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Abstract: A comprehensive review of the statistical expentak optimization

problem concerning the mixture design of variousneet-based materials is
presented herein. This review summarizes and dissusver 80 applications of
optimum design regarding the basic test informatioder response surface method
(RSM), including influence factor and correspondmgponse, statistical method,
and coefficient of determination. The statisticaperimental design reported in
previous studies has shown that RSM is a sequgnbakdure to provide a suitable
approximation for the mixture optimization. Themelar, quadratic and interactive
relationships of the statistical model can be eatgld available. Especially, the
multi-objective optimization issues with multipler acompeting performance

requirements for various cement-based materialse ha¢o been reported, by
considering fluidity, strength development, envir@ntal impact, cost and durability.
Overall, the results from existing publications @agtemonstrated that statistical

inference and analysis of variance (ANOVA) areahlg for mix proportion design
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and process optimization of cement-based materidie. W/B ratio and mixture
components are the prevalent factors in experirhdatagn optimization, and then the
fluidity and strength as the most popularly usespomse. Thus, theoretical optimum
mixture proportioning can be used to predict valediesh and hardened properties.
Finally, a critical discussion of the selectiond#sign strategy, independent factors
and their responses, and the experimental regivivied in statistical experimental
design, is provided. Based on this review, we aotelthat the multi-objective
optimization approaches need a further systematidys and further studies of
sustainable concrete optimization are needed bypadng the different chemical
composition and particle characteristics.

Keywords. experimental design optimization; supplementary cementitious materials
(SCMs); response surface methodology (RSM); sustainable concrete; ultra-high

performance concrete (UHPC)
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1. Introduction

The cement-based materials are prepared by usingusatypes and quantities of
individual constituents. These mixture proportigplay an important role in fresh- and
hardened-state performance, such as fluidity, dggchl properties, strength development and
durability. Therefore, many research studies haenldedicated to experimental optimization
of cement and concrete mixtures.

Experimental design optimization is an adjustmemicess of selecting the available
proportion of raw materials to prepare a cemenethasiixture that satisfies specifiable
requirements for a particular application. Gengratbnventional optimization for mixture
design can be classified as prescriptive and pedoce-based approaches [1].
Prescriptive-based methods are often stepwisets®ido provide a mixture for a particular
application, thereby satisfying the current mixgoion design standards and specifications,
such as JGJ 55 [2] for concrete, JGJ/T 98 [3] fortar, and JGJ/T 233 [4] for cement. The
main advantage of these methods is that the mixiumeortion is provided by the national or
industry standard solely, not entirely depending pmrsonal experience and subjective
decision. Performance-based techniques emphasizdriob requirements on the type and
quantities of components, but are designed withyntaoratory trial experiments (defined as
trial-and-error method). Trial-and-error or singkriable method suffers from an exponential
growth in experimental times when many test facéwesconsidered as independent variables
in the optimization process. Furthermore, detadptimization designs of concrete mixtures
are often time- and resource-intensive [1]. Respausface method (RSM) is a combination
of mathematical and statistical techniques that aid@ely used in the area of concrete
preparation optimization, where some nonlineardiabf concrete are added to obtain an

optimum domain [5]. This method is especially doiga for multiple performance
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requirements of concrete, such as ultra-high perdoice concrete (UHPC) [6-9]. Over the
past decade, the statistical experimental desigrcevhent-based materials has gained
increasing attention with the sustainable develogmoéthe concrete industry. Among these,
lots of researchers have investigated the optimizatf mixture proportions by using RSM.

Recently the multiple response problem of cement-based mltehas been widely

reported in previous experimental studies. The kanaous optimization process of several
responses can be classified into two steps, asafsll(1) a fitting response surface model is
established for every response, and (2) operatimgtcaints optimized by all responses are
identified or maintained in the desired region. $oralated optimization methods, such as
D-optimal design [10], overlay of the contour platsd constrained optimization, have been
used in previous studies. Overlaying contour pletsk effectively for a small number of
design variables. If more than three independestofa exist, then this method is ineffective
because the two-dimensional contour plot canndtinlthe best view of the response surface.
The two other approaches can be used for casesnwith variables.

This paper summarizes and discusses the main achénts including the applications of
different RSMs and optimization methodologies ie #xperimental design of cement-based
materials. This review is organized as follows. Tiesic procedure and certain theoretical
models and its evaluation and validation are regekWriefly in Section 2. Then, in Section 3,
the typical applications of central composite degi@CD) and other optimization designs are
summarized and investigated to measure the feiagibihd validity of the selected RSM,
especially for the sustainable concrete applicatidimally, in Section 4, several related
problems for further promising applications of RSNfs cement-based materials are

discussed.

2. Theoretical basis of RSM for cement-based materials
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2.1 General procedureusing RSM in experimental design optimization

RSM has been used for various issues in the expatahoptimization of cement-based
materials [11]. This method aims to optimize migtutesign to consider several attributes,
involving workability, strength development, codtirability and environmental impact. These
features are achieved with sequential experimemtiaticluding factors such as water—binder
ratio (W/B), mixture constituent, the proportion sfipplementary cementitious materials
(SCMs), preparation conditions and curing environinén general, if the response is well
expressed by a linear model of the independentifscthen the first-order regression model

can be expressed as follows:

Y:ﬁo+iﬂixi+3' 1)

whereY represents the response variable conforming tadbeession coefficientsy(); X,

represent the independent variabless the number of optimized variables; denotes the
random error of the estimated response. If a curgas found in the local experiments, then a

second-order regression model can be given asisilo

Y:ﬁo"'iﬁi xi+iﬁiixi2+2k:2k:ﬁijxixi+g’ (2)

i=1 j>1
where the regression coefficients are expresseg,afor the intercept termp, for the
first-order terms, g, for the quadratic terms ang; for the binary-interaction terms. A

polynomial function cannot be a suitable approxiorafor all independent variable spaces.
However, they usually work comparatively well foredatively small area [12].

