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Abstract

SlowDoS attacks exploit slow transmissions on application-level protocols like HTTP to carry out denial of service
against web-servers. These attacks are difficult to be detected with traditional signature-based intrusion detection
approaches, even more when the HTTP traffic is encrypted. To cope with this challenge, this paper describes and AI-
based anomaly detection system for real-time detection of SlowDoS attacks over application-level encrypted traffic. Our
system monitors in real-time the network traffic, analyzing, processing and aggregating packets into conversation flows,
getting valuable features and statistics that are dynamically analyzed in streaming for AI-based anomaly detection. The
distributed AI model running in Apache Spark-streaming, combines clustering analysis for anomaly detection, along with
deep learning techniques to increase detection accuracy in those cases where clustering obtains ambiguous probabilities.
The proposal has been implemented and validated in a real testbed, showing its feasibility, performance and accuracy
for detecting in real-time different kinds of SlowDoS attacks over encrypted traffic. The achieved results are close to the
optimal precision value with a success rate 98%, while the false negative rate takes a value below 0.5%.

Keywords: cybersecurity, artificial intelligence, cyberattacks, machine learning

1. Introduction

Denial-of-Service-(DoS) based attacks are continuously
evolving increasing its complexity and range, thereby mak-
ing more and more difficult to perform a timely and ac-
curacy detection. Traditional DoS attacks, that aims to
incapacitate a resource from serving its genuine clients,
have been intensively studied in the literature through dif-
ferent schemes intended to protect network infrastructures
[1]. DoS attacks, concretely application-layer DoS attacks
are recently getting research attraction [2], since they are
able to compromise a web-server through other means be-
yond traditional ones such as network flooding or exhaust-
ing server’s resources such as sockets, memory, CPU, and
I/O bandwidth. In particular, SlowDoS attacks [3] are a
type of application-layer DoS using low-rate packet trans-
mission [4]. Namely, most of the SlowDoS attacks, such
as Slowris or SlowPost, exploits HTTP protocol, widely
adopted in application-layer services, by sending incom-
plete http requests, or keeping the connection with the
server busy through sending the HTTP posts using slow
ratio and without reaching content-length values.
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Furthermore, the prominence of the Internet of Things
[5] is introducing millions of interconnected network de-
vices which suggest new scenarios and connectivity models
that are increasing the attack surface. Since neither high-
performance systems nor immense network bandwidth are
needed to perform a SlowDoS attack, simple constrained
IoT devices are suitable to carry out a denial. Indeed, the
biggest advantage of SlowDoS attacks relies on the scarce
bandwidth needed, meaning few IoT attackers –i.e bots–
using a low-rate packet transmission can overwhelm their
victim.

SlowDoS attacks are arduous to be detected using tra-
ditional signature-based intrusion detection systems, as
it becomes hard to inspect and match an attack signa-
ture [6] affecting legitimate application-level HTTP re-
quests. Anomaly-based Network Intrusion Detection Sys-
tems (NIDS) analyze incoming network traffic in order to
detect any invasive or illegitimate behaviour. This ap-
proach performs properly for detecting not only known
attacks, but also unknown or ”zero-day” attacks [6], [7].
There are some research works that focus on detecting
SlowDoS attacks using probability distributions [8] or [9]
that analyzes HTTP messages. However, those propos-
als are not applicable over encrypted application traffic or
have been not properly validated in a real testbed dynam-
ically monitoring and detecting SlowDoS in real-time.

To fill this gap, this paper proposes a real-time, Artifi-
cial Intelligence (AI)-based system for dynamic anomaly-
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based detection of application-level SlowDoS attacks over
encrypted traffic. Our system monitors in real-time the
network traffic, processing and aggregating packets in con-
versation flows, extracting additional meaningful network
features as statistics that are dynamically analyzed in
streaming for distributed AI-based anomaly detection. To
this aim, our AI model, running in a distributed way in
Apache Spark-streaming, combines clustering analysis and
deep learning techniques to increase accuracy in attack de-
tection. This system consists of two algorithms aimed to
capture normal behavior patterns and detect anomalies.
The first one is based on clustering models and the second
on exploits Deep Learning techniques intended to detect
attacks with ambiguous probabilities in the clustering.

The proposed anomaly-detection system – and its asso-
ciated AI model – has been implemented and extensively
validated in a real testbed by running different kinds of
SlowDoS attacks. These tests show its performance to
monitor, aggregate and analyze real-time network traffic
in a distributed way, as well as the capability of detect-
ing in streaming the attacks run over application-level en-
crypted traffic with high precision average accuracy 0.98
for different SlowDoS attacks.

The rest of this paper is structured as follows. Sec-
tion 2 describes the related work and Section 3 the back-
ground in Intrusion Detection System (IDS) and SlowDos
attacks. Section 4 presents the AI-Based security frame-
work. Section 5 delves into the AI-based model. Extensive
performance and accuracy evaluation is done in section 6.
Finally, section 7 concludes the paper.

2. Related work

There are several recent surveys that analyze the ap-
plication of artificial intelligence mechanisms [10], on the
security of machine learning in malware C&C detection
[11, 12, 13], for anomaly detection [14] and specific surveys
[15] that focuses on detecting DoS attacks and enrich de-
fense mechanisms using AI. Another survey [6] introduces
a heuristic-based detection system for scripting languages
such as javascript, that is able to detect malicious code us-
ing machine learning approaches. Thus, this method sub-
stantiates the inefficiency of signature-based IDS to detect
”zero-day” attacks. In [16] a queue management algorithm
is proposed as the first line of defense for a network when
facing a DDoS attack.

One of the applications of anomaly-based IDS in cyber-
security is the article presented by Diro and Chilamkurti
[17], that proposed a distributed deep learning based Fog-
computing detection system. The experiment was moti-
vated by the rapidly increasing of IoT devices and the need
to be protected from new variants of attacks. They demon-
strated that distributed techniques work better than cen-
tralized algorithms in order to efficiently detect cyber-
attacks due to the sparse nature of IoT deployments.
Other research work also used cloud computing to imple-
ment an intrusion detection system. Alzahrani and Hong

proposed a hybrid signature and anomaly-based IDS over
a cloud computing scenario using deep learning techniques
[18]. Apache Spark implemented the artificial intelligent
system that is capable of detecting intruders. The joint
of these two IDS approaches with the distributed capa-
bilities of Spark showed the effectiveness of the anomaly-
based IDS in contrast to signature-based. Despite cloud
computing is a good approach for the timely detection of
cyber-attacks, they do not follow any real-time approach
in order to mitigate them in a high-performance scenario.

Similar approaches have been discussed on [19], propos-
ing mixing signature and anomaly based detection. This
paper presents machine learning techniques (Neural Net-
works [20]) for developing a flow-based NIDS. Moreover,
they proposed the integration of this system for Software-
Defined Networks (SDN) since flows can be easily blocked
to prevent attacks. The flow statistics are sent to a SDN
switch by a controller over a certain time interval. When
the statistics are available, they are used to detect anomaly
behaviour. The detected malicious traffic is mitigated
through flow modifications using SDN techniques. Like-
wise, [21] introduces a NIDS for SDN-based, cloud IoT
networks, which has three layers of IDS nodes (Edge-IDS,
Fog-IDS and Cloud-IDS). This particular IDS has an ef-
fective collaboration among its nodes and makes use of
machine learning/deep learning methods for detecting net-
work threats from IoT devices, making this proposal suit-
able for real-time scenarios. Similarly, [22] propose using
SDN for intrusion detection and use an AI-based, two-
stages IDS enhanced by SDN technologies.

Unsupervised anomaly detection is widely adopted in
many practical applications [23, 24], including the detec-
tion of intrusions. For example in [25] they quantitatively
compare a pool of twelve unsupervised anomaly detection
algorithms on five attacks datasets. A variant of Support
Vector Machines is proposed in [26] together with several
outlier detection algorithms for system call intrusion de-
tection. Also, in [27] the points that lie in sparse regions of
the feature space are considered anomalies in system call
traces. The feature maps are based on data-dependent
normalization and a spectrum kernel. [28] propose an on-
line and scalable unsupervised network method. Finally,
[29] proposes a methodology to identify relations between
attack families, anomaly classes and algorithms in order to
select an unsupervised algorithm that maximizes detection
capability.

All these works propose techniques for cyber-attack de-
tection, however, none of them focus on encrypted traffic.
Moreover, they do not target Slow DoS attacks – which
is one of the main threat in IoT scenarios – and do not
include a real-time analysis.

