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Abstract: A comprehensive review of the statistical experimental optimization 11 

problem concerning the mixture design of various cement-based materials is 12 

presented herein. This review summarizes and discusses over 80 applications of 13 

optimum design regarding the basic test information under response surface method 14 

(RSM), including influence factor and corresponding response, statistical method, 15 

and coefficient of determination. The statistical experimental design reported in 16 

previous studies has shown that RSM is a sequential procedure to provide a suitable 17 

approximation for the mixture optimization. Then, linear, quadratic and interactive 18 

relationships of the statistical model can be evaluated available. Especially, the 19 

multi-objective optimization issues with multiple or competing performance 20 

requirements for various cement-based materials have also been reported, by 21 

considering fluidity, strength development, environmental impact, cost and durability. 22 

Overall, the results from existing publications have demonstrated that statistical 23 

inference and analysis of variance (ANOVA) are suitable for mix proportion design 24 
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and process optimization of cement-based materials. The W/B ratio and mixture 25 

components are the prevalent factors in experimental design optimization, and then the 26 

fluidity and strength as the most popularly used response. Thus, theoretical optimum 27 

mixture proportioning can be used to predict valuable fresh and hardened properties. 28 

Finally, a critical discussion of the selection of design strategy, independent factors 29 

and their responses, and the experimental region involved in statistical experimental 30 

design, is provided. Based on this review, we conclude that the multi-objective 31 

optimization approaches need a further systematic study, and further studies of 32 

sustainable concrete optimization are needed by comparing the different chemical 33 

composition and particle characteristics. 34 

Keywords: experimental design optimization; supplementary cementitious materials 35 

(SCMs); response surface methodology (RSM); sustainable concrete; ultra-high 36 

performance concrete (UHPC) 37 
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1.  Introduction 38 

The cement-based materials are prepared by using various types and quantities of 39 

individual constituents. These mixture proportions play an important role in fresh- and 40 

hardened-state performance, such as fluidity, rheological properties, strength development and 41 

durability. Therefore, many research studies have been dedicated to experimental optimization 42 

of cement and concrete mixtures. 43 

Experimental design optimization is an adjustment process of selecting the available 44 

proportion of raw materials to prepare a cement-based mixture that satisfies specifiable 45 

requirements for a particular application. Generally, conventional optimization for mixture 46 

design can be classified as prescriptive and performance-based approaches [1]. 47 

Prescriptive-based methods are often stepwise selection to provide a mixture for a particular 48 

application, thereby satisfying the current mix proportion design standards and specifications, 49 

such as JGJ 55 [2] for concrete, JGJ/T 98 [3] for mortar, and JGJ/T 233 [4] for cement. The 50 

main advantage of these methods is that the mixture proportion is provided by the national or 51 

industry standard solely, not entirely depending on personal experience and subjective 52 

decision. Performance-based techniques emphasize no strict requirements on the type and 53 

quantities of components, but are designed with many laboratory trial experiments (defined as 54 

trial-and-error method). Trial-and-error or single variable method suffers from an exponential 55 

growth in experimental times when many test factors are considered as independent variables 56 

in the optimization process. Furthermore, detailed optimization designs of concrete mixtures 57 

are often time- and resource-intensive [1]. Response surface method (RSM) is a combination 58 

of mathematical and statistical techniques that are widely used in the area of concrete 59 

preparation optimization, where some nonlinear factors of concrete are added to obtain an 60 

optimum domain [5]. This method is especially suitable for multiple performance 61 
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requirements of concrete, such as ultra-high performance concrete (UHPC) [6-9]. Over the 62 

past decade, the statistical experimental design of cement-based materials has gained 63 

increasing attention with the sustainable development of the concrete industry. Among these, 64 

lots of researchers have investigated the optimization of mixture proportions by using RSM. 65 

Recently，the multiple response problem of cement-based materials has been widely 66 

reported in previous experimental studies. The simultaneous optimization process of several 67 

responses can be classified into two steps, as follows: (1) a fitting response surface model is 68 

established for every response, and (2) operating constraints optimized by all responses are 69 

identified or maintained in the desired region. Some related optimization methods, such as 70 