The main purpose of experimental optimization isntwve quickly to the actual optimum
by using a simple and economically experimentat@ss [13]. The general flow chart of RSM
for experimental design optimization can be sumpeakiin Fig. 1. The design procedure by

using RSM consists of the following sequential stgfi) defining independent factors and
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desired responses, (2) selecting appropriate desrgiegy to fit the response surfaces, (3)
confirming the fitted model by using analysis ofisace (ANOVA) and statistical inference,

and (4) determining the optimum set of operatingdtoons.

Define . ~;| Response model Process
i———=> | Design strategy [————=>| . P . | R
factors interpretation optimization
. - - Perturbation analysis: .
Factors: |F|rst—order local deS|gn| D-optimal
cement, SCM, design
sand, . -
aggregate, {ack-of-fit Seconq-order , e n overlay of
test design . the contour
water, SP, lots
curing age, No S plots, o
etc. Follow path of {ack-of-fit 3D(2D) surface graph: constrained
N steepest ascent optimization,
F(X) etc.
............ ;....-....._,» Yes
Responses: Transform data or No
fluidity, consider alternatives
rheology,
hydration heat, Perform car_lonical
strength, analysis
shrinkage,
etc.

Fig. 1 General flow chart of RSM in experimental design optimization.
2.2 Designs of thefirst-order model

Designs for fitting the first-order model are cdllfrst-order designs. The most widely
used first-order designs aré factorial design, Plackett—Burman design and simplesign
[14]. Among these designs, simplex lattice desiga bdbtained considerable attention in the
experimental design optimization of cement-baseténas, which are described briefly in the
following section.

Simplex lattice design is used to investigate ffects of the components or ingredients of
a mixture on the response variable; it is alsorrefeto as the mixture experiment. In general,
the key feature of the given mixtures is that tbRime or mass fractions of these components

must sum to one. Furthermore, the response ofitlea gnixture depends only on the relative
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fraction but not on the total amount of the mixtooastituents [15]. For instance, ¥, X,,...,X,

represent the proportions lofngredients of the given mixture, then

0<x <1 (i =12....K), 3)

and do% =1, (4)

Moreover, some addition boundary constraints awendoon the components, thereby
limiting the available region of the ingredientsveeen the lower limitl(; ) and the upper limit
(T,). The general form of the mixture optimization ltbbe expressed as follows:

osL=sx<T <1 (i=12..K). (5)

The main types of simplex lattice designs in prasiarticles are shown in Fig. 2. The
points presented in Fig. 2 denote experimental,rand the three vertices, midpoints of the
sides and the overall centroid of the triangle espnt the pure blends, binary blends and
ternary blends, respectively. The controversy efdimplex lattice design is that most test runs

emerge in the boundary of the optimized area. Simdttice and simplex centroid design

should be added with points in the internal regamshown in [16].

@ @00 ) @00 (c) (1,0,0)

(2/3,1/3,0) (2/3,0,1/3)

(1/2,1/2,0) (1/2,1/2,0)

(1/2,0,1/2) (1/2,0,1/2)

(1/3,0,2/3)

(1/3,2/3,0)
. =
313,113).

4.

010 (01212 (001)  (0.1,0)(0,2/3,1/3)(0,1/3,2/3)(0,0,1) (0,1,0) (0,1/‘2',1/2) (0,0,1)

4

Fig. 2 Smplex lattice designs for three-component mixture plans. (a) [3,2] lattice, (b) [3,3]

lattice, and (c) simplex centroid.

2.3 Designs of the second-order model
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Designs for fitting the second-order model areethBecond-order designs. Applications
of CCD and Box—Behnken design (BBD) to cement apndcrete have become more
increasingly popular over the past few decades.

CCD include 2 factorial runs, R star runs anél, runs (centre-point replications, usually

3<k,=<5); it is a good alternative to the’ 3ull factorial design because it provides

comparable experimental results with a small nurobégsts [17]. Fig. 3 shows a CCD for the
case ofk =2 and k =3 In general, CCD is developed in a manner of teguential
experiment to investigate a first-order designjofeed by adding axial runs to fit the
second-order model. The first-degree model is usedbtain initial information on the
experimental programs and to assess the impori@initee component of the given mixture.
Then, the quadratic terms are chosen to obtairtiaddl information to determine the desired
properties of the given constraints. The value ahdky, depend on the number of runs in the
factorial region of the given experiment to endina CCD can achieve either the orthogonality

behaviour or uniform precision behaviour.

a b @(0,0,0)
( ) ( ) (-1,1,1) ,)(1,1,1)
00w (-1 11)0/“ Cl -1 1;),/
(-1,1) @ Q(1.1) T (0,a,0
(-,0,0) (a,0,0)
o .......................... o
e Qe 9 (0,-0,0)].-(0,0,0)
(-0,0) (0.0) (@,0)
: /(1,1,-1)
(-1,1-1)
1-1)Q Q(1,-1) (-1,-1,-1) V111
©(0.-a) 9 (0,0,-0)

Fig. 3 Central compositedesignsfor (a) k =2 variablesand (b) k =3 variables of

experimental optimization (The red dot is the centre-point replication, generally, 3< k, <5).
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BBD consists of 2factorial three-level designs with incomplete tdae afford as either

rotatable or nearly rotatable properties and tddatite vertices of the cubic region, as shown

geometrically in Fig. 4a. All points of BBD locatatla spherical region of radiug2 , to avoid

the upper and lower limits of the given constraiimsaddition, this would be available for BBD
when the extreme vertices are prohibitively expensir impossible to complete owing to the
constraints of the experimental conditions. Faa#ree design (CCF) is a useful variation of
CCD, wherea =1Fig. 4b shows the star points of CCF locateth@ftcentre of the surface of
the cube region, instead of the spherical area &CD. Using CCF often leads to a reasonable

assessment of experimental errors because of reateequns.