Other papers discuss a different detection system. Alau-
thman et al. [30] a reinforcement-based botnet detection
approach that proposes a traffic reduction method in order
to deal with a high volume of network traffic. Cusack et
al. [31] focus on Slow Dos/DDoS attack detection using
a distance based metric for evaluating the similarity be-
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tween current and benchmark logs. The approach focuses
on mobile network since these network devices are rapidly
increasing. Likewise, in [32] authors introduce a method
for detecting SlowDoS attacks extrapolating data referred
to real traffic traces. A similar approach can be found in
[4], focusing on detection without packet inspection which
analyzes specific spectral features. These works describe
good methods for classification and detection but they can
not work with encrypted traffic.

Regarding research work focused on real-time scenarios,
in [9] authors present a flow-based intrusion detection sys-
tem using streaming technologies. Moreover, they focus
on DoS attacks and use Spark Streaming for their stream
processing-based IDS. AI methods are used in order to
identify an attack. Extracted features are obtained using
the stream methods that Spark Streaming provides. They
had used Näıve Bayes, Logistic Regression and Decision
Tree as the AI algorithms capable of classifying typical
DDoS attacks such us TCP flooding, UDP flooding and
ICMP flooding. Despite the authors propose a close to a
real-time IDS for detecting cyber-attacks successfully, they
do not focus in SlowDoS nor encrypted attacks. Similarly,
in [33] authors use Näıve Bayes Classifications and due to
the distributed agents on the multi-agent system, the to-
tal load is distributed among all the participants in the
network.

The article [34] proposes an anomaly-based IDS focused
on Application-layer DDoS attacks with encrypted traf-
fic. They convert network traces into conversations with
the desired features for applying machine learning and
deep learning methods. The features contain statistic- and
time-related characteristics which works successfully with
clustering methods. This paper actually resolves the prob-
lematic of encrypted traffic but has not been tested in a
distributed and real-time setting, monitoring in stream-
ing the attacks, as it is done herein. In addition, our
model outperforms that paper interms of accuracy at will
be shown in section 6

Despite the ML and DL algorithms used for detecting
anomalies, a proper training dataset has to be used for
training the algorithm. The NSL-KDD dataset is made of
several cyber-attacks and contains features that are use-
ful for detecting with an anomaly-based approach [35],
however it lacks SlowDoS attacks. Moreover, it includes
features from the application layer, unable to work if the
payload is encrypted. The IDS-2017 dataset follows a sim-
ilar approach and none of them aggregate specific features
from SSL/TLS connections, so they would be problematic
for encrypted traffic. These datasets seem to work for tra-
ditional cyber-attack, but it is necessary to generate a new
dataset for SlowDoS attacks over encrypted traffic.

3. Background

3.1. Intrusion Detection Systems (IDS)

Traditional Intrusion Detection Systems (IDS) follow a
signature-based approach to detect DoS, monitoring ongo-

ing network traffic in real-time and looking for sequences
or patterns that may match an attack signature previ-
ously introduced. Signatures can be identified based on
packet headers and network addresses, that contain se-
quences of data that are known to be a particular familiar
attack. Signature-based IDS like Snort a widely-used so-
lution since it is based on open source software and works
effectively at detecting common attacks. Although this
solution has excellent results with attacks already known
(patterns available in the signature database), it can not
detect every cyber-attack successfully, moreover recogniz-
ing HTPP patterns over encrypted traffic is very com-
plex. Besides, using traditional IDS, unknown attacks
(zero-day) go through the network infrastructure unno-
ticed, and only when they are discovered and pushed its
signature up to the database can be detected. Therefore,
during this process, network devices remain exposed and
the consequences may be overwhelming.

The lack of fruitful results in some attacks led to the
rise of anomaly-based IDS that focuses on monitoring be-
haviours that do not follow a regular genuine client be-
haviour, instead of checking signatures belonging to an
attacker. Moreover, this kind of IDS provides alerts about
a cyber-attack that has never been seen before, also known
as ”zero-day” attacks. In order to classify a behaviour as
normal or anomalous, it uses heuristics approaches.

3.2. Slow Rate Denial-of-Service against Web Applica-
tions

DoS attacks aim to exhaust a resource and make it un-
available to its legitimate clients. The strategy followed
by an attacker consists in forcing the victim (resource)
to remain in a saturation state, incapable of serving user
requests. Many of them have a great impact on communi-
cation systems, being one of the most popular threats.

In SlowDoS attacks, the attacker aims to force the vic-
tim to process only the illegitimate requests, although they
are seen as genuine. If an attacker fills the victim ser-
vice queue, any genuine client will not be served, as the
connection is refused due to the lack of resources in the
server, hence leading to a denial of service condition. To
sidestep security systems based on statistical detection –
mainly used by signature-based approaches – a low-rate
bandwidth mechanism is used. Unlike traditional DoS at-
tacks such as Ping-of-death or SYN flood, where thousand
of meaningless packets are sent to exhaust the victim due
to high-rate, in a SlowDoS every packet is essential to ac-
complish the attack goal.

Some SlowDoS attacks, also known as Slow HTTP
Denial-of-service, are growing briskly. Some kind of this
particular attack use GET requests to overstep the server’s
connections limit – usually 150 parallel connections in
Apache servers. Attackers’ goal is to prevent other users
from using the website and allowing themselves to estab-
lish multiple connections to the server. Unlike traditional
DoS attacks, this can be launched using only one system
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with multiple fake clients or bots sending requests in a
low-rate [4].

When an attack is planned to be performed, attackers
seek out security holes in protocols to use a service illegit-
imately. In HTTP servers, there is a built-in threat: con-
nection is only freed up when a complete header is received.
This means that attackers can use this vulnerability to per-
form a SlowDos attack. In this scenario an attacker can
send a simple request and the connection/socket will not
be closed until the request is completed. Sending incom-
plete requests at a slow-ratio with a large number of clients
takes up all the available connections of a web server. If
an attacker maintains open a large number of concurrent
connections, the web server will keep waiting for the end
of the connections, reaching a DoS condition.

According to [36], SlowDoS attacks to web applications
can be categorized in three types : (i) pending requests
DoS, based on sending incomplete requests, (ii) long re-
sponses DoS, sending genuine requests that slow down the
server’s responses, and (iii) multi-layer DoS, that do not
fully act in application-layer but use a slow-rate mecha-
nism to perform a DoS.

Currently, although there are a numerous variety of
SlowDoS attacks, this paper focuses on SlowDoS to
Web Applications. In Pending Request DoS, attacks
are based on sending incomplete requests to the server
which becomes busy. The following attacks can be found:
Slowloris, known as Slow Headers or Slow HTTP GET,
was designed by Robert ”RSnake” Hansen. As described
before, the attacker sends incomplete HTTP requests in
order to keep the socket occupied. The slow sending is
accomplished sending a specific string repeatedly: X-a:
b\r\n. This process is followed by multiple fake clients un-
til every available connection becomes allocated and there-
fore the web server unreachable.

SlowPost, also known as R.U.D.Y. (R U Dead Yet?) or
SlowBody. Attackers take advantage of HTTP POST to
send forms. The post request alerts the web server that
a protracted piece is about to be sent. In this attack,
the Content-Length value is used to specify the size of the
message body, forcing the server to wait for the complete
message. The attacker sends this form in a very slow ratio
without reaching the Content-Length value, usually about
one byte each packet. Sending these packets to the server
keep the connection busy.

Regarding Long Responses DoS, legitimate requests are
sent but are designed to slow down the server response.In
this category several SlowDoS attacks are introduced.
Apache range headers relies on the byte range parame-
ter of HTTP which is used to obtain a resource [3]. This
attack force an Apache Server to create a lots of copies
of a specified file. However, it is not effective anymore if
the system is up to date. Other SlowDoS attack known as
HashDoS, attackers aim to exploit a vulnerability related
to hash tables’ performance. They force the server to gen-
erate a lot of collisions, slowing down its performance. The
ReDoS attack focus on a vulnerability related to regular

expressions. The attacker sends evil regexes causing the
server to slow down, as it is validating the expression.

