
1949-3053 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2020.3010230, IEEE
Transactions on Smart Grid

 1 

 

Abstract—The integration of Information and 

Communications Technology (ICT) enables real-time 

communication for smart meters to participate in power system 

operations. However, Advanced Metering Infrastructures (AMI) 

are vulnerable to cyber attacks. Both utilities and power 

consumers may become victims of cyber intrusions. In this paper, 

a two-stage cyber intrusion protection system is proposed. At the 

first stage of intrusion detection, a Support Vector Machine (SVM) 

is used as a detection algorithm to discover suspicious behaviors 

inside a smart meter. At the second stage, the Temporal Failure 

Propagation Graph (TFPG) technique is used to generate attack 

routes for identifying attack events. Finally, the proposed pattern 

recognition algorithm is used to calculate the similarity between a 

detected abnormal event and pre-defined cyber attacks. A higher 

similarity value implies a higher chance that a smart meter is 

under attack. An AMI security test platform has been developed 

to: (1) Collect training/testing data for SVM, (2) Simulate and 

analyze cyber attack events, and (3) Validate the proposed cyber 

attack protection system. The test platform consists of Network-

Simulator 3 (NS-3) software to simulate an AMI network 

environment and single board computers (SBCs) to emulate the 

IEEE 802.15.4 communication between a grid router and a smart 

meter. 

 
Index Terms—Advanced metering infrastructure (AMI), smart 

meters, cyber-physical system security, intrusion detection. 

I.  INTRODUCTION 

MART grid technologies have been deployed to enable the 

new functions and services, improving the reliability, 

security, and efficiency of a power system. Metering 

infrastructure plays a significant role between power supply and 

demand ends. To upgrade the service quality and provide new 

services, many utilities adopt AMI components including 

software (e.g., meter data management system) and hardware 

(e.g., smart meters and grid routers). Compared to conventional 

electric energy meters, such as mechanical meters and 

Automatic Meter Reading (AMR) meters, smart meters are 

equipped with a two-way communication module to exchange 

data (e.g., customer’s information, power readings, and control 

commands) between customers and a utility. Based on the real-

time data acquisition and control capability, AMI facilitates 

power flow reading, load forecasting, demand response, outage 

management, system monitoring, and dynamic pricing 

programs. However, cyber-physical system (CPS) security has 

become a significant concern to the smart grid infrastructure, as 

well as AMI devices. In 2015 and 2016, cyber attacks on the 

Ukrainian power grid [1], [2] have demonstrated that power 

grids are vulnerable to cyber intrusions.  

Cyber security of the AMI network is widely recognized as a 

critical issue [3-6]. For power consumers, data privacy is a 

primary concern as current meters are upgraded to smart meters 

[7]. To guarantee the confidentiality of data, a new 

communication protocol has been proposed [8]. In [9], an 

encryption scheme has been developed for AMI network 

messages with minimal computation and communication 

overheads in encryption and decryption operations. For utilities, 

data integrity and availability attacks can threaten the quality of 

power grid services and revenues. To prevent energy theft, 

various studies have proposed different detection algorithms by 

analyzing historical and present consumption data [10-13]. 

Reference [14] discusses energy theft through the pricing 

system. It is aimed at a long term detection technique to capture 

anomaly pricing events. Due to vulnerabilities of wireless 

communication and physical devices, meter tampering is one of 

the potential attacks. In [15], a collaborative intrusion detection 

mechanism is proposed to detect False Data Injection (FDI) 

attacks. The work of [16] introduces a specification-based 

intrusion detection system for advanced metering 

infrastructures. Any sequence of operations executed outside 

the system’s specifications is considered a security violation. 

To develop a comprehensive solution, the authors of [17] 

propose an IDS architecture which covers the entire AMI 

network, including AMI headend (e.g., meter data management 

system), grid router, and smart meters. Machine Learning (ML) 

based detection algorithms can handle multiple attack types.  

This paper proposes an IDS that includes two detection 

processes for smart meters to identify malicious behaviors 

which are intentionally driven by humans. In comparison with 

existing detection systems, the proposed design can handle 

different intrusion types rather than only focus on a specific 

intrusion type (e.g., energy theft or FDI). The individual 

purposes of the two detection processes are: (i) collecting 

intrusion evidence, and (ii) confirming an intrusion event 

through the detected abnormal behaviors in the system. At the 

first stage, the SVM technique is used to identify suspicious 

behaviors in a smart meter and report to the IDS. Relative to 

other intrusion detection techniques (e.g., knowledge- and 
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anomaly-based), ML-based detection systems are easier to 

maintain due to the fact that detection accuracy can be achieved 

by re-training the model of the classifier when new system data 

is available.  

SVM classifier is a useful tool to detect abnormal behaviors. 

It provides fast response and does not require heavy 

computational effort. This feature meets the requirement of IDS 

for smart meters. However, the reported abnormal behaviors 

may include the communication failure events which are not 

caused by cyber attacks. In order to reduce the false alarm ratio 

by excluding the communication failure events, a 

comprehensive anomaly-based detection algorithm is 

developed. The SVM classifier is used to avoid excessive usage 

of the second-stage detection algorithm. Only high risk events 

are sent to the anomaly-based IDS for advanced inspection. 

Therefore, the two-stage detection process may cause an extra 

processing burden. However, most of low risk events bypass 

the second-stage detection. Hence, the proposed two-stage 

detection scheme is able to reduce the false alarm ratio and limit 

the usage of computation power for smart meter applications. 

In addition, SVM requires less training time than Neural 

Network (NN) algorithms (e.g., feedforward, recurrent, and 

convolutional) which can handle a vast amount of data in AMI 

networks. A shorter training time implies that smart meters can 

update the SVM-based IDS in a more responsive manner. When 

an unknown attack event is identified, the new SVM model can 

be trained and sent within a shorter time to seek the defense 

power of smart meters.  

At the second stage, the intrusion detection process calculates 

the similarity between the reported abnormal behaviors and pre-

defined intrusion events. To determine whether the intrusion 

alarm is caused by a random system failure or a cyber attack, 

the potential attack routes are proposed to provide information 

with abnormal behavior sequences in four types of cyber attack 

events. If a detected abnormal event is matched with any of the 

predefined sequences, it is considered an intrusion event. In this 

research, a CPS test platform has been developed and used to 

emulate the operation and communication of smart meters. It is 

a source to collect the smart meter’s data for SVM training and 

testing purposes. In addition, the performance of the proposed 

IDS has been validated by simulating cyber attacks on this test 

platform. The test results demonstrate that the proposed 

detection algorithms are practical for the detection of simulated 

attacks on emulated AMI devices. The main contributions of 

this paper are as follows: 

    1)  Developed an on-line detection IDS method that 

considers the limited computational capability of a smart meter.  

