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EXTREME COMPRESSION OF GRAYSCALE IMAGES

FRANKLIN MENDIVIL AND ORJAN STENFLO

ABSTRACT. Given an grayscale digital image, and a positive inte-
ger n, how well can we store the image at a compression ratio of
n:17?

In this paper we address the above question in extreme cases
when n >> 50 using “V-variable image compression”.

1. INTRODUCTION

A digital j x k pixels image consists of j - k& pixels where each

pixel is assigned a “colour”, i.e. an element of some finite set, C, e.g.
C=1{0,1,2,...,255}, where [ = 1 for (8 bit) grayscale images or [ = 3
for (24 bit RGB) colour images.
Image compression methods can be of two types: Lossless image com-
pression methods preserves all image data, while lossy methods removes
some data from the original file and saves an approximate image with
reduced file size.

One common lossless format on the internet, supported by most
modern web-browsers, is PNG (Portable Network Graphics). The PNG
format is used in particular for images with sharp colour contrast like
text and line art, and is considered to be a suitable format for storing
images to be edited.

One disadvantage with lossless formats is that the file sizes are of-
ten very large when compared with lossy formats. Lossy compression
of colour images is often obtained by reducing the colour space, or
by chroma subsampling using the fact that the human eye perceives
changes in brightness more sharply than changes in colour.

The most common lossy compression format, especially for photo-
graphic images, is JPEG (Joint Photographic Experts Group). JPEG
usually gives small file sizes, but one artifact with JPEG is apparent
“halos” in parts of the image with sharp colour contrasts, reflecting
the fact that the JPEG method belongs to the realm of Fourier meth-
ods. Similar “halo” features are also apparent in the better, but more
complicated and therefore less widespread, wavelet based JPEG 2000
method.

The mathematical notion of V-variability was introduced by Barns-
ley, Hutchinson and Stenflo in [2]. Intuitively, a V-variable set is built
up by at most V different smaller sets at any given level of magnifi-
cation. Motivated by the fact that parts of an image often resemble

other parts of the image, and the existing “fractal compression method”
1
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building on a more limited class of sets [1], it was suggested in [2] that
V-variability could be used for image compression.

One solution to the problem of how the notion of V-variability can
be used for image compression was presented in Mendivil and Stenflo
[3] in terms of an algorithm for lossy image compression where, for
a given digital image, the algorithm generates a “V-variable digital
image” resembling the given image despite requiring substantially less
storage space.

In the present paper we address the question of finding an “optimal”
V-variable digital image resembling a target image given a certain max-
imally allowed storage space.

2. V-VARIABLE IMAGE COMPRESSION

For clarity and simplicity of our description we will assume here that
the image is of size 2™ x 2™ pixels for some m. We refer to Section 4.1
for the case of non-square images.

In order to specify what we mean by a “V-variable digital image”
(and later a “V-variable digital image”) we need to introduce some
definitions.

Definition 1. Let m > 0 be some integer, and consider a 2™ x 2™
pizels digital image. For any 0 < n < m, we may divide the given
immage nto 4" nonoverlapping image pieces of size 2™ x 27" We
call these pieces the image pieces of level n.

We can now define what we mean by a V-variable image:

Definition 2. Let V > 1 be a fized positive integer. We say that a
digital image s V-variable if, for any 1 < n < m, the image has at
most V' distinct image pieces of level n.

