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Abstract
Although mobile technologies keep evolving through years, Fault management and
cyber-security management in mobile networks are still treated as separated notions
with different blocks and different approaches whereas in practice, they are highly cor-
related. In this paper, we propose a framework that takes into account the correlation
between these two management systems. The framework is based on several predic-
tion agents where each agent is composed of a security predictor, a fault predictor and
a generic anomaly detection model. A re-enforcement process allows to enhance the
reliability of the machine learning training and prediction phases of the different pre-
dictors. Besides, each agent can collaborate with its neighborhood for a more resilient
network. An application of this framework to 5G architecture is proposed by mapping
the components of our framework with network slices. Finally, an experimentation is
held over a testbed that we set up on openstack in order to forecast future anomalies
related to proxy overload, latency violation in call session network functions and to
excessive usage of memory. The training is achieved with ARIMA and deep learning
models with promising results.

Keywords Cyber-security · Fault management · Anomaly detection · Mobile
networks · Cognitive manegement · Machine learning · Re-enforcement learning

Mathematics Subject Classification 49N30 · 68Q32 · 68T05 · 68T07 · 97C30

B Yosra Benslimen
yosra.benslimen@gmail.com

Hichem Sedjelmaci
hichem.sedjelmaci@orange.com

Ana-Cristina Manenti
anacristina.manenti@orange.com

1 Orange Labs, Chatillon, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-020-00893-8&domain=pdf


Y. Benslimen et al.

1 Introduction

As mobile network technologies evolve, new services are offered and more sophisti-
cated networks are needed. The increasing number of Internet users leads to a redesign
of network architecture, forcing designers to take into account new parameters such as
the need of global coverage combinedwith low latency, as well as a high reliability and
security level. Additionally, new networking experiences are added, such as Internet-
of-Things (IoT), which promise to offer new services and facilities to people’s daily
lives. In this demanding environment, 5G technology is emerging, playing a decisive
role in the implementation of new visions and promising to deliver solutions. A major
innovation introduced by 5G technology [1] is the scalability. 5G architectures take
into account the possible need of extending the capabilities of the network, both at
the level of user traffic growth and at the level of new services input from providers.
Slicing could be the ideal solution for such networks, offering scalability as well as
flexibility in managing a giant network. Network Slicing is set to be a prominent fea-
ture of 5G to allow connectivity and data processing tailored to specific customers
requirements. Mobile communications provided by smart networks will enhance the
efficiency and productivity of business processes and will open up opportunities for
network operators to address the Business-to-Business segment more effectively.

5G architecture faces a number of security risks and challenges due to network
virtualization. In order to successfully fulfill its envisioned goals these issues must
be resolved: both conceptually, by clearly defining the functionality and scope of
security and privacy features of the architecture, and technically, by utilizing the most
suitable solutions in the architecture design. Further, given the wide range of verticals
to be involved (e.g., e-health, emergency services, smart grids), a strong isolation
of the individual slices is crucial. It is expected that 5G infrastructure slices offered
by the telecom operators will replace and augment critical infrastructures previously
operated on dedicated resources. Thus, slices must provide a level of availability,
performance, and security that is at least equal to the infrastructure that they are
supplanting. Specifically, the architecture must guarantee that the slice control and
data planes cannot be disrupted by external parties or co-hosted slice elements, and
must detect and mitigate attacks which may expose slice data to unauthorized parties.
The problem is aggravated by high degree of virtualization and automation that 5G
infrastructures are expected to employ.A strong consistency between the various levels
of abstraction used is therefore essential. To this end, the architecture requires effective
mechanisms for monitoring and managing the infrastructure components - end-to-end
- across multiple administrative domains.

