
0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID 1

Fairness-Aware Energy Efficient Scheduling
on Heterogeneous Multi-Core Processors

Bagher Salami, Hamid Noori, and Mahmoud Naghibzadeh

Abstract— Heterogeneous multi-core processors (HMP) with the same instruction set architecture (ISA) integrate complex high

performance big cores with power efficient small cores on the same chip. In comparison with homogeneous architectures,

HMPs have been shown to significantly increase energy efficiency. However, current techniques to exploit the energy efficiency

of HMPs do not consider fair usage of resources that leads to reduced performance predictability, a longer makespan,

starvation, and QoS degradation. The effect of different cluster voltage and frequency levels on fairness is another issue

neglected by previous task scheduling algorithms. The present study investigates both the fairness problem and energy

efficiency in HMPs. This paper proposes a heterogeneous fairness-aware energy efficient framework (HFEE) that employs

DVFS to meet fairness constraints and provide energy efficient scheduling. The proposed framework is implemented and

evaluated on a real heterogeneous multi-core processor. The experimental results indicate that the introduced technique can

significantly improve energy efficiency and fairness when compared to Linux standard scheduler and two energy efficient and

fairness-aware schedulers.

Index Terms— energy efficient scheduling, fair scheduling, heterogeneous multi-core, big.LITTLE architecture.

——————————  ——————————

1 INTRODUCTION

HE dark silicon phenomenon, process variation, and
the failure of Dennard scaling pushed computer de-

signers to develop heterogeneous (asymmetric) multi-

core processors (HMP). HMPs can be divided into two

categories: I) cores with the same instruction set architec-

ture, such as ARM’s big.LITTLE and Nvidia’s Kal-El, and

II) cores with different instruction set architectures, such

as IBM Cell, Nvidia’s Tegra, and AMD’s Fusion.

ARM’s big.LITTLE processors contain two distinct

types of cores: high performance Cortex-A15 (big cluster)

and low power Cortex-A7 (little cluster). Each cluster has

a specific microarchitecture, voltage and frequency levels,

cache size and pipeline stages. The execution time and

energy consumption of any program is affected by: a)

cluster type and b) the voltage and frequency level of

each cluster. Therefore, exploiting these characteristics at

the OS (Operating System) scheduler level is crucial. With

the aim of optimizing both the overall makespan (the du-

ration time of the start of programs to the end of the last

program) and energy consumption, a variety of schedul-

ing algorithms have been proposed for asymmetric multi-

core processors *1-28+. To achieve this, the algorithms

learn about application behaviors and map CPU intensive

workloads to big cores, while assign memory intensive

workloads to little cores. For workload distribution

among different clusters, some techniques *16,27+ exploit

ILP (instruction level parallelism) and MLP (memory lev-

el parallelism) instead of the CPU and memory intensity

of tasks.

As a critical objective seriously affecting the perfor-

mance and power consumption of running programs,

fairness has been ignored by the previous energy efficient

task scheduling algorithms. One scheduler is considered

fair if all programs suffer from the same performance

degradation normalized to the isolated run on a base con-

figuration *30,32+. Ignoring fairness in scheduling algo-

rithms may cause undesirable behaviors in the system

*29+, such as reduction in performance predictability, a

longer makespan, starvation, and hence QoS degradation.

Although some proposed algorithms take into account

fairness for heterogeneous multi-cores in the OS sched-

uler *29-32+, they do not consider power consumption and

energy efficiency. To the best of the present work's

knowledge, both fairness and energy efficiency of a task

scheduler on HMPs have not yet been studied. The cur-

rent paper introduces a scheduler that simultaneously

addresses both fairness and energy efficiency.

The effect of different cluster voltage and frequency

levels on energy efficiency and fairness is another over-

looked matter in task scheduling algorithms. According

to the current study's experimental results, the voltage

and frequency ratio of big to little clusters significantly

affects the fairness and energy efficiency of the scheduler.

Generally, the proposed algorithm aims to improve the

scheduler's energy efficiency by assigning big’s appropri-

ate programs to the big cluster and little’s appropriate

programs to the little cluster. For each program, the ratio

of the instruction per watt (IPW) of the big cluster to that

of the little cluster serves as an indicator of a program's

T

————————————————

 The authors are with the Department of Computer Engineering, Fer-

dowsi University of Mashhad, Mashhad, Iran.

E-mail: bagher.salami@mail.um.ac.ir,{hnoori, naghibzadeh}@um.ac.ir.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society
Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

2 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

suitability for each cluster type. Experimental results in-

dicate that programs with a higher energy efficiency ratio

(IPWbig/IPWlittle) are more energy efficient to run on the

big cluster and those with a lower ratio value are suitable

for the little cluster. The present research does an exhaus-

tive exploration on how voltage and frequency values

affect fairness. Based on this study, a reactive algorithm is

proposed to select the voltage and frequency of each clus-

ter, so that the target fairness is achieved. For managing

fairness among different programs, the voltage and fre-

quency ratio of the big to little cluster is considered.

Through proper task assignment to clusters and man-

agement of each cluster's voltage and frequency, a certain

level of fairness, known as the fairness threshold, is guar-

anteed, while energy efficiency (energy delay product) is

improved.

The current paper presents a scheduler that works ef-

fectively for heterogeneous big.LITTLE processors with

DVFS support. This scheduler is designed to replace task

mapping in Linux-like runtime systems and the

ondemand DVFS governor. The present research could

not find a scheduler with the same objectives as its own.

Therefore, the proposed scheduler is evaluated on a real

asymmetric multi-core processor with ARM big.LITTLE

architecture and also compared with Standard Linux

scheduler and two state-of-the-art competitors: 1) an en-

ergy efficient scheduler which does not consider fairness

*28+ and 2) a fairness-aware scheduler *31+ which does not

consider energy efficiency. The source code of the pro-

posed framework and the implemented opponent algo-

rithms are available online at

https://github.com/baghers/HFEE. The results show that

the proposed scheduler guarantees the fairness threshold

while improving overall energy efficiency. In summary,

the present paper makes the following contributions:

 Investigation of the effect of different cluster volt-

age and frequency levels on the fairness of running

programs

 Extending fairness definition for heterogeneous

multi-core processors with DVFS capability

 Introduction of a scheduler that simultaneously

governs both fairness and energy efficiency for

heterogeneous multi-core processors

 Improving both fairness and energy efficiency on a

real asymmetric multicore processor through ap-

plying the proposed algorithm compared to Linux

scheduler and two contemporary schedulers (i.e.,

an energy efficient scheduler which does not con-

sider fairness and a fairness-aware scheduler

which does not consider energy efficiency)

2 MOTIVATION AND RELATED WORK

Various methods for task scheduling on HMPs have been

proposed that can be categorized into single program

(programs per core <= 1) and multi-programs (programs

per core > 1) from the program count perspective. Also,

these algorithms can be classified into serial and parallel,

based on application types, forming four categories that

are depicted in Fig. 1. Single serial program schedulers

*13,15,16+ are used usually in program phase detection

*13+, studying and managing temperature, performance,

and power behaviors of different clusters *15+, and ana-

lyzing programs’ attitude on asymmetric multi-cores *16+.