Finally, Multi-layer DoS focus on operating not only at
the application layer but use network and transport either.
The SlowRead attack was proposed by Serge Shekyan of
Qualys Security Labs. It aims at sending a genuine HTTP
request to the server, delegating the main part to a lower
layer (TCP). In this attack, all the available connection are
occupied and the servers reply to the attacker in a slow-
rate. SlowRead is performed at transport-layer specifying
the size of a custom window. TCP Maximum Segment
Size encapsulated in an ethernet frame is 1448 bytes which
is the size of packets in most communications. In this
attack, the server is forced to use a reduced window size,
specifying it in the initial SYN packet. This will make the
server reply at a slow rate. Due to the large number of
connections it would lead to a DoS. Although this attack
uses TCP methods to exploit a vulnerability and therefore
it is classified as Multi-layer Dos, it may be either classified
as Long Response DoS since the server response is slowed
down.

Another SlowDoS attack can be found in this category.
LoRDAS, also known as Low-Rate DoS against Applica-
tion Servers, has been proposed by Maciá-Fernández [37].
In this attack the attacker aims to identify the instants
in which the server free up its resources to occupy them
afterwards.

The low bandwidth requirements of these attacks make
IoT devices suitable for this environment. Moreover, if
attacks are performed over encrypted traffic, it would be
arduous to match a signature on the HTTP headers and
messages. Therefore, an anomaly-based approach for de-
tecting, as proposed in this paper, may cope with this
problematic.

4. AI-based cyber-attacks detection framework for
application-level encrypted traffic

This section describes the AI-based framework aimed
to detect in real-time SlowDoS attacks over encrypted
application-level traffic. The infrastructure is an anomaly-
based Network Intrusion Detection System (NIDS) that
continuously monitors the network traffic, inspecting and
aggregating traffic in real-time and following an AI-based
approach for detecting DoS-based attacks over encrypted
traffic. Furthermore, our framework, unlike traditional
signature-based IDS, has the ability to detect attacks over
encrypted traffic and it paves the way to detect ”zero-
days” attacks.

The detection of these kind of DoS-based attacks in-
cludes the analysis of conversations between a web server
and its clients. Using artificial intelligence methods, our
system builds a normal user behaviour model that di-
vides conversations into clusters and examines distribution
amongst them, in order to determine whether or not the
system is being attacked. To fulfill this objective we have
designed and developed a distributed framework based on
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3 layers: (1) Real-time Network Monitoring, (2) Conver-
sation Processing, (3) Artificial Intelligence Methods.

Network Traffic Brokers

Cross-Layer Pub/Sub System

Broker 1

Broker 2

Broker N

Streaming Processing Engine

...

Sensor / Probe

Metrics Manager

SlowDoS Attack

Aggregated Flows Brokers

Broker 1

Broker 2

Broker N

...

real-time
 network traffic traces

conversations

conversations ML- decision

Block Traffic

SDN Controller

SDN Switch
Mirrored Network Traffic

Network Monitorig Tool
Layer 1

Layer 2

Layer 3

Real-time

Conversations

Processor

Machine Learning

Processor

Server

Figure 1: Framework Design

Figure 1 shows the infrastructure design proposal and its
general flow. The three main components are connected
through a publish/subscriber system in order to fulfill real-
time requirements and cope with scalability requirements.
Layer (1) includes the distributed ”Network Monitoring
Tool” needed inspect the traffic. Layer (2) deals with
Real-Time network Conversation processing and feature
extraction, and layer (3) embraces distributed artificial in-
telligence engines to detect anomalies. Additionally, these
layers are based on streaming technologies, being capable
of processing input data in real-time and produce timely
detection.

4.1. Real-time Network Monitoring

In order to obtain the raw data from the network flows,
it is required to use real-time network monitoring. The
market provides several tools that allow monitoring the
network in real-time and extract the required data by the
proposed approach. For example, nDPI [38] provides sup-
port to a large number of protocols and applications to
extract metadata, however it does not provide a perfor-
mance suitable for real-time applications due to an over-
head incurred when classifying traffic [39]. Library-based
solutions (like PACE2 [40], libprotoident [41] or libpcap)
provide a programmatic way to access the flow data of
the network traffic. Despite this gives flexibility, it also
introduces the requirement of implementing a real-time
network sniffer that uses these libraries and sends the ex-
tracted data to the platform for its further evaluation.

Despite these limitations, the market also offers probe
solutions that can sniff packets and extract the required in-
formation. QosmosixEngine [42] is a proprietary tool that
enables to directly sniff the packets and generate network

events related with the information of the flows. The same
approach is implemented by suricata, but with the ad-
vantage of integrating an Intrusion Detection/Prevention
System (IDS/IPS) used to test security properties using
the extracted information. Despite these advantages, the
tools provide a non-convenient output mechanism, based
on APIs and logging respectively. To make these tools us-
able in the proposed approach, it introduces the require-
ment of developing an adaption layer capable of reading
the input and feed continuously to the pub/sub system
of the architecture. In this sense, it was crucial to find a
monitoring solution that can ease the deployment of the
proposed approach.

The Montimage Monitoring Tool (MMT) [43], follows a
modular approach to extract network statistics and feed
them into a temporal logic analysis engine that performs
temporal logic analysis for security analysis. Using its
Deep Packet Inspection (DPI) module, the MMT tool is
capable of monitoring the packets going through the net-
work, and extracting a set of network-related data from
each packet. Additionally, MMT supports a set of differ-
ent outputs for the extracted data and security analysis,
being able to write the information on logs (as ixEngine
and Suricata) but also directly on pub/sub systems such
as Apache Kafka.

Considering direct support for Kafka and the real-time
monitoring capabilities of MMT, it was used in the plat-
form to actively monitor the network traffic and extract
data using its DPI engine. Using its DPI features, MMT
was configured to generate a report per packet that con-
tains the following information: (1) Timestamp, (2) Source
IP, (3) Destination IP, (4) Source TCP Port, (5) Destina-
tion TCP Port, (6) IP Total Length, (7) TCP Window
Size, (8) Time-to-live, (9) TCP FIN Flag, (10) TCP SYN
Flag, (11) TCP RST Flag, (12) TCP PSH Flag, (13) TCP
ACK Flag, (14) TCP URG Flag, (15) TLS Content Type.
Additionally, MMT was also configured to publish these
reports directly on the architecture’s pub/sub system.

To ease the integration with other tools (and the next
steps of the behaviour analysis), an extra layer was in-
serted, in order to change the MMT proprietary format
into a standard CSV. Figure 1 depicts this in the Real-
time Conversations Processor. The result of this process
is published back to the general broker, to make the infor-
mation available for the next step.

It is important to remark that these features are ex-
tracted from each packet, and they do not suffice to deter-
mine the presence of a cyber-attack, since they present
packet metadata rather than flow statistics. To derive
conversation-related information, it is needed to aggregate
the data into conversations, grouping packets that belong
to the same flow (IP addresses, port numbers, and pro-
tocol) into a single aggregated metadata about the flow
under analysis.
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4.2. Conversation Processing

The Conversation Processor component in layer 2 re-
ceives the features extracted by the MMT (transformed
into a standard format) in the first layer, processing and
aggregating them into conversations as well as extracting
meaningful statistics.

Our conversation processor implementation maintains
the initial features extracted from the packets, but also add
numerous time-related statistics: (1) Uplink and Downlink
IP1, (2) Uplink and Downlink Port1, (3) Duration in mi-
croseconds, (4) Number of packets sent in one second in
uplink and downlink, (5) Number of bytes sent in one sec-
ond in uplink and downlink, (6) Maximal, minimal and
average packet size in uplink and downlink, (7) Maximal,
minimal and average size of TCP window in uplink and
downlink, (8) Maximal, Minimal and average time-to-live
(TTL) in uplink and downlink, (9) Percentage of packets
with different TCP flags (FIN, SYN, RST, PSH, ACK,
URG) in uplink and downlink, (10) Percentage of packets
with different properties (chgcipher, alert, handshake, ap-
pdata, heartbeat) in uplink and downlink, (11) Number of
new connections to the same destination host as the cur-
rent connection in the last 5 seconds, (12) Number of new
connections to the same destination host as the current
connection that connect to the same service in the last 5
seconds, (13) Percentage of new connections from the cur-
rent host which have the same destination service in the
last 5 seconds, (14) Percentage of new connections from the
current host which have different destination service in the
last 5 seconds, (15) Total number of active connections to
the same destination host as the current connection, (16)
Total number of active connections to the same destina-
tion host as the current connection that connect to the
same service, (17) Percentage of active connections from
the current host which have the same destination service,
(18) Percentage of active connections from the current host
which have different destination service. These features
are shown in detail in table 1.