Example 1. The 4-variable 512 x 512 = 2° x 2° pixels digital grayscale
image

can be built up by 4™ image pieces of size 297" x 297" of (at most)
4 distinct types, for any n = 0,1,2,...,9. The appearance of these
image pieces depends on n. If e.g. n = 2 then the 16 image pieces of
size 128 x 128 pixels are of the 4 types
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and if n = 3 then the 64 image pieces of size 64 X 64 pizels are of the
4 types

By looking at the image, and its image pieces, we see that we can,
recursively, describe the 4-variable image using 4 tmages of smaller
and smaller size, i.e. recursively describe more and more levels of the
V -variable structure of the image:
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At each stage, we replace an image piece of the current level with
four image pieces from the next level. There are (at most) V = 4 types
of image pieces at each level and the substitution is done according to
the type. For example, we see that in the second stage (illustrated in
the figure above), all image pieces of type 3 are replaced by the same
thing (image pieces at next level with types 3,4,3,4). The first two
(non-trivial) steps as shown above can be visually described by the sub-
stitutions:
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1 2 3 4
First Refinement ¢ ¢ ¢ ¢
1]3 2|2 1]3
13 2|4 3|2
1 2 3 4
Second Refinement ¢ ¢ ¢ ¢
12 2|2 34 4]2
12 2|2 3]4 303

FEach image piece of level 9 is a one pizel image. For such pieces we
associate the corresponding colour value.

In this 4-variable example the image is constructed using only the 4
colour values 33 and 37 (corresponding to the almost black pizels) 138
(corresponding to the dark gray pizels) and 171 (corresponding to the
light gray pizels).

See [3] and Section 2.3 for further details and the specifics on how
to reconstruct the image from its code (the substitution rules).

2.1. Description of our V/-variable image compression method.
The goal of our method is to approximate a given digital image with a
V-variable digital image.

We start with positive integers Vi, Vs, . .., V,, which restrict the num-
ber of distinct image pieces, of each level n, n = 1,2,...,m. Note that
by our choice of partitions at each of the “levels”, there are at most
four times as many distinct image pieces of level n + 1 as there were at
level n. Thus any value of V,, which is at least min(4"™,4V,,_1) provides
no constraint that is not already forced by Vi,...,V,_1.

Let V. =max(Vy,...,V,,). We can find a V-variable approximation
of the given image, with V...V, being restrictions on the maximum
number of allowed distinct image pieces of each level respectively, by
using the following algorithm:
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1.Get image and choose
Viy.o,Vin

2.Extract all image pieces
of level j = ngy where ng
is the smallest integer such
that V,,, < 4™

|

3.Classity all image pieces
into Vj clusters and iden-
tify each cluster with a

cluster representative im-
age

8. Regard the image
pieces as luiage repre-
sentatives

4.Store classification of
image pieces

—

5.Divide each image rep-
resentative into 4 image
pieces, and consider the n
image pieces created

‘Are image pieces
pixels?

5
Isn > V;?
yes
no
. ji=3+1

6.Store colour of im-
age pieces
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In [3], we formulated and applied the above algorithm for various
choices of V' and images, where m =9 and V =V, = ... =V, (and so
we only considered images which had the same “maximal variability”
at each level).

The above algorithm with non-constant V,, generates a V-variable
image for V' = max(V4,...,V,,) with less memory requirements than
the V.=V, = ... =V, case considered in [3], but the image quality
is also decreased. The art is then to try to find the optimal m-tuple
of positive integers V = (Vi,...,V,,) with respect to targeted image
quality and memory requirements.

We will present computer experiments related to this question for
some given test images below.

See Section 4 for a discussion of some generalizations of the algo-
rithm.

Definition 3. Let V = (V4,..., V), and V.= max(V4,..., V,,,), where

Vi,...,Viu is a given sequence of positive integers. We say that an
2™ x 2™ pixels digital image is V-variable if it is V -variable with max-
imally V; distinct image pieces of level v, for anyi=1,...,m.

2.2. Storage requirements. The m-tuple of positive integers
V = (V4,..., V), chosen by the user in step 1 in the algorithm above,
corresponds to the quality of the image approximation. Larger values of
the components corresponds to higher image quality of the constructed
V-variable image at the price of a larger file size. We may without loss
of generality assume that V; < min(4%,4V; ;) for all 1 < i < m (with
the convention Vi = 1):

Each execution of step 4 requires a storing of 4V,_; numbers from
the range {1,...,V;} for any j, ng < j < m — 1. The image pieces
extracted in step 2 are of size 4™~ pixels, and each time step 5 is
reached the new image pieces are 4 times smaller than the ones from
the previous execution of step 5. Thus step 4 will be revisited at most
m — ng — 1 times.

