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Abstract—Existing electricity market designs assume risk
neutrality and lack risk-hedging instruments, which leads to
suboptimal market outcomes and reduces the overall mar-
ket efficiency. This paper enables risk-trading in the chance-
constrained stochastic electricity market by introducing Arrow-
Debreu Securities (ADS) and derives a risk-averse market-
clearing model with risk trading. To enable risk trading, the
probability space of underlying uncertainty is discretized in a
finite number of outcomes, which makes it possible to design
practical risk contracts and to produce energy, balancing reserve
and risk prices. Notably, although risk contracts are discrete,
the model preserves the continuity of chance constraints. The
case study illustrates the usefulness of the proposed risk-averse
chance-constrained electricity market with risk trading.

Index Terms—Chance constraints, stochastic electricity mar-
ket, risk

I. INTRODUCTION

Uncertain renewable energy sources (RES) challenge the
efficiency of existing wholesale electricity markets, which
still lack risk-hedging financial instruments, [1]. As a result,
electricity markets are incomplete with respect to uncertainty
and risk, i.e. they do not provide market participants with a
mechanism to secure their positions relative to all probable
future states of the system. Motivated by the previously
developed chance-constrained optimal power flow formula-
tion in [2], we developed a chance-constrained stochastic
electricity market design in [3]–[6], which internalizes the
RES uncertainty and produces uncertainty-aware electricity
prices that support welfare efficiency, revenue adequacy and
cost recovery. However, [3]–[6] assume (i) risk-neutrality and
(ii) a single common belief on the system uncertainty. In
reality, market participants are likely to trade (i) in a risk-
averse manner and (ii) with different uncertainty beliefs. Thus,
decisions are more conservative and lead to less efficient
market outcomes, if there is no opportunity to compensate
the risk of uncertain costs with financial securities, [7].

Although common in the fields of stochastic optimization
and finance [8], the notion of risk aversion has only recently
gained attention in power system operations and electricity
markets. For example, Hans et al. [9] developed risk-averse
control strategies for decentralized generation resources and
Kazempour et al. [10] explored the effects of risk-averse
electricity producers in a two-stage market equilibrium. How-
ever, while hedging uncertain cost against risk using the
conditional value-at-risk (CVaR), [9], [10] do not consider
risk trading. On the other hand, building on the theoret-
ical groundwork of Ralph and Smeers [7], [11], Philpott
et al. [12] proposed a risk-complete, multi-stage, scenario-
based stochastic energy market by introducing risk-trading via
Arrow-Debreu Securities (ADS). This risk completeness, i.e.
risk trading via financial instruments parallel to all other traded

assets and services, provably enabled the existence of a risk-
averse competitive equilibrium, if all market participants are
endowed with a coherent risk measure. Gérard et al. [13]
applied the result from [12] to a two-stage stochastic electricity
market and showed that a risk-averse equilibrium might not
be unique. In line with [12], [13], Cory-Wright and Zakeri
[14] demonstrated that different risk perceptions of market
participants may encourage them to act strategically, thus
causing suboptimal market outcomes, which can be avoided
in risk-complete electricity markets.

Departing from scenario-based stochastic programming
used in market designs in [10], [12], [13], [15]–[17], this
paper explores risk trading via ADS in the chance-constrained
electricity market (CC-EM) proposed in [3]–[6]. Unlike
data-demanding scenario-based approaches, chance constraints
only require statistical moments to internalize uncertainty in
the market design using continuous probability distributions.
Therefore, we first develop a general risk-complete CC-EM
with continuous, infinite-dimensional ADS. Second, we show
that ADS can be discretized to enable practical risk contracts
for a given set of uncertain outcomes. Finally, this paper
analyzes risk-averse market outcomes and investigates the
effects of risk trading on market prices.