On the other hand, single program schedulers for parallel

applications *9,14,18+ are utilized in load balancing in or-

der to prevent bottleneck *9+, asymmetric data partition-

ing *14+, and critical section management in asymmetric

environments *18+.

Multi-program schedulers utilize two kinds of tasks;

serial, and parallel, while to the best of authors’

knowledge, no prior attempt has been made to imple-

ment an algorithm for scheduling multi parallel programs

simultaneously. Multi-program serial schedulers

*1,3,6,17,24-31+ for asymmetric multi-core platforms are

employed to govern the trade-offs between two criteria:

e.g., performance versus power *1,3,17,25-27+, perfor-

mance versus fairness *29-31+, or performance versus oth-

er criterion such as temperature *28+, reliability *24+ and

aging rate *6+.

Efficiently utilizing performance-power trade-offs

need to assign tasks to the appropriate core types and

adjust their frequencies to a suitable value through DVFS.

SmartBalance *3+ is one of the first attempts of closed-loop

load balancing, consists of three phases of sensing, esti-

mation, and prediction. Unlike the open-loop standard

Linux load balancer, which distributes the threads uni-

formly, SmartBalance as a Feedback based controller tries

to assign the threads to the matched core type to achieve

the best energy efficiency with the cost of performance

Heterogeneous task
scheduling algorithms

Single program

Parallel
[9,14,18]

Serial
[13,15,16]

Multi programs

Parallel

Serial
[1,3,6,17,24-31]

Fig. 1. A hierarchical classification of related work.

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 3

overhead. HPM *27+ is a control-based framework to

achieve the optimal performance-power trade-off, with

the aid of multiple PID controllers (one for each applica-

tion and one for each cluster), considering the TDP

(Thermal Design Power) budget. Cluster controller allo-

cates the power budget to each cluster and the other con-

trollers try to meet the TDP budget. However, for higher

number of clusters, its performance degrades dramatical-

ly. ApxSched *25+ presents a static scheduler, considering

various approximate versions of tasks to maximize per-

formance with respect to power constraints. Different

versions of each task are produced based on loop perfora-

tion *25+ technique and scheduling decisions are made

according to an off-line heuristic. Myungsun et al. *26+

propose a utilization-aware load balancer for big.LITTLE

processors. A processor utilization estimator is presented

to determine the most appropriate frequency for a given

set of tasks, considering performance constraints. But,

utilization-based criterion is not adequate for power

management of asymmetric multi-cores. Paragon *24+ is a

resource allocation approach for unknown incoming

workloads. Paragon uses classification techniques to es-

timate the impact of heterogeneity and interference on

performance uses this information for workload assign-

ment to different server types. The target server for each

workload provides the best performance and has less in-

terfere with other collocated workloads. Workload classi-

fication is based on sampling, that has a huge overhead

and it may not be applicable to asymmetric multi-cores.

DTPM *28+ is one of the latest studies of dynamic power

and frequency management. Bhat et al. *28+ propose a

power budget predictor to estimate the power budget

based on current temperature and temperature threshold.

The other presented predictor, predicts the power con-

sumption based on the next frequency setting using pow-

er sensors. Then, DTPM specifies the maximum feasible

frequency under the available power budget. A leakage

power model of the ARM big.LITTLE architecture is used

in their proposed technique.

On the other hand, performance-fairness trade-off

management is the other problem of task scheduling.

Several definitions of fairness have been proposed in the

literature. Frequently, a system is considered fair when all

the running programs suffer the same slowdown corre-

sponding to their isolated execution *29+. On asymmetric

multi-cores, the slowdown depends on two main factors

*29+: (1) performance asymmetry and (2) shared-resource

contention. Feliu et al. *30+ present a process scheduler for

SMT multicores that estimates the progress experienced

by the processes, and gives priority to the processes with

lower accumulated progress. This algorithm requires ex-

tension for asymmetric multi-cores. One of the first re-

searches of considering shared-resource contention in

task scheduler, which is the second source of slowdown,

has been presented in *29+. In *31+ some different fair

schedulers are presented to efficiently distribute big-core

cycles among different applications. They ask for the tar-

get fairness from the user as an input and try to meet the

target fairness, while maximizing performance. Table 1

summarizes the related schedulers in terms of their speci-

fication.

An issue in task scheduling that has not yet been ad-

dressed by previous works is the simultaneous considera-

tion of both fairness and energy efficiency for task sched-

uling on the asymmetric multi-core processors. This over-

looked problem is the motivation behind the current

work. The present study also explores the cluster’s fre-

quency and fairness relationship. The results of this study

are considered in developing the proposed scheduler.

Additionally, the proposed HFEE scheduler supports

DVFS and is the first to include DVFS in a fairness-aware

scheduler. When compared to Linux Standard Scheduler

and two state-of-the-art works (an energy efficient *28+

and a fair scheduler *31+), HFEE improves both energy

efficiency and fairness.

3 SYSTEM MODEL, METRICS AND PROBLEM

STATEMENT

This section discusses the workload and platform models

as well as energy efficiency and fairness metrics are pre-

sented.

Workload Model. We consider a set of m single thread pro-

grams as P = {p1,p2,…,pm} that can be more than total core

count (m ≥ Core#). For uniformity, in this paper the term

task is used interchangeably for both programs and tasks.

We assume that total instructions and average power con-

sumption of every task on each core type is known. Task

scheduling is done at fixed periods called epochs, which

is denoted by τ.

TABLE 1
SPECIFICATION OF RELATED WORK SCHEDULERS

Scheduler Real platform DVFS Performance Energy Fairness

HPM [27]    

Utilization-Aware [26]  

SmartBalance [3]   

ApxSched [25]    

Paragon [24]  

Algorithmic Opt. [28]    

Perf&Fair [30]   

Contention-Aware [29]   

Min-Fair [31]  

HFEE     

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

4 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

Platform Model. The system considered in this paper is an

HMP platform consists of multiple cache-coherent cores

as C = {c1,c2,…,cn}, that share the same ISA and memory

address space. Cores are organized into the set of clusters

as Z = {z1,z2,…,zs}, while all cores in the same cluster sup-

port the same voltage/frequency pairs; therefore DVFS is

being applied at the cluster level. It is assumed that each

core provides hardware performance counters and each clus-

ter has a power sensor, which allows to characterize pro-

grams power consumption.

Energy Efficiency Metrics. Energy efficiency is defined as

the combination of reduced energy consumption and per-

formance improvement (runtime) *33+. The energy-delay

product (EDP) is considered as a long-term metric and

calculated by the product of the total amount of energy

consumed and the runtime duration. The higher the en-

ergy efficiency, the less EDP value. As a short-term crite-

rion, the instruction per watt is another energy efficiency

metric, which is the total amount of committed instruc-

tion for every watt of power consumed. Clearly, the more

IPW, the higher energy efficiency.