As shown in the same table, features from 40 to 49 in-
clude information about encrypted SSL/TLS connections,
which makes our approach different from other state of
the art works using public available datasets such as NSL-
KDD or IDS-2017, that do not focus on this type of net-
work traffic. Specifically, some datasets including NSL-
KDD take advantage of application-layer signatures to ag-
gregate features, thus being unable to work over encrypted
traffic. To cope with this problem, our feature-extraction
approach does not examine application level and leverages
on lower layers, including the aforementioned features to
incorporate encrypted statistics. Hence, our framework
builds a model tailored to cope with SlowDoS attacks over
encrypted traffic.

1Using the MMT DPI engine, the “uplink” IP and port are rec-
ognized from the host that sent the first SYN packet to start the
communication.

These features provide us aggregated statistics about
traffic and flow information which greatly increase classi-
fication results. The information reported by raw network
packets do not suffice to classify their purpose. Indeed,
normal behavioural flow patterns distinctly differ from
anomalous models, thus the selected extracted flow-based
features address to detect SlowDoS attacks. The features
include statistical time-related information of the stream
of packets set up between a client and a web server, provid-
ing representative data for further analysis. It is not pos-
sible to extract similar characteristics from raw network
packets without flow considerations. Furthermore, char-
acteristics of SSL/TLS packets that are taken into con-
sideration –eg. features from 40 to 49– make this model
suitable for encrypted traffic since they report differences
between legitimate and anomalous flows in HTTPs.

It is worth mentioning that features from 1 to 4, which
include information about IPs and ports, are not used for
training the model. They only provide information about
flow identification to enforce a proper mitigation action.

Once those aggregated statistics are computed success-
fully, they are sent again to the pub/sub system to be an-
alyzed by the ML module in layer 3. Since conversations
are made by joining different packets during a concrete pe-
riod, the Conversation Processor defines two conditions for
submitting to the layer 3 for further analysis. If a conver-
sation ends successfully (TCP Connection Termination),
it is closed, sent immediately and removed from the Con-
versation Processor. Otherwise, if a conversation remains
open, it is continuously sent at a specific time interval2

and continues open. In this case, a conversation is closed
and entirely removed from the Conversation Processor if
no packet is received at other intervals. This policy allows
conversation processing to run smoothly without overload-
ing resources, making this stage suitable for real-time en-
vironments.

4.3. Applying Artificial Intelligence Techniques

The layer 3 of the framework is intended to perform the
AI-based attack detection. As we have described earlier,
our AI model combines neural networks and clustering to
classify whether a conversation monitored in layer 1 , and
aggregated in layer 2, is abnormal or does not belong to a
genuine client.

Conversations are received from layer 2 through the
pub/sub system and analysed in a distributed way by dif-
ferent instances of the Machine Learning component that
are launched in parallel. The detection process analyzes
the communication behaviours that are genuine, in such a
way that those communications that differ from these nor-
mal behaviour are considered as suspicious. Normal be-
havior patterns are learned by both, clustering algorithms

2New packets may not be classified to the conversation between
adjacent time intervals. In order to increase performance, the con-
versation is sent only if a new packet arrived.
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Feature Description Feature Description
F1 Uplink IP F26 Minimal time-to-live (TTL) in Downlink
F2 Downlink IP F27 Average time-to-live (TTL) in Downlink
F3 Uplink Port F28 Percentage of packets with FIN TCP Flag in Uplink
F4 Downlink Port F29 Percentage of packets with SYN TCP Flag in Uplink
F5 Duration in microsenconds F30 Percentage of packets with RST TCP Flag in Uplink
F6 Number of packets sent in one second in Uplink F31 Percentage of packets with PSH TCP Flag in Uplink
F7 Number of packets sent in one second in Downlink F32 Percentage of packets with ACK TCP Flag in Uplink
F8 Number of bytes sent in one second in Uplink F33 Percentage of packets with URG TCP Flag in Uplink
F9 Number of bytes sent in one second in Downlink F34 Percentage of packets with FIN TCP Flag in Downlink
F10 Maximal packet size in Uplink F35 Percentage of packets with SYN TCP Flag in Downlink
F11 Minimal packet size in Uplink F36 Percentage of packets with RST TCP Flag in Downlink
F12 Average packet size in Uplink F37 Percentage of packets with PSH TCP Flag in Downlink
F13 Maximal packet size in Downlink F38 Percentage of packets with ACK TCP Flag in Downlink
F14 Minimal packet size in Downlink F39 Percentage of packets with URG TCP Flag in Downlink
F15 Average packet size in Downlink F40 Percentage of packets with Chgcipher property in Uplink
F16 Maximal size of TCP window in Uplink F41 Percentage of packets with Alert property in Uplink
F17 Minimal size of TCP window in Uplink F42 Percentage of packets with Handshake property in Uplink
F18 Average size of TCP window in Uplink F43 Percentage of packets with Appdata property in Uplink
F19 Maximal size of TCP window in Downlink F44 Percentage of packets with Heartbeat property in Uplink
F20 Minimal size of TCP window in Downlink F45 Percentage of packets with Chgcipher property in Downlink
F21 Average size of TCP window in Downlink F46 Percentage of packets with Alert property in Downlink
F22 Maximal time-to-live (TTL) in Uplink F47 Percentage of packets with Handshake property in Downlink
F23 Minimal time-to-live (TTL) in Uplink F48 Percentage of packets with Appdata property in Downlink
F24 Average time-to-live (TTL) in Uplink F49 Percentage of packets with Heartbeat property in Downlink
F25 Maximal time-to-live (TTL) in Downlink

Feature Description
F50 Number of new connections to the same destination host as the current connection in the last 5 seconds
F51 Number of new connections to the same destination host as the current connection that connect to the same service in the last 5 seconds
F52 Percentage of new connections from the current host which have the same destination service in the last 5 seconds
F53 Percentage of new connections from the current host which have different destination service in the last 5 seconds
F54 Total number of active connections to the same destination host as the current connection
F55 Total number of active connections to the same destination host as the current connection that connect to the same service
F56 Percentage of active connections from the current host which have the same destination service
F57 Percentage of active connections from the current host which have different destination service

Table 1: Aggregated final features extracted by our Conversation Processor in layer (2)

and using Machine Learning. These algorithms help each
other to diagnose the nature of a new conversation. The
main advantage of this type of analysis is that it does not
require to specify at any time what are the usual features of
an attack, hence, it has great versatility in different types
of threats, beyond SlowDoS attacks, including ”zero-day”
attacks.

These techniques are described in detail in section 5.
Indeed, the obtained results that will shown in section 6.3
point that the ML model works successfully for detecting
SlowDoS attacks with performance needed to carry out
the detection in real-time.

4.4. Publisher/Subscriber System

Network traces and conversations are distributed
through a publisher-subscriber system also known as bro-
ker. In software architecture, a pub/sub system is a mes-
saging pattern where senders, known as publisher, send
messages to a category instead of a specific receiver. Like-
wise, receivers are known as subscribers since they sub-
scribe to a category instead of directly receive messages
from senders. This kind of system is one of the main pil-
lars of our architecture since all the layers make use of it.
There are two categories or topics where data are stored.
The first one includes network traces with the raw features
extracted by MMT in its proprietary format. In this layer,
the format transformation is also performed, publishing its

results in a separate broker topic. The conversation pro-
cessor is a subscriber to that topic, where initial features
are transformed to the final aggregated statistics, and also
publishes conversations to a final, independent topic. Fi-
nally, the artificial intelligence layer subscribes to the last
topic, in order to process the aggregated information.

4.5. Streaming Processing

Streaming processing is a technology widely used for Big
Data analysis and real-time applications. It can analyze
the continuous stream of data in order to detect conditions
and process them rapidly. This new paradigm introduces
a new way to analyze data where queries and data flow in
a continuous manner and react to explicit events.

The figure 1 depicts our proposed framework that takes
advantage of streaming processing in layers (2) and (3):
conversation processing and artificial intelligence tech-
niques. By using this technology it is possible to receive
data from multiple sources in a real-time manner, and ag-
gregate them in a common channel that will be used by
the machine learning algorithm.