II. CHANCE-CONSTRAINED ELECTRICITY MARKET

Consider a CC-EM as in [3]–[5]. Let N , G, U be sets of nodes,
conventional generators, and RES. The market operator solves:

min
pG,i,αi

F0

[∑
i∈G

ci(pG,i(ω))
]

(1a)

s.t. pU,i(ωi) = pU,i + ωi ∀i ∈ U (1b)

pG,i(ω) = pG,i − α>i ω ∀i ∈ G (1c)

(δ+
i ) : P[pG,i(ω) ≤ pG,i] ≥ 1− εg ∀i ∈ G (1d)

(δ−i ) : P[pG,i(ω) ≥ p
G,i

] ≥ 1− εg ∀i ∈ G (1e)

(θ) : P[F (pG(ω), pU (ω), pD) ∈ F ] ≥ 1− εf (1f)
(λi) : pG,i + pU,i + pi(F ) = pD,i ∀i ∈ N (1g)

(χu) :
∑
i∈G

αi,u = 1 ∀u ∈ U , (1h)

where (1a) minimizes the system operating cost evaluated by
measure F0 (e.g. expectation, if F0 ≡ E) over the random
vector of RES forecast errors ω = [ωi, i ∈ U ] and given
the cost function of each generator ci(pG,i). Eq. (1b) models
the uncertain RES power output pU,i(ωi) at node i as the
RES forecast pU,i plus the RES forecast error ωi. Eq. (1c)
defines the power output of conventional generators under
uncertainty pG,i(ω) using an affine control policy, where pG,i
and αi = [0 ≤ αi,u ≤ 1, u ∈ U ] are decisions for the
scheduled power output and the vector of participation factors
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for balancing reserve of generator i. Here αi,u denotes the
participation factor of generator i in response to the RES
forecast error at node u ∈ U . Chance constraints (1d) and (1e)
ensure that the power output of conventional generator i
under uncertainty does not exceed the upper or lower lim-
its pG,i and p

G,i
with a probability of 1 − εg . Similarly,

(1f) ensures that DC power flows computed using function
F (pG,i(ω), pU,i(ω), pD,i), which maps net nodal injections to
power flows, are contained in a convex set of feasible power
flows given by F with a probability of 1 − εf . Finally, (1g)
is the nodal power balance constraint given the nodal demand
and power flow injections pD,i and pi(F ). Eq. (1h) ensures
that the procured balancing reserve is sufficient to mitigate ω.
Greek letters in parentheses denote dual multipliers.

A. Deterministic Reformulation
Assuming that ci(pG,i) is quadratic:

ci(pG,i(ω)) = c2i(pG,i(ω))2 + c1ipG,i(ω) + c0i, (2)
where c2i, c1i, c0i are cost coefficients, and using F0 ≡ E and
ω ∼ N (0,Σ), where Σ is the covariance matrix of ω, (1) has
a tractable convex (conic) reformulation, [2]:

min
pG,i,αi
spG,i

∑
i∈G

ci(gi) + c2i

∥∥∥α>i Σ
1/2
∥∥∥2

2
(3a)

s.t. (ζi) : spG,i ≥
∥∥∥α>i Σ

1/2
∥∥∥

2
∀i ∈ G (3b)

(δ+
i ) : pG,i + z1−εgspG,i ≤ pG,i ∀i ∈ G (3c)

(δii) : − pG,i + z1−εgspG,i ≤ −pG,i ∀i ∈ G (3d)

(θ) : F̃εf (pG, pU , pD, α) ≤ 0 (3e)

(λi) : pG,i + pU,i + pi(F̃εf ) = pD,i ∀i ∈ N , (3f)

(χu) :
∑
i∈G

αi,u = 1 ∀u ∈ U , (3g)

where z1−ε = Φ−1(1− ε) is the quantile function of the
standard normal distribution and spG,i is an auxiliary de-
cision variable modeling the standard deviation of pG,i(ω).
As explained in [6], the reserve provided by each producer
can then be computed as z1−εgspG,i , where spG,i depends on
participation factors αi. (Note that this expression holds even
for more general distribution assumptions on ω, see [4]). Func-
tion F̃εf (·) in (3e) maps the decision variables, parameters,
statistical characteristics of ω and security threshold εf into
a vector of power flows with security margins so that (3e) is
equivalent to chance constraint (1f), see e.g. [18].
B. Equilibrium Formulation
The optimization problem in (1) and (3) represents a risk-
neutral market operator and has been proven to yield energy
and balancing reserve prices λi and χu, which solve the
following equilibrium, [3]–[5]:{

maxpG,i,αi
spG,i

λipG,i + χ>αi − E[ci(pG,i(ω))]

s.t. (3b)–(3d)

}
, ∀i ∈ G

(4a)
(3e)–(3g) (4b)

where (4a) is a profit maximization solved by each conven-
tional generator (producer) and (4b) are the market-clearing
conditions. As shown in [3]–[5], λi and χu can be interpreted
as equilibrium energy and reserve prices.