D-optimal design [10], overlay of the contour plots and constrained optimization, have been 71 

used in previous studies. Overlaying contour plots work effectively for a small number of 72 

design variables. If more than three independent factors exist, then this method is ineffective 73 

because the two-dimensional contour plot cannot obtain the best view of the response surface. 74 

The two other approaches can be used for cases with more variables. 75 

This paper summarizes and discusses the main achievements including the applications of 76 

different RSMs and optimization methodologies in the experimental design of cement-based 77 

materials. This review is organized as follows. The basic procedure and certain theoretical 78 

models and its evaluation and validation are reviewed briefly in Section 2. Then, in Section 3, 79 

the typical applications of central composite design (CCD) and other optimization designs are 80 

summarized and investigated to measure the feasibility and validity of the selected RSM, 81 

especially for the sustainable concrete application. Finally, in Section 4, several related 82 

problems for further promising applications of RSMs in cement-based materials are 83 

discussed.  84 

2.  Theoretical basis of RSM for cement-based materials 85 
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2.1 General procedure using RSM in experimental design optimization 86 

RSM has been used for various issues in the experimental optimization of cement-based 87 

materials [11]. This method aims to optimize mixture design to consider several attributes, 88 

involving workability, strength development, cost, durability and environmental impact. These 89 

features are achieved with sequential experimentation including factors such as water–binder 90 

ratio (W/B), mixture constituent, the proportion of supplementary cementitious materials 91 

(SCMs), preparation conditions and curing environment. In general, if the response is well 92 

expressed by a linear model of the independent factors, then the first-order regression model 93 

can be expressed as follows: 94 

 εXββY i

k

i
i ++=

1=
0 ∑ , (1) 95 

where Y represents the response variable conforming to the regression coefficients (β ); iX  96 

represent the independent variables; k is the number of optimized variables; ε  denotes the 97 

random error of the estimated response. If a curvature is found in the local experiments, then a 98 

second-order regression model can be given as follows: 99 

 +εXXβ+Xβ+Xβ+Y=β
k

i=
ji

k

j>
iji

k

i=
iii

k

i=
i ∑∑∑∑

1 1

2

11
0 , (2) 100 

where the regression coefficients are expressed as 0β  for the intercept term, iβ  for the 101 

first-order terms, iiβ  for the quadratic terms and ijβ  for the binary-interaction terms. A 102 

polynomial function cannot be a suitable approximation for all independent variable spaces. 103 

However, they usually work comparatively well for a relatively small area [12]. 104 

The main purpose of experimental optimization is to move quickly to the actual optimum 105 

by using a simple and economically experimental process [13]. The general flow chart of RSM 106 

for experimental design optimization can be summarized in Fig. 1. The design procedure by 107 

using RSM consists of the following sequential steps: (1) defining independent factors and 108 
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desired responses, (2) selecting appropriate design strategy to fit the response surfaces, (3) 109 

confirming the fitted model by using analysis of variance (ANOVA) and statistical inference, 110 

and (4) determining the optimum set of operating conditions. 111 

Factors:
cement, SCM, 
sand, 
aggregate, 
water, SP, 
curing age,
etc.

Define 
factors

F(X)

First-order local design

Lack-of-fit 
test

No

Follow path of
steepest ascent

Second-order 
design

Yes

Lack-of-fit 
test

Yes
No

Perform canonical 
analysis

Transform data or 
consider alternatives

Design strategy Response model 
interpretation

Process 
optimization

Perturbation analysis:

Responses:
fluidity, 
rheology, 
hydration heat, 
strength, 
shrinkage, 
etc.

3D(2D) surface graph:

ANOVA

D-optimal 
design, 
overlay of 
the contour 
plots,
constrained 
optimization,
etc.