    2)  A pattern matching algorithm is proposed to identify 

cyber attack events.  This is achieved by creating realistic attack 

paths using the TFPG technique.  

    3)  A realistic cyber-physical system test platform has been 

developed for smart meters. It is used for validating and 

evaluating the AMI network, impact of cyber attacks, and 

performance of IDS. It is also able to generate the training data 

for the SVM-based detection algorithm.  

In the remaining of this paper, Section II describes the 

vulnerability of smart meters, including hardware and 

communication components. Section III presents the proposed 

intrusion detection system for smart meters. Section IV 

discusses the components of the AMI test platform at 

Washington State University (WSU). Section V provides the 

test results of the proposed detection system. The conclusion 

and future work are stated in Section VI. 

II.  CYBER SECURITY VULNERABILITY OF SMART METERS 

Since most of the AMI devices are not installed in a 

monitored environment, attackers may study the weaknesses of 

both wireless communication and physical devices and then 

launch cyber attacks. This section will discuss the cyber 

security vulnerabilities of a smart meter. 

A.  Hardware Vulnerabilities 

Fig. 1 shows five primary compartments in a smart meter: (i) 

Central Processing Unit (CPU), (ii) Random Access Memory 

(RAM), (iii) communication module, (iv) flash memory 

(EEPROM), and (v) energy sensors. Since software/hardware 

components of smart meters are similar to those of other ICT 

devices, cyber attackers may adapt intrusion techniques from 

those employed in other software systems. In a smart meter, 

firmware controls the critical functions that handle the low-

level sensor data, data conversion, and data reporting. Since 

most functionalities are accomplished through software, new 

functions can be added by performing updates. Firmware 

upgrades can be deployed using over the air mechanisms, or 

manually uploaded by using the on-board optical port. 

Firmware-based attacks can hinder the device’s ability to 

operate as intended; multiple hardware components can be 

targeted when tampered firmware or settings are compromised  

by attackers. The possible attack behaviors for different  

targeted components are: 

⎯ CPU (A1): Exhausting CPU’s computational resources by 

installing malware that causes dummy operations.  

⎯ Communication module (A2): The communication 

channels can be disabled or manipulated in unintended 

manners. In addition, AMI devices communicate in 

frequency bands that can be easily monitored, jammed, or 

compromised. 

⎯ RAM (A3): RAM exhaustion can also cause metering and 

communication applications to freeze or slow down. 

Operating Systems (OS) kernels terminate running 

application(s) or reboot to handle these faults.  

⎯ Flash memory (A4): Attackers can modify recorded 

consumption data, device calibration, and operation modes 

can be altered by modifying configuration registers. 

⎯ Sensor (A5)/actuator compromise (A6): By sending a 

tripping command, the utility system can disconnect a 

customer.  

⎯ Inter-board communications (A7): All components 

shown in Fig. 1 adopt low-level communication protocols 

that can be analyzed and modified to suit the attacker needs. 

Due to physical access requirements, these attacks tend to 

be isolated. 

In summary, attackers can launch various types of cyber 

attacks to impact operations in a distribution system. The 

consequences of these attacks are reduced utility’s revenues, 

violation of customers’ privacy, or, in the worst case, power  

outages. 
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Fig. 1. Hardware components inside a smart meter with potential attack targets. 

B.  Vulnerability of Wireless Communication 

End to end communication in the AMI environment is 

achieved using a mixture of network architectures, 

communication protocols, and interfaces between the control 

center and field devices. Network architectures include: (i) 

Local Area Network (LAN), (ii) Wide Area Network (WAN), 

(iii) Neighborhood Area Network (NAN), and (iv) Home Area 

Network (HAN). Fig. 2 shows the communication structure of 

an AMI system. This paper is focused on securing the 

communication path within the NAN domain. The initial AMI 

meters deployed in North America used Zigbee, while newer 

models use the IEEE 802.15.4g standard, either at the sub-GHz 

(i.e., 900MHz) or 2.4 GHz [18]. Both frequency bands fall 

under the Industrial, Scientific, and Medical (ISM) regulatory 

domain. Therefore, frequencies are public and can be used by 

other devices. Furthermore, the wide availability of sniffers, 

signal modulators, and demodulators raises the overall risk 

levels since these tools are accessible and affordable. To reduce 

these risks, AMI devices use encrypted messages for data 

communication, for achieving integrity and confidentiality, 

while using meshed networks to provide availability under the 

CIA triad requirements [19]. However, security flaws have 

been discovered even with these mitigation efforts. Some 

security issues are: 

⎯ Privacy issues: Packet encryption protects the payload 

content, but it fails to protect the identity of the sender and 

receiver (MAC addresses) [1]. Furthermore, researchers 

have been able to identify the usages (e.g., control 

commands and consumption reports) of different network 

packets even when they are encrypted [2]. Such knowledge 

can be used for attacks that target specific operations. 

⎯ Integrity: By using hardware forensics, local HAN 

passphrases can be recovered. These in conjunction with 

spoofed MACs can be used to create false network messages 

if the devices are not authenticated. 

⎯ Availability: Signal jamming, as well as DoS attacks, can 

limit message transmission, leading to situations where the 

control center cannot send commands, or the device is  

unable to report its status. 
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Fig. 2 Communication structure of an AMI network. 

III.  INTRUSION DETECTION SYSTEM 

This section introduces two detection algorithms for: (i) 

detecting abnormal behaviors in a smart meter, and (ii) 

recognizing cyber attack attempts. The IDS for smart meters 

should consider the limited computational resources. Although 

existing IDSs provide excellent defense capabilities against 

cyber attacks, the detection function may consume significant 

computational resources and impact the operation of smart 

meters. The framework of the proposed IDS includes three 

parts: (1) anomaly detection (SVM classifier), (2) intrusion 

detection (pattern matching algorithm), and (3) information 

flow between smart meters and a control center for exchanging 

training data and SVM model. This multi-stage algorithm is 

designed to outperform other SVM-based anomaly detection 

techniques when computational resources are limited. Fig. 3 

depicts the architecture of the proposed IDS. The specific 

functions for each block are described in the following 

subsections.  
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Fig. 3 Structure of the proposed intrusion detection system for smart meters.  