III. RISK-AVERSE CC-EM
The optimization in (4a) solved by each producer is risk
neutral because it assumes average (expected) outcomes of
random ω. In practice, however, producers are likely to hedge
against the risk of uncertain costs based on their risk per-
ception. This section considers risk-averse profit maximizing
producers endowed with a risk measure Fi.
A. Coherent Measures of Risk
Intuitively, a risk measure evaluates an uncertain outcome
Z in terms of an equivalent deterministic outcome F[Z] so
that a producer endowed with risk measure F is indifferent
between accepting uncertain Z or its certainty equivalent
F[Z]. Additionally, a risk measure is called coherent if it
satisfies some fundamental mathematical properties such as
monotonicity, positive homogeneity, translation invariance and
convexity, [8]. For example, the expectation operator E is a
coherent measure of risk, [8], but neglects the volatility of
outcomes, and is therefore associated with risk-neutrality.

Any coherent risk measure can be expressed as, [8]:
F[Z] = sup

P∈D
EP[Z] (5)

where D denotes the risk set (risk envelope) of F, i.e. a
compact convex set of probability measures, and EP is the ex-
pectation over the probability measure P. Risk set D uniquely
defines F and can be structured such that supP∈D EP[Z] is
identical to specific risk measures, e.g. CVaR, [8].
Remark 1. Defining a risk measure in terms of a worst-case
probability distribution as in (5) is structurally identical to dis-
tributionally robust optimization that can be applied to chance
constraints (1d)–(1f), see e.g. [4]. This work, however, focuses
on the evaluation of the objective, i.e. the reformulation of
constraints in (3c)–(3e) remains unchanged.
B. Risk-Averse Profit Maximization
To derive a risk-averse modification of (3), we define a risk set
using a moment ambiguity set, which generally yields tractable
convex optimization problems, [19]. Thus, the risk set of each
producer i is:

Di = {P(ω) ∈ P | EP[ω] = 0,VarP[ω] ∈ Si}, (6)
where P is the set of probability distributions and Si =
{Σ1, ...,ΣK} is the set of K covariance matrices (Σ1, ...,ΣK),
where K is the same for all producers. Set Si, and thus
set Di, captures the belief of producers on the accuracy of
RES forecast data and forecasting methods. Given that all
producers are likely to have access to similar data providers,
we make the assumption that risk sets D̃i, i ∈ G are non-
disjoint, i.e.

⋂
i∈G D̃i 6= ∅, [11], [12]. Notably, Di is a set

of continuous distributions as opposed to discrete polyhedral
probability measures in [12], [13], which rely on a set of pre-
described scenarios. Using (5) and (6) yields:

min
pG,i,αi

sup
P∈Di

EP[ci(pG,i(ω))]

= min
pG,i,αi

ci(pG,i) + sup
k=1,...,K

c2i

∥∥∥α>i Σ
1/2
k

∥∥∥2

2
.

(7)

Although Di as defined in (6) is non-convex, solving (7)
is equivalent to solving the following problem with convex
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polyhedral set S̃i = conv(Si), [20, Section 6.4.2]:

min
pG,i,αi

ci(pG,i) + sup
Σk∈S̃i

c2i

∥∥∥α>i Σ
1/2
k

∥∥∥2

2
(8)

and we can define:
D̃i = {P(ω) ∈ P | EP[ω] = 0,VarP[ω] ∈ S̃i} (9)

as the convex counterpart of Di, which yields the following
coherent risk measure:

Fi [ci(pG,i(ω))] = sup
P∈D̃i

EP[ci(pG,i(ω))]. (10)

Using the epigraph form of (8), the cost minimization in (3)
can be recast as the following risk-averse modification:

min
pG,i,αi
spG,i ,ti

∑
i∈G

(ci(pG,i) + ti) (11a)

s.t. (3b)–(3g) (11b)