 112 

Fig. 1 General flow chart of RSM in experimental design optimization. 113 

2.2 Designs of the first-order model 114 

Designs for fitting the first-order model are called first-order designs. The most widely 115 

used first-order designs are 2k factorial design, Plackett–Burman design and simplex design 116 

[14]. Among these designs, simplex lattice design has obtained considerable attention in the 117 

experimental design optimization of cement-based materials, which are described briefly in the 118 

following section. 119 

Simplex lattice design is used to investigate the effects of the components or ingredients of 120 

a mixture on the response variable; it is also referred to as the mixture experiment. In general, 121 

the key feature of the given mixtures is that the volume or mass fractions of these components 122 

must sum to one. Furthermore, the response of the given mixture depends only on the relative 123 
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fraction but not on the total amount of the mixture constituents [15]. For instance, if kxxx ,...,, 21  124 

represent the proportions of k ingredients of the given mixture, then 125 

 )k,...,2,1=(10 i ix ≤≤ , (3) 126 

and 1=
1=
∑

k

i
ix . (4) 127 

Moreover, some addition boundary constraints are found on the components, thereby 128 

limiting the available region of the ingredients between the lower limit ( iL ) and the upper limit 129 

( iT ). The general form of the mixture optimization could be expressed as follows: 130 

 ),...,2,1=(10 kiTxL iii ≤≤≤≤ . (5) 131 

The main types of simplex lattice designs in previous articles are shown in Fig. 2. The 132 

points presented in Fig. 2 denote experimental runs, and the three vertices, midpoints of the 133 

sides and the overall centroid of the triangle represent the pure blends, binary blends and 134 

ternary blends, respectively. The controversy of the simplex lattice design is that most test runs 135 

emerge in the boundary of the optimized area. Simplex lattice and simplex centroid design 136 

should be added with points in the internal region, as shown in [16]. 137 

(0,0,1)(0,1/2,1/2)(0,1,0)

(1,0,0)

(1/2,0,1/2)(1/2,1/2,0)

(0,0,1)(0,1/2,1/2)(0,1,0)

(1,0,0)

(1/2,0,1/2)(1/2,1/2,0)

(1/3,1/3,1/3)

(0,0,1)(0,1,0)

(1,0,0)

(0,2/3,1/3) (0,1/3,2/3)

(2/3,0,1/3)

(1/3,0,2/3)

(2/3,1/3,0)

(1/3,2/3,0)

(1/3,1/3,1/3)

(a) (b) (c)

 138 

Fig. 2 Simplex lattice designs for three-component mixture plans: (a) [3,2] lattice, (b) [3,3] 139 

lattice, and (c) simplex centroid. 140 

2.3 Designs of the second-order model 141 
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Designs for fitting the second-order model are called second-order designs. Applications 142 

of CCD and Box–Behnken design (BBD) to cement and concrete have become more 143 

increasingly popular over the past few decades. 144 

CCD include 2k factorial runs, 2k star runs and k0 runs (centre-point replications, usually 145 

53 0≤≤ k ); it is a good alternative to the 3k full factorial design because it provides 146 

comparable experimental results with a small number of tests [17]. Fig. 3 shows a CCD for the 147 

case of 2=k  and 3=k . In general, CCD is developed in a manner of the sequential 148 

experiment to investigate a first-order design, followed by adding axial runs to fit the 149 

second-order model. The first-degree model is used to obtain initial information on the 150 

experimental programs and to assess the importance of the component of the given mixture. 151 

Then, the quadratic terms are chosen to obtain additional information to determine the desired 152 

properties of the given constraints. The value of α and k0 depend on the number of runs in the 153 

factorial region of the given experiment to ensure that CCD can achieve either the orthogonality 154 

behaviour or uniform precision behaviour. 155 

(-1,1,-1)

(-1,-1,-1) (1,-1,-1)

(1,1,-1)

(-α,0,0)

(0,-α,0)

(α,0,0)

(0,α,0)

(0,0,α)

(0,0,-α)

(1,1,1)

(1,-1,1)

(-1,1,1)

(-1,-1,1)
(1,1)

(α,0)

(1,-1)

(0,-α)

(0,α)

(-1,1)

(-α,0)

(-1,-1)

(0,0,0)
(0,0)

(b)(a)

