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a b s t r a c t 

Emotional human-computer interaction (HCI) has become an important research area in the fields of 

artificial intelligence and cognitive science, owing to the requirement for active emotion perception. To 

enhance the performance of electroencephalography (EEG)-based emotional HCI, this paper proposes an 

improved common spatial pattern combined with a channel-selection strategy (ICSPCS) for EEG-based 

emotion recognition. Specifically, we first use a common spatial pattern algorithm to design a spatial do- 

main filter according to three different emotions (positive, neutral, and negative). The traditional joint ap- 

proximation diagonalization method using the criterion of the “highest score eigenvalue” may be unable 

to solve multiple classifications of emotion representation. Therefore, we design three different eigenvalue 

selection methods in terms of the positions of the eigenvalues with the highest scores. Finally, to make 

the installation easier and reduce the computational load, we also develop a channel-selection strategy 

based on the weight values that individually reflect the degrees of influence of all the channels on emo- 

tion recognition. Experiments are conducted on a self-collected dataset and on the MAHNOB-HCI dataset. 

The average recognition accuracies for the three emotion tasks are found to be 85.85% and 94.13% on 

the self-collected and MAHNOB-HCI datasets, respectively, thus proving the effectiveness of the proposed 

ICSPCS method for emotion recognition. 

© 2020 IPEM. Published by Elsevier Ltd. All rights reserved. 
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1. Introduction 

Human-computer interaction (HCI) refers to the process of in-

formation exchange between a user and a computer, with the

user using a certain “dialogue” language to interact with the

computer to complete certain tasks [1] . Currently, intelligent HCI

systems such as intelligent cars, intelligent voice navigation, intel-

ligent medical equipment, and intelligent homes, are rapidly en-

riching our daily lives [2–4] . Such systems can achieve their cor-

responding functions according to the user commands well. How-

ever, adjusting their interaction mode based on the psychological

state of a user is problematic, owing to poor emotion perception. It

is difficult to realize a true “intelligent interaction”, which severely

restricts the functions and applications of HCI systems. Therefore,
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he development of an HCI system with emotional intelligence has

ecome an important research area in the fields of artificial intel-

igence and cognitive science [5] . 

For the implementation of an emotional HCI system, the

cquisition and recognition of human emotion information is a

ey step. To achieve this objective, researchers have conducted a

eries of studies in recent years. Based on the signal acquisition

echnique, emotion recognition methods can be classified into two

ategories: contact and contact-free. Currently, contact-free meth-

ds are mainly implemented based on human facial expressions

r speech. Among them, a speech-based method perceives the

motional states of a user by extracting emotion-related features,

uch as the tone, energy, and spectrum [6,7] . Similarly, a facial

xpression method is primarily concerned with the emotional

nformation corresponding to the variations in facial features [8,9] .

hese features generally consist of static information (e.g., skin

olor), slowly varying information (e.g., permanent wrinkles), or

apidly varying information (e.g., opening of the mouth or raising

f the eyebrows) with respect to time. Contact-free methods have
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Fig. 1. Generation and detection of multi-channel scalp EEG signals. 
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he advantages of simple signal acquisition and being easy for the

sers. However, when the users attempt to mask their emotion,

he real emotional state may be inconsistent with the external

resentation. In such a case, contact-free methods have difficulty

n obtaining a correct recognition. Owing to the non-deceptiveness

f bioelectrical signals, contact methods have received increasing

ttention for identifying the emotional states of human users

10–12] . In general, the peripheral bioelectrical signals collected

rom the autonomic nervous system refer to those of electrocardio-

ram, blood pressure, skin conductance, body surface temperature,

nd respiration, among other parameters. 

In addition to the aforementioned bioelectrical signals, the sig-

als collected from the central nervous system in the brain have

een proven to provide informative characteristics under differ-

nt emotional states. These signals can be recorded using the

lectroencephalogram (EEG) method, which is a noninvasive brain

ctivity measurement method with a temporal resolution of mil-

iseconds. In recent years, EEG signals have been employed to ana-

yze the procedure of emotion response and to perceive emotional

tates. For instance, Bhardwaj et al. [13] extracted the power spec-

ral density (PSD) and energy features of theta, alpha, and beta fre-

uency bands to recognize seven emotional states. The accuracies

nder the two classifiers were 74.14% and 66.5%, respectively. In

ddition, Zheng et al. [14] used the PSD and differential entropy

DE) features extracted from five frequency bands; the accuracy

f this method was 86.08% for three different emotional states.

adjidimitriou et al. [15] proposed a time-frequency (TF) analysis

nd obtained an average accuracy of 86.52% for two classes. These

ethods mainly focus on a time or time/frequency-domain analy-

is, and ignore the spatial characteristics of the emotions related to

he EEG signals. 