(ηi,k) : ti ≥ c2i
∥∥∥α>i Σ

1/2
k

∥∥∥2

2
∀Σk ∈ Si, ∀i. (11c)

Similarly, the risk-averse modification of (4a) follows as:
max
pG,i,αi
spG,i ,ti

λipG,i + χ>αi − ci(pG,i)− ti (12a)

s.t. (3b)–(3d) and (11c). (12b)
Note that Σ in (3b) remains unchanged, see Remark 1.
Remark 2. Unlike in (4a), the risk-averse profit maximization
in (12) allows different producers to have different perceptions
of the system uncertainty, which can be modeled as different
risk attitudes drawn from producer-specific set Di.

IV. RISK TRADING IN THE CC-EM
If producer i is endowed with coherent risk measure Fi given
by risk set Di and seeks to maximizes its risk adjusted profit as
in (12), its decision will be more conservative in the absence
of risk-trading opportunities. Thus, a risk-incomplete market
as in (11) will be less efficient and suffer welfare losses.
This section describes an approach to complete the chance-
constrained market with respect to risk by introducing ADS
trading.
A. Continuous Risk Trading
ADS as introduced in [21] is a common security contract that
depends on the outcome of an uncertain asset, which in the
case of the CC-EM in (11) is the RES forecast error given by
ω. Thus, a buyer of the contract pays price µ(ω) to receive
a payment of 1 for a pre-defined realization of ω. Hence, if
producer i seeks to receive a payment of ai(ω) for all possible
ω, it pays in advance:

πai =

∫
Ω

µ(ω)ai(ω)dω (13)

where Ω is the space of all possible outcomes of ω. If ai(ω) ≤
0, then producer i sells ADS (i.e. provides security to the
system) and receives the payment of πai ≤ 0. Otherwise, if
ai(ω) ≥ 0, producer i purchases ADS and pays πai ≥ 0.
Further, the market must ensure revenue adequacy, i.e. that
the amount of ADS purchased and sold match:

(µ(ω)) :
∑
i∈G

ai(ω) = 0 ∀ω ∈ Ω. (14)

Given the risk trading model in (13) and (14), each profit-
maximizing producer can be modeled as follows:

max
pG,i,αi,ai(ω)
spG,i ,ti

λipG,i + χ>αi − ti − πai (15a)

s.t. (3b)–(3d) (15b)
(ηi,k) : ti≥EPk [ci(pG,i(ω))]−EPk [ai(ω)], ∀Pk∈Di,

(15c)
where πai reflects the additional cost or revenue due to risk
trading, as given in (13), and EPk [ai(ω)] in (15c) is the
expected ADS cost or revenue over probability measure Pk.
Given (14) and (15), extending the risk-averse market-clearing
in (11) with risk trading yields:

min
pG,i,αi,ai(ω)
spG,i ,ti

∑
i∈G

(ci(pG,i) + ti) (16a)

s.t. (3b)–(3g), (14) and (15c), (16b)
where (14) enforces the market-clearing condition yielding
dual multiplier µ(ω). Using (16) and under the assumption that
set F is sufficiently large to accommodate injections pG(ω),
pU (ω), pD without causing network congestion1 (i.e. energy
prices are uniform λ = λi), we prove:

Proposition 1. Let λ, χ, and µ(ω) be equilibrium en-
ergy, balancing, and risk prices, respectively, so that {λi =
λ;χu;µ(ω); pG,i,∀i ∈ G;αi,∀i ∈ G; ai(ω),∀i ∈ G} solves
(16). Then µ(ω) can be interpreted as a probability measure
that solves a risk-neutral equivalent of the risk-averse profit
maximization with ADS trading.