 156 

Fig. 3 Central composite designs for (a) 2=k  variables and (b) 3=k  variables of 157 

experimental optimization (The red dot is the centre-point replication, generally, 53 0≤≤ k ). 158 
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BBD consists of 2k factorial three-level designs with incomplete block to afford as either 159 

rotatable or nearly rotatable properties and to avoid the vertices of the cubic region, as shown 160 

geometrically in Fig. 4a. All points of BBD located at a spherical region of radius 2 , to avoid 161 

the upper and lower limits of the given constraints. In addition, this would be available for BBD 162 

when the extreme vertices are prohibitively expensive or impossible to complete owing to the 163 

constraints of the experimental conditions. Face-centred design (CCF) is a useful variation of 164 

CCD, where 1=α . Fig. 4b shows the star points of CCF located at the centre of the surface of 165 

the cube region, instead of the spherical area as in CCD. Using CCF often leads to a reasonable 166 

assessment of experimental errors because of more centre runs. 167 

(1,0,-1)

(1,1,0)

(1,0,1)

(1,-1,0) (0,0,0)

(-1,-1,-1) (1,-1,-1)
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(0,0,-1)

(1,1,1)
(-1,1,1)

(-1,-1,1)

(0,0,0)

(-1,1,0)

(-1,0,1)

(-1,-1,0)

(0,-1,-1)

(0,1,-1)

(0,-1,1)

(0,1,1)

(-1,0,-1)
(0,-1,0)

(-1,0,0)

(1,-1,1)

(0,0,1)

(-1,1,-1)

(a) (b)

 168 

Fig. 4 Spherical designs for three variables: (a) Box-Behnken design, and (b) face-centred 169 

central composite design (The red dot is the centre-point replication, generally, 53 0≤≤ k ). 170 

2.4 Evaluation and validation of the fitting model 171 

ANOVA is most often used to validate the predictive ability of the fitted model before 172 

prediction, to ensure that the mathematical model provides an adequate approximation of the 173 

actual response behaviour. The ANOVA expressions for regression model assessment and 174 

validation are summarised in Table 1. In general, the overall accuracy of the predicted model is 175 

often described by the coefficient of determination R2, which is calculated as follows: 176 
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tot

res

tot

mod2 -1==
SS

SS

SS

SS
R . (6) 177 

The value of R2 varies between 0 and 1. For the predicted model with good accuracy, the 178 

value of 2R  is close to 1. After considering the number of model terms, a related statistic 179 

parameter of adjusted R2 can be obtained, as follows: 180 

 
)1(

)(
11

tot

res

tot

res2
adj k-/SS

k-p/SS
-=

MS

MS
-=R . (7) 181 

The value of 2
adjR  decreases as statistically insignificant variables in the model increase. 182 

The differences between the predicted and the actual values are defined as residual errors, 183 

which play a critical role in evaluating the model accuracy. Another statistic used to measure 184 

the predictive ability of the model, is expressed as follows: 185 

 
tot

pre2
pre 1

SS

SS
-=R . (8) 186 

The value of 2
preR  and 2

adjR  should be within 0.2. 187 

Table 1 Basic structure of the ANOVA test in the RSM-based experimental design. 188 

Source of 
variation 

Degrees of 
freedom 

Sum of squares  Mean square F-value 

Total corrected k-1 
∑

k

i
i yy=SS

1=

2
tot )-(  

  

Model p-1 restotmod -= SSSSSS  )1-/(= modmod pSSMS  
resmod / MSMS  

Residual k-p 
∑

k

i
ii yySS

1=

2
res )ˆ-(=  )-/(= resres pkSSMS   

Lack of fit pm -  
pereslof - SS=SSSS  )-/(= loflof pmSSMS  

pelof / MSMS  

Pure error mk -  
∑∑

m

i=

k

j=
iij )y(ySS

1 1

2
pe

i

-=  )-/(= pepe mkSSMS  
 

Note: k= total number of experiments in the set; p= total number of parameters in the model; 189 

m= number of distinct level of factor combinations; ki = number of replications of the ith level; 190 