(a) (b)

4 (_11111) f‘
(-1.0.1)gy i g (-1,-1,1)“/‘; Q(O’OV 1.1,1)
cibo 0,-1,1) (3,0, —9(1-1,1)
T, ) £ 011,0
‘v P ©1,1,0) (-1,0,0) ( ] 6
(-1,-1,09 10:00-9, 1 o) 0.1,4@©00 |(100)
-1,0,-1) o
( 0,1,-1).. 1,11 : (1,1,-1)
(10,-1) 00,19
(0,-1,-1) (-1-1-1)& 011,11

Fig. 4 Spherical designs for three variables: (a) Box-Behnken design, and (b) face-centred

central composite design (The red dot is the centre-point replication, generally, 3< k, <5).

2.4 Evaluation and validation of thefitting model

ANOVA is most often used to validate the predictadality of the fitted model before
prediction, to ensure that the mathematical modelides an adequate approximation of the
actual response behaviour. The ANOVA expressiomsrégression model assessment and
validation are summarised in Table 1. In geneha averall accuracy of the predicted model is

often described by the coefficient of determinaf@nwhich is calculated as follows:



SS SS

177 R2 — mod =1- res ) (6)
$tot $tot

178 The value ofR* varies between 0 and 1. For the predicted modél ggod accuracy, the

179 value of R? is close to 1. After considering the number of elogrms, a related statistic

180  parameter of adjuste®f can be obtained, as follows:

181 R; =1 MSres_ $res/ (k'p) (7)
. Mstot $tot/ (k_l) .
182 The value of RZ, decreases as statistically insignificant varialitethe model increase.

183  The differences between the predicted and the lagtlaes are defined as residual errors,
184 which play a critical role in evaluating the mo@ekuracy. Another statistic used to measure

185  the predictive ability of the model, is expressedadlows:

186 Zre=1-% : (8)
s,
187 The value of R3, and RZ; should be within 0.2.

188  Table 1 Basic structure of the ANOVA test in the RSM-based experimental design.

Source of Degrees of

variation freedom Sum of squares Mean square F-value
Total corrected k-1 SSIOI:X: (v, -Y)?
Model p-1 SS,oq =_ SS, - SS.. MS, ., =SS,../(pP-) MS,,/MS,
Residual k-p S, = i;(yi -¥.)? MS, = SS.../(k- p)
Lack of fit m-p SSOFSS_res- SSpe MS,; =SS, /(m-p) MS; /MSpe
Pure error k-m SS,. = igm;g(yij -¥.)? MS, =SS, /(k-m)

189  Note: k= total number of experiments in the set; p= total number of parametersin the model;
190  m= number of distinct level of factor combinations; ki = number of replications of the ith level;
191  Adapted from [18]

192 Desirability function is another useful method tgtimize multiple responses

193 simultaneously. Thus, this approach tends to yag@th desirable response as soon as possible

10
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without excessively compromising any performancaecgrations. In general, every response

Y. is transformed into an individual desirability tiion as:

0<d (Y)<1, 9)
where the value ofd, (Y, Yanges between 0 and 1. For the combination dditigde responses
near to the target values, the valued(Y, should be close to 1. The composite desirability

functionD can be expressed as follows:

1
K

1k
D =(d,(Y,),d,(Y,)...d, (Y )k = Igdi (Y)x, (10)

wherek represents the total responses involved in thiengg#tion process.

3. Literaturesurvey of RSM in mixture design optimization

In a review article published in 1999 [11], RSMhe first time systematically discussed
and compared in mixture design optimization of hpgiformance concrete, and the
multi-objective optimization by using material suie-based statistical models is also
presented to predict the concrete properties. Tlergomprehensive review of linear
combination, statistical models, artificial intgkince method, and physics-based models was
provided to optimize the design and proportionifighe concrete mixture [1]. Based on the
previously surveyed, this paper attempted to evaltlze advances in cement and concrete
mixture optimization by using RSM over the past tthacades. Symbols used in this review
are listed in Appendix A. Applications of RSM of xture optimization of cement-based
materials are shown in Appendix B.

Since the experimental results of Appendix B wdsaimed by various characteristics of
raw materials and under various preparing condtidinis paper only collected the basic test

information (influence factor and correspondingpmsse, statistical method and coefficient
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of determination) for further discussion. For moogresponding details of the tests, one can

refer to the references.
3.1. Optimization designsin cement-based materials applications

Over the past two decades, many studies on cenagetibmaterials have focused on
using RSM as a secondary analysis in multi-objectigtimization that can be achieved with
a series of separate experiments. This tool has bsed successfully by previous researchers
to optimize fresh and hardened properties for céraed concrete fields. However, mixture
designs of some advanced cement-based materialalvaags difficult to standardize and
reproduce owing to lack of available guidelines][}erein, the focus is on summarizing the
RSM applications; and the existing methods, inegigdCCD, BBD and CCF are discussed in

the following sub-sections.
3.1.1 Central composite design (CCD)

CCD is the most commonly used method of experiniepgimization in the
cement-based material field, which is used fomfiftthe second-order model. CCD is often
used as a screening design to determine the trfacéors and their interactions. As an
example, Mohammend et al. [20] used CCD in modgliive fresh and hardened performance
of rubbercrete mixture to develop available mixgaion. Two factors (W/B and crumb
rubber) with five levels were selected and 45 rwese performed in this research. The

response surface with three slump levels for cosgive strength is presented in Fig. 5.
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Compressive strength (MPa)
Compressive strength (MPa)

Fig. 5 Response surface with three slump levels for compressive strength: (a) low slump, (b)
medium slump and (c) high slump. Adapted from [ 20] .