Proof. The market-clearing problem in (16) remains convex as
long as ai(ω) is convex in ω. Therefore, KKT conditions can
be invoked. The Lagrangian function of the profit maximiza-
tion of each producer in (15) can be written as:

Li = λpG,i + χ>αi − ti − πai − ζi(
∥∥∥α>i Σ

1/2
∥∥∥

2
− spG,i)

− δ+
i (pG,i+zεspG,i−pG,i)−δ−i (−pG,i+zεspG,i+pG,i)

−
K∑
k=1

ηi,k(EPk [ci(pG,i(ω))− ai(ω)]− ti) (17)

Hence, the resulting optimality conditions for ti, ai(ω) are:

∂Li
∂ti

= −1 +
K∑
k=1

ηi,k = 0 ⇒
K∑
k=1

ηi,k = 1 (18)

∂Li
∂ai(ω)

= −µ(ω) +
K∑
k=1

ηi,kf(ω, σk) = 0

⇒ µ(ω) =
K∑
k=1

ηi,kf(ω,Σk),

(19)

where f(ω,Σk) denotes the probability density function of a
multivariate, zero-mean distribution with covariance Σk. Note
that for the derivation of (19) we used:

∂πai
ai(ω)

=
∂

∂ai(ω)

∫
Ω

µ(ω)ai(ω)dω = µ(ω), (20)

1This assumption simplifies derivations, but the result holds for the con-
gested case if transmission assets and services are priced [22].
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∂

∂ai(ω)
EPk [ai(ω)]=

∂

ai(ω)

∫
Ω

ai(ω)f(ω,Σk)dω =f(ω,Σk).

(21)
Conditions (18) and (19) lead to two relevant observations:

(O1) Dual multiplier µ(ω) in (14) is a probability measure
as it is the weighted average of K probability den-
sity functions with zero means and covariance matrices
Σ1, ...,Σk. In other words, random Z(ω) ∼ µ(ω) has
the expected value of Eµ[Z(ω)] = 0 and the variance of
Varµ[Z(ω)] =

∑K
k=1 ηi,kΣk.

(O2) Since S̃i is a convex set, condition (18) ensures that∑K
i=1 ηi,kΣk ∈ S̃i and thus µ(ω) ∈ D̃i.

The set of optimal decisions {λ;χu;µ(ω); pG,i,∀i ∈
G;αi,∀i ∈ G; ai(ω),∀i ∈ G} maximize Li given in (17).
Using observation O1, the fifth term in (17) recasts as:

K∑
k=1

ηi,k(EPk [ci(pG,i(ω))− ai(ω)])

=
K∑
k=1

ηi,k

∫
Ω

[ci(pG,i(ω))− ai(ω)]f(ω,Σk)dω

=

∫
Ω

[ci(pG,i(ω))− ai(ω)]
K∑
k=1

ηi,kf(ω,Σk)dω (22)

=

∫
Ω

[ci(pG,i(ω))− ai(ω)]µ(ω)dω

= Eµ[ci(pG,i(ω))]− πai .
Substituting (22) in (17) leads to:

Li = pG,i + χαi − Eµ[ci(pG,i(ω))]− yδi − y
ζ
i , (23)

where yδi , yζi denote the terms related to duals δi, ζi in
(17). Hence, (23) is a risk-neutral equivalent, evaluated with
respect to probability measure µ(ω), of the risk-averse profit
of producer i participating in risk trading with ADS. �

Given Proposition 1, the optimization of individual produc-
ers in (15) is related to the risk-averse CC-EM with ADS
trading in (16):

Proposition 2. Let λ, χu, and µ(ω) be equilibrium energy,
balancing, and risk prices so that {λi = λ;χu;µ(ω); pG,i,∀i ∈
G;αi,∀i ∈ G; ai(ω),∀i ∈ G} solves problem (16). Given that⋂
i∈G D̃i 6= ∅, then these prices and allocations solve the risk-

averse chance-constrained market with risk trading with D̃0 =⋂
i∈G D̃i and worst case probability measure µ(ω).