The use of spatial features has already achieved remarkable re-

ults for a motor imagery brain-computer interface. For example,

ang and Hong et al. [16] used event related desynchronization

nd synchronization phenomena generated by the motion imag-

ng of left and right hands and feet, to control a wheelchair move-

ent in three directions. The accuracies for online and offline use

ere 79.48% and 85%, respectively. Allison et al. [17] used the spa-

ial features of a EEG to control the movement of a cursor on a

wo-dimensional (2D) plane effectively. In addition, the application

f spatial features has also achieved excellent results in a saccade

ignal recognition based on electrooculography (EOG) [18] . Moti-

ated by these studies, we expect that spatial characteristics may

rovide more relevant emotion information to distinguish differ-

nt emotional states. In this study, we investigate the feasibility of

motion recognition using the common spatial pattern (CSP) algo-

ithm. Furthermore, to improve the recognition accuracy and de-

rease the computational load, we also design a channel optimiza-

ion strategy. 

The organization of this paper is as follows. Section 2 intro-

uces the generation and collection of EEG signals, emotion ex-

ression model, as well as public emotional dataset. The details of

he methodology are provided in Section 3 . Section 4 presents the

xperimental results and compares the time-frequency domain ap-

roach. Section 5 summarizes the paper and proposes suggestions

or future work. 

. Materials 

.1. EEG Generation 

An EEG signal is an electrophysiological monitoring signal ob-

ained from the cerebral cortex using electrodes placed at differ-

nt points on the skin or scalp of the head. It is transmitted along

he nerve fibers from the sensory organs to the brain, and differ-

nt waves are produced for different activities based on the four
ain parts of the brain: the cerebrum, cerebellum, brain stem, and

halamus [19] . In general, EEG signals are considered to be com-

osed of billions of neurons present in the human brain. When an

motional response is induced, some neurons located in the corre-

ponding perception area are charged by the ions pumping across

he membranes. Consequently, EEG signals can be used to record

he spontaneous electrical activities of the brain between the elec-

rode groups placed on the scalp, thus reflecting different human

motional states from the potential variations in thousands or mil-

ions of neurons. A schematic of the employed generation and de-

ection procedure is shown in Fig. 1 . 

.2. Emotion expression 

In general, the existing emotion expression models can be clas-

ified into two categories: discrete and dimensional. The former

ocuses on the expression of “primary” emotions using certain dis-

rete labels (e.g., joy, fear, or sadness), whereas, “non-primary”

motions can be considered as a mixture of different “primary”

motions [20] . By contrast, the latter is used to characterize

motions within a dimensional space (generally two or three-

imensions). A well-known dimensional model is the arousal-

alence model [21] , in which the valence is defined as the degree

o which the users incorporate unpleasantness or pleasantness into

heir conscious emotional experience, and the arousal dimension

epresents the intensity of user excitement. Considering the conve-

ience of the algorithm estimation and design, we used a discrete

odel to conduct the emotional analysis and recognition. 

.3. Datasets 

In the present study, we used two datasets to evaluate our algo-

ithm: a self-collected dataset and the public emotional MAHNOB-

CI dataset [22] . The MAHNOB-HCI dataset (which uses 24

ubjects aged 19–40) includes EEG and physiological signals, fa-

ial expressions, audio and eye gazes. Nine types of emotions were

xpected to be elicited: fear, anger, sadness, disgust, anxiety, sur-

rise, neutrality, happiness, and amusement. To achieve a quantita-

ive assessment, discrete emotions were mapped to three types of

motional states based on the valence dimension, refer to [23] for

ore specific details. 

.3.1. Stimuli selection 

Regarding the emotional stimuli selection method, Uhrig et al.

24] and Zheng et al. [25] proved that the emotion elicitation from

he stimulus of a movie is more effective than that of either still

mages or audio alone. Moreover, the elements of native culture

e.g., personal identity, family, educations, and values) play an im-

ortant role in emotion elicitation. Therefore, we selected movies

n the native language of a user and their cultural background as

he stimuli. To determine the effectiveness of the emotional movie

lips, we employed a clip optimization selection procedure using
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Fig. 2. Timing scheme of the experiment paradigm. 

Fig. 3. Data acquisition system. The EEG amplifier is connected to the electrode cap worn by the subject, and the SCAN PC is used to collect and display the EEG signals 

synchronously. The STIM PC is employed to control both the stimulation time and the emotional labels, and the stimulating PC is used to display the stimuli-invoking movies. 
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the method proposed in [26] . Specifically, we initially selected a

set of emotional film clips from Chinese movies obtained through

a self-assessment of the subjects. We then divided each emotional

intensity into five levels ranging from levels 1 to 5. Further, we in-

vited volunteers who were not involved in subsequent experiments

to assess the emotional intensities of all the clips, and score them

as levels 1–5. The higher the score, the stronger the emotional in-

tensity. Finally, we selected 36 highest scoring movie clips as the

stimuli for the present study. 