Apart from security challenges, Network Function Virtualization (NFV) intro-
ducesmeaningful challenges concerning faultmanagement includingnetwork failures,
anomalies on network equipment and functions, degradation of quality of services and
also SLA violation. One of the main reasons is that the virtual network functions can
be deployed in any place in the infrastructure with dynamic interconnections. Hence,
the underlying dependencies of a network service may change several times over
the service life cycle which makes the fault management more challenging and fault
propagation behavior more complex.
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Despite the evolution of mobile technologies and despite the resulted new chal-
lenges, cyber-security management and failures management are still defined by
different building blocks in the architectures ignoring the fact that these events may
be highly correlated. Firstly, in machine learning language, both are considered as an
anomaly detection problems with a root cause analysis. Anomaly detection [2] is a
family of techniques aiming to detect observations that deviate from the majority of
the observed data. Usually, anomalies are related to critical events in real world. For
example, a fraudulent credit card transaction can be defined as an anomaly because
it means unauthorized charges from an account. A faulty behaviour of a network
equipment is an anomaly because it produces deviation as the usual one. An internet
intrusion is an anomaly because it means unauthorized access or anomalous network
traffic. Second, an attack could be achieved by provoking failures in the network
equipment. Third, in order to detect attacks and also failures, shared attributes could
be used such as the energy consumption, exhausted energy, overload, etc. For all these
reasons, we propose in this paper a cognitive framework that contains several Attacks
and Failures Prediction Agents (AFPA). This framework aims to ensure the resiliency
and the security of 5G networks with a common building block that allows the agents
to communicate and to interact while taking advantage of the common features. Our
framework is based on a re-enforcement process that allows the different agents to
learn continuously and to collaborate with their neighboring agents in order to be
more efficient. Our second contribution aims to map the AFPA framework to a 5G
architecture.

The remaining of this paper is structured as follows: Sect. 2 reviews the main
work found in the literature in regards of fault and security management in mobile
networks. Section 3 details the proposed AFPA framework. Section 4 elaborates the
mapping of our AFPA framework and 5G networks. Section 5 presents the testbed and
the numerical experiments that aim to evaluate the performance of the our solution.
Finally, Sect. 6 elaborates the conclusions and future works.

2 Related works

A couple of research works focus on addressing the issues of cyber security and net-
work failure in wireless and mobile networks [3–7]. In [3], the authors focus to detect
the attacks that aim to cause a network failure, while ensuring a high detection and
false positive rates against cyber-attacks. They propose and develop a risk manage-
ment mechanism to assist the cyber security expert in evaluating the security risk and
network failure. The main features of risk management mechanism are the probabil-
ities of failures and attacks. The authors in [4] also rely on a probabilistic approach
in order to define a system that detects an adversary who is corrupting the communi-
cation between IoT devices and the access point by compromising the gateway. They
use the uplink packet drop probability of the IoT devices to monitor the behavior of
the gateway with which they are associated. The determine the detection rule using
the generalized likelihood ratio test, where the attack probabilities are estimated using
maximum likelihood estimation. In [5], the authors aim to detect the attacks that target
the access points with a purpose to avoid the serious network failures. Their security
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and network maintenance algorithm requires a low cost to prevent the occurrence of
attacker while avoiding a failure of network access point. The algorithm relies on a
multi-agents concept, while the monitoring agents collaborate between each other to
ensuring a high level of security and efficient network maintenance. The authors in [6]
aim to detect the blackhole attacks and tomitigate their impact on both data and control
planes of the OLSR routing protocol where each node depends on itself to identify and
isolate malicious nodes. In [7], the authors propose a network and security mechanism
to avoid possible security breaches, network congestion or even complete network fail-
ure. The mechanism is based on a graph theory to detect forwarding rules that cause
forwarding loop, flow violation (caused by attackers) in a distributed controller envi-
ronment of Software Defined Network. In [8], the authors analysis the security and
resilience issues by using the multi-criteria decision-making approach. They defined
a set of static factor that are used to analyze the monitored infrastructure and systems,
and hence determine their levels of security and resilience issues. According to the
authors, the proposed decision-making approach is most adaptable for the real-time
applications as compared to the approach based on machine learning algorithms since
it requires a low time during the analysis process. In [9], the authors provide a list
of security and resilience issues that could occur in the 5G architecture. Specifically
the issues occurred in NFV/SDN implementation. In order to overcome these issues
related to security and resilience, the authors propose for their future work a trust
and reputation systems that aims to evaluate and to quantify the level of security and
resilience issues related to each monitored NFV/SDN implementation.

Regarding the network cognitivemanagement, this issue has beenwidely addressed
in literature. In [10], a solution is proposed to forecast failures in 4G radio access
networks and more precisely drop calls and accessibility problems by using func-
tional data analysis. In [11], the authors compare different statistical machine learning
approaches in or order to predict future failures in LTE networks.The authors in [12]
propose a root cause analysis approach to detect and to investigate the noisy neighbor
anomalies in virtual network functions.