Proof. Given the optimal solution for each producer, it follows
from the complementary slackness of (15c):

ηi,k(EPk [ci(pG,i(ω))− ai(ω)]− ti) = 0. (24)
By summing (24) over all i and k, comparing with (22), and
using (14) to eliminate πai , we write:∑

i∈G
ti =

∑
i∈G

K∑
k=1

ηi,k(EPk [ci(pG,i(ω))− ai(ω)]

= Eµ
[∑
i∈G

ci(pG,i(ω)
]
. (25)

Also, since (15c) is a convex epigraph, we have
ti = max

P∈D̃i
EPk [ci(pG,i(ω))− ai(ω)]. (26)

Given (26), term
∑
i∈G ti in (25) can also be written as:∑

i∈G
ti =

∑
i∈G

max
Pk∈D̃i

EPk [ci(pG,i(ω))− ai(ω)]

A
≥ max

P∈
⋂
i∈G D̃i

EP

[∑
i∈G

ci(pG,i(ω))− ai(ω)
]

(27)

B
= max

P∈
⋂
i∈G D̃i

EP

[∑
i∈G

ci(pG,i(ω))
]
,

where transition A is due to the replacement of individual risk
sets Di with the intersection of all risk sets D̃0 =

⋂
i∈G D̃i and

transition B is due to the market-clearing ADS condition in
(14). Since µ(ω) ∈ D̃i,∀i ∈ G and D̃0 6= ∅, due to observation
O2 above, (25) and (27) yield:

Eµ
[∑
i∈G

ci(pG,i(ω))
]

= max
Pk∈D̃0

EPk

[∑
i∈G

ci(pG,i(ω))
]
, (28)

showing that µ(ω) is the worst-case probability measure for
the risk-averse market with risk trading. �

B. Discrete Risk Trading
Recall that Section IV-A defines ADS as continuous over ω,
which leads to an infinite-dimensional problem in (16) and
obstructs tractable computations and designing practical risk
contracts. To overcome these caveats, the probability space of
ω can be discretized to consider contracts for discrete events.
Hence, consider the system-wide (aggregated) RES forecast

error given as O = e>ω with mean EPk [O] = 0 and variance
VarPk [O] = e>Σke =: σ2

k, where e is the vector of ones of
appropriate dimensions. The probability space of O can then
be divided into W events w = 1, ...,W , where each event is a
closed interval given by Ww = [lw, uw] so that

⋃W
w=1Ww =

R. These intervals are sequential such that l1 = −∞, uW =∞
and uw = lw+1, w = 1, ...,W−1. Thus, the probability of each
discrete outcome is defined by Pk as:

Pw(σk) := Pk[O ∈ Ww] = Pk[(O ≤ uw) ∩ (O ≥ lw)]

=

∫ uw

lw

f(x, σk)dx (29)

and can be pre-computed for all w = 1, ...,W and k =
1, ...,K. Using the discrete space notation, (13) recasts as:

πai =
W∑
w=1

µwai,w, (30)

where ai,w ∈ R. Next, using (29), the expected cost or
payment ai(ω) under Pk can be computed as:

EPk [ai(ω)] =
W∑
w=1

ai,wPw(σk). (31)

Finally, using (30) and (31) and the discrete-space equivalent
of (19), i.e. the optimality condition for ai,w, the discrete-space
equivalent of µ(ω) is computed as:

µw =
K∑
k=1

ηkPw(σk) =
K∑
k=1

ηi,k

∫ uw

lw

f(x, σi,k)dx

=

∫ uw

lw

K∑
k=1

ηi,kf(x, σi,k)dx ∀i ∈ G,

(32)

where σi,k =
∥∥∥e>Σ

1/2
k

∥∥∥
2

with Σk ∈ Si. Hence, due to
(32), µw retains the interpretation of µ(ω) from observa-
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tion O1 of Proposition 1. Indeed, a random variable with
probability density function

∑K
k=1 ηi,kf(x, σi,k) has variance∥∥∥e>(

∑K
k=1 ηi,kΣk)1/2

∥∥∥2

2
= e>(

∑K
k=1 ηkΣk)e, it follows that

Varµ(O) = e>(
∑K
k=1 ηi,kΣk)e. Using this result and (29)–

(32), a discrete modification of the risk-averse CC-EM with
risk trading in (16) is:

min
pG,i,αi,ai,w
spG,i ,ti

∑
i∈G

(ci(pG,i) + ti) (33a)

s.t. (3b)–(3g) (33b)

(ηi,k) : ti≥ c2i
∥∥∥α>i Σ

1/2
k

∥∥∥2

2
+
W∑
w=1

ai,wPw (σi,k) ,

∀Σk ∈ Si, ∀i (33c)