Based on the previous CCD applications shown inefpix B. the existing studies can
be classified into three groups of research charatts, as follows: (1) optimizing the raw
materials and preparation condition to achieve dptimal performance or the most
economical mix design results, (2) adding new camepts to investigate the performance
range, and (3) combining with other modelling teghes and then evaluating the feasibility.
Especially, geopolymer/alkali-activated materiadvén acquired wide attention as promising
construction and maintenance materials due to thgierior performance [21]. Venkatesan et
al. [22] applied CCD to determine the optimal ceiotis of geopolymer concrete by using
partial replacement of fine aggregate with wastenftsy sand and fly ash (FA). Then,
D-optimal design was used to conduct the proportibmixture components to acquire the
desired responses. Mohammed et al. [23] optimizeel éxperimental parameters of
ingredients, such as anhydrous sodium metasiliGg@mind granulated blast-furnace slag
(GGBS) and FA to produce cast in situ alkali-adedabinders. The optimal condition was
provided using CCF to evaluate the three respofsels tensile strength, compressive
strength and water absorption). Da Silva Alvesl.€f?d] investigated the effect of sisal fibre,
activator—metakaolin mass ratio, and curing timet@rghness and modulus of elasticity. In

addition, the optimization of the experimental paeters was conducted by CCD combined

13
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with canonical analysis to maximize the toughness modulus of elasticity of the fibre
metakaolin-based geopolymer. Zahid et al. [25] igppCCD technique to establish the effect
of independent factors (NaOH molarity, NaOH-8i®; ratio and curing temperature) to
evaluate several responses (such as setting timdylas of elasticity, compressive strength,
flexural strength, flexural toughness and ductilitgiex) of FA-based engineered geopolymer
composite. CCD was used to confirm the optimal orxtparameter of alkali-activated slag
mortar with the maximum flexural strength and coeggive strength, by considering the
influence of usage of waste glass powder [26]. Rewet al. [27] used CCD to establish the
regression model of three factors (modulus of sodsilicate, liquid—FA ratio and mineral
admixture) and these interactions with mechanicahgth with 15 experimental trials.

UHPC is characterized by dense microstructures plogsess ultra-high mechanical,
ductility and durability performance. The optimipst approach often starts with a
combination of particle packing and statisticaligesnethod to obtain a mixture proportion
of UHPC. The effects of three factors (distributiorodulus, SCM and W/B ratio) on the
rheological and mechanical properties of strairdbang UHPC were optimized by
combining CCD and modified Andreasen and Andersetigle packing model [28]. Sun et al.
[29] used CCD to evaluate the effect of porous egagte and shrinkage-reducing admixture
on autogenous shrinkage of UHPC by using the nextiifiense particle-packing model. Wang
et al. [30] used the modified Andreasen and Andesgticle packing models to achieve a
compacting binder matrix of eco-friendly UHPC. Th&@CF was applied by maximum use of
combined micro-coral sand and coral sand. The deeel eco-friendly UHPC was evaluated
by using the environmental impact indicator witle tiadar map (Fig. 6). On the other hand,
the optimum design of UHPC usually diminishes thergy consumption and emissions of
CO, with the reduction of cement content. Ferdosiad &amoes [31] used CCD to

investigate the effect of SF, ultra-fine FA and ¢daf UHPC on fluidity and compressive

14
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strength. Then, a multi-objective optimization veanducted, and the cost and environmental
influences were optimized by the overall desir&pi(Fig. 7). Furthermore, CCD shows an

excellent fitting effect on other experiments [3&}.3

PElnon-re
[10° MJ/m®] —U
" ---=-10c20C
" ——15c30C
8
i
6
EP S PEI,
1 A 3 R TRy
[10" kg SO,/ b [ 102 MJ/m?
1
AP GWP
[10" kg PO,/m?] [ 10% kg CO,/m?

Fig. 6 Ecological evaluation of eco-friendly ultra-high performance concrete with
environmental impact indicator. Adapted from [ 30]

! ) ! ) | i
SF 10.88

UFFA 10.76

oI

Sand 0.9

F.D. 1.00

C.S. 1.00

Combined ‘ 0.86
1 . 1 . !

0.00 0.25 0.50 0.75 1.00

Fig. 7 Desirability of ultra-high performance concrete for its main variable constituents.
Adapted from [ 31]

3.1.2 Other optimization designs

Factorial design is another method to optimizerttieture proportion of cement-based
materials. It is often classified into two categgrifull factorial design and fractional factorial

design. Long et al. [37] applied fractional fact#brdesign to build statistical models to

15
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304

investigate the influence of mixture proportion aiasv material properties on workability,
strength development, and visco-elastic performaoteself-compacting concrete. Then
eleven additional SCC mixtures were used to vadiddite statistical models for fresh
properties. Including eight runs within the randete factorial design to develop the wide
range, three central points were used to evalhatertror in the 90% confidence limit (Fig. 8).
Jiao et al. [38] applied simplex centroid desigmpdimize the paste consisting of cement, FA
and slag for a given strength grade, then optimittedd paste, fine aggregate and coarse
aggregate based on rheological properties of S@€atlast, overlapped the contour plots to

acquire the multiple performance requirements (%)g.

—_
N FH*
(%)

—

—
e
|
—_

1 /s - h N\ L -1
\> - w/cm “
#1 ',E' E}‘ #7
2 L
1 = #9,10, 11 g 1
] ° 1)
1 < Central points 3 1
£ g
# k\CQ m,l #8
AN A\
1 AN w/cm i 1

Fig. 8 Additional SCC mixtures used to validate the derived statistical models. Adapted from
[37]
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Fig. 9 Optimization of cementitious materials composition by overlapping the contour plots.
Adapted from [ 38]

As for mix optimization of geopolymer/alkali-actieal materials, Li et al. [39] proposed
a mixture proportioning methodology according tce tiperformance requirements of
alkali-activated concrete and used the simplexroghtesign for optimizing three types of
aggregates to obtain the optimized bulk densitynvedas et al. [40] applied simplex lattice
design to optimize three independent variablesr{guage, curing temperature, and volume of
binder) of geopolymer mortars and to maximize tomgressive strength of FA and GGBS.
Shi et al. [16] used simplex lattice design to etate the ingredients of ternary cement blends
(cement, slag and FA) on ASR expansion with onlyeseexperimental trials. Then, the
ternary contour diagram was used to analyse theposition effect on ternary composite
blends (Fig. 10). Li et al. [41] used BBD to invgste the effect of the degree of sol ratio, the
content of slag and age on fracture toughness lagid interaction on fracture properties
before and after freeze-thaw resistance of alkali-soncrete. Bektas et al. [42] used BBD to
investigate the influence of three critical mix tiars (alkali content, W/B ratio and ground
clay brick content) in three-levels to measure fmsponses (alkali-slag reaction expansion,
Fc, Ft and modulus of elasticity) in two replicat#sl5 runs. Cai et al. [43] applied BBD to

analyse the influence of activator solution—slatiprasand ratio and slag content and their