A.  Support Vector Machine Detection Technique 

SVM is a kernel-based supervised learning algorithm to 

analyze associated data for solving classification and regression  

problems. SVM classifiers find an optimal hyperplane to  

separate data points by maximizing the margin between a 

hyperplane and support vectors in each class. Equation (1) 
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denotes the optimization problem for the soft-margin 

hyperplane with the nonnegative slack variable 𝜉:  

Minimize: 𝑄(𝑤, 𝑏, 𝜉) =
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑀

𝑖=1

 

(1) Subject to: 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, 

 𝜉𝑖 ≥ 0, 

 𝑖 = 1, ⋯ , 𝑀 

where 𝑤 and 𝑥𝑖  (𝑖 = 1, ⋯ , 𝑀) are 𝑚-dimensional weight and 

input vectors, respectively. The symbol 𝑏 is a bias term, while 

𝑦𝑖  is the class indicator. The tradeoff between the maximization 

of the margin and minimization of the classification error is 

determined by the margin parameter 𝐶.  

 To reduce the impact on training ability caused by the margin 

parameter in soft-margin SVMs, kernel tricks are used to 

improve the linear separability of training data. By using a 

nonlinear vector function 𝜙(𝑥) = (𝜙1(𝑥), ⋯ , 𝜙𝑙(𝑥)), the 𝑚-

dimensional input vector 𝑥  can be mapped into the 𝑙 -

dimensional feature space. The decision function in the feature 

space is expressed as: 

 𝐷(𝑥) = 𝑤𝑇𝜙(𝑥) + 𝑏 (2) 

In terms of solving the quadratic optimization problem of SVM, 

each training data point is in the form of dot products. To 

simplify the calculation of dot product terms, 〈𝜙(𝑥𝑖), 𝜙(𝑥𝑗)〉, a 

kernel function 𝐾 is introduced: 

 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑗) (3) 

The properties of a training dataset affect the performance of 

kernel functions. In general, existing kernel functions can be 

categorized into two classes, and it can be a guideline for 

selection of a feasible kernel [20]. Reference [21] provides a 

comprehensive list of kernel functions for SVMs.  

    1)  Local kernels: Only nearby data points can affect the 

SVM model. It has a higher learning ability, but the 

generalization ability is lower. It is used as a general-purpose 

kernel when there is no prior knowledge about the training 

dataset.  

    2)  Global kernels: Allowing data points from a greater 

distance to affect the SVM model. It has a higher generalization 

ability, but the learning ability is lower. 

In Fig. 4, Radial Basis Function (RBF) and Polynomial 

kernels are selected as the local and global kernel functions for 

the test, respectively [22]. To calculate the kernel values for 

each kernel function, the test input is set as 𝑣 = 1. Fig. 4(a) 

shows the closer the test input, the greater the kernel value for 

the different free parameters (𝜎). This result implies only the 

nearby data points have an influence on the kernel value. Due 

to a local kernel function that may discard or weaken the 

influence of some training data points, the SVM model loses 

the generalization property. However, it pays more attention to 

a certain number of data points located in a smaller range. Thus, 

it improves the learning ability by increasing the depth and 

sacrificing the breadth of the information. The global effect of 

the Polynomial kernel function of different degrees is presented  

in Fig. 4(b). It shows that every data point from the set 𝜇 has an  

influence on the kernel value of the test input 𝑣. 

 
Fig. 4 Kernel values of (a) a local kernel function (RBF) and (b) a global kernel 

function (Polynomial). 

Typically, smart meters have limited processing power. To 

minimize the consumption of computational resources in a 

smart meter, the proposed SVM based detection process 

integrates with two auxiliary control blocks: (i) updating, and 

(ii) operation mode, for the timing about updating SVM model 

and triggering the detection process. According to the 

classification process of the proposed SVM setting, an 

abnormal event indicator 𝐴𝐷𝑆𝑖𝑛𝑑 is given to indicate the status 

of input data. 

𝐴𝐷𝑆𝑖𝑛𝑑 = {
1,   𝑖𝑓 𝐷(𝑥) = 𝐶𝑙𝑎𝑠𝑠1 (𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙)

0,   𝑖𝑓 𝐷(𝑥) = 𝐶𝑙𝑎𝑠𝑠2 (𝑁𝑜𝑟𝑚𝑎𝑙)     
 (4) 

Once 𝐴𝐷𝑆𝑖𝑛𝑑 = 1 is given by the SVM classifier, the second 

stage of the proposed IDS is activated to identify an intrusion 

event by collecting evidence from device logs of a smart meter. 

Otherwise, the detection process stays silent until the next 

round of system inspection.  

B.  Pattern Recognition Algorithm for Intrusion Detection 

Arbitrarily reported abnormal events cannot serve as 

conclusive evidence to identify an attack caused by system 

failures (e.g., communication delay, low battery, and poor data 

sampling). Too many false intrusion alarms may affect the 

operation of a distribution system. Therefore, an anomaly-based 

detection mechanism is developed to perform the inspection. To 

help intrusion detection systems successfully identify malicious 

behaviors by attackers, this paper proposes to construct attack 

routes for determining anomaly paths of each threat type. A 

TFPG [23] is a model-based diagnosis technique for a dynamic 

system. It was used for capturing the causal and temporal 

relationships between failures and consequences in a system. 

This feature can also be used for modeling temporal 

relationships between abnormal behaviors (cause) and attack 

types (effect). Fig. 5 shows an example TFPG model for 

describing cyber attacks in smart meters. In the TFPG model, 

abnormal event nodes and arrows illustrate different attack 

routes. In this paper, four types of cyber attacks are included in 

the proposed TFPG model: 

⎯ Denial of Service: Attackers may use a transmitter to create 

a tremendous amount of wireless signal, congesting the  

communication channel(s) of smart meters. The dummy  
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Fig. 5 Attack routes for smart meters. 

network packets block the communication with other meters 

or a grid router. This attack type does not impact the integrity 

and confidentiality of smart meters’ data, but the low 

availability has a negative effect on the power system 

services. 

⎯ False Data Injection: Attackers are able to access victim 

smart meters and send the commands via an AMI network. 

The commands include: (1) requisition of data (consumption 

data and/or meter status log file from a victim meter and (2) 

request of modifying (i.e., overwrite, insert and delete) any 

of the data points stored in the meter. The falsified data may 

impact power system services and mislead the operators to 

take unwanted actions on the power system.  

⎯ RAM Exhaustion: A malware could be installed in a smart 

meter, generating dummy data to fill the memory. When the 

available memory capacity is low, some application 

processes become slow or even freeze. It may cause data 

loss, device freeze, or frequent reboot.  