2.3.2. Experimental paradigm design 

To induce emotional EEG signals effectively, we designed an ex-

perimental paradigm based on the time scheme in [27] , as pre-

sented in Fig. 2 . In this paradigm, each trial starts with a short

warning tone (beep) indicating a 5-s preparation time. Subse-

quently, three different of 60-s durations are displayed at random.

The subject is then allowed to rest for 10-s to complete the next

trial better. During the experiment, each subject was asked to sit in

a comfortable chair facing the computer screen and to focus on the

movie clips as they were displayed. Notably, the subjects needed to

keep their bodies maximally still, to avoid the additional interfer-

ence caused by the micro-movements of the electrodes. 

A total of 8 healthy volunteers (3 male and 5 female) aged be-

tween 23 and 26 (mean age of 24.63, with a standard deviation

of 1.06) were involved in the present study, after receiving written

informed consents from them. All the subjects were students from
ur laboratory who have normal or corrected to normal vision and

 normal cognitive ability. Before the experiment, all the subjects

ere informed of the purpose and procedure of the following ex-

eriments. In addition, 32-channel emotional EEG signals were ac-

uired using a SynAmps amplifier (Neuroscan Inc., Herndon, VA)

ith a 16-bit resolution at a sampling rate of 250 Hz. The loca-

ions of the acquisition electrodes were in line with the Interna-

ional 10–20 system [28] . The data acquisition system is displayed

n Fig. 3 . 

. Methods 

The objective of the proposed ICSPCS method was to explore

he feasibility of applying spatial features to EEG-based emotion

ecognition. The procedure includes preprocessing of the raw EEG

ignals, a spatial filter design, channel selection, feature extraction

nd emotional classification. A flow chart of the procedure is illus-

rated in Fig. 4 . 

.1. Data preprocessing 

To suppress the effects of artifacts effectively in EOG, elec-

romyography (EMG), power line interference, and electromagnetic

nterference, we first apply a preprocessing step to the raw EEG

ignals. Specifically, a 50-Hz notch filter is initially set to suppress

he power line interference. Next, considering the distributions of
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Fig. 4. Flow chart of the proposed ICSPCS method. The “data preprocessing” unit is used to acquire and filter the raw 30-channel emotional EEG signals. The “spatial filter 

design” unit is used to implement the spatial filter design based on the joint approximate diagonalization (JAD) algorithm. The “channel selection” unit is employed to select 

the appropriate channel using the proposed channel selection method. The “feature extraction” unit and “emotional classification” units are used to extract the EEG spatial 

features and recognize the emotions, respectively. 
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he effective emotion response frequency bands (the conducted

erification experiment is described in Section 4.1 ), we employ a

inear-phase finite impulse response filter with a cut-off frequency

f 8–60 Hz, to filter the EEG signals. Finally, the mean removal op-

ration is applied to the filtered signals to eliminate the influence

f the DC component. 

.2. Feature extraction using the improved CSP 

.2.1. Solution for multiclass CSP 

The traditional CSP algorithm [29] focuses on solving a two-

lass problem; it distinguishes between different classes by deter-

ining the projection space that maximizes the energy difference

etween two types of samples. In the present study, we focus pri-

arily the recognition of three emotional states (i.e., positive, neu-

ral, and negative). Thus, it is necessary to extend the traditional

SP algorithm to a multiclass algorithm. 

Currently, there are three different solutions for a multi-class

SP: one-to-one method, one versus rest method (OVR), and joint

pproximation diagonalization (JAD) method. Among them, the

VR and one-to-one CSPs are realized by conducting a two-class

SP on different combinations of classes. Indeed, this two-class

SP algorithm needs to be repeated several times, resulting in a

ore complex algorithm and a longer calculation time. In contrast,

ouy-Pailler et al. [30] and Nguyen et al. [31] demonstrated that

he JAD method is more effective in multi-task EEG feature extrac-

ion and achieves powerful scalability. 

Similar to a traditional two-class CSP algorithm, the JAD

ethod designs spatial filters through the diagonalization of the

ovariance matrix for each class [32] . The main difference be-

ween them is the eigenvalue selection strategy. Specifically, when

he eigenvalue of one class is maximized, the JAD method can-

ot ensure that it differs from the maximized eigenvalues of other

lasses. To solve this problem, all eigenvalues λ are mapped to the

ollow functional score [32] , and the top M highest eigenvalues of

ach class are selected for the design of the CSP spatial filters as

ollows: 

core (λ) = max 

[
λ, 

1 − λ

1 − λ + (N − 1) 
2 λ

]
(1) 

here N = 3 represents the number of emotional classes, and λ is

he diagonal element in the eigenvalue matrix �i , (i = 1 , 2 , 3) . Mo-

ivated by the principle of the two-class CSP algorithm [25] , the re-

ationship between the eigenvector and the eigenvalue correspond-

ng to the considered three different classes can be described as
ollows: 