The automation of network cognitive management has been recognized by several
large European Union projects under the 5G PPP in recent years. For instance, in
the Phase 1 of the 5G PPP program, the SelfNet project [13] proposes a Software
Defined Networking (SDN)-/Network Function Virtualization (NFV)-based network
management framework for advanced Self-Organizing Network (SON) capabilities
in 5G infrastructures. Similarly, another 5G PPP Phase 1 project CogNet [14] also
targets artificial intelligence/machine learning (AI/ML)) based network management
solutions and provides a service portfolio including data gathering and fault manage-
ment. In addition, there are several works in literature that target different facets of
cognitive management in softwarized network environments. As a summary of the
application of ML/AI techniques in SDN/NFV environments, authors in [15] review
the challenges and opportunities of ML/AI in softwarized network environments,
with a special focus on data-driven decision making for management and control of
SDN/NFV-based infrastructures. To this end, the authors propose to enhance the func-
tional primitives of monitoring, composition and control with ML modules. All these
works, among many others, pave the path towards cognitive-aided management of
networks, specially in the presence of SDN/NFV technologies.
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Fig. 1 AFPA framework

The major weakness of these works is the fact that they define solutions in order
to predict network attacks and/or network failures separately. In other words, no cor-
relation between network attacks and network failures is considered. The innovation
of this paper is that it proposes an accurate cyber-attacks and network failures pre-
diction framework that takes into account the correlation between these two notions.
We propose a predictive framework for integrating security management with failures
management for a more resilient network. We call it “Attacks and Failures Prediction
Agent” (AFPA).

3 Attacks and failures prediction framework

The purpose of this framework is to propose an efficient AI predictive framework to
predict the cyber-attacks and future network failures, while ensuring a high level of
security and of resiliency in an optimal response time. More specifically, we propose
Attacks and Failures Prediction Agent (AFPA) that aims to detect over time the most
frequent network attacks and failures in an interactive way and with a re-enforcement
process for predictive and preventive network management. Attacks and Failures Pre-
diction Agent could be deployed at each system, host and function to monitor the
attacks network and failures network. These agents will communicate between each
other and collaborate together for a more efficient analysis. Each AFPA is equipped
with three main modules as illustrated in Fig. 1.

3.1 Features engineeringmodule

This first module focuses on monitoring the network behavior. It is responsible for
extracting the most distinguishable features over time by analyzing various sources
such as log files, probes counters, Intrusion Detection and Prediction (IDS/IPS), fire-
wall, access control, etc…Later, these features are categorized into three families:
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– Attacks features: they are the set of features that are exclusively useful for the
determination of attacks such as DoS and Botnet, failed login error rate, server
error rate, number of messages that are dropped, send and received, false detection
rate generated by the Intrusion Detection System/ Intrusion Prevention System
(IDS/IPS) and the number of false positive that firewall generates;

– Failures features: they are the set of features that are exclusively useful for the
determination of failures such as drop calls percentage, congestion ratio, num-
ber of users in a cell, number of uplinks/downlink packets, signal to noise ratio,
CPU usage, memory usage, network inbound, network outbound, reference Signal
Receive Power, alarms, etc.

– Common features: they are the set of features that are commonly used for attacks
predictions and also for failures predictions. Examples of these features are: Energy
consumption, exhausted energy, overload, computation and communication over-
head, interference, etc.

In order to classify the features into these three families, a first possibility relies on
machine learning classification techniques that could be used to automatically feed
and to classify the features’ vectors. This solution may require a high computation and
communication overhead to achieve its purpose. Therefore, a simpler possibility is to
use a static approach that relies on cyber security and network experts who will feed
over time the most relevant and attractive features in order to maximize the attacks and
failures detection and to reduce the false positive rates. A dictionary could be used in
this case in order to define the list of features as keys and their families as values. This
solution allows to profit from the engineers expertise. Besides, the fact that network
features definition does not change frequently makes the use of the dictionary option
more advantageous since accessing and manipulating the data are easier.

3.2 Predictionmodule

This module mainly focuses on predicting the network failures and network attacks
based on the outputs of the previousmodule. It is based onmachine learning algorithms
for anomaly prediction with a re-enforcement process. as illustrated in Fig. 1, we
distinguish three main blocks.