17



324 interaction on the freeze-thaw cycles of the allsiig concrete. Then, the predicted model

325 was built to evaluate the effect of air bubble elatgristic on freeze-thaw cycles in cold

326  regions.
S _%
O SA/LA 1-T
& SB/LB 1-5
@ SC/LC 1-5
50 60 70 80 90 100
327 Cement (%)

328  Fig. 10 Ternary contour diagram of composition design for composite cement. Adapted from
329  [16]

330 As for mix optimization of UHPC, Ghafari et al. [[Lpresent an accurate analytical
331 approach based on simplex lattice design to opénte component of UHPC. The main
332 strategy of this method can be described in setapssas follows: (1) constructing the main
333 optimum objective to obtain the highest compresssteength, acceptable scope of
334 workability and economical cost of raw material®) §electing the mixture design method,
335 where D-optimal techniques are recommended; (3hidefthe constraint bounds of mixture
336 components, parameters and these variation randbe defined experiments; (4) developing
337 the design matrix based on the D-optimal mixtuiady (5) collecting the experimental data;
338 (6) building the analytical model to predict theoperties of UHPC; (7) optimizing the

339  mixture proportion of UHPC to satisfy the desirabddue of the response variable. Soliman
340 and Tagnit-Hamou [44] proposed a modified approecmbining a full-factorial design

341 approach and particle-packing model to optimize GH#3 follows: (1) particle packing of

18



342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359
360

aggregates, and (2) building the optimized modehkgstigating the combined effect of W/B

ratio and high range water-reducing admixture.
3.2. Optimization designsfor sustainable concrete applications

Some industrial wastes are blended with cemenkelito prepare Portland cement or
used as concrete constituents for sustainable capipin, which are widely investigated by
academics and engineers. Existing experimentafdedi industrial wastes applications has
attempted to explore the alternative of SCM andr therformances in the concrete industry
[22,26,30,31,33,40,45,65,85,94,98,101,102], whiehsammarized in Appendix B. However,
further study of the sustainable concrete appbeais needed by comparing the different
chemical composition and particle characteristi2s. Brito et al. [46] presented a ternary
phase diagram to provide the chemical compositibnvarious binder types from 81
publications. As shown in Fig. 11, the chemical position of industrial wastes are
diversities and significantly determined on the rseuof the raw materials, and it cannot
directly be replaced with the equivalent mass ofieet because of the amorphous particles is
different from the cement. Furthermore, certain eeXpental studies of sustainable

optimization were focused on cost and environmentphct [53,76,84,88,91].

Si0; (100%)

Ca0 (100%)

Fig. 11 CaO-SO,-Al,O3 ternary phase diagram for the cement blends of sustainable concrete.
Adapted from [46]
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4. Summary and discussion

Based on the 80 applications of RSMs in the exgshiterature and its analysis, some
critical information of statistical models to opiaa the mixture proportioning of
cement-based materials, including RSM method si@stimen, factors (independent variables)

and its responses (dependent variables), werectadleThe summary is listed in Appendix B.
4.1 Selection of design strategy

As it is shown in Appendix B, CCD is the most paulmethod for mixture
proportioning optimization in cement-based matsri&@CD comprises a two-level factorial
design, centre point and a star design in whichgemts with a distance from the centre
point. CCD provides a considerable high efficiemgih up to six factors if all optimizations
are carried in parallel instead of sequentiallyekpents. It is often used to be regarded as a
better alternative of the full factorial design aese it can offer similar results with a smaller
number of experiments [17]. In addition, both lineend quadratic regression models are
permitted to be determined by these design stegegind the interactive effects of various
independent factors and critical points (minimumaximum and saddle points) can be
evaluated.

Another popular method is simplex design, includihg simplex-lattice design and
simplex-centroid design. The factors of these agjias are the component of a mixture, and
the factor levels are not independent. If there three ingredients of the mixture, the
constrained experimental region is constructed toliaear coordinate system as shown in
[16,38]. Each of the three sides of the trianglpresents a mixture that has only two
components, and the missing component labelleti@opposite corner.

However, BBD has not been employed as extensivieeagbove-mentioned strategies in

cement-based materials. While in BBD strategy,palhts located at a spherical region of
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radius v/2 . And also, BBD does not contain any corner paifitdhe cubic region to avoid the
upper and lower limits of the given constraints.isTivould be available for BBD when the
extreme vertices are prohibitively expensive orasgble to complete owing to the constraints
of the experimental conditions.

Anyway, the prevalence of CCD usage in cement-basa@rials is partly attributed to
that it is easy to follow the other researcherspst As for geopolymer/alkali-activated
materials and UHPC with various ingredients andegav performance requirements,

D-optimal design or Doehlert design [47] or BBD imidpe a better beneficial strategy.
4.2 Selection of factorsand responses

The WI/B ratio and mixture components are the pentaiactors in experimental design
optimization, then fluidity and strength as the tqogpularly used response. Each response of
mixture optimization is often expressed with a polyial function of factors such as W/B
ratio, cement content, admixture dosage and SChMeement. Changing of W/B ratio leads
to a remarkable variation of concrete propertiasgeneral, selection of the factors and its
level should be according to the preliminary testgractical experience and not depending
on the researcher’s convenience. Furthermore, imeirig heavy single-variable studies with
the purpose to optimize with three or more facstrsuld be avoided [14].