 1 = U 2 = U 3 , �1 + �2 + �3 = I (2) 

Furthermore, the spatial filters W i , ( i = 1 , 2 , 3) can be designed

y selecting the eigenvector matrices U a , U b , and U c , which are

he eigenvectors corresponding to the highest eigenvalue using

q. (1) for each class, and P is the pre-whitening transformation

atrix, i.e., 

 1 = U a 
T · P , W 2 = U b 

T · P , W 3 = U c 
T · P (3)

Finally, the spatial features S F i , (i = 1 , 2 , 3) of the three-classes

f emotional states can be computed using the following improved

quation, where X is the pre-processed multi-channel EEG signal:

 F i = W i ·
X · X 

T 

trace (X · X 

T ) 
, (i = 1 , 2 , 3) (4)

.2.2. Improved multiclass CSP 

During the emotion recognition experiments, we note that the

raditional JAD-based multiclass CSP method using the “highest

core eigenvalue criterion” presents a phenomenon in which the

igenvalues with the highest scores for the different emotional

tates correspond to the same eigenvector. Specifically, the eigen-

alues of the different emotional states are located at the same po-

ition in the diagonal matrix. Consequently, the eigenvectors are

ombined with the same transform matrix P to obtain the spa-

ial filters, which might represent different emotional states. It is

emarkable that the spatial domain filter designed in such a case

s an invalid filter, resulting in a poor recognition performance. To

esolve this problem, some studies [33,34] have proposed using a

ethod for selecting the next-highest transformed eigenvalue in-

tead of a traditional selection method. Specifically, if one eigen-

ector is selected more than once, it will be replaced by the eigen-

ector with the next-highest transformed eigenvalue. However, this

ethod may not be able to determine the spatial projection direc-

ion that maximizes the energy difference of three types of emo-

ional EEG signals. To further enhance the performance of the al-

orithm, we propose an improved JAD method. 

Based on all the possible position cases in which the eigenval-

es with the highest scores of the three emotional states are lo-

ated in the diagonal matrix, three different eigenvalue selection

ethods, JAD1, JAD2, and JAD3, are designed according to the fol-

owing rules: 

• The JAD1 method uses the highest scoring eigenvalues of each

class (in which all the eigenvalues are arranged in descending
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Fig. 5. Automatic selection algorithm of the eigenvalues based on JAD. 
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order), i.e., the first column of the eigenvector matrix U is se-

lected and denoted as U JAD1 . 
• The JAD2 method uses the top two eigenvalues with the highest

scores in each class, i.e., the top two columns of the eigenvector

matrix U are selected and denoted as U JAD2 . 
• The JAD3 method employs the top three eigenvalues with the

highest scores in each class, i.e., the top three columns of the

eigenvector matrix U are selected and denoted as U JAD3 . 

A block diagram of the improved CSP algorithm based on the

above three predefined eigenvalue selection methods is presented

in Fig. 5 . This algorithm can be elucidated as follows. Initially,

the traditional JAD method is used to obtain the diagonal matrix

�i , (i = 1 , 2 , 3) of the three types of emotional tasks for a training

set. The eigenvalues are subsequently obtained using the score (λ)

function. The scores are arranged in descending order, and the po-

sitions of the highest scored eigenvalues in the diagonal matrix are

saved as D i , (i = 1 , 2 , 3) . Finally, we compare the positions to deter-

mine which features of the selection method are suitable for the

current condition. More specifically, if the positions of the eigen-

values with the highest scores are all different (i.e., the number of

the same positions is equal to 0), we select the JAD1 algorithm for

the design of the spatial filter. Similarly, if any two positions are

the same (i.e., the number of the same positions is equal to 1),

we select the JAD2 algorithm. Otherwise, JAD3 is chosen if all the

positions are the same (i.e., the number of the same positions is

equal to 2). 

Accordingly, the improved spatial filters W i = U i 
T · P , (i =

1 , 2 , 3) of three emotional states are designed. On this basis, the

spatial features for emotional EEG signals can be obtained using

Eq. (4) . 

3.3. Channel selection strategy 

It is necessary to perform a channel selection by consider-

ing the following factors: (1) Installation of the electrodes in the

whole-channel mode will be extremely inconvenient during the

experimental preparation period. (2) Because some EEG channels

are irrelevant to emotion expression [14] , some extra noises may

be introduced, leading to the performance of the classifiers be-

ing degraded. (3) An excessive number of channels of features

may result in a high computational complexity and low stabil-

ity in identifying the signals. Therefore, determining a method

to reduce the number of channels effectively while maintaining

a high recognition accuracy has received increasing attention in

the field of brain-computer interactions. To achieve this objective,

some channel selection methods have been proposed. For exam-

ple, Lan and Erdogmus et al. [35] used the mutual information
ize between channels as the channel selection criter, and Wang

t al. [36] employed the maximum value of the spatial pattern

ector in the scalp map to select important channels. In compar-

son, Lal et al. [37] applied a classifier to evaluate the features of

ifferent channels. The aforementioned methods mainly focus on

he classification of two-class motor imagery tasks (i.e., the left

nd right hands). In addition, the distribution and number of opti-

um emotion-related channels may vary among different individ-

als, because their responses to different stimuli are varied. Moti-

ated by the previous findings, we developed a new channel selec-

ion strategy based on the contribution of each channel to emotion

ecognition. 