Fairness Metric. According to our studies, there is not a

single and unique definition of fairness. One of the most

prevalent definition of fairness is expressed as: An sched-

uler is considered fair if the variation of performance degrada-

tion normalized to isolated run is minimal *30,32+, Where,

Van Craeynest *32+ considers fast cores, while Feliu *30+

considers equal usage of both big and little cores as iso-

lated run. Dynamic frequency scaling has not been stud-

ied in the previous works and we need to consider fre-

quency in the fairness definition.

The fairness definition in *30,32+ has been extended to

support DVFS as: A scheduler is considered fair if the varia-

tion of performance degradation normalized to isolated run on

big core with highest voltage and frequency is minimal.

The slowdown of each program under a scheduler is ex-

pressed as: 𝑆_𝑚𝑎𝑥 =

 , where 𝑇 𝑐 is the execu-

tion time of program i under the scheduler and 𝑇

is the execution time of program i on the big core with

maximum voltage and frequency which enables the eval-

uation of fairness in terms of uniformitymax:

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦𝑚𝑎𝑥 = 1 −
𝜎𝑆_𝑚𝑎𝑥

𝜇𝑆_𝑚𝑎𝑥

 (1)

Where 𝜎𝑆_𝑚𝑎𝑥 and 𝜇𝑆_𝑚𝑎𝑥 are the standard deviation and

the average of S_max values of all programs respectively.

Problem statement. We study the problems of assigning m

single thread programs to one n cores big.LITTLE proces-

sor and determining the voltage and frequency of each

cluster (voltage and frequency of each cluster can be ad-

justed locally) dynamically such that the system fairness

is less than a user defined threshold and energy efficiency

is maximum.

4 HFEE FRAMEWORK

As shown in Fig. 2, the HFEE framework for HMPs is

composed of four parts: 1) Pre-processing exploits CPU

power sensors and performance counters to identify the

energy efficiency ratio of each program; 2) Ranking speci-

fies a program's suitability score for the two big and little

clusters; 3) Mapping maximizes energy efficiency through

choosing appropriate programs for each cluster after the

programs have been ranked; 4) Frequency scaling guaran-

ties fairness threshold through proper frequency selec-

tion. The following subsections fully describe the differ-

ent parts of the HFEE framework.

4.1 Pre-processing

As mentioned, energy efficiency improvement is achieved

by assigning tasks to the appropriate core types *1+. The

ratio of instruction per watt on the big cluster to instruc-

tion per watt on the little cluster of a program can be an

indicator of its suitability for each cluster type. The ener-

gy efficiency ratio (EER) is the name given to this ratio by

the current study:

𝐸𝐸𝑅(𝑖) =

𝑖𝑛𝑠𝑡 (𝑖)𝑏 𝑔
𝑤𝑎𝑡𝑡(𝑖)𝑏 𝑔
𝑖𝑛𝑠𝑡 (𝑖)𝑙 𝑡𝑡𝑙
𝑤𝑎𝑡𝑡(𝑖)𝑙 𝑡𝑡𝑙

=
𝑖𝑛𝑠𝑡 (𝑖)𝑏 𝑔 ∗ 𝑤𝑎𝑡𝑡(𝑖)𝑙 𝑡𝑡𝑙

𝑖𝑛𝑠𝑡 (𝑖)𝑙 𝑡𝑡𝑙 ∗ 𝑤𝑎𝑡𝑡(𝑖)𝑏 𝑔

(3)

where 𝑖𝑛𝑠𝑡 (𝑖)𝑏 𝑔 , 𝑖𝑛𝑠𝑡 (𝑖)𝑙 𝑡𝑡𝑙 are the instructions per

second (IPS) of program i on big and little cores, respec-

tively, and can be extracted using the CPU performance

counters. The average power consumption of program i

on big and little cores are denoted by 𝑤𝑎𝑡𝑡(𝑖)𝑏 𝑔 and

𝑤𝑎𝑡𝑡(𝑖)𝑙 𝑡𝑡𝑙 , which are obtained from the CPU power

sensors. When there are 2N programs, N little cores and

N big cores, to reach higher energy efficiency, N pro-

grams with lower EER values are more suitable to run on

little cores and N programs with higher EER values are

more suitable to run on big cores. The fully investigation

of EER values of SPEC CPU2006 benchmark are present-

b i gl i t t l e

R a n k i n g (2)

N e w
P r o g r a m s

.

C P U

F r e q u u e n c y a d j u s t i n g (4)

B i g C l u s t e rL i t t l e C l u s t e r

M a p p i n g (3)

c o m p l e t e d
P r o g r a m s

U n c o m p l e t e d
P r o g r a m s

P e r f o r m a n c e
C o u n t e r

C P U P o w e r
S e n s o r s

H F E E

. . .

. . .

p r e - p r o c e s s i n g (1)

O f f l i n e / O n l i n e p h a s e O n l i n e P h a s e s

. . .

Fig. 2. Heterogeneous Fairness-aware Energy Efficient framework.

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 5

ed in the Section 5.3.

As it is shown in Fig. 2, this phase can be performed

online or offline based on hardware capabilities. Since our

evaluated board provides power sensor per cluster, we

are not able to do pre-processing phase online and it is

carried out offline. For offline preprocessing, all applica-

tions are run on both types of cores and the average of

power consumption and retired instructions of each ap-

plication from start to end is used to calculate EER. How-

ever, to have online pre-processing phase, the evaluation

board has to be equipped with the power sensor per core.

To have online preprocessing, one solution can be as fol-

lowing. For the first two epochs, each program is run on

big and little cores, then IPW of big and little cores are

known. These IPWs are updated on next epochs.

4.2 Ranking

After determining EER values during the pre-processing

phase, program ranking phase then decides the assign-

ment of programs to different cores. For this purpose,

first 𝐸𝐸𝑅(𝑖) is normalized (i.e., it is limited between 0 and

1):

𝐸𝐸𝑅𝑁(𝑖) =
𝐸𝐸𝑅(𝑖) − Min

𝑗∈𝑃
(𝐸𝐸𝑅(𝑗))

Max
𝑗∈𝑃

(𝐸𝐸𝑅(𝑗)) − Min
𝑗∈𝑃

(𝐸𝐸𝑅(𝑗))

(4)

Programs with 𝐸𝐸𝑅𝑁(𝑖) values closer to one are more ap-

propriate for big cores, while programs with 𝐸𝐸𝑅𝑁(𝑖) val-

ues closer to 0 are more suitable to run on little cores. If

programs are sorted solely by 𝐸𝐸𝑅𝑁(𝑖), then some pro-

grams with EERN(i) values close to 0.5 confront starvation.

