500] 21 Aa2 7 (− 20 ◦C)–(− 15 
◦C) 

C71 [200 500] 36 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C146 [290 500] 14 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C72 [200 500] 34 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C147 [290 500] 12 Bb2 9 (− 13 ◦C)–(− 8 
◦C) 

C73 [300 360] 18 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C148 [290 500] 29 Aa2 7 (− 20 ◦C)–(− 15 
◦C) 

C74 [200 500] 34 Bb1 10 (− 13 ◦C)–(− 8 
◦C) 

C149 [290 500] 22 Aa1 10 (− 20 ◦C)–(− 15 
◦C) 

C75 [300 360] 40 Dd2 5 (1 ◦C)–(5 ◦C) C150 [290 500] 14 Bb3 8 (− 13 ◦C)–(− 8 
◦C)   

Table A2 
FDCs’ service time windows.  

FDC Time window 

DC1 [300 1000] 
DC2 [300 1000] 
DC3 [300 1000] 
DC4 [300 1000] 
DC5 [300 1000]  
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