A first block is attacks prediction machine learning (ML) model that is responsible
for predicting attacks in the network by using the attacks features. In parallel, a second
block is failures prediction ML model that is only dedicated at predicting failures in
the network by using failures features. A third block is a general anomaly detection
(AD) ML model that learns from the common features. The objective of this latter
is to predict if an anomaly occured or will occur. Contrarily to the two previous ML
models, this AD model has a weaker prediction mechanism. At the deployment stage,
this model has no clue if the detected anomaly is related to failures or to attacks. The
model will need support from the attacks prediction and the failures predictionmodels.
For this reason, the anomaly together with its features vector will be shared with the
attacks prediction ML model that will verify if the anomaly is an attack or not. The
same case is applied in parallel to the failures prediction ML model that will verify if
the anomaly corresponds to a failure. The two models will re-enforce the AD model
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by sending to it the correct label and a reward that aims to penalize the AD model
in case of a wrong prediction and to reward it in case of a correct one. Note that an
anomaly can be at the same time related to attacks and also to failures.

Attacks prediction-ML algorithms modules are modeled as � Attacks
i = {γ j , δ, θ},

where i is the number of anomaly managers that communicate directly with the
anomaly manager. γ j = {γ1, , γm}, which corresponds to a features vector that
attacks prediction-ML algorithm use to monitor its target and m is the number of
features, that is varied over time since the cyber security and network experts feed
over time the features vector with a new and relevant features. A supervised deep
neuronal network can be used for the training and attacks detection process such as
recurrent neural networks, convolutional neural networks, LSTM, or dense neural net-
works. We refer the reader to [16] for more details about these algorithms. The action
δ = {Normal, Attack1, Attack2, . . . , Attack J } corresponds to the output attacks
prediction- neuronal network algorithm, where J is the total number of attackers that
are detected in the anomaly manager. In our solution, we focus to detect three kind
of attacks, Denial of Service (DoS), Botnet and fuzzing threats. The value of payoff
θt (γ j , δ) increases when the attacks prediction-ML algorithm correctly detects the
attacks. Otherwise, the value of payoff θt decreases. In case of the attacks prediction-
ML algorithm persists in providing false detection, it will be considered as an infected
module (by the attacker) and hence the cyber security experts will change this module
or feed it with a new training data set.

Failures prediction-MLalgorithmsmodules aremolded as�Failures
i = {γ ′ j ′, δ′, θ ′}.

Here, we can also use deep neuronal networks for failures detection process.
γ ′ j ′ = {γ ′1, . . . , γ ′m′} corresponds to a set of features that the ML algorithm
monitors and uses as data entry for a training and failures detection process. m′
is the number of failures features, which is updated by network experts, while the
experts focus to feed the ML algorithms with a new and relevant failures features.
δ′ = {Normal, Failures1, Failures2, . . . , Failures J ′} is the action that Failures
prediction-ML algorithm provide as an output and J ′ is the total number of failures
that varies over time. Among the failures that we attempt to detect, we cite conges-
tion problems in network cells, interference problems, drop calls, overload or noisy
neighbors in virtual machines, degradation of a service, packet losses, problems in
interfaces or routers…The payoff θ ′(γ ′ j ′, δ′) could increase or decrease, depending
on the performance of the failures prediction-ML algorithm, i.e., when the ML algo-
rithm continues to provide wrong detections (detect failures as normal or vice versa),
it will be considered as a not robust ML model and hence the network experts should
update the oldest failures features with a new and relevant features or/and feed the
ML algorithm with new training data set. The utility function Ut of an Attacks and
failures prediction agent i is computed as shown in Eq 1:

Ut = Dt − (Pt + Nt )

AFt
(1)

Dt is the number of failures and attacks that are detected correctly by attacks and
failures prediction-ML algorithms modules. Pt and Nt are respectively the number of
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false positive and false negative provided by the ML algorithms modules. AFt is the
total number of attacks and failures that occured in the network.

At each iteration, the anomaly manager computes Ui
t−1 and Ui

t of the monitored
anomaly manager, compares the results and updates the payoffs θt and θ ′t . The value
of θt and θ ′t increases when U ′it > U ′it−1 and U ′′it > U ′′it−1 , where U ′it and U ′′it
are the utility functions of attacks and failures detection, respectively. At the end of
each iteration, the anomaly manager requests the attacks and failures prediction-ML
algorithms modules of the anomaly manager i to update their actions δ and δ′ and the
values of features γ j and γ ′ j ′. These new actions and features are chosen as the one
that generates a greater utility value betweenU ′it andU ′it−1 for attacks prediction-ML
algorithm and U ′′it and U ′′it−1 for failures prediction-ML algorithm. The anomaly
manager forwards the new values of features (γ j and γ ′ j ′) to anomaly manager i to
update its attacks or/and failures features in case actions (δ and δ′) do not match the
attacks and failures that are detected at anomaly manager level.