Adapted from [18] 191 

Desirability function is another useful method to optimize multiple responses 192 

simultaneously. Thus, this approach tends to satisfy each desirable response as soon as possible 193 
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without excessively compromising any performance specifications. In general, every response 194 

iY  is transformed into an individual desirability function as: 195 

 1)(0 ≤≤ ii Yd , (9) 196 

where the value of )( ii Yd  ranges between 0 and 1. For the combination of the single responses 197 

near to the target values, the value of )( ii Yd  should be close to 1. The composite desirability 198 

function D can be expressed as follows: 199 

 ∏

k

1=i

11

2211 )(=))()....(),((= k
ii

k
kk YdYdYdYdD , (10) 200 

where k represents the total responses involved in the optimization process. 201 

3.  Literature survey of RSM in mixture design optimization 202 

In a review article published in 1999 [11], RSM is the first time systematically discussed 203 

and compared in mixture design optimization of high-performance concrete, and the 204 

multi-objective optimization by using material science-based statistical models is also 205 

presented to predict the concrete properties. Then, a comprehensive review of linear 206 

combination, statistical models, artificial intelligence method, and physics-based models was 207 

provided to optimize the design and proportioning of the concrete mixture [1]. Based on the 208 

previously surveyed, this paper attempted to evaluate the advances in cement and concrete 209 

mixture optimization by using RSM over the past two decades. Symbols used in this review 210 

are listed in Appendix A. Applications of RSM of mixture optimization of cement-based 211 

materials are shown in Appendix B. 212 

Since the experimental results of Appendix B were obtained by various characteristics of 213 

raw materials and under various preparing conditions, this paper only collected the basic test 214 

information (influence factor and corresponding response, statistical method and coefficient 215 
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of determination) for further discussion. For more corresponding details of the tests, one can 216 

refer to the references. 217 

3.1. Optimization designs in cement-based materials applications 218 

Over the past two decades, many studies on cement-based materials have focused on 219 

using RSM as a secondary analysis in multi-objective optimization that can be achieved with 220 

a series of separate experiments. This tool has been used successfully by previous researchers 221 

to optimize fresh and hardened properties for cement and concrete fields. However, mixture 222 

designs of some advanced cement-based materials are always difficult to standardize and 223 

reproduce owing to lack of available guidelines [19]. Herein, the focus is on summarizing the 224 

RSM applications; and the existing methods, including CCD, BBD and CCF are discussed in 225 

the following sub-sections. 226 

3.1.1 Central composite design (CCD) 227 

CCD is the most commonly used method of experimental optimization in the 228 

cement-based material field, which is used for fitting the second-order model. CCD is often 229 

used as a screening design to determine the critical factors and their interactions. As an 230 

example, Mohammend et al. [20] used CCD in modelling the fresh and hardened performance 231 

of rubbercrete mixture to develop available mix proportion. Two factors (W/B and crumb 232 

rubber) with five levels were selected and 45 runs were performed in this research. The 233 

response surface with three slump levels for compressive strength is presented in Fig. 5. 234 
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 235 

Fig. 5 Response surface with three slump levels for compressive strength: (a) low slump, (b) 236 

medium slump and (c) high slump. Adapted from [20]. 237 

Based on the previous CCD applications shown in Appendix B. the existing studies can 238 

be classified into three groups of research characteristics, as follows: (1) optimizing the raw 239 

materials and preparation condition to achieve the optimal performance or the most 240 

economical mix design results, (2) adding new components to investigate the performance 241 

range, and (3) combining with other modelling techniques and then evaluating the feasibility. 242 

Especially, geopolymer/alkali-activated materials have acquired wide attention as promising 243 

construction and maintenance materials due to their superior performance [21]. Venkatesan et 244 

al. [22] applied CCD to determine the optimal conditions of geopolymer concrete by using 245 

partial replacement of fine aggregate with waste foundry sand and fly ash (FA). Then, 246 

D-optimal design was used to conduct the proportion of mixture components to acquire the 247 

desired responses. Mohammed et al. [23] optimized the experimental parameters of 248 

ingredients, such as anhydrous sodium metasilicate, ground granulated blast-furnace slag 249 