⎯ CPU Overloading: A malware may be installed in a smart 

meter, generating processes that consume heavy 

computational power (e.g., matrix multiplication). Except 

for the consequence of RAM exhaustion, smart meters may 

be physically damaged because of the heat produced by CPU 

operations.  

A series of abnormal events will be considered an intrusion 

behavior only if they are detected in a sequence that matches 

the predefined attack routes. Otherwise, the detected abnormal 

events will be regarded as a system failure. A description of 

abnormal behaviors is provided in TABLE I. In the design of 

the proposed IDS, two assumptions are made: (i) intruders' 

actions follow the sequence in the proposed attack routes, and 

(ii) IDSs have a false negative problem and fail to capture one 

or more abnormal events. Under these assumptions, the edit 

distance can be utilized as the method for attack pattern 

recognition [24], [25].  

In the TFPG model, each abnormal event is assigned an 

English letter from the alphabet as shown in Fig. 5. Each path, 

𝑃 ∈ {𝑃1, 𝑃2, 𝑃3, 𝑃4}, from the first abnormal event node (i.e., 

node a) to an attack type node (i.e., nodes A, B, C, and D) is 

considered a correct sequence in a dictionary as shown in 

TABLE II. The similarity is measured by the edit distance 𝒅, 

between the input and predefined patterns in the dictionary. 

Once the first abnormal behavior is detected, the IDS starts to 

record the sequence of abnormal events. At each time stamp, it  

TABLE I 
ABNORMAL EVENTS FOR SMART METERS IN TFPG MODEL 

 Abnormal Behaviors  Description 

a Shaking Sensor Report 
Smart meters have an onboard sensor to 

detect suspicious vibration events. 

b Connection Attempt 
Too many incorrect password attempts 

are likely from an unauthorized user. 

c Unknown Connection 

Smart meters have fixed communication 

parent/children nodes. Any exception is 

regarded as an abnormal behavior. 

d Packet Burst 

Smart meters are configured to send 

beacon and measurement data at every 

fixed time cycle. The incoming command 

from a control center is not a typical case.  

e Firmware Modification 
The firmware should be kept at the latest 

version. 

f Not Expected Data R/W 
The measurement data is written and sent 

to an MDMS at every fixed time cycle.  

g Unknown Application 
Smart meters are not allowed to install 

any third-party software by customers.  

h High RAM Demanding 
The routine tasks of smart meters are not 

designed to over consume the RAM.  

i High CPU Demanding 
The routine tasks of smart meters are not 

designed to over consume the CPU.  

j High Temperature 
The electronic components can only work 

within a specific range of temperature.  

k Unexpected Off-line 
Smart meters are designed to operate 24 

hours a day.  

TABLE II 
ATTACK ROUTE SET GENERATED FOR SMART METERS 

Attack Path Attack Type 

Dictionary 

(Sequence of Abnormal 

Events) 

𝑃1 DoS Attack (A) bcd 

𝑃2 False Data Injection (B) abcef 

𝑃3 RAM Exhaustion (C) abceghk 

𝑃4 Overloading (D) abcegijk 

computes the minimum edit distance 𝑬𝑫. The calculation is 

done by the Wagner-Fischer algorithm [26]. The 𝑬𝑫 is defined 

as the minimum number of edit operations that match one 

pattern to another. In this paper, the edit operations include (i) 

𝑊𝑑𝑒𝑙: delete a single symbol, (ii) 𝑊𝑖𝑛𝑠: insert a single symbol, 

and (iii) 𝑊𝑡𝑟𝑎𝑛𝑠: transposition of two successive symbols. Each 

operation is counted as a unit cost by giving 𝑊𝑑𝑒𝑙 = 𝑊𝑖𝑛𝑠 =
𝑊𝑡𝑟𝑎𝑛𝑠 = 1. The calculation process is based on the observation 

between all prefixes of the first pattern 𝒂 as well as the second 

pattern 𝒃 , where the lengths are 𝒎  and 𝒏 , respectively. A 

matrix is created to hold each edit distance of prefixes of two 

patterns. All the values in the matrix are filled by repeating the 

observation between prefixes of two patterns. Then, the last 

computed distance, 𝑑𝑚𝑛, is the distance (𝑬𝑫) between two full  

strings. In [27], the computation of the edit distance between 

two finite strings, “𝒂” and “𝒃”, is defined as “𝑡𝑟𝑎𝑐𝑒𝑠”. A trace, 

𝑇𝑎,𝑏, from sequence 𝒂 to 𝒃, is a sequence of ordered pairs of 

integers (𝑖,𝑗) that satisfy:  

    1)  1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 ≤ 𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑚 and 𝑛 are lengths of 

string 𝒂 and 𝒃, respectively. 

    2)  Any of two pairs (𝑖1, 𝑗1) and (𝑖2, 𝑗2) in 𝑇𝑎,𝑏, (a) 𝑖1 ≠ 𝑖2, 

𝑗1 ≠ 𝑗2; (b) 𝑖𝑖 < 𝑖2 𝑖𝑓𝑓 𝑗1 < 𝑗2.  

Take two strings “Ryan” and “Ray” as an example. A person 

can easily match Ryan to Ray in two steps: (1) delete “n” and 

(2) swap “y” and “a.” In this case, the edit distance is 2. 

However, computers need to execute a series of comparison 
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processes from left to right, character by character. First, the 

prefixes for two strings are: {R}, {Ry}, {Rya}, {Ryan}, and 

{R}, {Ra}, {Ray}. Then, the entire comparison step is listed as  

follows: ({R},{R}), ({R},{Ra}), ({R},{Ray}), ({Ry},{R}),  

 ({Ry},{Ra}), ({Ry},{Ray}), ⋯, ({Ryan},{Ray}). Therefore, 

all pairs of prefixes are compared to obtain the edit distance of 

the two strings. The calculation for the matrix elements can be 

formulated as: 

 𝑑𝑖0 = ∑ 𝑊𝑖𝑛𝑠(𝑎𝑘)

𝑖

𝑘=1

             𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚 (5) 

 𝑑0𝑗 = ∑ 𝑊𝑑𝑒𝑙(𝑏𝑘)

𝑗

𝑘=1

         𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑛 (6) 

𝑑𝑖𝑗

= {

𝑑𝑖−1,𝑗−1,          𝑖𝑓 𝑎𝑖 = 𝑏𝑗

𝑑𝑖−2,𝑗−2 + 𝑊𝑡𝑟𝑎𝑛𝑠(𝑏𝑗−1, 𝑏𝑗), 𝑖𝑓 𝑎𝑖−1𝑎𝑖 = 𝑏𝑗𝑏𝑗−1  

min{𝑑𝑖−1,𝑗 + 𝑊𝑖𝑛𝑠(𝑎𝑖), 𝑑𝑖,𝑗−1 + 𝑊𝑑𝑒𝑙(𝑏𝑗)  } , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(7) 

 𝐸𝐷 = 𝑑𝑚𝑛 (8) 

Input: 𝑎 = 𝑎0, 𝑎1, ⋯ , 𝑎𝑚 and 𝑏 = 𝑏0, 𝑏1, ⋯ , 𝑏𝑛 

Output: Edit Distance (ED) 

1: // Using Eq (5) and Eq (6) to fill the first row and first 

column. 