As shown in Eq 1, the anomaly manager updates the utility functions of anomaly
manager i denoted as U∗t recursively by estimating the optimal values of features
(γ jt+1, γ ′ j ′t+1) , payoffs (θt+1, θ ′t+1) and actions (δt+1, δ′t+1) [17].

U ∗t+1 (γ j t , γ ′ j ′t , δt , δ′t ) = Ut (γ j t , γ ′ j ′t , δt , δ′t ) + α ∗ [θt+1 + θ ′t+1

+γ ∗ maxUt (γ j t+1, γ ′ j ′t+1, δ, δ′) −Ut (γ j t , γ ′ j ′t , δt , δ′t )] (2)

Here, α ∈]0, 1[ is the learning rate and γ ∈]0, 1[ is a constant which corresponds
to a discount factor.

In order to make the training continuous in time andmore efficient, the training data
of the attacks prediction and the failures prediction ML models can be enriched by
their neighbours. The correctly classified instances could be sent from an attack model
to its neighbouring attack model by sending the set of features with their label i.e the
absence of an attack or the type of the attack. The same applies for the failures models
and their neighbors. The communication between the different models can be achieved
by using application programming interfaces (APIs) based on Representational state
transfer (REST) or a streaming tools such as kafka. Thismessagewill be injected in the
training data of the model and used for the next planned training phase. The message
will contain data relative to the ID of the host having a problem, the timestamp and
the features.

3.3 Actuationmodule

The output of the previous attacks and failures ML models are to be used by the
actuationmodule. This latter aims to react once an anomaly is detected. It aims tomake
remedial actions in order to moderate or to correct the impact of the anomaly. This
module can be traditional rule-based techniques such as policies or it can be automated
by using re-enforcement models or recommendation systems. Examples of actuation
are as follows: if a failure is detected related to an overload in the virtual network
functions, one actuation could be to migrate the function to another virtual machine or
to re-scale it. If a congestion is predicted in the network, a load balancing solution could
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be triggered. If an antenna is down, a remedial action could be to handover to another
antenna. If a slice is down, a solution could be to migrate to another slice or to change
the parameters of a slice. Regarding the reactions that can be triggered toward the
detected cyber-attacks, we cite for instance attacks ejections,i.e., remove the infected
systems (host and devices) from the network, inform other IDSs/IPSs and firewall
about the identities of infected systems and finally update the keys cryptography to
prevent the attackers to overhear the relevant data exchanged between IDSs/IPSs for
instance.

4 AFPA for resilient 5G network slices

According to [18], a network slice (NS) consists of physical and/or virtual network
functions (PNF/VNF) that can belong to access and core network part. Then, this
network functions are interconnected by means of network resources, composing a
synthetic infrastructurewith specific characteristic, both in functionalities and resource
capacities. The synthesis of a NS, then, serves a particular functional purpose and once
instantiated, it is used to support certain communication services, which ultimately
are deployed to support vertical services on top. Each network slice can have its own
architecture, provisioningmanagement and security that supports a particular use case.
Each slice may be decomposed of one or several sub-slices that may belong to one or
different network service providers. Each sub-slice contains physical and virtualized
infrastructure.

In order to trigger a fault in the network, the slices and also the sub-slices should be
investigated.However, in literature,most approaches aim todetect or to forecast attacks
and faulty services at a sub-slice level [19–21]. Although this approach will gain in
terms of precision due to its fine-granularity, its drawback is that they suppose that the
sub-slices are independent which is not the case. In contrast, other approaches [22] aim
to detect attacks and faulty behaviours in the end-to-end slice. This solution has the
advantage of giving a general view of the global network slice behaviours. However,
it lacks in terms of precision. Besides, sub-slices may be operated by different service
providers which may limit the visibility and the tracking of faults and attacks.

In this section, we propose to apply the AFPA framework to 5G slices and sub-
slices in order to ensure the resiliency and the security of 5G networks with a common
buildingblock that allows them to communicate and to interact and that takes advantage
of the common features. The re-enforcement process allows the different agents to
learn continuously and to be more efficient. The application of AFPA framework to
5G network is described in Fig. 2.