To prevent starvation, the wait time of each program is

considered along with 𝐸𝐸𝑅𝑁(𝑖), so that different pro-

grams are sorted according to 𝑆𝑐𝑜𝑟𝑒(𝑖) as:

𝑆𝑐𝑜𝑟𝑒(𝑖) = 𝐸𝐸𝑅𝑁(𝑖) + (
𝐸𝐸𝑅𝑁(𝑖)

0 5
− 1) 𝐾(𝑖) (5)

where K(i) denotes the number of epochs waiting for a

CPU and score(i) is the score of program i. If EERN(i) is

greater than 0.5, then (
 ()

− 1) will be from 0 to 1. If

EERN(i) is less than 0.5, then it will be from -1 to 0. With

the use of Eq. 5, programs with EERN(i) = 0.5 still confront

starvation and programs with EERN(i) near to 0.5 must

wait a long time for a CPU. Therefore, it is necessary to

ensure that all programs receive CPU time after at most K

epochs. For this purpose, the EERN(i) value of programs

waiting for more than K epochs is corrected. Fig. 3 shows

the program ranking for big and little cores. α1 and α2 are

the suggested parameters where α1 is the minimum

EERN(i) value for a program to receive a CPU (big cores)

after K epochs (via Eq. 5):

1 =∝ + (
∝

0 5
− 1) 𝐾 ⇒ 1 =∝ + (2 ∝ − 1) 𝐾

⇒ ∝ + 2𝐾 ∝ − 𝐾 = 1 ⇒ ∝ =
𝐾 + 1

2𝐾 + 1

(6)

Similarly, α2 is the maximum EERN(i) value for a program

to obtain a CPU (little cores) after K epochs (via Eq. 5):

0 =∝ + (
∝

0 5
− 1) 𝐾 ⇒ 0 =∝ + (2 ∝ − 1) 𝐾

⇒ ∝ + 2𝐾 ∝ − 𝐾 = 0 ⇒ ∝ =
𝐾

2𝐾 + 1

(7)

In the proposed framework, if EERN(i) ∈(0.5. α1). then the

EERC(i) value is considered as α1; if EERN(i) ∈(α2. 0.5).

then the EERC(i) value is presumed to be α2:

𝐸𝐸𝑅 (𝑖) {

Max(𝐸𝐸𝑅𝑁(𝑖) 0 5 +∝) 𝐸𝐸𝑅𝑁(𝑖) > 0 5

Min(𝐸𝐸𝑅𝑁(𝑖) 0 5 −∝) 𝐸𝐸𝑅𝑁(𝑖) < 0 5

𝑅𝑎𝑛𝑑(0 5 +∝ 0 5 −∝) 𝐸𝐸𝑅𝑁(𝑖) = 0 5

 (8)

Finally, score(i) is obtained as follows:

𝑆𝑐𝑜𝑟𝑒(𝑖) = 𝐸𝐸𝑅 (𝑖) + (
𝐸𝐸𝑅 (𝑖)

0 5
− 1) 𝐾(𝑖) (9)

With Eq. 9, the wait time of each program will be less

than K epochs. The highest wait time of different pro-

grams is:

𝑀𝑎𝑥_𝑤𝑎𝑖𝑡 = 𝐾 + ⌈
𝑀

𝐶
⌉

Where M and C are program and core counts, respective-

ly. At the end of this phase, all programs are sorted based

on their scores via Eq. 9.

4.3 Mapping

This phase maps appropriate programs to different clusters.

High score programs are more suitable for big cores, while

low score programs are more appropriate for little cores. As

demonstrated in Fig. 3, selected programs from the right-

most side of the sorted list are assigned to the big cores and

programs from the leftmost side are mapped to the little

cores.

4.4 Frequency Scaling

As mentioned, the selected voltage and frequency of each

cluster impacts the fairness in executing programs on HMP

at runtime. However, previous task scheduling algorithms

have neglected the effect of different cluster voltage and fre-

quency levels on the fairness of running programs. If the

applications take the equal processing resources, the fair-

ness would be high. But there are different processing

resources in the heterogeneous processors (different core

types and frequency levels), thus applications suffer more

unfairness compared to homogeneous processors. The

more difference of core’s computing power, the less fair-

ness amount. To investigate how different cluster frequen-

cies may alter the fairness of the scheduler, the present study

investigates how both big and little voltage and frequency

biglittle

0.5
α1α2

......

Fig. 3. Program ranking for big and little cores.

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

6 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

values impact fairness. To this end, various set of workloads

are selected and executed over combinations of big and little

frequency levels and the fairness value of each combination

is calculated in terms of uniformity, which is fully investi-

gated in the Section 5.3. The experimental results indicate

when the computing power of two clusters are the same (the

big to little cluster speedup = 1), the higher fairness is

achieved.

CPU frequency is a source of diversity among the two

clusters. For example, when the little cluster’s frequency

is constant at 1400 MHz and big cluster’s frequency is

2000 MHz, the big computing power is much more than

little. When the big cluster’s frequency decreases from

2000 MHz, the difference of two core’s computing power

decreases at first (rising uniformity) until two cluster’s

computing power become rather equal (the big to little

cluster speedup = 1). This frequency is application de-

pendent and called freqeq. By scaling down big cluster’s

frequency lower than freqeq, while little cluster’s frequency

is fixed 1400 MHz, the difference of the two cluster’s

computing power increases (little cluster computing

power would be more than big), causes lower uniformity.

So, at the state of decreasing big cluster’s frequency from

maximum frequency value, uniformity at first rises until

freqeq is reached, but for more scaling down under freqeq, then

uniformity falls substantially. Thus, it is vital to stop scaling

down big cluster’s frequency when uniformity starts to de-

cline.

According to our experiments (Section 5.3), another ob-

servation is that the highest values of uniformity for all

workloads happen when the big cluster’s frequency is lower

than 1400 MHz. The scaling up of big cluster’s frequency

higher than 1400 MHz, always causes fairness corruption

for all workloads. So, the improvement of uniformity is

never achieved by scaling up big cluster’s frequency value

more than 1400 MHz in our workloads. This frequency

value is defined as fthreshold by the present study. Generally, the

procedure of fthreshold calculation consists of two steps: 1) For

each workload, the value of freqeq is measured. 2) After freqeq

are identified for all workload, max(freqeq) is considered as

fthreshold.

Motivated by these observations and with the intent of

controlling system fairness and guaranteeing a user-

defined level of fairness known as Uniformitythreshold

(demonstrated in Fig. 4), the present research proposes a

reactive frequency adjusting technique based on a state

transition. In the proposed approach the little cluster al-

ways operates at its maximum frequency similar to *28,31+.

Little cluster power consumption is always low, so it is

not necessary to exploit DVFS for power management. In

the proposed state transition, there are only two fairness

states, namely ,low, high} or ,L, H} for short. When the cur-

rent system's uniformity is under Uniformitythreshold, then the

system is in the low fairness state. In contrast, the high fair-

ness state occurs when the current system's uniformity is

higher or equal to Uniformitythreshold. Also, we assume there

are two frequency states: ,L, H} or low (when the big clus-

ter's frequency is under fthreshold) and high (when the big clus-

ter's frequency is higher or equal to fthreshold) respectively. Thus,

the processor at each scheduling epoch can be in one of four

states represented by the notation of (uniformity, frequency)

and enumerated as: ,(L, L), (L, H), (H, L), (H, H)}.