2: for 𝑖 = 0 𝑡𝑜 𝑚    do 

3:      𝑑𝑖0 = 𝑖; 
4: end for 

5: for 𝑗 = 0 𝑡𝑜 𝑛     do 

6:      𝑑0𝑗 = 𝑗; 

7: end for 

8: // Using Eq (7) to fill the matrix other than the first row 

and column. 

9: for 𝑖 = 1 𝑡𝑜 𝑚    do 

10:      for 𝑗 = 1 𝑡𝑜 𝑛    do 

11:           if (𝑎𝑖 = 𝑏𝑗) 

12:                𝑑𝑖𝑗  = 𝑑𝑖−1,𝑗−1; 

13:           elseif (𝑎𝑖−1𝑎𝑖 = 𝑏𝑗𝑏𝑗−1 )  

14:                𝑑𝑖𝑗 =  𝑑𝑖−2,𝑗−2 + 1 ; 

15:           else 

16:                𝑑𝑖𝑗 = min {𝑑𝑖−1,𝑗 + 1, 𝑑𝑖,𝑗−1 + 1 }; 

17:           end if  

18:      end for 

19: end for 

20: // Using Eq (8) to obtain the edit distance 

21: 𝐸𝑑𝑖𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐸𝐷) = 𝑑𝑚𝑛; 

Wagner-Fischer Algorithm 

Fig. 6 demonstrates how to calculate the edit distance by 

using Wagner-Fischer algorithm. Assuming a sequence of 

abnormal behaviors is detected in an FDI attack. Due to non-

ideal factors, there exist missing or mistaken reports in the 

abnormal event sequence. In the example in Fig. 6, the IDS fails 

to capture event “e” and is mistaken in the sequence of events  

 “b” and “c.” Thus, the IDS calculates the similarity between  

“acbf” (detected event) and the attack path 𝑃2 in TABLE II. The  

 
Fig. 6 Computing distances with matrix by Wagner-Fischer algorithm.  

elements in the first row and column are decided by (5) and (6), 

respectively. Then, the rest of the blanks can be calculated by 

(7). Once the last element (corner at the bottom right) is filled, 

the 𝑬𝑫 between two patterns is obtained.  

Using the pattern recognition algorithm, the detected 

abnormal event is compared with each pre-defined cyber attack 

in the dictionary (TABLE II) and obtained a 𝑬𝑫 value. Among  

all four calculated 𝑬𝑫 values (𝐸𝐷1, 𝐸𝐷2, ⋯ , 𝐸𝐷4 ) according to 

the attack paths ( 𝑃1, 𝑃2, ⋯ , 𝑃4 ), the least edit operation is 

considered the most likely attack type. Then, an attack 

similarity index, 𝐼𝐷𝑆𝑖𝑛𝑑, is defined as: 

𝐼𝐷𝑆𝑖𝑛𝑑 = 𝑚𝑎𝑥  {1 −
𝐸𝐷𝑖

𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑖)
} (9) 

where 𝑖 = {1,2,3,4}. Once 𝐼𝐷𝑆𝑖𝑛𝑑  is greater than a user-defined 

threshold value 𝑉𝑡ℎ , the detected event is regarded as an 

intrusion event. Otherwise, it requests another round of 

inspection of the SVM detection process. The threshold value 

can be regarded as the sensitivity of the second-stage detection 

process. A greater threshold value setting requires stronger 

evidence to identify a cyber attack event. In other words, the 

time order of the detected anomaly event should be similar to 

one of the predefined attack paths. Therefore, an extremely high 

threshold value may cause extra false negatives. In contrast, 

false positive alarms may increase if the threshold value is low. 

Therefore, a lower threshold value is suggested in a new or an 

unknown communication environment to increase the detection 

rate. On the other hand, a higher threshold is able to reduce the 

false positives in a well-known and stable communication 

network.  

If 𝐴𝐷𝑆𝑖𝑛𝑑  still equals to 1 in the second round inspection, it 

reports a system failure alarm to the control center. Otherwise, 

the proposed IDS stays silent until the next round of system 

inspection. According to the different combinations of 𝐴𝐷𝑆𝑖𝑛𝑑 

and 𝐼𝐷𝑆𝑖𝑛𝑑, an operator can conclude the system status, which 

is shown in TABLE III. 

TABLE III 
SYSTEM STATUS ACCORDING TO REPORTS OF ADS AND IDS 

𝑨𝑫𝑺𝒊𝒏𝒅/𝑰𝑫𝑺𝒊𝒏𝒅 0 1 

0 No Suspicious Event False Alarm(s) 

1 Arbitrarily System Failure Intrusion Event 

IV.  CYBER-PHYSICAL SYSTEM TESTBED 

Training data plays a significant role in every ML-based 

algorithm and directly affects the performance. Currently, most 

of the AMI cyber security studies use IDS databases, KDD Cup 

99’ [28], DARPA 1998 [29], and ADFA-LD [30], to train/test 
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an ML-based detection system. Since these datasets were not 

developed in an AMI network environment, the training result 

might not be applicable for smart meters. In some other ML 

applications in AMI (e.g., load forecasting), a proprietary smart 

meter database is used. These datasets are provided by utilities 

with their proprietary AMI system. The attributes (e.g., current, 

voltage, power consumption, and frequency) are not suitable for 

IDS studies since they only account for power system behaviors.  

To acquire a feasible dataset in AMI, a CPS testbed has been 

developed at WSU. Smart City Testbed (SCT) [31] was built 

for studying the effectiveness of cyber intrusions and mitigation  

techniques. In this paper, the SCT is extended by adding AMI 

components. Commercial-grade SBCs capable of operating 

under IEEE 802.15.4 are available. The performance of CPU 

and peripheral electronic components is sufficiently high to 

emulate a real smart meter in terms of the computational and 

wireless communication capability. The WSU SCT includes 19 

actual smart meters that are installed at a student dormitory on 

campus. To provide communications, the AMI network 

messages are captured by a transceiver that supports IEEE 

802.15.4 communication. After analyzing the network traffic 

pattern, SBCs are configured to generate the same traffic 

pattern for collecting the training data for the proposed IDS. 