An anomaly manager is proposed in each sub-slice that allows to continuously
control the failures and also the attacks that may occur in the sub-slice. Data are
continuously collected from the infrastructure and the virtual layers. The data can be
collected from different sources: KPIs, alarms, logs, etc. A feature engineeringmodule
(A and B in Fig. 2) allows the collection of data, the monitoring and the categorization
of these data into Attacks features, failures features and common features with the
type of the anomaly (i.e type of the attack or type of failures).
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Fig. 2 AFPA for 5G networks

4.1 Deployment and initial training phase

The deployment phase consists of the first instantiating of the AFPAs in a 5G archi-
tecture. The training could be achieved offline by collecting data and then injecting
the trained model in the framework. It can also be applied online by following these
steps:

– The collected data are saved in a data lake. A first partition of this data lake
is booked for data related to security attacks. A second partition is booked for
common attacks. A third partition is booked for failures data.

– Within the sub-slices, an online training phase allows to learn the different patterns
in order to detect or to forecast future failures/threats. Three ML models are to be
trained within each AFPA agent, and the trained model are saved in the anomaly
manager. The first model is dedicated to attacks prediction by using attacks data
base. The second model is dedicated to failures prediction by only using failures
data base. The third model is dedicated to the anomaly detection by using common
features stored in the common data base.

– The previous step is achieved per sub-slice in order to learn the sub-slice behaviour
with a fined view. In parallel, at the e2e slice-level, an anomaly manager is respon-
sible to learn the general pattern of the e2e slice. This anomaly manager has a
visibility on all its sub-slices. It has a prediction mechanism that will collect data
related to all the sub-slices. A processing step allows to filter security from fault
management data. In this stage, the training should be achieved with a strong
machine learning model such as deep learning. The general anomaly detectors
(GAD) will be stored to be used in the run-time phase.
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4.2 Run-time phase

The run-time phase aims at using the trained model for exploitation. Note that even
during run-time, the ML models will still continuously train in an interactive way.

In a first step, the data are continuously collected from the infrastructure and also
from the virtualized level within a sub-slice by the corresponding features engineering
module. In a second step, the collected data are saved in the data lake. Attacks features
are saved in the attacks data base. Failure features are stored in failures data base.
Common features are stored in common data base. In a third step, each instance will
be analyzed by the corresponding sub-slice AFPA in order to predict future failures
and attacks. The common anomaly detection ML model will predict if the received
instance corresponds to a normal behaviour or to an anomaly. If an anomaly is detected,
it will predict if it is an attack and/or a network failures and to which type of attacks
or the failures it belongs. Once a prediction is achieved, this model will send the data
containing the common features together with its prediction to the attacks ML model
and also to the failuresMLmodel. The features could be directly transferred by using a
streaming mode for a rapid response time. For instance, the features can be transferred
with a JSON format using a Kafka bus. The attacks and failures ML models will
verify the prediction of the anomaly detection model. If the prediction is wrong, they
will re-enforce the learning process of the anomaly detection model by computing the
penalty and sending new training data in order to enhance its performance.

In a parallel way, the attacks and the failures models can be fed by their neighbors.
A neighboring attacks predictor in the same sub-slice could aliment the current attack
predictor by sending to it events (instances that are verified to be attacks) in order to
enrich its training data and to keep it informed of the neighboring problems. The same
applies for the failures model.

The attacks ML model and the failures ML models are also re-enforced by the E2E
slice. In fact, each event (positive predictions) will be sent to this latter in order to
alert it and also to ask for verification. The role of the agent in the E2E slice level
is to ensure that the sub-slice AFPA agents continue to be efficient. Hence, By using
its trustworthy trained model, the agent at the E2E level will predict the instance and
re-enforce the corresponding model by penalizing it and sending to it more reliable
training data. The objective of this penalty system is to make the sub-slice AFPA
agents more stable and more reliable. The reliability of the models can be measured
by using these performance metrics: False positive rate, False negative rate, Precision,
Recall, F1-score, Error rate such as mean squared error, absolute squared error, etc.
Since the number of transmitted messages could be huge, these messages could be
aggregated over a time interval and also repeated messages could be aggregated.