As illustrated by Figure 2, our framework consists of
3 main components (Network Monitoring Tool, Conver-
sation and Machine learning Processors). Network pack-
ets are extracted by the monitoring tool and sent to the
conversation processor for its real-time grouping. Finally,
the data is sent to the ML processor, in order to detect
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Figure 2: Overview of the interactions amongst the components of the framework

anomalies and potentially a SlowDoS attack. As depicted
in the same figure, the communication among the com-
ponents is provided by the publisher/subscriber system.
This methodology allows a real-time delivery of the data.
Once an attack is detected it can be dynamically counter,
using an SDN approach. Namely, enforcing a flow-mod
Openflow message from the SDN Controller to the switch
adding a new rule in the switch to drop traffic from the
attacker as shown in our previous work [44].

Figure 3 depicts a simplified view of conversation man-
agement during a period of time. Network packets are
represented by different colors where red ones belong to
an attacker, otherwise to normal clients. A conversation is
built by gathering network packets belonging to the same
socket (same color). When a network packet is received
by the Conversations Processor, it is processed in Ta time.
While no packet is received again, a time window Tw is
opened and maintained where nothing is classified in that
conversation. Then, if this window exceeds a timeout Tts,
the conversation is ready to be sent to the ML layer (see
conversation 2, 3 and 4). The sending procedure relies on
specific time windows in which either, finished or timed
out conversations are sent, this window may coincide with
Tts. Likewise, if Tw exceeds the timeout Ttd, the conversa-
tion is marked as finished and is completely deleted from

the Conversations Processor cache. This timeout is always
greater than the send timeout, i.e. Ttd > Tts.

Alternatively, a conversation may finish with an end-
packet (following the TCP Connection Termination), as
in conversation C1, where it is sent just after receiving the
final packet and utterly deleted afterwards. The machine
learning layer ingest batches sequentially from the pub/sub
system, so these batches may be made from multiple con-
versations depending on the batch interval. Conversation
C1 and C2 are sent in the same batch interval, therefore a
2-conversation batch is set up.

The time taken by a batch in the queue is Tqf − Tq0,
where Tq0 represents the time when the batch enters the
queue and Tqf when it exits. Then, batches are processed
outputting a detection result in Tmlf−Tml0 . If a batch has
multiple conversations, each conversation is distributed in
parallel amongst the different worker nodes, increasing the
processing performance, and avoiding delays in the queue
processing time.

5. Artificial Intelligence for SlowDoS attacks de-
tection

This section presents the developed AI model devised
and optimized to detect SlowDoS attack. Our model con-
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Figure 3: Representation of the Aggregator and Machine Learning layer timeline, where network packets are processed into conversation and
sent to the ML layer

sists of an algorithm in five phases: preprocessing, clus-
tering, histogram matrix, Deep Learning and detection.
The AI-model combines clustering with deep learning tech-
niques to increase overall accuracy. The clustering tech-
nique alone did not reach the desired level of precision,
since this does not take into account aspects supported by
DL module, such as the correlation between variables.

The use of clustering serves to determine the normal
behavior patterns of the users, thereby obtaining a proba-
bility of belonging to a conversation to one of these groups.
On the other hand, if the uncertainty were too great and
it was not possible to determine whether or not a conver-
sation belongs to one of these groups, then it would be
necessary to use a neural network that allows finding the
correlations between variables in order to have a second
test.

However, before carrying out the training and detection
process, it is necessary to carry out a pre-processing step,
in which the variables are normalized and filtered, giving
rise to a smaller number of variables. The main criterion
used for this task is based on eliminating those variables
that present very little variability and therefore do not
provide useful information to the model.

5.1. Model training

This section details the method used to train the models
that will be used to detect attacks: on the one hand, the
clustering-based model and, on the other, the DL-based
model.

5.1.1. Phase 1. Preprocessing

First of all, the relevant variables obtained in real-time
from the pub/sub system, i.e. those identified in Section
4.2, are processed and normalized. Once this is done, it
can be seen how the different types of communications are
distributed in figure 4. It shows the difference between

instances belonging to normal activity and attacks when
they are represented according to the first principal com-
ponents.

Figure 4: Representation of system traffic for normal activity (blue)
and different kind of attacks for the two first principal components.

5.1.2. Phase 2. Clustering

Our attack detection algorithm is based on perform-
ing clustering of normal conversations in order to check
whether a new conversation belongs to these clusters (nor-
mal activity) or not (attack). The clustering model se-
lected is Gaussian Mixture Model (GMM) [45] as it usu-
ally achieves better quality results when compared to other

9

Jo
urn

al 
Pre-

pro
of



clustering methods as K-Means. As will be shown in sec-
tion 6, our model has been compared with state of the art,
that employed K-Means as attack detector mechanism.

Gaussian Mixture Models (GMM) have soft boundaries,
where data points can belong to multiple clusters at the
same time but with different degrees of belief. A Gaussian
Mixture is a function composed by K individual Gaussian
functions, where K is the number of types of behavior
in which our data is grouped (clusters). Each Gaussian
function has the following parameters: a mean µ that de-
termines the center, a covariance Σ that determines the
width of the function and a mixing probability π that de-
fines the size of the Gaussian subject to

∑K
k=1 πk = 1 and

0 < πk < 1. Therefore, the objective of the method is to
find the optimal value of these parameters that best adapt
to the probability distributions followed by the normal be-
havior data. In other words, to figure out which point
comes from which Gaussian distribution. In order to do
so, the Expectation Maximization (EM) algorithm is used
and it consists in two stepts:

• Expectation: with the currently assigned means and
variances, the probability of each data point i is com-
puted as follows

rik =
πkN (xi|πk,

∑
k)∑K

j=1 πjN (xi|πj ,
∑
j)

(1)

.

• Maximization: these probabilities are used to re-
estimate the Gaussians’ mean and variance in the cur-
rent iteration (it) to better fit the data points as fol-

lows. Let N it
k =

∑N
i=1 ri,k, then πk =

Nit
k

N shows how
much each cluster is represented over all data points.
Now we update

µ̂k =
1

N it
k

N∑
i=1

ri,kxi (2)

and

Σ̂k =
1

N it
k

N∑
i=1

ri,k(xi − µ̂k)(xi − µ̂k)T (3)

.

Thus, GMM-based clustering provides the probabilities
of membership of each communication to the set of clus-
ters, in such a way that those with a high value will be
taken as normal and those with a low value will be taken as
abnormal. However, the main drawback of GMM related
to our problem is that the central ranges of probabilities
are controversial in order to make a decision. E.g when
the probabilities are between 45% and 55% , GMM can
lead us to missclasify a conversation For that reason, this
clustering method requires the help of other Deep Learn-
ing tools that allow us to break the uncertainty of these
ambiguous probabilities, explained in Phase 3 and Phase
4 described below.

5.1.3. Phase 3. Histogram matrix

During this phase, for each network conversation, the
percentage of characteristics belonging to each of the clus-
ters is computed. To do so, the standard deviations of the
training data are calculated in such a way that a character-
istic of a vector will be within a given cluster if it is within
the range [Cj,k − σk, Cj,k + σk] where Cj,k is the cluster
centroid coordinate j for the variable k. Notice, that it is
a variation from the methodology of [34], because in that
publication they compute the number of vectors belonging
to a cluster considering a certain amount of vectors that
depend on the time, instead of number of characteristics.

This calculation leads to a vector of size n (number of
clusters) hi = (hi1, h

i
2, ..., h

i
n) where i refers to a specific

communication. When joining each of the conversations,
a matrix of size n×D where n is the number of clusters and
D the number of conversations is obtained. This method-
ology offers a dynamism that was not found in [34] since it
allows to construct histogram vectors and histogram ma-
trices without taking into account the time factor. That
is to say, communications can be taken one by one (as if
it was an attack detector) or the average can be weighted
to several nearby communications in time for group i and
obtain an attacker detector.

5.1.4. Phase 4. Deep Learning Training

Once the histogram matrix has been constructed for the
data belonging to normal conversations, these are used
to train a deep learning technique. To this aim our AI-
based attack detector uses an Auto-Encoder (AE), which
is a neural network that consists of a visible input layer,
a hidden layer, and a reconstruction layer. The last and
first layer are of the same size. The objective is, therefore,
to reproduce the input values at the output phase. For
training, the histogram matrix of normal conversations is
used. Only one hidden layer was considered because the
literature supports the fact that one single hidden layer is
enough for the vast majority of practical problems [46, 47],
creating a fast solution that provides accurate results and
its number of neurons was estimated using grid search with
cross-validation.