(µw) :
∑
i∈G

ai,w = 0, ∀w = 1, ...,W. (33d)

Since the discrete representation of ADS contracts in (33) is a
special case of the infinite-dimensional representation in (16),
the results of Propositions 1 and 2 hold for (33).
C. Price Analysis with Risk Trading
Using the risk-averse CC-EM with discrete risk trading in (33),
this section analyzes resulting energy, balancing reserve and
risk prices as follows:

Proposition 3. Consider the risk-averse chance-constrained
market with risk trading in (33). Let λi, χu and µw be the
dual multipliers of the active power balance (3f), the reserve
sufficiency constraint (3g) and the ADS market-clearing con-
straint (33d). Then µw is given by (32) and
λi = 2c2ipG,i + ci1 + (δ+

i − δ
−
i ) + ypG,i(θ) (34)

χu=
1

|G|
∑
i∈G

(
2c2iα

>
i [Σi]u+z1−εgδi

α>i [Σ]u
sG,i

+yαi,u(θ)

)
, (35)

where ypG,i(θ) := θ>
∂F̃εf
∂pG,i

, yαi,u(θ) := θ>
∂F̃εf
∂αi,u

, Σi :=

(
∑K
k=1 ηi,kΣk | Σk ∈ Si), δi := δ+

i + δ−i , [X]u is the
vector of elements in the u-th column of matrix X , and
sG,i =

∥∥α>i Σ1/2
∥∥

2
, i.e. the standard deviation of pG,i(ω).

Proof. Let L be the Lagrangian function of (33), its first-order
optimality conditions for pG,i, αi,u, spG,i and ai,w are:

∂L
∂pG,i

= 2c2ipG,i + ci1 + (δ+
i − δ

−
i )

+ ypG,i(θ)− λi = 0, ∀i ∈ G
(36a)

∂L
∂αi,u

= 2c2iα
>
i [Σi]u + ζi

α>i [Σ]u∥∥α>i Σ1/2
∥∥

2

+ yαi,u(θ)− χu = 0, ∀i ∈ G, ∀u ∈ U
(36b)

∂L
∂spG,i

= −ζi + δ+
i z1−εg + δ−i z1−εg = 0, ∀i ∈ G (36c)

∂L
∂ai,w

=
K∑
k=1

ηi,kPw(σk,i)− µw = 0 (36d)

Expressions (34) and (35) follow immediately from (36d) and
(36a), respectively. Expressing ζi from (36c) and summing
over all i ∈ G in (36b) yields (35). �

Notably, energy prices in (34) are driven by cost coefficients

TABLE I
POWER OUTPUTS AND BALANCING PARTICIPATION FACTORS

αi,u in the RT case αi,u in the NO-RT case
pG,i u = 1 2 3 4 5 1 2 3 4 5

i = 1 26.04 0.09 0.18 0.26 0.34 0.21 0.19 0.19 0.23 0.31 0.24
2 10.00 0.41 0.30 0.40 0.10 0.17 0.39 0.26 0.32 0.10 0.25
3 10.00 0.31 0.28 0.06 0.33 0.31 0.37 0.27 0.12 0.28 0.23
4 15.70 0.01 0.14 0.14 0.12 0.26 0.04 0.15 0.18 0.14 0.20
5 13.36 0.18 0.10 0.15 0.11 0.06 0.02 0.13 0.15 0.17 0.08

χu – 1.24 1.54 0.72 0.69 1.31 0.91 1.47 1.31 1.34 1.11
(Indices i relate to producers, indices u relate to uncertain RES.)

of ci(·) and do not explicitly depend on random ω, risk set
Di and tolerance to chance constraint violations εg . On the
other hand, the balancing reserve price in (34) depends on
ω (via parameter Σ), Di (via parameter Σi) and εg . Finally,
risk prices in (32) depends on the degree of discretization W ,
which affects interval limits lw and uw, and individual risk
perception given by set Di (via parameter σi,k).