In step 6 we store the colour, i.e. an element in C, for each of the
4V,,—1 “one pixel” image representatives. As an example, for the 8 bit
grayscale images considered in this paper we need to store 4V,,,_; num-
bers in {0,...,255}, and we may thus, in order to optimize the image
quality for a given storage space, without loss of generality assume that
Vin = 256 since the storage does not depend on V,.

Thus, our V-variable method of storing requires in total
4V;_1[log,(V;]/8 bytes for each level ng < j < m—1, where 4V;_4 >V},
plus 4V,,,_1 bytes for level m in the 8 bit grayscale images case.

Remark 1. We will here only consider the case when m = 9 and
4V > Viar for all k. In order to avoid a waste of memory we will
also only consider cases when V), = 2% for some j, for all k, where
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Vio—1 = 4™7Y giving a total storage (in the case m =9) of

Storage = Z 4Vj—1[logy (Vi ]/8 + 4Vs = Zj;ﬂjk—l_l + 25572 pytes,
kel kel

where I = {ng < k < 8 : Vy, < 4Vi_1}. Each k with Vi, = 4V},

gives no contribution to the sum so for instance if V4 = 4* = 256,

Vs =28 =256 < 45 Vg =12°=32, V; =4V = 128, Vg = 26 = 64 then

ng=2>57J1=328,J5 =8, js =05, jr =17, and js = 6 and thus

_q. 981k o8-1 LoT—1 | o642 _
Storage =8 -2 +5-2°7"+0+6-2""" 42 2304 bytes,
128 128 64 256

where the zero term occur since 4Vg = V7, and thus V7 causes no new
restrictions not already caused by Vi,...,Vs.

2.3. Reconstruction of an image from its code. The process of
reconstructing an image from its V-variable code is quick.

Any pixel sits within some fixed image piece of level n for all 0 <
n < m —1. An image piece of level n;, 1 < n < m, is situated within
a 4 times bigger image piece from level n — 1 and can be in 4 possible
positions in that bigger square:

1) upper left, or  2) upper right, or  3) lower left, or  4) lower
right.

This enables a simple addressing structure, where a pixel can be de-
scribed by an address ajas...a,,, where a; € {1,2,3,4} specifies the
relative position of the square on level j in the square on level j —1 for
the given pixel.

We can now find the colour of a pixel by recursively using the V-
variable code in the following way. If a pixel with address ajas...a,
sits within a square with V-variable type j of level n, 0 <n <m — 1,
then the V-variable type of the square on level n + 1 where the pixel
sits can be seen by looking at the stored type of the square in position
antq within the square of type 7 on level n. The colour of the pixel is
given by the stored colour of the square in position a,, of the type of
the square at level m — 1.

2.4. Automating the V-variable image compression algorithm.
The main tool needed in order to automate the algorithm above is a
way to classify n images into & clusters. (step 3). Such a clustering can
be done in many different ways. See Section 4.2 for a discussion of some
basic clustering techniques. For simplicity, in our implementation of
the compression algorithm above we used Matlab’s built-in command
kmeans for this step. The K-means algorithm is a popular and basic
clustering algorithm which finds clusters and cluster representatives for
a set of vectors by iteratively minimising the sum of the squares of the
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“within cluster” distances (the distances from each of the vectors to
the closest cluster representative). We treat the sub-images as vectors
and use the standard Euclidean distance to measure similarity. We also
use random initialisation of the cluster representatives.

2.5. Finding the optimal V for a given memory requirement.
For a given image and tuple V = (V,...,V,,) we may use the algorithm
described in Section 2.1 to generate a V-variable approximating image
of the given image and in Section 2.2 we explained how to calculate an
upper bound for the memory requirement for a V-variable image.