Mathematically, an autoencoder consists of the encoder
and the decoder, which can be generally defined as tran-
sitions φ : χ → F and ψ : F → χ, where φ, ψ =
argminφ,ψ|X − (φ ◦ ψ)X|2. The encoder function maps
the original data x, to a latent space F , which is present
at the bottleneck. The decoder function maps the latent
space F at the bottleneck to the output. In a sense, we
recreate the original data after some generalized non-linear
compression. The encoding network can be represented by
the standard neural network function passed through an
activation function, where z is the latent dimension (where
x is mapped to) z = σ(Wx+b). The decoding network can
be represented similarly, with other weight, bias, and po-
tentially activation functions being used: x′ = σ(W ′z+b′).
The objective is to minimize the mean square error be-
tween the input and output vector (reconstruction error),
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so when the system has stored enough information will be
able to reproduce the input on the output. This technique
works on the assumption that there is a correlation be-
tween the variables so that these variables are very differ-
ent for normal and anomalous conversations. These AEs
can be stacked one after the other in order to minimize
information loss.

Thus, in our case, for each row of the histogram matrix,
the reconstruction error is given by

Ei =

√√√√ nC∑
j=1

(Hi
j − Ĥi

j)
2 (4)

where Hi
j is the original entry and Ĥi

j is the reconstruc-
tion. These values are therefore used to compute a thresh-
old TE = µEi + ωσEi where µEi is the average value of the
reconstruction error values, σEi the deviation and ω is an
hyperparameter.

1 . PREPROCESSING ANOMALY DETECTOR TRAINING

5 . Output detection

Conversations

4 . Auto-encoder
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tra�c

Processed
tra�c

C1

C2

C3
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Figure 5: Architectural overview of the proposed ML-based training
model

Figure 5 shows the process that follows the information
from the conversations and shows the process flow of the
model used in this paper and the associated phases. As
a first step, the data belonging to normal activity is pre-
processed (phase 1), to be used to train both a clustering
method (phase 2) and an Auto-Encoder (phase 4) with the
histogram matrix (phase 3). The latter helps the cluster-
ing algorithm to determine if a new conversation belonging
to a test data set is an attack or normal activity, as de-
scribed in the next section. We have called this method
‘strengthened GMM” (sGMM) because it combines GMM
with the computation of the percentage of characteristics
and the use of an AE in order to obtain a finer result.

5.2. Attack detection

This section shows how the algorithm determines
whether a new communication is taken as an attack or a
normal communication using the already trained models.

When a client initiates a communication, it will be clas-
sified in one of the behavior groups, and its histogram
vector h is calculated, encoded and decoded by the AE, so
that its reconstruction error is computed. If the error is
greater than the TE threshold then the communication is
classified as an anomaly.

Therefore, in order to break the uncertainty and improve
the performance of the GMM model, the ambiguous com-
munications are classified using the DL method. In order
to determine the range of ambiguous probabilities, a grid
search was carried out to determine the optimal value of
P+ and P− , giving rise to the interval (P−, P+), in which
the use of the Auto Encoder is necessary to determine the
nature of the conversation.

Section 6.3 will show the results achieved for each of the
models and their efficiency will be compared with different
attacks settings and other clustering methods.

Data: User conversation: ~r
Result: Nature of conversation: Attack/Normal

1 Variable filtering: ~r → ~r′ ;
2 Evaluate the probability density of the GMM in

~r′: P (~r′) ;
3 if P (~r′) ≤ P− then
4 return Attack;
5 else if P (~r′) ≥ P+ then
6 return Normal;
7 else

8 Calculate histogram vector: ~h
9 Calculate reconstruction error with input to

AE (~h) and output (~h′):

Erec =
√∑nC

i=1(hi − h′i)2

10 if Erec ≤ TE then
11 return Normal
12 else
13 return Attack

Algorithm 1: Pseudocode of the proposed sGMM
algorithm

P

Clustering

Conversations

Probability

Normal

P<P-

P>P+

Attack

P- ≤ P ≤ P+

Histogram 
Matrix

Auto-encoder

Normal

Attack

Figure 6: Architectural overview of the proposed ML-based attack
detection model

Figure 6 shows the detection process: first, the proba-
bility P of belonging to a group is calculated, then this
is compared with P+ and P− if it becomes sufficiently
low or high enough that clustering is enough to determine
whether a conversation is normal or an attack. However,
when P takes a value between P+ and P− it will be nec-
essary to calculate the histogram matrix and use the au-
toencoder to calculate the reconstruction error and thus
determine the type of communication.
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6. Implementation and Evaluation

This section introduces the tools used to implement the
3-layer framework presented previously, the process for ob-
taining our data-set and the evaluation. The data-set has
been obtained using specific monitoring of diverse Slow-
DoS attacks in our streaming platform. Notice that ac-
tual security datasets public available (e.g. NSL-KDD),
do not consider SlowDoS attacks. In addition, this section
also presents the quality results focused on evaluating the
accuracy of the AI-based model using the streaming data-
set. Furthermore, this section presents the performance
of the overall system in a real testbed with different at-
tacks, including the time taken by different stages of the
real-time attack detection framework.

6.1. System Implementation and testbed

Table 2 recaps the tools used associated which its spe-
cific layer as well as other implementation characteristics.

Pub/Sub System Apache Kafka 2.3.0
Stream Processing Spark Streaming 2.4.3
Network Monitoring Tool Montimage Monitoring Tool
Overall Development Kit Open JDK 12
ML Development Kit Python Spark 2.4.3

Table 2: Framework Implementation tools

Network monitorization is carried out using a propri-
etary software called Montimage Monitoring Tool (MMT)
[43]. This tool inspects mirrored traffic from the SDN
switch, extracts initial features described in section 4, and
publishes them in the Kafka Broker. The main feature
of this software includes the ability of publishing features
directly into Kafka without any other additional add-on
or software. Additionally, multiple MMT instances may
be used in order to analyse the network traffic at differ-
ent points. Apache Kafka implements the pub/sub sys-
tem which uses two topics for the messages. The first one
manages network traces with initial features extracted by
the monitoring tool while the other includes conversations
with the final features.

Finally, our framework uses Apache Spark Streaming for
stream processing (layer 3 of the architecture of Figure 1)
which allows huge traffic analysis and an efficiently data
processing in real-time. This software has been designed
to be robust enough to withstand failures and not abort
the whole processing procedure. Spark Streaming store
intermediate data in RDD (Resilient Distributed Dataset)
which is an immutable collection that can be operated in
parallel. This technology provides a lot of transformations
in its API, such us map() which maps each input element
in the source stream to a new value, or groupByKey()
which groups all key-values pairs with the same key to-
gether. This last operation is of paramount importance
in our framework, as it is used in order to group network
packets that belongs to the same socket. That means,
spark streaming can parallelize conversation processing

joining network traces in the same processor. Further-
more, we have tested multiple Tts to figure out which time
perform better. Using a timeout between 5 and 10 sec-
onds, our infrastructure perform at its best. Therefore,
since timely results fits better with a real-time scenario, a
Tts of 5 seconds has been chosen. Besides, the timeout of
deleting Ttd was set to 30 seconds, as it can be considered
an unusual long period for a conversation without a new
packet arriving.

Conversation processing was implemented using the
Java language whereas machine learning procedures were
implemented in Python. Furthermore, ML module uses
PySpark module in order to get a final result. This module
executes its processing method in parallel using a broad-
cast variable which contains several operations to classify
a conversation as genuine or anomalous. Using the opera-
tion repartiton(), conversations are distributed efficiently
amongst the worker nodes and then, they can use the
broadcast variable through foreachPartition() method,
decreasing the queue and processing time.

The conversation processor follows a different approach.
It uses a lazy-initialized pool of flow processors running
in Spark, creating one per worker node to take care of
network packets in parallel.

6.2. Generated Dataset description

This section defines the dataset obtained by monitoring
and processing network traffic at layer 2 in our framework,
thereby obtaining the network traffic features explained in
Section 4.2. For collecting different datasets for various
attacks and settings, particular software and tools were
employed. Two categories of datasets have been gener-
ated: normal and anomalous communication (i.e. Slow-
DoS attacks). In order to gather genuine real-time data,
we have implemented a traffic generator leveraging JMe-
ter for normal HTTPs traffic and slow-http-test to launch
the different SlowDoS attacks. In this scenario, to ob-
tain normal traffic needed to train the machine learning
model, our application was stopped at the ML module
and its output (all generated conversations) were written
into a standard CSV file. This dynamic procedure gener-
ates real-time conversations which fit better to our model
rather than an static implementation.