Initially, we define a weight value Q for each channel by intro-

ucing a 2-norm [38] , i.e., 

 ( j) = 

|| ω j | | 2 
|| W CSP | | 2 , ( j = 1 , 2 , · · · , 30) (5)

In Eq. (5) , function || ∗|| 2 indicates the operation of the 2-norm

omputation. Accordingly, we describe the relationship between

he W CSP matrix and ω j , ( j = 1 , 2 , · · · , 30) vector as follows: 

 CSP = [ W 1 ; W 2 ; W 3 ] = [ ω 1 , ω 2 , · · · , ω 30 ] (6)

here the vector ω j , ( j = 1 , 2 , · · · , 30) represents the projection of

 channel signal in the projection space and reflects its influence

n the projected signal. The larger the Q value of the observation

hannel is, the greater the impact on the emotion representation,

nd vice versa. Finally, we sort all the Q values in descending order

nd select the top- M channels to design the spatial filter. 

. Analysis of the experiment results 

In the experiments, we collected EEG signals from eight sub-

ects according to three types of emotional states (positive, neutral,

nd negative). To ensure the short-term stability of the observation

ignals, we further framed each trial (with a duration of 60-s) with

 6-s window and one-third sliding step length. The details of the

liding window for each trial are displayed in Fig. 6 . Accordingly,

 total of 972 samples can be obtained for each subject. We se-

ected support vector machine (SVM) with polynomial kernel, to

lassify the emotional states. The penalty factor of the SVM model

as empirically set as 1.0. Moreover, to ensure the reliability of

he experimental results, we adopted the five-fold cross-validation

cheme [39] . Specifically, the preprocessed EEG data were equally

ivided into five parts; four parts were used as the training sets,

nd one part was used as the test set, to acquire the recognition

ccuracy. Furthermore, we repeated this procedure ten times and

veraged all the accuracies as the final output. 
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Fig. 6. Sliding window movement for each trial ( Tw and Ts represent the duration 

of each trial and the length of the sliding step, respectively). 
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.1. Determination of the optimum parameters for CSP 

The length of the sliding window and the observation frequency

and are closely related to the recognition performance of the

roposed CSP-based emotion recognition algorithm. Therefore, the

election of both the sliding window length and the critical fre-

uency is a crucial step in achieving an effective emotional HCI. To

etermine the optimal length of the sliding window, we conducted

omparison experiments by computing the recognition accuracy at

ifferent durations for each trial from 3-s to 10-s with a step size

f 1-s (see Fig. 7 ). 

Fig. 7 shows that the recognition accuracy presents a variation

mong all the subjects corresponding to the various durations of

he emotional segments. Among all the durations, the method has

he lowest accuracy (81.43%) when the length of the sliding win-

ow is 3-s. With an increase in the duration, the recognition accu-

acy gradually improves. When the duration is 6-s, the average ac-

uracy over all the subjects is the highest (85.85%). Subsequently,

s the duration increases, the accuracy attains a relatively stable

tate. Considering the balance between timeliness and accuracy,

e finally determine 6 s as the optimum length of the sliding win-

ow to frame the ongoing emotional EEG signals and apply it to

he following experiments. 

Regarding frequency band selection, previous studies have pro-

ided some relevant references. For instance, Danny et al. [40] con-

luded that alpha and beta bands are more suitable for EEG

motion recognition. Zheng et al. [14] confirmed that the beta

nd gamma oscillations of a brain activity are more related to

motional processing than other frequency bands. Wang et al.

41] found that the emotions shown in an EEG are produced in

hree frequency bands (alpha, beta and gamma), whereas the delta

nd theta bands have no significant relation with emotions. To de-

ermine the optimum band frequencies, we applied a sliding win-

ow of 6 s (the optimal length) to extract the effective spatial

eatures corresponding to each frequency band. Fig. 8 displays the

verage recognition accuracies for different frequency bands (delta,

heta, alpha, beta, and gamma). 
Fig. 7. Emotion classification results under different sli
The results presented in Fig. 8 indicate that the classification ac-

uracies of the alpha (8–12 Hz), beta (13–30 Hz), and gamma (31–

0 Hz) frequency bands are remarkably higher than those of the

elta (1-3Hz) and theta (4–7 Hz) frequency bands. To decrease the

omputation load, we discarded the delta and theta bands while

etaining the alpha, beta, and gamma bands. A closer evaluation

f the accuracy under 8–60 Hz (a combination of the alpha, beta,

nd gamma frequency bands, which we refer as “ABG”) presents

hat its recognition performance is superior to the case when us-

ng only a single frequency band. This suggests that the high- fre-

uency bands are more relevant to emotional cognitive activities

han the low-frequency bands, which is consistent with the exist-

ng research conclusions to a large extent [40,41] .Therefore, we se-

ected the frequency band to filter the raw 30-channel EEG signals

o achieve a good recognition performance. 