A natural problem that arises is to find the optimal V for a given
memory requirement with respect to image quality. The optimal choice
may depend on the image, but in general simulations show that a
“good” V is often “good” for most images.

Rather than finding the optimal choice for a a given image and mem-
ory requirement we will here give rules of thumb for choices of V for
some given memory requirements that may be used for any image.

2.6. Simulations. In this section we present results of some numerical
experiments with the three images shown in Figure 1. The images are
of size 512 x 512 pixels so uncompressed they are stored with 512-512 =
262144 B (since each pixel is assigned a number in {0, 1,...,255} and
thus requires one byte of storage). Thus approximations stored e.g.
with a file size of 2621 B correspond to a 100:1 compression ratio. As
can be seen, the three images represent a wide range of image types.

V-VARIABLE IMAGE COMPRESSION

In 1988 Barnsley and Sloa

FIGURE 1. Three test images: Imagel, Image2, Image3

Imagel and Image2 have earlier been discussed in [3].

We will here use the Peak signal-to-noise ratio (PSNR) for measuring
quality of compressed images. Figure 2 shows the quality of V-variable
approximations of Imagel (PSNR) versus memory requirement for all
V = (Vi,...,Vy) requiring a memory less than 5000 B with V; =
4,Vy =16,V3 = 64 and Vy = 256 and Vj, Vs, Vs, Vi and Vg chosen from
{16, 32,64, 128,256, 1024}.
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FIGURE 2. Scatterplot of filesize versus PSNR for Imagel

The frontier in the plot gives a hint of how the optimal PSNR de-
pends on the memory requirement.

The table in Figure 3 gives rules of thumb for good tuples V for
given memory requirements of 1000B, 1500B,...,5000B respectively.
These V:s corresponds to points close to the frontier in Figure 2. In
simulations below “Imagel-Memory” denotes the V-variable image ob-
tained from the algorithm to approximate Imagel, T € {1,2,3}, with
a maximal allowed memory of Memory € {500, 1000, ...,5000} Bytes
using the rules of thumb for V = (V,...,Vy) given by Figure 3.

The image labeled Imagel:256 correspond to the best 256-variable
approximation w.r.t. PSNR and has earlier been discussed in [3].

For most V-variable images we may store the code in a much more
efficient way than described above, so the above memory requirements
should be regarded as upper bounds.

Let ¢ be a non-negative integer. By regarding all “almost constant”
blocks with pixel values varying less than or equal to i, as constant
blocks in each step of the construction of the approximating image, we
can reduce the storage further at a small price in image quality if ¢
is small. To illustrate this method, let us look at V.= (V4,...,Vy) =
(4,16, 64,256,256, 32,128, 64, 256) (our rule of thumb V for a storage
requirement less than 2500 B). Below we have for each i € {0, 15,30}
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Label Vi Vs [ Ve |V | V& Memory PSNR | PSNR | PSNR
(B) Imagel | Image2 | Image3
Imagel-500 16 |16 |16 |16 |64 480 20.6 15.1 13.9
Imagel-1000 || 256 |32 |16 |16 |64 992 23.5 15.9 14.7
Imagel-1500 || 256 |64 |64 |32 |64 1472 24.5 16.3 15.3
Imagel-2000 || 128 | 512 |32 |32 |64 1936 25.4 16.9 16.5
Imagel-2500 || 256 | 256 |32 | 128 | 64 2304 25.9 17.1 16.8
Imagel-3000 | 256 | 256 | 64 | 128 | 128 || 2976 26.5 17.4 17.2
Imagel-3500 | 256 | 256 | 1024]| 16 | 64 3328 26.8 17.9 184
Imagel-4000 || 256 | 1024| 64 | 128 | 64 3936 27.5 18.6 17.3
Imagel-4500 || 256 | 256 | 1024| 64 | 64 4544 27.7 18.5 20.0
Imagel-5000 || 256 | 1024| 128 | 128 | 128 || 4992 28.1 19.1 17.9
Imagel:256 256 | 256 | 256 | 256 | 256 || 5120 27.4 18.2 19.2
FIGURE 3. Suggested values of V. = (Vi,... Vy) gives

rules of thumb for a given upper bound memory require-
ment. Here V) =4, V5, =16, V3 = 64, and Vy = 256.

simulated a V-variable approximating image of Imagel, where we, in
each step of the construction, regard blocks with pixel values varying
less than or equal to i as constant. We refer to the corresponding image
as “Imagel-2500-i”.