A.  Hardware Setting 

The selected SBC has a similar hardware structure which is 

introduced in Section III. The specifications of TABLE IV 

show the computational capability of the SBC. An SBC has two 

individual flash memories. The smaller one is for the O/S and 

core components, whereas applications, meter data, and log 

files are stored in the embedded Multi-Media Controller 

(eMMC) memory. The board runs a minimal Linux kernel with 

a BusyBox shell [32]. This combination provides a basic set of 

UNIX based commands that are intended to be used for systems 

with minimal resources. The onboard communication module 

provides a sub-GHz (902-928 MHz) IEEE 802.15.4 radio used 

for mesh networking. According to the different modulators, 

the data rate can be set between 12.5 to 600 Kbps. To establish 

a realistic AMI communication environment, two SBCs are set 

as a smart meter and a grid router with 200 Kbps data rate on 

channel 1 (906 MHz). 

TABLE IV 
SPECIFICATION OF SINGLE BOARD COMPUTER 

Components Specification 

Microprocessor 
ARM Cortex A8 32-bit @ 450 MHz with 

32 KB L1 cache and 256KB L2 cache 

RAM 128MB 

EEPROM 256 bytes 

Flash Memory 
256MB Onboard 

4GB eMMC 

Communication Module IEEE 802.15.4g 

Power Supply 5 Volts and 2 Amps 

O/S BusyBox 

 

B.  Co-Simulation of Emulated AMI Devices and NS-3 

The testbed has two parts: (1) simulation and (2) emulation. 

Since emulation of an AMI network requires numerous 

physical devices and system configurations, it is not feasible 

due to limited availability of the equipment and engineering 

costs. In addition, the interoperability of different hardware 

increases the difficulty of developing an AMI testbed. In 

contrast, simulation methods cannot reflect the real 

communication behaviors since they do not establish 

communication links by generating network packets. To 

eliminate the drawbacks of an individual emulation or 

simulation method, a hybrid test platform for a large-scale AMI 

network is developed in this research. NS-3 is an open-source 

discrete-event network simulator that provides multiple sets of 

C++ and/or Python libraries to develop a test communication 

network. By using the IEEE 802.15.4 library, a communication 

model of the AMI network is designed with 5 NANs and over 

900 communication nodes. The topology of physical devices is 

referred to as the existing cellular network. In the proposed 

intrusion detection method, the smart meters are assumed to 

send telemetry data (i.e., power consumptions and meter 

operating status) to the control center using their local NAN. 

This is achieved by defining a star-like topology that connects 

the control center and the outfield NANs. Therefore, no multi-

hop, or mesh-like communications are required for multi-NAN 

traversal.  

NS-3 provides the TapBridge model to integrate physical 

communication hosts into network simulations, bridging the 

real-world environment with the virtual-simulation. Fig. 7 

depicts the co-simulation method for the physical devices and a 

simulated AMI network. This paper is focused on the emulation 

of smart meters by commercial-grade SBCs. The emulation 

platform is used to collect training data, simulating cyber 

attacks and analyzing the impact, and validating the proposed 

IDS. The NS-3 simulation is to ensure the data exchanging, 

including power consumption data, beacon signal of smart 

meters, and distribution of SVM model, will not congest the 

AMI network. 

Grid Router

Smart Meter

IEEE 802.15.4
Channel 1
200 Kbps

BusyBox O/S

TCP/IP Stack

eth0 veth

Applications

Ethernet 

Interface

 Bridge (brctl)

TAP 

Device

NS3 Node

TapBridge

NetDevice

Network 

NetDevice

UseBridge Mode

NS-3 ApplicationComputer 

Running NS-3

brctl: Bridge control

eth0: Ethernet interface 

veth: Virtual Ethernet interface

Emulation Bridging Simulation

 
Fig. 7 Co-simulation of IEEE 802.15.4 communication. 

V.  SIMULATION RESULTS AND ANALYSIS 

The proposed AMI test platform is used to simulate different 

types of attacks and analyze the effectiveness of the proposed 

detection system at each stage. The performance of different 

ML algorithms is compared. Three attack scenarios are 

generated for validation of the proposed pattern recognition 

algorithm. 

A.  Training Process of ML Algorithms 

The Operating System (O/S) of the SBC supports executing 

Portable Operating System Interface (POXIS) commands to 

monitor the device attributes, providing input data for training 

and testing of the SVM and NN models. No prior knowledge of 

the cyber attacks on smart meters is assumed. It is generally 

difficult to determine the criticality of a smart meter’s 

measurements that can most impact the accuracy of the SVM 
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model. In addition, new types of cyber attacks may appear at 

any time, causing different symptoms for a smart meter. 

Therefore, the proposed strategy in this research is to include 

every measurement of the computer system that can be 

monitored by a smart meter, such as CPU, RAM, storage, and 

network traffic readings. TABLE V lists the total of 19 features  

in this research. To generate the training data, the network  

packets are generated and sent by the SBCs, which are used to 

emulate a smart meter, a grid router, and AMI communication. 

The two sets of the training data are listed as follows: 

    1)  Normal Data: Sending one beacon signal every 15 

seconds and three copies of a power consumption data point 

every 20 minutes. In the test dataset, 5000 instances are 

collected under this class label.  

    2)  Attack Data: Except for the routine packet sending, one 

of the designed attack behaviors is executed simultaneously. 

The cyber attacks include CPU overloading, memory 

exhaustion, and packet burst. A total of 1173 instances fall 

under the attack class in the test dataset.  

The Python tool, Scikit-Learn [33], is used for NN and SVM 

implementation with two typical kernel functions from different 

categories (i.e., global and local) which are listed in TABLE VI. 

To enhance the credibility of test results, the random selection 

method is used to choose a subset from the overall dataset as 

training data. Three groups of training are conducted for SVM 

model according to the training ratios, i.e., 80%, 70%, and 60%. 

Moreover, to demonstrate the influence of kernel functions, 

different values are applied to kernel parameters, 𝑑 and 𝛾, in 

Polynomial and RBF kernels, respectively. Note that degree, 𝑑, 

is a natural number and 𝛾  is a positive parameter which is 

defined as the radius of influence of selected support vectors. 

To compare the detection performance between different ML 

algorithms, a Multi Layer Perceptron (MLP) model is selected 

as a NN algorithm. It has 10 hidden layers with 10 neurons in 

each layer, and the training ratio is set at 80%. 