For carrying out the SlowDoS attack we ran the tool
slow-http-test3 software using TLS connections. To mea-
sure the performance of the machine learning model in a
real scenario, several types of SlowDoS attacks have been
launched. These attacks belong to pending requests DoS
(Slowloris and SlowPost) and multi-layer DoS (SlowRead)
categories introduced in section 3.2. No SlowDoS attack
from long reponses DoS was included since they depend
on the server implementation and do not entail a global
threat. For instance, Apache Range Headers is not a haz-
ard nowadays if the server is up-to-date. Others such as

3URL of the project: https://github.com/shekyan/slowhttptest/
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HashDoS or ReDoS need some type of input to perform
a lookup/insertion in the database or introduce a regular
expression if they are available. Hence, they do not repre-
sent an actual risk for every webserver. .Furthermore, the
effectiveness of these attacks depends on the specific server
implementation and the number of parallel connections it
can handle. Therefore, three datasets have been generated
using a different amount of clients and concurrent connec-
tions.

The first one – known as ”High-connections”, comprises
a lot of connections (up to 3000), represents a heavy and
direct attack causing a denial of service in a few seconds.
Notice that SlowDoS are characterized by causing deny of
service with few connections, so considering having more
than 3000 connections simultaneously are not representa-
tive of these kind of attacks. Another intense attack called
”Medium-connections”, eventually causes a denial of ser-
vice but uses less connections (up to 1000). The last one,
”Low-connections” (up to 500), occupies a few connection
in order to reproduce a lighter attack which do not manage
to perform a denial of service. All of these attack imple-
mentations were configured to encrypt the HTTPs connec-
tions. In order to validate the feasibility and performance
of our system under different conditions, the experiments
were conducted using several kind of SlowDoS attacks.
Concretely, the kind of attacks used were: Slowloris, Slow-
Post and SlowRead, described in section 3.2. As shown in
table 3, the attacks have the following structure:

• High-connections attack: Tries 3000 connections to
the server (1000 per attack).

• Medium-connections attack: Tries 1000 connections
to the server (333 per attack).

• Low-connections attack: Tries 500 connections to the
server (166 per attack).

Besides these parameters, we have used an interval be-
tween follow up data of 3 and 20 seconds respectively for
Slowloris and SlowPost. Likewise, for SlowRead attacks,
a interval of 5 seconds is established between read opera-
tions. Furthermore, the maximum length of follow up data
in Slowloris is 10 bytes and 24 in Slowpost. Regarding
SlowRead, we used 512 bytes as the start of the advertised
TCP window size and 1024 bytes as the end. Moreover, 2
bytes are received in every read operation and the resource
is requested 2 times per socket. The SlowDoS attacks pa-
rameters used are summarized in table 3. It should be
noticed that we have tested other different SlowDoS con-
figurations beyond those parameters, but the quality re-
sults using other configurations does not influence in the
accuracy of the classification model.

On the other hand, regarding normal traffic, we have
simulated genuine clients behaviour using Apache JMeter
during 1 hour against an Apache https server set up in
the testing network. This software is able to reproduce
legitimate behavioural patterns that we have designed, in

High
connections
Dataset

Medium
connections
Dataset

Low
connections
Dataset

SlowPost
connections

1000 333 166

Slowloris
Connections

1000 333 166

SlowRead
connections

1000 333 166

Total
connections

3000 1000 500

Connections
per second (at most)

1000 333 166

Denial of Service Yes Eventually No

SlowRead
Interval between read operations
(seconds)

5

Start of advertised TCP windows size
(bytes)

512

End of advertised TCP windows size
(bytes)

1024

Bytes received every read operation 2
Times resource is requested
(per socket)

2

Slowloris SlowPost
Interval between
follow up data (seconds)

3 20

Maximum length
follow up data (bytes)

10 24

Table 3: Attacks and main parameters

total there are 600 clients connected simultaneously and
they are renewed every iteration. These patterns include
15 different behaviours against a website using GET and
POST requests, waiting a random interval of time between
each operation as a genuine client would do. Moreover,
clients are distributed in multiple virtual machines to setup
a real environment, including both normal and encrypted
connections. The Apache server was configured to accept
at most 1600 connections in parallel in order to handle
heavy number attacks and a high-clients scenario.

The aforementioned configurations were used to gener-
ate a dataset used to build the normal behaviour model
and train the machine learning model. Figure 7 represents
the average bandwidth and network packets against clients
in our scenario. Since genuine traffic is generated using
a broad set of patterns, bandwidth and network packets
suffer of high/low peaks. Therefore the figure depicts an
average measure.

6.3. Quality Results

This section introduces the results obtained by the clas-
sifier. The metrics used to evaluate the quality of the
attack detection models were both, Receiver Operating
Characteristics (ROC) curve and Area Under the Curve
(AUC). For this purpose, a 10-fold validation was per-
formed using the 25% of randomly chosen test data, re-
specting a balance between normal and anomalous com-
munications. To evaluate the accuracy of our proposed
model, we have compared our model with the state of the
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Figure 7: Relation amongst genuine clients, bandwidth and network
packets sniffed by the monitoring tool

art. In particular, our AI model called sGMM, that com-
bines GMM and DL, is compared with the state of the art
[34] that employs K-Means clustering based on thresholds
to detect the attacks.

ROC curve is a performance measurement for classifica-
tion problem. It is generated by plotting true positive rate
(TPR) against false positive rate (FPR). Likewise, AUC
describes the model sensitivity at distinguishing different
classes.

In the previous section three general anomalous datasets
with different amount of connections were introduced. The
metric obtained are depicted in figures 8, 9, 10. Although
these datasets contain multiple anomalous behaviour, a
metric for each individual attack is evaluated. The at-
tacks includes: Slowloris, SlowPost and SlowRead. Fur-
thermore, they share the configuration of the medium-
connections attack. Their performance is shown in figures
11, 12, 13.

As can be seen in the figures 8, 9 and 10 the performance
of the strengthened GMM model is superior to the GMM
model, therefore, in the following datasets both models
have not been compared.

The results show that the performance of our strength-
ened GMM model (sGMM) is superior to K-Means in ev-
ery dataset according to the AUC metric. Additionally,
figure 14 depicts the AUC of the GMM model every 5
seconds since the attack was launched. Three types of a
Slowloris attack have been evaluated. They used a differ-
ent interval between follow up data: 1 , 3 and 10 seconds.
The performance at second 10 reached 98.2%. Nonethe-
less, since Tts=5, the attack with interval 10 suffers of
peaks of low entropy where only a few conversations are
received. This behaviour is clearly shown, as the perfor-
mance eventually decrease and recovers when more conver-
sations arrive. Despite this behaviour, the performance of
the model remains stable when there are available data
and different configurations do not affect to the overall
detection performance.

Besides to AUC, another quality metric has been ob-

tained for the different models and datasets. The confu-
sion matrices collected are shown in table 4, in which the
average values of TP, FN, FP and TN are described for
each dataset and model.

High K-Means High sGMM

TP 42.57 50.00
FN 7.42 0.00
FP 7.59 1.62
TN 42.4 48.37

Medium K-Means Medium sGMM

TP 43.24 50.02
FN 6.78 0.00
FP 7.43 1.62
TN 42.59 48.39

Low K-Means Low sGMM

TP 45.91 50.00
FN 4.08 0.00
FP 7.62 1.74
TN 42.37 48.25

SlowPost K-Means SlowPost sGMM

TP 47.91 49.27
FN 2.08 0.72
FP 36.21 1.60
TN 13.78 48.39

SlowRead K-Means SlowRead sGMM

TP 42.17 50.00
FN 7.82 0.00
FP 7.68 1.58
TN 42.31 48.41

Slowloris K-Means Slowloris sGMM

TP 44.98 50.00
FN 5.01 0.00
FP 7.62 1.62
TN 42.37 48.37

Table 4: Percentage confusion matrix of the models for the different
datasets.

In addition, the quantities collected in confusion ma-
trices can be used to calculate the Accuracy, Precision,
Recall, F1-score and Specificity metrics, which provide in-
formation beyond the success rate [23]:

• Accuracy is the ratio of the correctly labeled subjects
to the whole pool of subjects.

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

• Precision is the ratio of the correctly positive labeled
subject to all positive labeled subjects.

Precision =
TP

TP + FP
(6)

• Recall is the ratio of the correctly positive labeled to
all who are positive in reality.