V. CASE STUDY

We conduct a case study to illustrate some of the theoretical
results of the paper by comparing the ex ante outcomes of
the risk-averse CC-EM without risk trading (“NO-RT”), as
formulated in (11), and with risk trading (“RT”), as formulated
in (33). We construct a data set that includes five conventional
producers with parameters c1i = {10, 7, 7, 15, 17} $/MW,
c2i = 0.1c1i,∀i ∈ G, pG,i = {30, 10, 10, 25, 25}MW and
p
G,i

= 0,∀i ∈ G, and five undispatchable stochastic RES
producers. The total system demand is

∑
i∈N pD,i = 100 MW

and forecasted RES production is pU,i = 5 MW,∀i ∈ U .
The risk sets Di defined by set Si, see (6), of the individual
producers are constructed with K = 10 as follows. Each
producer i has a set Si of K−1 covariance matrices that reflect
their individual risk perception. We randomly generate these
sets with the standard deviation of ωi between 0 to 0.4pU,i and
the correlation between 0 to 0.5. Additionally, we assume there
exists a “common” covariance defined such that all ωi have a
standard deviation of 0.2pU,i and no correlation. This common
covariance matrix is added to all Si and can, for example,
reflect information provided by the market operator or some
third-party forecast provider. We create eight ADS events by
discretizing the probability space of O in eight intervals using
breakpoints [−0.2,−0.1,−0.05, 0, 0.05, 0.1, 0.2], as explained
in Section IV-B and shown on the x-axis of Fig. 1(a). The code
and data is available in [23].

For this data set, the RT case reduces the risk-adjusted
system cost by 0.2% relative to the NO-RT case. Notably,
the energy cost component (4,656.50 $) and energy prices
(62.09 $) are the same in both cases, but the balancing reserve
cost component is reduced by 11 % (from 6.17 $ to 5.52 $).
Similarly, generation levels pG,i remain unchanged for both
cases (see Table I). On the other hand, the introduction of
ADS trading changes the balancing reserve provision (αi,u)
and its prices (χu), as shown in Table I, which is influenced
by different risk beliefs of producers.

Fig. 1 summarizes the discrete events and resulting risk
trades. Each column in Fig. 1 reflects one event, numbered
on the x-axis of Fig. 1(b) and with the interval breakpoints
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Fig. 1. Risk trading results in the RT case: (a) itemizes the event probabilities
Pw(σi,k), see (29), drawn from all individual risk sets (shown in thin gray
lines) relative to the “common” distribution (dashed green line) and the ADS
prices µw (solid red line); (b) itemizes the ADS trades, where negative
(purple) values indicate a producer selling ADS and positive (orange) values
indicate a producer buying ADS. The columns in both (a) and (b) reflect the
events with breakpoints indicated on the x-axis of (a) and event numbers as
indicated on the x-axis of (b).

shown on the x-axis of Fig 1(a). ADS trading outcomes are
itemized in Fig. 1(b), where negative and positive values
indicate ADS selling and purchasing producers, respectively.
Due to the symmetry of the RES uncertainty distributions, the
ADS trading outcomes are also symmetric. Note that producers
1 and 5 are security providers and producers 2-4 are security
takers. Specifically, in the NO-RT case, producer 5 expects
to attain a greater profit by providing less balancing reserve
to RES u = 1 than in the RT case. In other words, when
producer 5 can hedge its risk via ADS trade, it is incentivized
to procure more balancing reserve for RES u = 1. The risk-
aversion also affects the ADS prices in Fig. 1(b) given by
dual µw of the ADS market-clearing constraint (14) for each
event. As shown in Fig. 1(a), the values of risk prices µw in
Fig. 1(b), match the “common” event probabilities. That is,
µw is indeed a probability measure, as in Proposition 1, and
captures the risk perception at the intersection of all risk sets
D̃i, as in Proposition 2.

VI. CONCLUSION

This paper has developed a risk-averse modification of the
CC-EM proposed in [4]–[6] by completing it with ADS-based
risk trading. By discretizing the outcome space of the system
uncertainty, we formulated practical ADS contracts that lead to
a computationally tractable market-clearing optimization with
risk trading. This optimization reduces the system operating
cost relative to the case with no risk trading and produces
energy, balancing reserve and risk prices. In particular, both
qualitative and quantitative analyses indicate that system un-
certainty and risk parameters do not explicitly affect the
energy prices, but explicitly contribute to the formation of the
balancing reserve and risk prices.
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