Recently the multiple response problem of cement-based mbehas become a

concern. Jiao et al. [38] overlapped several a@litcontour lines of each response to acquire
the multiple performance requirements. Ferdosiath @amoes [31] employed D-optimal
design to develop a combined desirability with efiéint important weights for their
corresponding solutions. These multi-objective moation approaches need a further

systematic study.
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Obviously, the choice of the variable levels in tpgimization process is more important
than the design itself. Every level of RSM must d@propriate and provide valuable
information. When the design points are too claggether, it will not result in the obvious
influence of the corresponding response. On théraon if design points are at the extreme

point of a reasonable region, the responses aza bfird to adopt.
4.3 Selection of experimental domain

Although RSM has many outstanding characteristiecd has been widely used for
mixture design and process optimization of varieMperiments, the fitting models can be
only suitable for the experimental domain and areatcurate for extrapolation. In addition,
discrete variables cannot be selected for expetamh@ptimization. For example, a specific
type of SCM or any other mixture components canbet considered in the mixture
optimization problems.

In order to overcome the defects of RSM strategmesresearchers attempt to integrate
of RSM with other machine learning algorithms, sashartificial neural networks [48-50],
fuzzy classification [51]. These combined approadmave been demonstrated experimentally
by providing well precision in data learning anaegiction. Although these solutions have
been used in several other fields, little resedral been reported of these applications in

mixture proportion optimization.
4.4 Current challengesfor the applications of sustainable concrete

In general, reducing the environmental impact asburces consumption of sustainable
concrete is related to replace cement clinker vathid wastes, which contains many
ingredients and are always subject to multi-pertoroe requirements. Statistical
experimental design has been developed to optithigemixture proportion of sustainable

concrete. However, target performance during thgnopation process may be mutually
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exclusive, which leads to numerous redundant worke combined desirability of various
weighted values and their corresponding solutioas heen developed a multi-objective
optimization [5,31,40,84]. The simultaneous nordineptimization with desirability function
should be further studied in the future.

So far, many multi-variable problems for sustaieatncrete optimization have become
increasingly common. It is difficult to coordinatee raw materials properties and their
dosage are often lacks a theoretical basis. Fumtbrey, little attention has been focused on the

independent factors and their interactions of $ngkde concrete applications.
5. Conclusionsand Prospective

Based on the review and discussions in this paper,conclusions can be drawn as

below:

(1) The RSM is a sequential procedure to provide aBl@tapproximation for the fitting
functional models between various independent facémd their responses. Then,
linear, quadratic and interactive relationshipshefse models can be evaluated. And
also, the minimum, the maximum and the saddle pahbptimization region can be
evaluated available. So, many applications in modgk variety of cement-based
materials field have been attempted, as shown peAgix B.

(2) CCD is the most commonly used method in cement cmtrete mixture design.
Most studies considered four or less independenabas. The W/B ratio and
mixture components are the prevalent factors inegrpental design optimization,
and then the fluidity and strength as the most [@fyuused response. However,
D-optimal design or BBD or Doehlert design might bbetter for
geopolymer/alkali-activated materials and UHPC withrious ingredients and

several performance requirements.
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(3) The choice of factors and their levels is very imi@iot for experimental optimization
by using RSM. Each level should be appropriate nodide valuable information,
and it is necessary to assure the responses witieinacceptable region of the
optimum value.

(4) The multiple or competing performance requiremdmnhixture design has become a
concern. The in-depth investigations are needembmobine and compare with other
modelling techniques. Previous studies investigabed combination of D-optimal
method and particle packing models. However, aidfineural network and fuzzy
logic for modelling mixture optimization issues mdge a promising research
direction.

(5) Further study of sustainable concrete optimizatisnneeded by comparing the
different chemical composition and particle chagdstics. However, target
performance during the optimization process maynheually exclusive, which leads
to numerous redundant works. So, the simultaneaminear optimization with
desirability function should be further studiedie future.

(6) Although plenty of studies have been reported i pinevious literature with the
laboratory experiment in the cement-based matdhiety, little attention has focused
on the applications in engineering practice. Thugre attempts relating to the

practical project by using RSM are needed.
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Appendix A. List of symbols.

Symbol Description
RSM response surface method
CCD central composite design
BBD Box- Behnken design
CCF face-centred central composite design
ANOVA analysis of variance
UHPC ultra-high performance concrete
HPC high performance concrete
SCC self-compacting concrete
ASR alkali-silica reaction
w/B Water-binder ratio
SCM supplementary cementitious material
SF silica fume
FA fly ash
QP quartz powder
GBFS Granulated blast furnace slag
Vca volume of coarse aggregate
Via volume of fine aggregate
SP superplasticizer
Fc 28-day compressive strength
Ft flexure strength
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480  Appendix B. Applications of RSV for mixture optimization of cement-based materials.

RSM method Specimen Factors Reponse(s) 2 R Numbgr of Year Ref.
experiments
CCD SCC W/B ratio, Binder, SP, Vca fluidity, rhegio Fc slump=0.95, Fc=0.83 15 2000 [52]
Factorial design mortar SF, FA, GBFS SP, settimg tidrying shrinkage,fc,cost 13726 2002 [53]
CCD SCC cement, limestone filler, SP, W/B ratio idity, Fc slump=0.98, Fc=0.97 21 2002 [54]
BBD mineral aggregate six types of silica sand \amdtent 0.96 54 2003 [55]
Full factorial steel fibre reinforced aspect ratio, volume of steel fibre fracture enechwracteristic length 10 2004 [56]
design concrete
CCD SCC pulverised fuel ash, SP, cement, W/Bfluidity, rheology, segregation ratio, Fc slump=®.9 21 2004 [57]
ratio rheology=0.98,
segregation ratio=0.9
Fc=0.99
CCD foam concrete filler-cement ratio, FA, foamwole Fc, dry density Fc=0.958, dry 20 2006 [58]
density=0.987
BBD bridge deck overlay SF, FA, slag Fc, Ft, chloride permeability, abrasio 15 2006 [59]
concrete resistance
Bucher—Bourgund frost-resistant concrete W/B ratio, entrained airep number ofesidual strain 7 2007 [60]
design cycles
simplex centroid blends of industrial wasteged clay, granite waste, kaolin waste water absmrpshrinkage, modulus of rupture 10/40 2008 [61]
design
simplex centroid HPC cement, FA, GBFS, SP, Vca, Vfa fluidity, Fc 78 2009 [49]
design
CCD SCC cement, W/B ratio, FA, SP Fc, modulus aéttity Fc=0.823 31 2009 [62]
simplex centroid drilling fluid Bentonite, low molar carboxymethyl apparent viscosity, plastic viscosity 10/30 2010 [63]
design cellulose, high molar carboxymethyl
cellulose
BBD high-strength lightweight temperature, binder content, binder typeecific gravity, water absorption, crushing 18 2011 [64]
concrete strength
fractional factorial SCC binder, W/B, binder type, SP, fluidity, Fc, shrinkage, creep 19 2012 [37]
design sand-aggregate ratio