The present study's target (optimal) state is (H, L) when

system uniformity is high and the frequency of the big clus-

ter is lower than fthreshold. However, as mentioned earlier, the

(H, L) state can be reached through either incrementing or

decrementing the big cluster's frequency. Therefore, as seen

in Fig. 4, there are two (H, L) states: state numbers 2 and 5.

The distinction of these two states is in their previous states.

Target (optimal) state number 5 is reached after a frequency

down scaling in state numbers 3 and 4, while state number 2

is achieved following a frequency up scaling in state number

1. When the system reaches state number 5, uniformity and

frequency are in appropriate conditions. In other words, the

current system's uniformity is higher or equal to Uniformi-

tythreshold, the big cluster's frequency is under fthreshold , and fre-

quency in this state remains fixed.

4.5 Complexity Analysis

Given the number of cores |C|, and programs |P|, pro-

posed scheduler at each scheduling epoch has the complexi-

ty of |P| × log(|P|) for Ranking, |C| in Mapping phase, and

|1| for frequency scaling, while |P| in Pre-processing phase.

If we assume |P| >= |C|, then the runtime is bounded by

O(|P| × log(|P|)) defined by the Ranking phase.

5 EXPERIMENTAL EVALUATION

This section presents the experimental results for different
applications on a real platform and provides analysis of

(1)
L,L

(++freq)

(3)
L,H

(--freq)

(4)
H,H

(--freq)

(5)
H,L

Uniformity� uniformitythreshold

 Freq<=fthreshold

Uniformity uniformitythreshold

 Freq<=fthreshold

Uniformity� uniformitythreshold

 Freq>fthreshold

Uniformity uniformitythreshold

 Freq>fthreshold

(2)
H,L

(++freq)

Uniformity uniformitythreshold

 Freq<=fthreshold

Uniformity� uniformitythreshold

 Freq>fthreshold

U
n

ifo
rm

ity u
n

iform
ity

th
resh

o
ld

Freq

>fth
re

sh
o

ld

Uniformity� uniformitythreshold

 Freq>fthreshold

Uniformity uniformitythreshold

 Freq>fthreshold

Uniformity uniformitythreshold

 Freq<=fthreshold

Uniformity� uniformitythreshold

 Freq<=fthreshold

Uniformity uniformitythreshold

 Freq<=fthreshold

Fig. 4. State transition diagram of DVFS adjusting.

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 7

the obtained results.

5.1 Experimental Setup

The proposed fairness-aware energy efficient scheduling

framework is evaluated by a real HMP processor with the

ARM big. LITTLE architecture. The evaluation platform is

an Odroid-XU3 board featuring the Exynos5422 SoC with

four Cortex-A15 3-way out-of-order (big) cores and four

Cortex-A7 2-way in-order (little) cores on a chip. The

range of the big core frequencies is from 200 MHz to 2

GHz and from 200 MHz to 1.4GHz for the little cores.

Four big cores share a 2MB L2 cache and four little cores

share a 512KB L2 cache.

The device has only 2GB DRAM which is insufficient

to run eight benchmarks on all of the eight cores, which

has also been mentioned in *31+. Thus, similar to *31+, on-

ly two big cores and two little cores are used, and the re-

maining are turned off. Ubuntu-mate 16.04.3 is installed

with kernel version of 4.14 on it and Perf library is em-

ployed as one of the two most common performance

counter profiling tools on Linux. cpufreq is used to adjust

the processor frequency and power consumption is ex-

tracted from the embedded power sensors of each cluster.

5.2 Workloads

In the present study's experimental evaluation, the work-

loads consist of SPEC CPU2006 mixes, which are charac-

terized in application throughput terms as instructions

per second (IPS). Fig. 5 presents the IPS values of different

applications on the big cluster, where IPS values spread

over a range from 0.22 × 109 to 2 × 109. Application work-

loads are categorized based on their IPS values as low

(IPS<1×109), medium (1×109<IPS<1.5×109), and high

(IPS>1.5×109) and denoted by L, M, and H respectively as

depicted in Table 2. As demonstrated in Table 3, fifteen dif-

ferent subsets of SPEC CPU2006 benchmarks are selected

for evaluations of the schedulers.

5.3 Application characterization

In this section, the EER value and DVFS impact on fair-
ness are fully investigated.

5.3.1 EER Value
SPEC CPU2006 benchmark is employed in our experi-

ments. Fig. 6 provides the EER values for all applications

using Eq. 3. The EER values are spread over a range from

0.89 to 2.44. AS we mentioned before, programs with low-

er EER values are more energy efficient to run on little

cores, while programs with higher EER values are more

energy efficient for the big cores.

TABLE 2
SPECCPU2006 BENCHMARK CATEGORIZATION BASED ON IPS

Benchmark Class Benchmark Class

998.specrand L 416.gamess H

999.specrand L 401.bzip2 H

429.mcf L 454.calculix H

400.perlbench L 483.xalancbmk H

471.omnetpp L 465.tonto H

473.astar L 434.zeusmp H

403.gcc M 435.gromacs H

445.gobmk M 410.bwaves H

450.soplex M 437.leslie3d H

459.GemsFDTD M 444.namd H

458.sjeng M 470.lbm H

453.povray M 456.hmmer H

436.cactusADM M 462.libquantum H

433.milc M 464.h264ref H

Fig. 5. Application characterization in terms of IPS.

TABLE 3
MULTI-APPLICATION WORKLOAD COMBINATIONS

Name Class Benchmarks

W1 LLLLLL 471.omnetpp + 998.specrand + 429.mcf + 400.perlbench + 999.specrand + 473.astar

W2 MMMMMM 445.gobmk + 458.sjeng + 459.GemsFDTD + 453.povray + 433.milc + 436.cactusADM

W3 HHHHHH 401.bzip2 + 416.gamess + 454.calculix + 483.xalancbmk + 465.tonto + 434.zeusmp

W4 HHMMLL 462.libquantum + 464.h264ref + 403.gcc + 450.soplex + 429.mcf + 400.perlbench

W5 HHHHML 437.leslie3d + 434.zeusmp + 470.lbm + 456.hmmer + 453.povray + 400.perlbench

W6 HHHHHL 435.gromacs + 410.bwaves + 437.leslie3d + 434.zeusmp + 470.lbm + 400.perlbench

W7 HHHMMM 456.hmmer + 462.libquantum + 464.h264ref + 453.povray + 433.milc + 436.cactusADM

W8 HMMMML 483.xalancbmk + 450.soplex + 459.GemsFDTD + 453.povray + 433.milc + 400.perlbench

W9 MMMLLL 459.GemsFDTD + 453.povray + 433.milc + 471.omnetpp + 429.mcf + 400.perlbench