NS-3 is used to experimentally verify that the overhead 

traffic, induced by transmission of the SVM training data, does 

not cause a heavy burden on a large-scale AMI network. In this 

work, the utilization ratio is proposed as a metric to determine 

the utilization overhead induced by the SVM data-transfer 

process. That is, 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜

=
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 𝑜𝑓 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑖𝑡𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 

𝑆𝑒𝑛𝑑𝑖𝑛𝑔 𝑐𝑦𝑐𝑙𝑒
 

(10) 

The pre-trained SVM model has a size of 353 Kbytes, and 

the throughput of the communication channel is assumed to be 

200 Kbps. As a result, it takes 14.12 seconds for the data to 

travel from the grid router to a smart meter. Since each smart 

meter sends measurements every 20 minutes, the sending cycle 

will be set to 1200 seconds. Based on (10), the SVM data-

transfer introduces a small overhead (~1.18%), indicating that 

the proposed SVM-based IDS has a low impact on the operation 

of an AMI network. 

B.  Performance of SVM Classifier 

Although SVM-based classifiers are often compared to other  

techniques such as Naïve-Bayes and K-nearest neighbor (KNN) 

TABLE V 
INPUT FEATURES FOR TRAINING AND TESTING PROCEDURES 

Category Features Unit Description 

RAM 

used Kbytes RAM that has been occupied. 

free Kbytes RAM that can be accessed and utilized.  

buff Kbytes RAM is used for file buffers. 

cached Kbytes RAM is used for cache memory. 

CPU 

Usage 

usr % User space processes. 

sys % Time spent on running the kernel.  

nice % Priority level of processes.  

idle % No executing processes. 

io % I/O peripherals (e.g, hard drive disc). 

irq % Hardware interrupt routines. 

sirq % Software interrupt routines. 

CPU 

Average 

Load 

1 min 100% The running thread (task) demand on 

the system as an average number of 

running plus waiting threads.  
2 mins 100% 

5 mins 100% 

Network 

Traffic 

RX Pkts count Number of network packets that have 

been transmitted/received.  TX Pkts count 

RX data Kbytes 
Size of transmitted/received data. 

TX data Kbytes 

Storage Usage % Used storage capacity. 

TABLE VI 

TESTED KERNEL FUNCTIONS FOR SVM 
Kernel Name Category Kernel Function 

Polynomial Global 𝐾(𝜇, 𝜈) = (𝜇 ∙ 𝜈 + 1)𝑑 

Radial Basis Kernel (RBF) Local 𝐾(𝜇, 𝜈) = exp(−𝛾‖𝜇 − 𝜈‖2), 

there are some advantages (and disadvantages) that must be 

considered in terms of computational and time complexities 

that were analyzed during the development phase of this study. 

The comparison is summarized as follows: 

⎯ Space complexity: KNN implementations need to store 

every data point in the original data set, which can be 

modeled as 𝑂(𝑛). In contrast, SVM classifiers are able to 

store their training data within the 𝑂(1) space. This reduced 

space complexity is an important aspect to consider when 

the systems are executed in memory-constrained devices 

such as smart meters. In terms of space complexity, SVM is 

preferred.  

⎯ Time complexity: Time complexity must be considered 

under two scenarios, training and evaluation. For the first 

case, KNN has an 𝑂(0)  complexity, while SVM-based 

solutions have a relatively high training complexity 

𝑂(𝑚𝑎𝑥(𝑛, 𝑑)𝑚𝑖𝑛(𝑛, 𝑑)2) , where 𝑑  represents the 

dimensional features and 𝑛 is the number of training 

examples. Under the evaluation scenario, KNN has an 𝑂(𝑛) 

complexity, while SVM has a complexity of 𝑂(𝑛𝑠𝑣) (where, 

𝑛𝑠𝑣 is the number of support vectors). 

C.  Evaluation of ML-Based Detection Techniques 

Two common metrics, Detection Rate (DR) and accuracy, 

are used to evaluate the performance of SVM models. DR is 

defined as a ratio between numbers of detected and total attack 

samples, whereas accuracy is measured by the overall True 

Positive (TP) and True Negative (TN) rates. The outcome of 

performance metrics is the average values from the 100-rounds 

test with different selected training/testing dataset as well as the 

same kernel function, size of datasets, and kernel parameters. 

    1)  SVM and kernel functions: TABLE VII provides the 

testing result of the proposed SVM method with the two kernel 

functions. It shows that Polynomial kernel does not possess 

monotonically increasing or decreasing properties when: (i) 𝑑, 

and (ii) training ratio are monotonically increased/decreased. It  
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TABLE VII  
PERFORMANCE COMPARISON OF SVM MODELS FOR SMART METER ADS  

Kernel Function Polynomial RBF 

Parameter 𝒅 𝜸 

Metric 
Train 

Ratio 
1 2 5 1 2 5 

DR 

(%) 

80% 97.06 96.96 96.77 98.31 98.47 98.71 

70% 96.79 96.79 96.54 97.88 98.41 98.63 

60% 96.52 96.45 96.40 96.68 98.06 98.31 

Accuracy 

(%) 

80% 98.15 98.56 98.33 99.40 99.41 99.44 

70% 98.02 98.38 98.22 99.24 99.25 99.37 

60% 97.90 98.25 98.18 98.88 99.17 99.30 

can be assessed that local kernel functions are more suitable for 

the collected smart meter data compared with global kernel 

functions, indicating that there is no strong connection among 

data features.  

    2)  Comparison of NN and SVM: To show the advantage of 

SVM, the same training process is applied to the MLP model 

with the minimal setting which can achieve a similar accuracy 

level. TABLE VIII shows the NN algorithm spends more time 

to complete the training. In contrast, the longest training time 

among all the tests of SVM is 0.52 seconds with respect to RBF 

kernel with 𝛾 = 5 and 80% of training ratio. Comparing to the 

SVM, the NN algorithm takes over 2.5 times more seconds in 

the training process. To ensure the ML model can be updated 

timely when the new AMI data is available, training efficiency 

is a critical factor to affect the performance of the IDS.  

In this test, SVM is shown to be a better ML algorithm for 

real-time applications in AMI networks, and it is able to identify 

abnormal behaviors from the network traffic and usages of 

smart meters (TABLE V).  