(continued on next page)
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2 Number of

RSM method Specimen Factors Reponse(s) R - Year Ref.
experiments
CCD recycled masonry and cement, degree of compaction moisture contentdengity 13 2012 [65]
concrete
CCD High flowing concrete GBFS, FA, W/B ratio, SP luidiity, Fc, Durability slump=0.9841, 21 2012 [66]
Fc=0.9315,
carbonaion=0.9717
CCD SCC cement, W/B ratio, FA, SP fluidity, Fc, mbags of elasticity fluidity=0.905, 31 2012 [67]
Fc=0.920, modulus of
elasticity=0.818
CCD oil well cement slurry SP, SCM, temperature Idystress, plastic viscosity 40 2012 [68]
BBD alkali—slag concrete solution-slag ratio, slsand Air bubble spacing coefficient, Air bubble 17 2013 [43]
specific surface area, Grades of freeze-thaw
resistance
Factorial design pervious concrete W/B ratio, ceinéoa fresh density, hardened density, void ra&to, fresh density=0.79, 13 2013 [69]
hardened
density=0.97, void
ratio=0.98, Fc=0.87
fractional factorial concrete W/B, cement, fineness modulus of Fc 46/92 2013 [70]
design aggregate, SP
CCD warm mix asphalt binder, resident, compaction air void, bulk specific gravity, voids filled withair void=0.94, bulk 20 2013 [71]
temperature asphalt binder, stability, fluidity specific gravity=0.96,
stability=0.77,
fluidity=0.89
CCD UHPC cement, SF fluidity, Fc slump=0.9949, 13 2013 [36]
Fc=0.9913
simplex lattice HPC cement, grinded dune sand, limestonuidity, Fc slump=0.78, Fc=0.91 21 2014 [72]
design filler
2014
Factorial design concrete FA, metakaolin, testigg a F¢ chloride permeability, sorptivity, wat 9 2014 [73]
absorption
Full factorial concrete binder, W/B, Vfa/Vca Fc 0.8 27 2014 [74]
design
BBD silicate cement water-soluble polymer, cherica Fc 27 2014 [75]
additive, SP

(continued on next page)
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2 Number of

RSM method Specimen Factors Reponse(s) R - Year Ref.
experiments
BBD alkali-slag concrete alkali, W/B ratio, groucidy expansion, Fc, Ft, modulus of elasticity egian=0.886, 30 2014 [42]
Fc=0.889, Ft=0.900,
modulus of
elasticity=0.847
CCD normal weight concrete  W/B ratio, Vca, SP fiidFc, splitting tensile strength, cost slump=29 20 2014 [76]
Fc=0.837, splitting
tensile strength=0.825,
cost=1.000
CCD self-compacting UHPC steel fibre, powder-aggtegatio Ft, fluidity Ft=0.91, fluidity=0.92 20 2014 [35]
CCD modified asphalt mixture asphalt, polyethemepbthalate fluidity, void, stability, bulk specific gravity 8mp=0.9880, 13 2015 [77]
modifier void=0.9980,
stability=0.9853, bulk
specific
gravity=0.9883
CCD SCC binder, W/B ratio, SP fluidity, Fc, fillirgapacity, sieve segregation  slump=0.96, Fc=0.86, 20 2015 [78]
filling capacity=0.95,
sieve segregation=0.94
CCD SCC binder, W/B ratio, SCM fluidity, Fc, segagign factor 27 2015 [79]
CCF cement paste W/B ratio, FA/B ratio, nano-iron  fluidity, Fc slump=0.855, 20 2015 [80]
oxide-to-binder Fc=0.852
simplex lattice UHPC cement, sand, SF, QP, SP, steel fibre flyidrty slump=0.74, Ft=0.90 53 2015 [15]
design
BBD pervious concrete three admixture paste thisgnglump, film drying time paste thickness=0.92, 18 2015 [81]
slump=0.89, film
drying time=0.69
BBD alkali—slag concrete sol ratio, slag, agemactlire toughnesmitiation fracture toughness, unstable fracture 17 2015 [41]

toughness, crack mouth opening displacement,
critical effective crack

simplex lattice mortar cement, SF, nano-silica fluidity, Fc, FtijtSpg strength, density, 13 2016 [82]
design absorption, capillary water

simplex lattice alkali-activated cement cement, FA, slag ASR exjoens 17 2016 [16]
design

(continued on next page)
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2 Number of

RSM method Specimen Factors Reponse(s) R - Year Ref.
experiments

CCD concrete crumb rubber, metakaolin Fc, wateogti®n, unit weight Fc=0.9703, water 9 2016 [83]
absorption=0.8751,
unit weight=0.8321

CCD SCC W/B ratio, cement, Vfa, FA, SP fluidity,, Feost fluidity=0.9604, 52 2016 [84]
Fc=0.9547, cost=1