W10 MMMMLL 436.cactusADM + 459.GemsFDTD + 453.povray + 433.milc + 400.perlbench + 471.omnetpp

W11 MMMMML 450.soplex + 459.GemsFDTD + 453.povray + 433.milc + 436.cactusADM + 471.omnetpp

W12 MMLLLL 403.gcc + 450.soplex + 471.omnetpp + 473.astar + 429.mcf + 400.perlbench

W13 MHLLLL 445.gobmk + 410.bwaves + 473.astar + 429.mcf + 400.perlbench + 471.omnetpp

W14 HHHLLL 437.leslie3d + 444.namd + 470.lbm + 400.perlbench + 471.omnetpp + 429.mcf

W15 HHLLLL 435.gromacs + 410.bwaves + 471.omnetpp + 473.astar + 429.mcf + 400.perlbench

 Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

8 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

5.3.2 DVFS Impact on Fairness
Fairness is harder to achieve for heterogeneous multi-core

processors compared to homogenous, due to more variation

in computing resources, including different core types and

frequency levels. The more difference of core’s computing

power, the less fairness amount. The computing power of

big and little clusters are equal, when the big to little clus-

ter speedup (ratio of execution time of running applica-

tion on big to execution time of running those application

on the little cluster) is one. Fig. 7 shows big to little cluster

speedup of some programs at different big cluster fre-

quencies, while little cluster’s frequency is fixed at 1400

MHz. As it is seen in Fig. 7, two lessons can be learned: 1)

due to different applications behavior, speedup of appli-

cations are different at fixed big and little frequencies

and, 2) the speedup value of one (equal clusters compu-

ting power) is achieved at big cluster’s frequency lower

than 1400 MHz. These two insights are true for all appli-

cations of SPEC2006 that we examined, however only six

applications have been reported for readability. We con-

ducted an extensive experiment to assess the impact of

CPU frequency on fairness. Fig. 8 shows the uniformity

values of all big and little frequency levels combinations for

HHHHHH workload. The greater the uniformity value, the

more fairness in the system. As illustrated in Fig. 8: 1) the

highest values of uniformity are for points with big cluster

frequencies lower than 1400 MHz, 2) the maximum values of

uniformity are located on the zone where the big cluster's

frequency is lower than the little cluster (when speedup is

one). Little cluster consumes low power, so it is not neces-

sary to exploit DVFS for its power management. There-

fore, the frequency of little cluster is fixed at 1400 MHz

similar to *28,31+. So, for next experiments the uniformity

of different workloads is calculated for various big core

frequencies ranging from 400 MHz to 1800 MHz, while

little cluster’s frequency is fixed at 1400 MHz (Fig. 9).

As demonstrated in Fig. 9, by scaling up big cluster’s

frequency from 400 MHz to freqeq (depending on the ap-

plication is between 600 MHz to 1400 MHz), uniformity

rises in all scenarios. This is due to that the difference of

two core’s computing power decreases and big core com-

puting power is getting closer to little core until two clus-

ter’s computing power become rather equal at freqeq. But,

when frequency scales up more than freqeq uniformity falls

substantially, because big core computing power becomes

larger than the little cores. For example, for the HHHHHL

workload the maximum fairness happens at 1000 MHz

for big cluster, however for the MMMMMM workload, the

frequency for maximum fairness is at 800 MHz.

5.4 Results and Discussion

The proposed HFEE framework considers fairness and

energy efficiency for asymmetric multi-cores, simultane-

ously, when executing different program types. Since our

evaluation board provides power sensor per cluster, the

pre-processing phase is not performed online and this

phase is carried out offline, however, in case the target

platform supports power sensor per core, it can be ap-

plied online. Ranking, mapping, and frequency scaling

phases of the HFEE framework are repeated every one

second (epoch duration). When a program completes its

Fig. 8. Uniformitymax of all big and little frequency level combinations
for different sets of W3(HHHHHH) workload.

Fig. 6. Energy Efficiency Ratio (EER) of SPEC CPU2006 benchmarks.

Fig. 7. The big to little cluster speedup of some benchmarks at dif-
ferent big cluster frequencies, while little cluster’s frequency is fixed
1400 MHz.

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 9

execution, it is not relaunched and the number of pro-

grams decreases until all of them finish. The K parameter,

α1, α2, and Uniformitythreshold are user-defined values speci-

fied before the start of scheduling.

5.4.1 HFEE versus Other Schedulers

HFEE is compared against Linux standard scheduler for

heterogeneous architectures. Also, fairness-aware (Min-

Fair *31+) and energy-aware (DTPM *28+) schedulers are

implemented for comparison. Each algorithm for every

workload combination is repeated 100 times and the av-

erage is plotted in the Fig. 10 and Fig. 11.

Fig. 10 shows the uniformity of different schedulers for

the representative workloads in terms of Uniformitymax.

Two fairness agnostic techniques, Linux standard sched-

uler and DTPM demolish the uniformity in all workloads

and has the least fairness compared to HFEE and Min-

Fair. HFEE improves uniformity on average by about

57.6% and 51% compared to Linux standard scheduler

and DTPM, respectively. Min-Fair scheduler focuses on

the fairness and produces the best result of fairness and

has a 3% higher uniformity than HFEE on average, with-

out considering energy efficiency.

For a performance comparison, the makespan of the

schedulers are measured. EDP represents the energy effi-

ciency metric where the lower EDP, the more energy effi-

ciency. Fig. 11 shows the makespan, energy delay product

(EDP), and energy consumption of all schedulers for dif-

ferent workload combinations. As it is seen in Fig. 11,

Fig. 9. Uniformitymax of executing all workloads at different big core
frequencies, while the little cluster’s frequency is 1400 MHz.

(a)

(b)

(c)

Fig.11. (a) Makespan, (b) Energy Delay Product (EDP), and (c) Energy consumption comparison of different schedulers for the representa-
tive workloads.

Fig. 10. Uniformity comparison of different schedulers for the representative workloads in terms of Uniformitymax.

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

10 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

HFEE outperforms all other schedulers in makespan and

EDP, while DTPM achieves the best result in energy con-

sumption. After running various sets of programs, the

proposed framework appears, on average, to improve

EDP by about 68%, 57%, and 61% in comparison with

Linux, Min-Fair, and DTPM, respectively. The experi-

mental results also indicate that HFEE reduces makespan

by about 57%, 27%, and 65% when compared to Linux,

Min-Fair, and DTPM, correspondingly. Energy consump-

tion of HFEE is about 9% more than DTPM, while 33%

and 41% less than Linux and Min-Fair, respectively. The

average improvement of uniformity, EDP, makespan, and

energy consumption of HFEE compared to other sched-

ulers for all 15 workloads are shown in Fig. 12.

5.4.2 Clusters’ Usages Analysis
Additional experiments are performed for better behavior

analysis of all schedulers. Big and little clusters’ usages

(the ratio of execution time on big or little cluster to the

total execution time) are reported as the first parameter

for schedulers’ attitude observation. This parameter is a

key factor that affects makespan significantly. Makespan

decreases if we use big cluster more than little cluster.