.2. Performance evaluation of emotion recognition 

.2.1. Verification of channel selection strategy 

To validate the effectiveness of the proposed channel- selection

trategy, we conducted comparison experiments using the weight

alues and recognition accuracies of all the channels. The proce-

ure used for the computation of these two criteria was as follows:

• The weight values are calculated 

We first employ the improved CSP algorithm (described in

Section 3.2.2 ) to design a spatial-domain filter based on all

the channels. We then compute the weight value Q ( j) , ( j =
1 , 2 , · · · , 30) for each channel using Eq. (5) . 

• The recognition accuracies are calculated 

Assuming that vector I C 1 , . . . , I C j , . . . , I C 30 , ( j = 1 , . . . , 30 ) (where

IC denotes independent component) represents the emotion-

related spatial features corresponding to the 30 observation

channels, we select I C 1 , . . . , I C j−1 , I C j+1 , . . . , I C 30 , ( j = 1 , . . . , 30 )
instead of IC j as the feature parameters of the emotional EEG

signals. The “leave one IC out” method [42] is employed to se-

lect different ICs from each channel for emotion recognition.

Specifically, 29 ICs are selected from the 30 channels, with IC j 
being excluded. Accordingly, we can acquire the recognition ac-

curacy ratios based on the current 29 channels. Removing the

observation channels in turn, we thus obtain the recognition

accuracies through 30 round tests. These accuracies represent

the importance of the emotion recognition models. The higher

the accuracy, the more important the IC. 

Based on the degree of correlation between the channel and the

motion represented by the above two methods, the channels are

rranged from high to low degree, and one channel is added to

ach test until reaching all the 30 channels. The experiment results

re presented in Fig. 9 . 
ding window lengths. S1-S8 denote the subjects. 
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Fig. 8. Accuracies of the different frequency bands over all the subjects. The vertical axis is the average accuracy using a frequency band, and the horizontal axis denotes 

the index of the subject. 

Fig. 9. Accuracy matrix for different numbers of channels for each subject: results using (a) the weight values and (b) the recognition accuracies. The rows indicate the 

number of selected channels, and the columns represent the indexes of the subjects. Each small block presents the classification accuracy obtained from the i th subject with 

j channels. The redder the color, the higher the accuracy, and the bluer the color, the lower the accuracy. 
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Comparing Fig. 9 (a) and (b), we can note that the recogni-

tion accuracies using the proposed weight value-based method

are remarkably superior to those of the recognition accuracy-

based method. Particularly for subject S6 (the accuracies marked

by black dashed lines in Fig. 9 ), the recognition performance of

the proposed method, as displayed in Fig. 9 (a), is effectively im-

proved when the channel number is set as 11 (whose accura-

cies are marked by black triangles). By contrast, the performance

when using the recognition accuracy-based method, as presented

in Fig. 9 (b), is relatively poor, even when more channels are se-

lected for the analysis. The comparison results indicate that using

the weight values to optimize the channels is effective for a CSP-

based emotion recognition. 

Furthermore, we explored the relationship between the num-

ber of channels and the recognition accuracy to determine the op-

timum channel set-up for emotion recognition. During the exper-
ment, we selected the top- M channels (M = 1 , 2 , · · · , 30) by de-

cending weight value Q to evaluate the influence on the recogni-

ion performance. The detailed accuracies for each subject are de-

icted in Fig. 10 . 

From Fig. 10 ,we can observe that the number of channels is re-

ated to the recognition performance. Specifically, it is difficult to

btain a high recognition accuracy by selecting numerous or very

ew channels. An overly small number of channels provides insuf-

cient information regarding the neural activity of the brain un-

er different emotional states, which makes ensuring the recog-

ition performance problematic. Similarly, using excessive chan-

els may introduce artifacts and contain unnecessary redundant

nformation. In such a case, the CSP coefficients cannot exactly de-

cribe the spatial emotional information. In addition, we can also

bserve that the recognition accuracy presents a tendency to in-

rease when the number of channels is less than 19; by contrast,
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Fig. 10. Boxplots of the accuracies based on different channels for different subjects. 
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Table 1 

Average accuracies (%) and average F 1 -scores (%) of the three different methods on two datasets. 