Once a problem is confirmed by the E2E slice agent, a remedial action should be
triggered. Hence, the prediction model will send an alert to the actuation mechanism
(such as the orchestrator or policy manager [23]) containing the ID of the host in
question, the timestamp, the predicted failure and/or attack. Depending to the received
notification, the actuator will correct the problem at the e2e slice level and it will ask
for corrective actions to be applied by the actuator at sub-slice levels.
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Fig. 3 AFPA for 4G/3G/2G networks

4.3 AFPA for amulti-technology network

The approach that we propose is still usable for other mobile technologies, other than
5G. In this case, it will be based on a hierarchical structure that is composed of two or
several levels. The levels could be defined for instance, by regions, types of equipment,
geographical proximity, network functions or by type of services etc. As depicted in
Fig. 3, the most bottom-level has the more restricted view. Each level has an AFPA that
is re-enforcing the AFPA of the level below. At the same level, the common ADmodel
is re-enforced by the attacks and the failures detectors. These latter are communicating
with their neighbors and are re-enforced. Once a problem is detected at the top level,
an actuation should be triggered. Figure 3 illustrates an example of applying the AFPA
framework in a multi-technology system.

The highest level has a global vision of the network. In this level, The learning is
achieved on data that covers all the technologies of all the regions for a large period.
The middle level has a more restricted view. The learning in this level is achieved by
region in a distributed way. The learning is achieved by several AFPA agents. Each
agent covers data of a specific region. The bottom level has the most restricted view.
This level focuses on learning from each technology for each region in a distributed
way. Each agent receives data of a specific technique for a specific region. The agents
aim to detect if yes or no there is an attack and/or a failure given the observation of
a specific technology for a specific region. In case of problem, the agent notifies the
higher level.

5 Numerical experimentation

In order to evaluate the proposed AFPA agent, we created a testbed that is set-up in
an Openstack environment as illustrated in Fig. 4. The tesbed contains two virtual
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Fig. 4 Testbed in openstack

machines running over the same hypervisor. The two machines are sharing the same
memory.

The firstmachine implements The IMS I-CSCF (Interrogating-Call SessionControl
Function) and S-CSCF (Serving-Call Session Control Function) functionality. The
second machine simulates a Proxy, it uses Sprout (SIP Router) and it implements the
P-CSCF functions (Proxy-Call/Session Control Functions). It is the entry point of SIP
clients, which is in turn routed SIP requests to the first machine. A Prometheus Server
is used to create a training set by collecting several metrics describing the behaviour
of each machine.

Our objective is to apply theAFPAagent by defining threemachine learningmodels:
(1)An attack predictionmodel that aims to train from the proxymachine and to forecast
future threats causing overload in the proxy by using a uni-variate feature vectors and
an ARIMA approach for time series; (2) A failures prediction model aims to train
from the first machine and to forecast future latency problems related to call sessions
by using multi-variate features and a deep learning model; (3) A general anomaly
detection models that aims to train from the shared memory usage in order to forecast
future latency in accessing the memory by also using multi-variate features and a deep
learning model.

Regarding the data collection, we use Node Exporter as an agent in every Virtual
machine and physical machine. It allows collecting information from the machine in
the form of counters that are sent to Prometheus Server. This server creates metrics
that describe the utilization of the component in order to create a dataset. 21 metrics
are collected and they belong to the following families:

– CPU usage: is a percentage of the time during it the CPU was busy.
– CPU wait percentage: Percentage of time the CPU is idle AND there is at least
one I/O request in progress

– Network inbound: is the amount of data arriving to the machine but originating
elsewhere and
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– Network outbound: is the amount of data originating at the machine to arrive
elsewhere. Although memory usage could also be used, in our case, the memory
is not shared so the machines do not compete over it.

– Memory usage: The percentage of the used memory
– Load: The normalized (by number of logical cores) average system load over a
1-min period

Hence, three data sets are collected (one per machine). Each dataset is composed
of N = 177000 instances. Let x be the dataset collected from a machine M and
composed of N instances xi that are collected periodically and F = 21 features so
that xi = {xi1, .., xi j } where 1 ≤ i ≤ N and 1 ≤ j ≤ F .

We start by categorizing the collected features into three families. Since the two
machines are sharing the same memory, the attributes related to the memory usage
correspond to the common attributes. These latter will be used by the generic anomaly
detection model. The remaining of the attributes (CPU utilization, load, network
inbound and outbound) of the proxy machine correspond to security features that will
be used by the security predictor. The same metrics related to call session machine
correspond to failures features.