The Fig. 13 shows the big and little cluster’ usage for

different algorithms. The proposed framework (HFEE)

uses little cluster when the number of programs is more

than big cluster core count. It does not use little cluster, in

case the program count is lower than big cluster core

count. This improves makespan consequently.

Min-Fair scheduler tries to reach higher fairness by

almost equal usage of big and little clusters. This policy

improves fairness at the cost of higher makespan. Min-

Fair uses both big and little clusters to improve fairness

even when the program count is lower than big cluster

core count which degrades makespan. However, HFEE

uses big cluster in these cases which improves makespan.

DTPM just tries to save energy consumption and do not

consider fairness. This scheduler uses little cluster more

than the big cluster to improve energy consumption,

therefore, it results in longer makespan. Linux standard

scheduler is heterogeneity agnostic and uses little cluster

more than big cluster, which results in higher makespan.

5.4.3 DVFS Analysis
The frequency level usage of clusters (the period of time a

specific frequency in a cluster is used) is another im-

portant metric which should be studied to better under-

stand the behavior of each scheduler. According to our

observations, all schedulers use high frequency levels for

little cluster and none of the schedulers changes the little

cluster’s frequency level. The big cluster’s frequency level

usage for different algorithms running HHHHHH work-

load are shown in Fig. 14.

HFEE controls only big cluster’s frequency. The little

cluster works at its highest frequency level. HFEE tries to

improve uniformity through adjusting the big cluster’s

frequency, so that the two clusters operate almost with

the same computing power, which results in higher fair-

ness. In HFEE when the program count is lower than big

cluster core count, all remaining applications are migrat-

ed to big cluster, which improves fairness significantly.

On the other hand, HFEE usually uses low frequency lev-

els of big cluster, which results in lower energy consump-

tion compared to other schedulers (except DTPM, which

is just energy-aware algorithm and does not consider

fairness). Lower values of makespan and energy con-

sumption of HFEE result in lower EDP compared to other

Fig. 12. The average improvement of HFEE related to other sch.

Fig. 13. The average big and little cluster usage of different work-
loads of different schedulers.

Fig. 14. The big cluster’s frequency level usage for different algo-
rithms running HHHHHH workload.

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

AUTHOR ET AL.: TITLE 11

approaches and makes HFEE a more effective algorithm.

DTPM (which does not consider fairness) uses low fre-

quency levels of big cluster and uses little cluster more

than big cluster, which results in lower energy consump-

tion, however, degrades the makespan and EDP conse-

quently. Min-Fair scheduler focuses on the fairness and

does not consider energy efficiency and tries to improve

fairness as much as possible. Since it does not consider

energy efficiency, it operates at high frequency levels,

which results in more energy consumption. Also, because

it migrates applications between big and little clusters, it

lengthens makespan, and increases EDP. Linux standard

scheduler always works under high frequency levels

which results in higher energy consumption. According

to Fig. 13, since it’s usage of little cluster is very high, it

has a longer makespan. Its longer makespan and higher

energy consumption result in higher EDP.

5.4.4 HFEE Overhead
Another experiment is conducted to calculate scheduling

overhead of HFEE framework. For this purpose, four

cores are dedicated (two big and two little cores) for pro-

grams execution and one extra core (fifth core) is enabled

for executing only HFEE framework. All 15 workload are

run under this new condition (five enabled cores) and

their makespan are compared to the general condition

(four enabled cores where the HFEE framework is execut-

ed alongside other applications). The results show about

1.7% difference in makespan for these two cases (i.e., the

scheduling overhead is about 1.7%).

6 CONCLUSION AND FUTURE WORK

In this paper we explore the fairness and energy effi-
ciency management via frequency scaling support for
heterogeneous multi-core processors. The analysis
concludes that frequency scaling plays a critical role in
fair scheduling and energy efficiency can significantly
improve by considering the performance per watt ratio
of big to little cluster. To mitigate the problem, the cur-
rent study proposes a heterogeneous fairness-aware
energy efficient framework that utilizes DVFS to guar-
antee a minimum user-defined fairness, considering
energy efficiency. The experimental results obtained
by SPEC CPU2006 benchmark running on a real HMP
platform indicate that the proposed framework outper-
forms Linux standard scheduler and two energy effi-
cient and fairness-aware schedulers in terms of energy
efficiency and fairness. Future work will extend the
proposed framework to support resource contention
management among the running programs and also
explore the effect of contention on fairness and energy
efficiency simultaneously. The other further study is
the extension of FSM to support local DVFS.

REFERENCES

[1] Lukefahr, A., Padmanabha, S., Das, R., Dreslinski Jr, R.,

Wenisch, T.F. and Mahlke, S., “Heterogeneous microarchitec-

tures trump voltage scaling for low-power cores,” In Parallel ar-

chitectures and compilation Techniques (PACT), pp. 237-250, 2014.

[2] Das, A., Al-Hashimi, B.M. and Merrett, G.V., “Adaptive and

hierarchical runtime manager for energy-aware thermal man-

agement of embedded systems,” ACM Transactions on Embedded

Computing Systems, vol. 15, no. 2, pp.1-24, 2016.

[3] Sarma, S., Muck, T., Bathen, L.A., Dutt, N. and Nicolau, A.,

“SmartBalance: a sensing-driven linux load balancer for energy

efficiency of heterogeneous MPSoCs,” In Design Automation

Conference (DAC), pp. 1-6, 2015.

[4] Jain, S., Navale, H., Ogras, U. and Garg, S., “Energy efficient

scheduling for web search on heterogeneous microservers,” In

International Symposium on Low Power Electronics and Design

(ISLPED), pp. 177-182, 2015.

[5] Kong, J., Chung, S.W. and Skadron, K., “Recent thermal man-

agement techniques for microprocessors,” ACM Computer Sur-

vey, vol. 44, no. 3, pp. 13:1-13:42, 2012.

[6] Mück, T. R., Ghaderi, Z., Dutt, N. D., & Bozorgzadeh, E, “Ex-

ploiting Heterogeneity for Aging-aware Load Balancing in Mo-

bile Platforms,” IEEE Transactions on Multi-Scale Computing Sys-

tems, vol. 3, no. 1, pp.25-35, 2017.

[7] Annamalai, A., Rodrigues, R., Koren, I. and Kundu, S., “An

Opportunistic Prediction-based Thread Scheduling to Maxim-

ize Throughput/Watt in AMPs,” In Parallel Architectures and

Compilation Techniques (PACT), pp.63-72, 2013.

[8] Sharifi, S., Ayoub, R. and Rosing, T.S., “TempoMP: Integrated

Prediction and Management of Temperature in Heterogeneous

MPSoCs,” In Design, Automation & Test in Europe (DATE), pp.
593-598, 2012.