Dataset Methods 

T_JAD I_JAD ICSPCS 

Accuracy F 1 -score Accuracy F 1 -score Accuracy F 1 -score 

Self-collected dataset 74.92 74.84 83.04 82.75 85.85 85.78 

MAHNOB-HCI dataset 81.29 80.34 92.70 91.31 94.13 93.26 

Fig. 11. Summed confusion matrix from all the subjects: (a) dataset collected by our laboratory and, (b) MAHNOB-HCI dataset. The rows and columns in the matrix represent 

the predicted and real classes, respectively. The correct classifications are presented on the diagonal, and the substitution errors shown on the off-diagonal. 
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it gradually stabilizes as the number of channels is more than 19.

Computing the distribution of the channel weights shows that, the

sum of the weights from the top 19 channels is up to 85% of all

channels; this suggests that the main components of the emotional

cognitive activity are acquired. Furthermore, the recognition accu-

racy of subject S5 presents a slight decrease after applying the

channel-selection strategy. If we increase the number of optimal

channels to 22, the recognition accuracy reaches 86.23% (which is

higher than that with 30 channels). Therefore, we speculate that

the top 19 channels might not contain sufficient emotional infor-

mation for subject S5 when using the ICSPCS method. Considering

the ubiquity of the algorithm, recognition performance, and com-

putational load, we finally selected the top 19 channels with the

highest weight value as the observation channels. 

4.2.2. Experiment results on different datasets 

The emotion recognition experiments were conducted under

three conditions: the traditional JAD method (T_JAD), the improved

JAD method (I_JAD), and a combination of the improved JAD and

channel selection method (ICSPCS). Note that, for the T_JAD and

I_JAD methods using the 30-channel EEG signals, and for the IC-

SPCS method, we selected the top 19 channels with the highest

weight values Q as the observation signals. The average recognition

results of the three emotional states according to the self-collected

dataset of our laboratory and the MAHNOB-HCI dataset are sum-

marized in Table 1 . 

As listed in Table 1 , the average recognition accuracy and F 1 -

score vary for the two datasets. The probable reasons for this result

are 1) the familiarity levels of the different subjects regarding the

experiment environment as well as the differences in the response

strengths to the stimulus-invoking movies, and in the self-control

abilities of the induced emotions, 2) the differences in the educa-

tional backgrounds of the subjects as well as their cognitive pref-

erences and life experiences, and 3) the differences in the data ac-

quisition equipment applied. Closer examination of the experiment

results reveals that for the self-collected dataset, the average recog-

nition accuracies of the I_JAD and ICSPCS methods reach 83.04%
nd 85.85%, respectively, achieving remarkable corresponding im-

rovements of 8.12% (7.91%) and 10.93% (10.94%) compared to the

_JAD method. On the MAHNOB-HCI dataset, the average recogni-

ion results of the I_JAD and ICSPCS methods for all the subjects

each 92.70% and 94.13%, respectively. The average recognition ac-

uracies are improved by 11.41% and 12.84%, and the average F 1 -

cores are increased by 10.97% and 12.92%, respectively. 

To further evaluate the performance of the proposed emotion

ecognition algorithm, we computed the summed confusion matrix

see Fig. 11 ) in the cases of positive, neutral, and negative emo-

ional states across all subjects. 

As presented in Fig. 11 , the largest between-class substitution

rrors are 8.55% and 5.04% on the self-collected and MAHNOB-

CI datasets, respectively. Specifically, the probability of a

positive” emotional state falsely returning a “neutral” state is the

ighest. By analyzing the original stimuli videos and the emotional

esponses of the subjects after viewing the stimuli, the probable

easons for this result are: 1) the insufficient difference between

he “positive” and “neutral” stimulus-invoking movies, which can-

ot effectively induce the corresponding emotional state, and 2)

he diversity in the personalities and preferences of a subject, lead-

ng to differences in the cognition even for a particular stimulus-

nvoking movie. By contrast, (on the self-collected dataset) the

mallest between-class substitution error (4.18%) occurs between

he “neutral” and “negative” states. When inquired about their feel-

ngs, most of the subjects expressed experiencing remarkably dif-

erent emotions when viewing different types of stimuli-invoking

ovies. Closer examination of the confusion matrix presents that

he average accuracies of the “positive” (87.03% and 96.30%) and

negative” (88.25% and 95.06%) states are higher than those of

he “neutral” state (83.7% and 93.7%). In fact, the strength of the

rain activities will decrease because of the relaxation of the phys-

cal and psychological conditions under a “neutral” state. In such

 case, the absolute difference in the values of all CSP coefficients

ill also reduce, resulting in a decrease in the abilities of the re-

ated sources to depict an emotion. Thus, the recognition accuracy

s lower than that of the other two emotional states. 
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Fig. 12. Comparison of the emotional recognition classification results. 
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Table 2 

Relationships between the indexes of the electrodes and their positions. 