CCD UHPC SF, SP, fibre, cement, W/B flexural touggm flexural 45 2016 [34]
toughness=0.85

simplex lattice geopolymer mortar FA, GBFS binder, curing time jegitemperature, Fc 7/14 2017 [40]

design

simplex lattice UHPC cement, SF, QP, quartz sand fluidity, Fcyaid slump=0.99, Fc=0.99, 10 2017 [44]

design air void=0.80

CCF eco-friendly UHPC micro-coral sand, coral sand Fc 0.97 10 2017 [30]

CCD SCC W/B, marble powder-cement ratio fluidity, F 33 2017 [85]

CCF mortar clinker, FA, debit grinding agent Fc 0.98 15 2017 [86]

CCD warm mix asphalt compaction temperature, test adhesion failure, direct tensile strength, fracture 11/22 2017 [87]

temperature energy, broken aggregate

CCD high-strength SCC W/B, cement, FA, SP, Vfa fieidlity, cost Fc=0.955, 52 2017 [88]
fluidity=0.960, cost=1

CCF UHPC QP, quartz sand, water curing Fc, Ft Fc=0.984, Ft=0.830 16 2017 [32]

CCD UHPC SF, sand, ultra-fine fly ash fluidity, Fc slump=0.9596, 28 2017 [31]
fc=0.9568

simplex centroid low carbon cementitious cement, mineral admixture, hydrated fluidity, Fc, hydration heat, porosity, 7 2018 [89]

design material lime non-evaporable water

simplex centroid alkali-activated concrete  gravel, sand bulk density 7 2018 [39]

design

simplex centroid concrete Vca, Vfa, paste, cement, FA, slag rheolbgy 16 2018 [38]

design

BBD grout material cement, FA, microsilica, metakao  fluidity, Fc, Ft, shrinkage slump=0.9647, 16 2018 [90]
Fc=0.9810, Ft=0.7966,
shrinkage=0.8053

BBD foamed concrete cement, foam Fc, dry densityt 15 2018 [91]
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2 Number of

RSM method Specimen Factors Reponse(s) R - Year Ref.
experiments

simplex centroid SCC SP, stone powder, gravel, sand, cement flulgdy 42 2018 [92]

design

CCD geopolymeric binder modulus of sodium silic#itpyid, Fc 0.9736 15 2018 [27]
mineral admixture

CCD alkali-activated slag N&O, glass powder Fc, Ft Fc=0.9678, Ft=0.9754 13 2018 [26]

mortar

CCD geopolymer composite NaOH molarity, S#Ds, curing Fc, elastic modulus, Ft, flexural toughness, Fc=0.9951, elastic 20 2018 [25]

temperature ductility index, tensile first crack strength,  modulus=0.9977,

ultimate tensile strength, tensile strain capacky=0.9924, flexural
toughness=0.9837,
ductility
index=0.9731, tensile
first crack
strength=0.9876,
ultimate tensile
strength=0.9791,
tensile strain
capacity=0.9850

CCD rubbercrete mixture WI/B ratio, crumb rubber idity, unit weight, void, Fc 45 2018 [20]
CCD self-consolidating mortar ~ SF, slag, SP, W/Bborat fluidity, Fc, segregation slump=0.9589, 30 2018 [93]
Fc=0.8561,
segregation=0.8141
CCD normal concrete two types of plastic waste egaie fluidity, Fc slump=0.8198, 13 2018 [94]
Fc=0.9750
CCF polymer nanosilica additive, temperature complex modulhssp angle, viscosity complex 13 2019 [95]
nanocomposite-modified modulus=0.9995,
asphalt phase angle=0.9989,
viscosity=0.9995
Full factorial SCC cement, FA, W/B, SP fluidity, Fc slump=0.9319, 18 2019 [51]
design Fc=0.9343
CCD recycled concrete cement, slump, recycled coarse Fc 0.9881 17 2019 [96]
aggregate aggregate
CCD geopolymer sisal fibre, activator, curing time Fc, toughness, modulus of elasticity 18 2019 [24]

(continued on next page)
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482
483
484

2 Number of

RSM method Specimen Factors Reponse(s) R - Year Ref.
experiments
CCRD fibre reinforced concrete  aspect ratio, camatiB ratio fluidity, Fc, Ft, split tensile stretig water slump=0.98, Fc=0.95, 20 2019 [97]
absorption Ft=0.98, split tensile
strength=0.93, water
absorption=0.8640
CCF alkali-activated paste slag, anhydrous sodigtasilicate  Fc, Ft, water absorption Fc=0.9856, Ft=0.9913, 15 2019 [23]
activator water
absorption=0.8994
CCD geopolymer concrete Vfa, FA, waste foundry sand Fc 0.99 14 2019 [22]
CCD UHPC porous aggregate, shrinkage reducingutogenous shrinkage 0.9296 11 2019 [29]
admixture
CCF UHPC nano-silica, waste glass powder fluidity, drying shrinkage slump=0.93, Fc=0.98, 10 2019 [33]
drying shrinkage=0.96
CCD eco-efficient SCC limestone powder, FA, SP dityi Fc slump=0.9679, 20 2019 [98]
Fc=0.9695
BBD pervious concrete aggregate size bulk dereityarent density, void 24 2020 [99]
BBD blended paste cement, SF, FA, QP fluidity, tbg@@ hydration heat, & dryingslump=0.9613, 16 2020 [5]
shrinkage rheology=0.9818,
hydration heat=0.997
Fc=0.9955, drying
shrinkage=0.9459
CCF concrete manufactured sand, metakaolin, waste, permeability coefficient, sorptivity permeatyili 17 2020 [100]
paper sludge ash coefficient=0.9745,
CCD cementitious composites  cement, curing time Fc 0.97 14 2020 [101]
CCD strain-hardening UHPC ~ W/B ratio, SCM, distribntmodulus fluidity, rheology, Fc, fracture tougtss 20/60 2020 [28]
CCD geopolymer mortar molarity, binder, sodiumcsite to Fc, drying shrinkage Fc=0.9063, drying 27 2020 [102]

sodium hydroxide ratio

shrinkage=0.9296

Note: * two groups, 11 mixtures for each one.
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