[9] Yun, J., Park, J. and Baek, W., “Hars: A heterogeneity-aware

runtime system for self-adaptive multithreaded applications,”

In Design Automation Conference (DAC), pp. 1-6, 2015.

[10] Ayad, G., Acquaviva, A., Macii, E., Sahbi, B. and Lemaire, R.,

“HW-SW Integration for Energy-Efficient/Variability-Aware

Computing,” In Design, Automation & Test in Europe (DATE), pp.
607-611, 2013.

[11] Petrucci, V., Laurenzano, M.A., Doherty, J., Zhang, Y., Mosse,

D., Mars, J. and Tang, L., “Octopus-Man: QoS-Driven Task

Management for Heterogeneous Multicores in Warehouse-Scale

Computers,” In High Performance Computer Architecture (HPCA),

pp. 246-258, 2015.

[12] Tavana, M.K., Kulkarni, A., Rahimi, A., Mohsenin, T. and

Homayoun, H., “Energy-efficient mapping of biomedical appli-

cations on domain-specific accelerator under process variation,”

In International Symposium on Low Power Electronics and Design

(ISLPED), pp. 275-278, 2014.

[13] Sawalha, L. and Barnes, R.D., “Phase-based scheduling and

thread migration for heterogeneous multicore processors,” In

Parallel Architectures and Compilation Techniques (PACT), pp. 493-

494, 2012.

[14] Chandramohan, K. and O'Boyle, M.F., “Partitioning data-

parallel programs for heterogeneous MPSoCs: time and energy

design space exploration,” ACM SIGPLAN Notices, vol. 49, no.

5, pp. 73-82, 2014.

[15] Zhang, Y., Zhao, L., Illikkal, R., Iyer, R., Herdrich, A. and Peng,

L., “QoS management on heterogeneous architecture for paral-

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2984607,
IEEE Transactions on Computers

12 IEEE TRANSACTIONS ON COMPUTERS, MANUSCRIPT ID

lel applications,” In International Conference on Computer Design

(ICCD), pp. 332-339. 2014.

[16] Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P. and

Emer, J., “Scheduling heterogeneous multi-cores through per-

formance impact estimation (PIE(,” In International Symposium

on Computer Architecture (ISCA), pp. 213-224, 2012.

[17] Chen, Q. and Guo, M., “Adaptive workload-aware task schedul-

ing for single-ISA asymmetric multicore architectures,” In ACM

Transactions on Architecture and Code Optimization, vol. 11, no. 1,

pp. 1-8, 2014.

[18] Suleman, M.A., Mutlu, O., Qureshi, M.K. and Patt, Y.N., “Accel-

erating Critical Section Execution with Asymmetric Multicore

Architectures,” IEEE micro, vol. 30, no. 1, pp. 60-70, 2010.

[19] Van Craeynest, K. and Eeckhout, L., “Understanding funda-

mental design choices in single-ISA heterogeneous multicore

architectures,” ACM Transactions on Architecture and Code Opti-

mization, vol. 9, no. 4, pp. 1-23, 2013.

[20] Huang, J., Raabe, A., Buckl, C. and Knoll, A., “A Workflow for

Runtime Adaptive Task Allocation on Heterogeneous

MPSoCs,” In Design, Automation & Test in Europe (DATE), pp. 1-

6, 2011.

[21] Anagnostopoulos, I., Bartzas, A., Kathareios, G. and Soudris,

D., “A Divide and Conquer based Distributed Run-time Map-

ping Methodology for Many-Core platforms,” In Design, Auto-

mation & Test in Europe (DATE), pp. 111-116, 2012.

[22] Huang, P., Yang, H. and Thiele, L., “On the Scheduling of Fault-

Tolerant Mixed-Criticality Systems,” In Design Automation Con-

ference (DAC), pp. 1-6, 2014.

[23] Ozdal, M.M., Jaleel, A., Narvaez, P., Burns, S. and Srinivasa, G.,

“Trace Alignment Algorithms for Offline Workload Analysis of

Heterogeneous Architectures,” In International Conference on

Computer-Aided Design (ICCAD), pp. 654-661, 2013.

[24] Delimitrou, C. and Kozyrakis, C., “Paragon: QoS-Aware Sched-

uling for Heterogeneous Datacenters,” In Architectural support

for programming languages and operating systems (ASPLOS), pp.

77-88, 2013.

[25] Tan, C., Muthukaruppan, T.S., Mitra, T. and Ju, L., “Approxima-

tion-aware scheduling on heterogeneous multi-core architec-

tures,” In Asia and South Pacific Design Automation Conference

(ASP-DAC), pp. 618-623, 2015.

[26] Kim, M., Kim, K., Geraci, J.R. and Hong, S., “Utilization-aware

load balancing for the energy efficient operation of the big.

LITTLE processor,” In Design, Automation & Test in Europe

(DATE), pp. 1-4, 2014.

[27] Muthukaruppan, T.S., Pricopi, M., Venkataramani, V., Mitra, T.

and Vishin, S., “Hierarchical power management for asymmet-

ric multi-core in dark silicon era,” In Design Automation Confer-

ence (DAC), pp. 174:1–174:9, 2013.

[28] Bhat, G., Singla, G., Unver, A.K. and Ogras, U.Y., “Algorithmic
optimization of thermal and power management for heteroge-
neous mobile platforms,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 26, no. 3, pp.544-557, 2018.
[29] Garcia-Garcia, A., Saez, J.C. and Prieto-Matias, M., “Conten-

tion-Aware Fair Scheduling for Asymmetric Single-ISA Multi-

core Systems,” IEEE Transactions on Computers, vol. 67, no. 12,

pp. 1703-1719, 2018.

[30] Feliu, J., Sahuquillo, J., Petit, S. and Duato, J., “Perf&Fair: A

Progress-Aware Scheduler to Enhance Performance and Fair-

ness in SMT Multicores,” IEEE Transactions on Computers, vol.

66, no. 5, pp.905-911, 2017.

[31] Kim, C. and Huh, J., “Exploring the design space of fair sched-

uling supports for asymmetric multicore systems,” IEEE Trans-

actions on Computers, vol. 67, no. 8, pp.1136-1152, 2018.

[32] Van Craeynest, K., Akram, S., Heirman, W., Jaleel, A. and Eeck-

hout, L., “Fairness-aware scheduling on single-ISA heterogene-

ous multi-cores,” In Parallel Architectures and Compilation Tech-

niques (PACT), pp. 177–187, 2013.

[33] Moreno, I.S., Yang, R., Xu, J. and Wo, T., “Improved energy-

efficiency in cloud datacenters with interference-aware virtual

machine placement,” In international symposium on autonomous

decentralized systems (ISADS), pp. 1-8, 2013.

[34] Kim, C. and Huh, J., “Fairness-oriented OS scheduling support

for multicore systems,” In International Conference on Supercom-

puting (ICS), pp. 29:1–29:12, 2016.

Authorized licensed use limited to: University of Canberra. Downloaded on May 03,2020 at 09:48:02 UTC from IEEE Xplore. Restrictions apply.