The following tabular shows the proportion of constant substitutions
at each level:

Imagel-2500-i

Level Block size Proportion Proportion Proportion
of constant | of constant | of constant
substitutions | substitutions | substitutions
(i=0) (i =15) (i =30)

4 32 x 32 4/256 6/256 8/256

5 16 x 16 24/256 26/256 36/256

6 8 x 8 0 0 0

7 4 x4 35/128 45/128 75/128

8 2x2 2/64 32/64 51/64

Recall that if V}, = 27 for some jj, for all k, where V,,,_; = 4"~! then
the upper bound for storage where we ignored the information about
constant blocks was

Storage = ijZj"‘l_l + 25572 Bytes,
kel

where I = {ng <k <8:V, <4V,_}.
If p, denotes the proportion of constant substitutions at level k,
ng < k < 8, then since we need only one instead of four numbers to
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store each such substitution, the storage can be reduced to

Storage = ijQj’“—l_?’(él — 3pr_1) + 2% (4 — 3pg) Bytes.
kel

For Imagel-2500-0, V;, = 4* = 256, V5 = 28 = 256 < 4°, V5 = 2° =
32, Vy = 4Vy = 128, Vs = 26 = 64 ic. ng = 5, ja = 8, js = 8, jo = 5,
jr =7, and jg = 6, and py = 4/256, p5 = 24/256, p; = 35/128, and
ps = 2/64. Thus

4 24
Storage(Imagel-2500-0) = 8-32(4—3-—)+5-32(4—3-—)+0

256 256
16 16(4 =3+ 20) 1 64(4 — 3. 2 ) ~ 21628
128 64’ " '
Similarly
Storage(Imagel-2500-15) = 8-32(4 —3 i) +5-32(4-3 E) +0
gelimag - 256 256
45 39
+6-16(4 — 3+ 50) +64(4 — 3+ ) = 2040B,
and
Storage(Imagel-2500-30) = 8-32(4—3 i) +5-32(4—3 ﬁ) +0
gelimag - 256 256
75 51
6+ 16(4 =3 750) +64(4 — 3+ ) ~ 1801B.

The below scatter plots, where we have plotted memory requirement
versus PSNR for V-variable approximations of our 3 test images, illus-
trates the interesting phenomena that we get approximations with both
higher PSNR and lower storage space if we regard all blocks varying less
than a given threshold as being constant (the average of the grayscale
values). The threshold depends on the given memory requirement and
decreases with increased memory requirements.
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Image1

Image2

28 -
27 -
26 -
25 -
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FIGURE 4. Scatterplots of memory versus PSNR for Im-
agel (upper left plot), Image2 (upper right plot) and Im-
age3 (lower left plot). Points where blocks varying less
than a given threshold have been regarded as constant
have been marked with different colours, here green (0),
red (15), blue (30) and yellow (45), where the threshold
is given within the brackets. The scatterplots indicates
that a threshold of 30 is optimal with respect to PSNR
and memory, for compression ratios around 150:1, and
the optimal threshold tends to decrease with file size.
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FIGURE 5. V-variable approximations of Imagel with
storage of size 1000 B (PSNR 24.0), 1500 B (PSNR 25.5),
2000 B (PSNR 26.1), and 2500 B (PSNR 26.7).
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FIGURE 6. V-variable approximations of Image2 with
storage of size 1500 B (PSNR 16.7), 3000 B (PSNR 18.3),
4500 B (PSNR 19.4), 6000 B (PSNR 20.4).
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FIGURE 7. V-variable approximations of Image3 with
storage of size 500 B (PSNR 14.6), 1500 B (PSNR 16.5),
2500 B (PSNR 18.4), and 3500 B (PSNR 19.9). The ap-
proximating images are rather sharp despite having small
PSNR values refiecting the fact that the original image
is coloured with two extreme colours and any mispredic-
tion at colour boundaries gives a high negative influence
on the PSNR.