Recall =
TP

TP + FN
(7)

• F1-score is the harmonic mean(average) of the preci-
sion and recall.

F1− Score =
2 · (Recall · Precision)

(Recall + Precision)
(8)
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Figure 9: ROC curve for model K-Means(left), strengthened GMM (center) and GMM (right), using medium-connections setting

• Specificity is the correctly negative labeled by the al-
gorithm to all who are negative in reality.

Specificity =
TN

TN + FP
(9)

The measurements extracted for metrics are shown in
the table 5.

The information collected in the table 5 shows that our
GMM-based model outperforms the compared work, hav-
ing greater robustness and stability in its metrics for dif-
ferent datasets. This implies that it is able to adapt to
more types of attacks and thus obtain better accuracy for
different scenarios.

6.4. System Performance Results

In this section we present the performance of our sys-
tem in an isolated environment. For building our scenario
we have used multiple virtual machines sharing the same
network topology.

1. Clients: 3 machines. 8GB memory and 8 cores.

2. Apache Kafka: 1 machine. 8GB memory and 16 cores.

3. Webserver and Network Monitoring: 1 machine.
16GB memory and 16 cores.

4. Streaming Processor: 2 machines. 8GB memory and
16 cores each. It includes layer (2) and (3).

Every virtual machine CPU is running at 2.1 GHz and
have a network bandwidth of 16 Gbps. The batch interval
is set to 1 second, meaning Spark starts computation ev-
ery second and gather all records into the same batch to
be processed as a task. Moreover, backpressure is enabled,
which allows Spark to monitor the batch delays and pro-
cessing times in order to optimize and receive data as fast
as it can process it.

To evaluate the performance of detection time in stream-
ing, we have build a test software that starts normal com-
munications during a period of time and eventually launch
an SlowDoS attack. Timestamps are obtained in different
stages to measure the time required. This software is a
python script capable of communicating with every ma-
chine to launch multiple processes. Indeed, it is able to
distribute attackers and normal clients among the different
available machines. Besides, in order to mitigate attacks
and obtain the detection time, another topic was included
in Kafka in which the results of the machine learning mod-
ule are sent. The script reads from this topic and stops the
attack when it is detected. Moreover, we have launched
attacks equivalent in number with the configuration of the

15

Jo
urn

al 
Pre-

pro
of



0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve Low Kmeans

Chance
Kmeans Mean ROC (AUC = 0.61 ± 0.01)
± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Chance

± 1 std. dev.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC curve Low GMM

Chance
GMM Mean ROC (AUC = 0.89 ± 0.10)
± 1 std. dev.

ROC curve Low sGMM

sGMM Mean ROC (AUC = 0.98 ± 0.00)

Figure 10: ROC curve for model K-Means(left), strengthened GMM (center) and GMM (right), using low-connections setting
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Figure 11: ROC curve for model K-Means(left) and strengthened GMM (right). Slowloris attack

medium-connection setting, including Slowloris, SlowPost
and SlowRead attacks. Furthermore, 1000 normal clients
were accessing the website in parallel. In order to mea-
sure the detection time, this test has been run 50 times.
We have obtained that the average time required for de-
tecting is 9.8 seconds with a deviation of ±2.4 seconds in
some tests. This time includes every stage of our appli-
cation: network monitoring, conversation processing and
machine learning classification. This mean performance
time is broken-down in figure 15, that depicts the time
required by layers 2 (Conversation Processor) and 3 (ML
module) to process and obtain a result. In this scenario we
have tested a number of clients ranging from 50 to 1450,
using an increment of 50. As can be seen, conversation
processing does not require a huge amount of time and
its queue time is minimal, around 1 to 10 milliseconds,
whereas processing time grows to 450 ms at 1450 clients.

Additionally, the machine learning layer requires more
time in order to compute a result. Queue time reach
around 100 ms on average, slightly higher than Conver-
sation Processor’s queue time. Even though it is an ac-
ceptable time for a real-time scenario. Likewise, the pro-
cessing time is around 900 ms at 1450 clients. The total
delay which is the combination of queue and processing

time is around 1 second.

Figure 16 shows the performance of the Conversation
Processor (Aggregator) during an SlowDoS attack. Firstly,
every network packet, corresponding with genuine clients,
is processed. Then, when the attack begins, it causes a
denial of service almost instantly. As the connections are
occupied by the attacker, legitimate clients cannot request
any service to the server. The packet-rate decrease quickly
to very low values. This is due to the nature of the SlowDos
attack that use a slow-rate strategy. When the attack
is detected and mitigated, genuine clients can be served
normally, so initial packet-rate is restored.

Depending on the Tts used, the input rate of machine
learning module changes. The figure 17 represents the in-
put stream of conversation at layer (3). Since the sending
timeout is 5 seconds, every 5 seconds a peak of conversa-
tion is received and classified. The conversations analyzed
between peaks include finished conversations, therefore
there is a important difference in the input rate amongst
peaks at Tts interval and in between.

In this environment we have conducted variety of ex-
periments to measure our framework performance. The
results obtained point that our proposal is able to timely
detect SlowDoS attacks in a reasonable time, less than 9.8
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Figure 12: ROC curve for model K-Means(left) and strengthened GMM (right). Slowpost attack
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Figure 13: ROC curve for model K-Means(left) and strengthened GMM (right). SlowRead attack

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Time (seconds)

0.965

0.970

0.975

0.980

0.985

AU
C

Slowloris

Interval 1
Interval 3
Interval 10

Figure 14: AUC of Slowloris with different intervals between follow
up data. Detection results are shown every 5 seconds.

seconds in average. As illustrated in figure 15, the time
required for layer (2) and (3) peaks to 1400 ms in total at
1450 parallel clients. Namely, the results obtained by the
analyzer shows that the accuracy reach more than 98%,
indicating that our proposal achieves optimal results. Ad-
ditionally, the system successfully mitigates and recovers
from an cyber-attack, even though when the attacker man-
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Figure 15: Time required by the aggregator and ML layer to ingest
and process a batch versus the number of clients accessing the website

ages to accomplish the denial of service.

7. Conclusions and future work

This paper has described a distributed AI-based
anomaly detection system aimed to detect SlowDoS at-
tacks at application-level over encrypted traffic. The lay-
ered framework deeps inspect the network traffic in real-
time, aggregating network flows and conversations, ex-
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Metric High K-Means High sGMM

Accuracy 0.84 0.98
Precision 0.84 0.96
Recall 0.85 1.0
F1-score 0.85 0.98
Specificity 0.84 0.96

Metric Medium K-Means Medium sGMM

Accuracy 0.85 0.98
Precision 0.85 0.96
Recall 0.86 1.0
F1-score 0.85 0.98
Specificity 0.85 0.96

Metric Low K-Means Low sGMM

Accuracy 0.88 0.98
Precision 0.85 0.96
Recall 0.91 1.0
F1-score 0.88 0.98
Specificity 0.84 0.96

Metric SlowPost K-Means SlowPost sGMM

Accuracy 0.61 0.97
Precision 0.56 0.96
Recall 0.95 0.98
F1-score 0.71 0.97
Specificity 0.27 0.96

Metric SlowRead K-Means SlowRead sGMM

Accuracy 0.84 0.98
Precision 0.84 0.96
Recall 0.84 1.0
F1-score 0.84 0.98
Specificity 0.84 0.96

Metric Slowloris K-Means Slowloris sGMM

Accuracy 0.87 0.98
Precision 0.85 0.96
Recall 0.89 1.0
F1-score 0.87 0.98
Specificity 0.84 0.96

Table 5: Quality metrics of the models for the different datasets.

Denial of Service

SlowDoS Start

SlowDoS
 Detected

Figure 16: Spark Streaming logs at the aggregator before and after
launching a SlowDoS attack with genuine traffic. A record represents
a network packet.

Figure 17: Spark Streaming logs at the machine learning module
with Tts = 5. A record represents a conversation.

tracting valuable features used by the distributed AI-
model to detect dynamically attacks.

The solution has been implemented, and extensively val-
idated in a real testbed running different kind of SlowDoS
attacks. The paper has shown the feasibility, performance
and accuracy (0.98) to successfully and timely detect Slow-
DoS cyber-attacks, outperforming the state of the art.

As future work, we envisage to extend and adapt our
monitoring system, network flow processors, and AI-based
model to dynamically detect other kind of cyberattacks,
and considering other kind of network traffic, including
5G traffic.
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