TABLE VIII 

COMPARISON BETWEEN ML ALGORITHMS 

ML Algorithm Train Ratio Accuracy (%) Training Time (s) 

NN (MLP) 
80% 

98.22 1.33 

SVM (RBF) 98.71 0.52 

D.  Attack Scenarios for Smart Meters 

    1)  CPU Overloading (Case1): In this scenario, attackers are 

able to access the smart meter physically and open the cover to 

view the structure of the electronic components. Based on what 

they learned, they try to crack the login password by brute-force 

and modify a smart meter’s firmware, allowing unauthorized 

users to install malware. In the following, the malware is  

installed and executed by the attacker, which is used to create a  

high volume of dummy load to exhaust the CPU. Since the 

computing resource is overused, the system becomes slow and 

freezes. Finally, the smart meter automatically reboots. 

Therefore, an off-line record is written to the log file after the 

CPU is overloaded. 

    2)  RAM Exhaustion (Case2): Assuming attackers already 

have the login information of a smart meter. After penetrating 

the smart meter’s internal system (e.g., filesystem and O/S), the 

malware is installed to create dummy data to fill the RAM. All 

the application processes in the target meter gradually slow 

down and freeze. Eventually, the smart meter reboots and loses 

all the unsaved data.  

    3)  Denial of Service (Case3): Attackers have identified and 

tested the PANID and the communication channel of the 

victimized smart meter. With the information, attackers use a 

wireless signal transmitter to create heavy communication 

traffic by sending dummy network packets to the target. 

E.  Validation of the Proposed IDS 

Since the SVM provides high accuracy in the first stage  

detection process, the abnormal behaviors trigger the alarm in 

all the three test cases. Once ADSind is changed from 0 to 1, the  

IDS starts to collect the time information of detected abnormal 

behaviors for the second stage detection process. The test 

results are provided in TABLE IX.  

In Case 1, the IDS fails to detect abnormal event “𝑗” which 

shows an abnormal temperature of CPU. The sequence of 

detected abnormal behaviors is aligned along the time axis as 

“abcegik.” The proposed pattern matching algorithm obtains  

𝐼𝐷𝑆𝑖𝑛𝑑 by finding the maximal similarity between the detected 

sequence and the pre-defined attack sequences. In this test 

scenario, the length of 𝑃4 is 8, and the corresponding 𝑬𝑫𝟒 is 1.  

Therefore, 𝐼𝐷𝑆𝑖𝑛𝑑  is calculated as 0.875 by (9), which is the 

greatest value among all four attack paths. It indicates that the 

series of suspicious behaviors intends to launch a CPU 

overloading attack. Since 𝐼𝐷𝑆𝑖𝑛𝑑 is greater than the threshold, 

i.e., 𝑉𝑡ℎ = 0.6, this event is judged to be an attack. In Case 2, 

attackers do not physically access the target, and there is not an 

abnormal report from the shaking sensor. The detected 

abnormal event sequence is “𝑏𝑐𝑔ℎ𝑘.” The path 𝑃3 generates the 

largest similarity index 𝐼𝐷𝑆𝑖𝑛𝑑 . The detection system reports 

this attack event as a RAM exhaustion attack. In the last test 

case, Case 3, the target meter receives a couple of packets from  

an unknown source address during testing of PANID. This  

behavior is recognized as the connection attempting. During the  

attack stage, the communication channel is congested. In this 

attack event, only “𝑏” and “𝑑” are captured by the IDS. 𝐼𝐷𝑆𝑖𝑛𝑑 

is 0.667, indicating that a DoS attack is recognized. Although 

the event “𝑐” is missing in the attack sequence, the IDS can still 

identify the cyber attack and the attack type. 

TABLE IX 
TEST RESULTS OF PROPOSED IDS 

Test 

Case 

Detected 

Abnormal 

Sequence 

Wagner-Fischer Algorithm 

Edit Distance for each Attack Path 
𝑰𝑫𝑺𝒊𝒏𝒅 

𝑬𝑫𝟏 𝑬𝑫𝟐 𝑬𝑫𝟑 𝑬𝑫𝟒 

Case 1 
a→b→c→e

→g→i→k 

6 4 2 1 
0.875 

𝑃4 : CPU overloading attack (D)  

Case 2 
b→c→g→

h→k 

4 7 2 5 
0.714 

𝑃3: RAM exhaustion attack (C) 

Case 3 b→d 
1 5 7 8 

0.667 
𝑃1: DoS attack (A) 

Length of Attack Paths 𝑃1: 3 𝑃2: 5 𝑃3: 7 𝑃4: 8 

VI.  CONCLUSION 

The growing number of smart meters on the customer side 

raised cyber security concerns about potential vulnerabilities of 

the new technologies. It is shown that intruders can launch a 

cyber attack by utilizing the vulnerability of hardware 

components and communication systems of smart meters. This 

paper proposes an IDS with the two-stage collaborative 

detection process for smart meters. The SVM classifier is 

applied as the abnormal behavior detection mechanism in the 

first stage. As soon as a suspicious behavior is detected, the 

second stage intrusion detection process is activated. According 

to the predefined attack routes, which are based on the TFPG 

technique, the pattern recognition algorithm is able to calculate 

the similarity index, indicating the likelihood of an intrusion 
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event as well as the attack type.  

An AMI test platform has been developed to provide a co-

simulation environment, including emulating wireless 

communication between a smart meter and a grid router, 

simulating cyber attacks, collecting training/testing data, and 

validating the proposed detection system. In this work, the 

simulated 5 NANs are identical; however, this does not limit 

the AMI network simulation applicability. Users can apply 

different network topologies and bridge NANs with physical 

devices according to their needs. Since the proposed SVM-

based detection system only requires local NAN data to classify 

normal versus abnormal data, it can be claimed that each NAN 

can operate in a parallel manner with respect to other NANs by 

only using a limited amount of computing power, 𝑂(𝑛𝑠𝑣) . 

Therefore, the proposed intrusion detection method is able to 

scale across multiple NANs as long as the computing 

requirements of each NAN are met. 

The simulation results show that the SVM classifier exhibits 

good performance with kernel functions in the specific category. 

Compared to NN algorithms, SVM has an advantage in the 

shorter training time. This feature allows the proposed SVM 

model to be frequently updated to maintain a high level of 

detection accuracy. In the three test attack scenarios, the ML-

based detection algorithm identifies abnormal behaviors and 

triggers the next stage detection process to investigate the 

sequence of the detected abnormal behaviors. The results show 

that all test scenarios are recognized by the IDS successfully.  

To improve the detection accuracy of the SVM, more 

features to represent physical system behaviors can be added 

into the dataset, e.g., power measurement readings from feeders 

and neighboring meters. In this work, a star-like 

communication topology is used in the NS-3 simulator to 

evaluate the network performance after integrating the 

proposed IDS. Future research needs to be conducted to 

incorporate other AMI network topologies, a task required for 

simulation of large-scale AMI networks. 
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