3. COMPARISON WITH OTHER IMAGE COMPRESSION METHODS

In [3] we discussed compression of the test image here denoted by
“Imagel” with standard fractal block compression. V-variable com-
pression is slightly better than Fractal compression on Imagel at com-
pression ratios around 100:1 (in the sense of smaller storage size and
higher PSNR), and much better on Image2 and Image3. Both Fractal
compression and V-variable compression are slow methods with respect
to compression time, but decompression is fast.

Fourier and wavelet based methods like JPEG and JP2 works well
on photographic images, like Imagel, but are not recommended for
line art, like Image2 and Image3, where a specialized format like DjVu
works much better. JPEG gives roughly the same image quality as
V-variable image compression at compression ratios around 100:1 for
Imagel and better image quality on Imagel for larger file sizes. It is
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however worse at all compression levels for Image2 and Image3. This
comparison is based on files generated by the free and open source
software ImageMagic where we saved the image in JPEG at different
quality levels and smaller filesizes than 1.8 KB are then not possible
to achieve. One advantage with V-variable compression compared to
JPEG is that image quality is not affected by repeated compression.
One disadvantage with V-variable compression compared to JPEG is
that compression time is slower.

JPEG 2000 gives (based on files generated in ImageMagic) better
image quality than V-variable image compression at all compression
ratios for Imagel and roughly the same image quality for Image2 at
high compression ratios. The image quality is worse than V-variable
image compression for Image2 for larger file sizes and worse than V-
variable image compression for Image3 at “all” compression ratios.

DjVu is a file format mainly designed for scanned documents that,
like V-variable compression, stores images containing a combination of
text and line drawings, like Image2 and Image3, well.

It seems like V-variable compression could be a competitive format
for intermediate images like digital photos containing line art.

4. GENERALISATIONS

4.1. Non-squared images. The general case of a non-squared j x k
image can be treated by e.g. letting m be the smallest integer such that
both j < 2™ and k< 2™, and consider a square image of size 2™ x 2™
where the pixelvalue of a given pixel (a,b) in the squared image is
given by the pixelvalue of the pixel closest to (j-a/2™ k-b/2™) in the
original image. We then encode the new squared image and transform
the resulting image back in the end.

4.2. Clustering methods. The efficiency of our algorithm depends
crucially on the clustering method we use. For simplicity in our imple-
mentation above we used Matlab’s built-in command kmeans for this
step.

There are many approaches to clustering and it is an interesting
future problem to explore these in order to find better V-variable ap-
proximations than the ones provided by our simple implementation.
In particular, the methods used in vector quantization for constructing
the codebook could be explored. We can also introduce parameters
specifying transformations of image pieces as a pre-processing step be-
fore clustering. Matlab also supports “hierarchical clustering” which
could have been another simple pre-processing alternative.

4.3. Generalised image pieces. Our definitions of image pieces, and
V-variable images can be generalised in various ways. We may define
the image pieces as arising from some arbitrary given sequence of re-
fining partitions of a given digital image.
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Iterated function systems can be used to recursively define a sequence
of refining partitions. Thus the IFS machinery gives us great flexibility
in designing recursive partitions and can be used in our scheme. Any
periodic self-affine tiling is such an example.

4.4. Reducing the colour space. Reducing the colour space corre-
sponds to chosing the tuple V. = (V4,...,V},) with V,, small. This
corresponds to using a colour palette with V,, different predetermined
colours.
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