5.1 ARIMAmodel for attacks prediction

The first model aims to predict the threats with an overload in the future 10 min
by training from a uni-variate feature: the average load in the last 1 min. This latter
represents a stationary time series, since the augmented Dickey-Fuller test (ADF)
results with a p value equal to 0. 000208 (and hence smaller than 0.05). In order to
forecast future values of the average load, a smoothing is first applied and then an
Auto-ARIMA model is trained. One advantage of this approach is that the best fit of
the hyper-parameters are set automatically by applying a selction model criterio to be
minimized: the AIC (Akaike Information Criterion).

In order to evaluate the Auto-ARIMA model, we divided our data set into 80%
for the training phase and 20% for the test set. The test on the test set has a small
value of the mean absolute percentage error (MAPE) that is equal to 6% and a high
correlation factor between the actual and the forecast values that is equal to 82.5 %.
The forecasting of the future overload in the proxy is illustrated in Fig. 5.

5.2 Failures predictionMLmodel

This second model aims to predict future failures in IMS ICSCF/S-CSCF machine.
More specifically, the model train from data having 170,000 records and 21 attributes
belonging to the following families: CPU usage, network inbound, network outbound
and load. The aim is to forecast the future violation of latency in the future 15 min.
The data are labeled with a binary classes representing the presence or absence of
latency violation. The data set is imbalanced: 10.034 records represent latency vio-
lation whereas 166.966 records represent a normal status. The metrics are sampled
every 1 s.
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Fig. 5 Security prediction—AutoArima forecasting on test set

Fig. 6 Loss and accuracy of the failures prediction ML model over training and validation sets

A deep learning model is created in order to observe the last 2 h of the machine
metrics in order to predict the future 15 min of latency violation.

80% of the data set are used for training and validation while the remaining 20% are
kept for testing. A long short term model (LSTM) is trained with 30 epochs. The loss
is computed using a cross entropy loss function. The results of the loss and accuracy
over the training and the validation sets are illustrated by Fig. 6. After 16 iterations,
the model starts the have a high accuracy and a low error with no over-fitting as proved
by the two graphs. The evaluation over the test set also proves that the accuracy of
the model is promising (100%) and the loss is still low (0.0568%) which proves the
performance of the model.

5.3 Anomaly predictionMLmodel

For the third model, a new set of data was created from the metrics belonging to the
memory family of the two virtual machines. As a result we have 177,000 records and
six attributes. The objective is to observe the last 2 h in order to forecast excessive
usage of the shared memory by using the common attributes that will occur in the
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Fig. 7 Loss and accuracy of the anomaly detection model over training and validation sets

future 15 min. The class is binary and it corresponds to the presence or the absence of
an excessive usage of the problem.

Similarly than the previous model, an LSTM model is trained with 65 epochs on
80% of the data set where 10% is kept for validation. The remaining 20% are used for
testing. The results over the training and the validation sets are illustrated by Fig. 7.
After the first 15 epochs, the model starts to converging with a promising validation
and a training performance that showcase the absence of over-fitting problem. The
accuracy on the test set is equal to 100% and the loss is equal to 0.0006.

6 Conclusion

This paper proposes a cognitive architecture containing one or several Attacks and
Failures Prediction Agent (AFPA) that could be deployed at each system, host and
function to monitor network attacks and failures in a common block. The proposed
agent takes into account the correlation between security management system and
failures management in order to develop a reliable solution that aims to learn at sub-
slice level and at the level of the end-to-end slice which allows to have a fine view and
also a general view of the network interactively.

As future work, several perspectives could be tackled. First, a more extensive exper-
imental study of several AFPA agents will be proposed in order to showcase the
collaboration and the re-enforcement mechanism. Second, a testbed of the overall
architecture applied to 5G network should be developed in order to demonstrate the
applicability of this framework in a 5G technology. Third, a mutual AFPA monitoring
for accurate attacks and failure prediction should be proposed. It consists of a new
reputation protocol that evaluates the behavior of system, host and function accord-
ing to a couple (Trustl_Level, Failure_Level). Finally, the top level ML model in our
AFPA framework could be infected by attackers and could generate a fault due to a
failure. Therefore, it is mandatory to evaluate the trust and failure level of a moni-
tored AFPA, where our reputation protocol is based on a Security and Maintenance
reputation phases.
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