Number Electrode position Number Electrode position 

1 Oz 5 Fc3 

2 O2 6 Fc4 

3 P4 7 F3 

4 Cz 8 Cp3 
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.3. Comparison experiments 

To verify the effectiveness of the proposed spatial feature ex-

racted algorithm further (regarding EEG emotion recognition),

e compared the following two methods to the proposed I_JAD

ethod. 

• Method 1: The PSD features and spectral asymmetries of the

left and right sides of the brain were extracted from the

delta, theta, alpha, beta, and gamma-frequency bands using the

whole-channel EEG signals [13] . 
• Method 2: For the extension of the multi-class problem based

on the JAD algorithm, if one eigenvector with the highest score

was selected more than once, the next highest transformed

eigenvalue was selected [33,34] . 

It is worth noting that the training and test datasets as well

s the SVM parameters used in the current experiment were the

ame as those in the previous experiments. The comparison results

re shown in Fig. 12 . 

Figure. 12 shows that the average recognition accuracy of

ethod 1 is 76.46%, which is 3.07% and 6.58% lower than the

ecognition accuracies of method 2 and the proposed method,

espectively. This is because method 1 recognizes the emotional

tates by extracting the time/frequency features of the EEG signals,

hich are highly susceptible to noise interference. In this case, the

ecognition performance cannot be sufficiently ensured for noisy

bservation signals, because the spectra of the noises and the EEG

ignals may overlap. However, external noise signals, such as slight

ovements of the electrodes, unconscious electromyography, and

mpulse noises, are inevitable during the data acquisition proce-

ure. Method 2 uses a spatial filtering algorithm to suppress the

dditional noises to a certain extent; however, it does not deter-

ine a spatial projection direction that maximizes the differences

n the three types of emotional EEG energies. Thus, the recognition

ccuracy of method 2 is higher than that of method 1. Compared

ith methods 1 and 2, the I_JAD method can extract the emotion-

elated components from the EEG signals and remove the irrele-

ant components and noise effectively while acquiring the largest

ifferences between the different emotional states. Therefore, its

motion recognition accuracy is higher than those of both method

 and method 2. 

Fig. 13 depicts the time-domain waveforms and the correspond-

ng coefficients of the CSP spatial filters for a random normal “posi-
ive” trial and a noisy trial, respectively. For clarity, we only present

he top eight channels based on descending values of the spa-

ial coefficients. The relationships between the indexes of the elec-

rodes and their positions are summarized in Table 2 . 

As can be observed in Fig. 13 , the coefficients of the CSP spatial

lters for the noisy trial deviate from those for the normal trial.

pecifically, the absolute difference between the different elec-

rodes corresponding to the noisy trial reduces in comparison to

hose of the normal trial. However, the top-two absolute coeffi-

ient values are still located on electrodes nos.1 and 2 (i.e., the Oz

lectrode and O2 electrode), respectively. The comparison results

eveal that the CSP filters provide a certain robustness in describ-

ng the relative spatial position information of different emotion-

elated sources, which ensures the emotion recognition perfor-

ance. 

. Conclusions 

The motivation of the present work is to explore the fea-

ibility of using a CSP-based spatial filtering method to recog-

ize emotions. To obtain a better recognition accuracy, we not

nly improved the traditional CSP algorithm but also developed

 new channel selection strategy in terms of the characteristics

f the emotional EEG signals. Recognition experiments focusing

n three emotional states (i.e., positive, neutral, and negative)

ere conducted on the self-collected dataset of our lab and the

AHNOB-HCI dataset. The average accuracies of the proposed IC-

PCS method reached 83.01% and 94.13%, which were 8.09% and

2.84% higher than that of the traditional CSP method, respectively.

he experiment results proved the effectiveness of the proposed

patial-feature based emotion recognition algorithm. As a promis-

ng method, the proposed algorithm is superior than other meth-

ds for user-dependent emotion recognition, offering a possibility

or developing a high-performance emotion monitoring system. For
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Fig. 13. Time-domain waveforms and coefficients of the CSP spatial filters of a “positive” emotional state for (a) a normal and (b) a noisy trial. 
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example, it can be employed in the emotion evaluation of a spe-

cific user (e.g., pilots, high-speed drivers, and soldiers) engaged in

a high-risk work, which will provide a new approach to design a

safety alert. In addition, it can also be used in the diagnosis and

rehabilitation training of children with autism by detecting their

emotional states, thereby allowing for their therapy to be adjusted

in a timely manner. 

Because the CSP filter has stringent requirements regarding the

quality of the training data, manually detecting low-quality data

generated by the fatigue of the subjects and other factors is dif-

ficult. Therefore, a future study should prioritize optimizing the

training data and reduce the negative impact of “bad” trials on the

recognition performance. In addition, we will make a distinct ef-

fort to address the problem of individual differences in the pro-

posed channel selection strategy and enhance the practicability of

the proposed algorithm. 
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