(GGBS) and FA to produce cast in situ alkali-activated binders. The optimal condition was 250 

provided using CCF to evaluate the three responses (split tensile strength, compressive 251 

strength and water absorption). Da Silva Alves et al. [24] investigated the effect of sisal fibre, 252 

activator–metakaolin mass ratio, and curing time on toughness and modulus of elasticity. In 253 

addition, the optimization of the experimental parameters was conducted by CCD combined 254 
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with canonical analysis to maximize the toughness and modulus of elasticity of the fibre 255 

metakaolin-based geopolymer. Zahid et al. [25] applied CCD technique to establish the effect 256 

of independent factors (NaOH molarity, NaOH–Na2SiO3 ratio and curing temperature) to 257 

evaluate several responses (such as setting time, modulus of elasticity, compressive strength, 258 

flexural strength, flexural toughness and ductility index) of FA-based engineered geopolymer 259 

composite. CCD was used to confirm the optimal mixture parameter of alkali-activated slag 260 

mortar with the maximum flexural strength and compressive strength, by considering the 261 

influence of usage of waste glass powder [26]. Revathi et al. [27] used CCD to establish the 262 

regression model of three factors (modulus of sodium silicate, liquid–FA ratio and mineral 263 

admixture) and these interactions with mechanical strength with 15 experimental trials. 264 

UHPC is characterized by dense microstructures that possess ultra-high mechanical, 265 

ductility and durability performance. The optimization approach often starts with a 266 

combination of particle packing and statistical design method to obtain a mixture proportion 267 

of UHPC. The effects of three factors (distribution modulus, SCM and W/B ratio) on the 268 

rheological and mechanical properties of strain-hardening UHPC were optimized by 269 

combining CCD and modified Andreasen and Andersen particle packing model [28]. Sun et al. 270 

[29] used CCD to evaluate the effect of porous aggregate and shrinkage-reducing admixture 271 

on autogenous shrinkage of UHPC by using the modified dense particle-packing model. Wang 272 

et al. [30] used the modified Andreasen and Andersen particle packing models to achieve a 273 

compacting binder matrix of eco-friendly UHPC. Then, CCF was applied by maximum use of 274 

combined micro-coral sand and coral sand. The developed eco-friendly UHPC was evaluated 275 

by using the environmental impact indicator with the radar map (Fig. 6). On the other hand, 276 

the optimum design of UHPC usually diminishes the energy consumption and emissions of 277 

CO2 with the reduction of cement content. Ferdosian and Camoes [31] used CCD to 278 

investigate the effect of SF, ultra-fine FA and sand of UHPC on fluidity and compressive 279 
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strength. Then, a multi-objective optimization was conducted, and the cost and environmental 280 

influences were optimized by the overall desirability (Fig. 7). Furthermore, CCD shows an 281 

excellent fitting effect on other experiments [32-36].  282 

 283 

Fig. 6 Ecological evaluation of eco-friendly ultra-high performance concrete with 284 

environmental impact indicator. Adapted from [30] 285 

 286 

Fig. 7 Desirability of ultra-high performance concrete for its main variable constituents. 287 

Adapted from [31] 288 

3.1.2 Other optimization designs 289 

Factorial design is another method to optimize the mixture proportion of cement-based 290 

materials. It is often classified into two categories: full factorial design and fractional factorial 291 

design. Long et al. [37] applied fractional factorial design to build statistical models to 292 
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investigate the influence of mixture proportion and raw material properties on workability, 293 

strength development, and visco-elastic performance of self-compacting concrete. Then 294 

eleven additional SCC mixtures were used to validate the statistical models for fresh 295 

properties. Including eight runs within the range of the factorial design to develop the wide 296 

range, three central points were used to evaluate the error in the 90% confidence limit (Fig. 8). 297 

Jiao et al. [38] applied simplex centroid design to optimize the paste consisting of cement, FA 298 

and slag for a given strength grade, then optimized the paste, fine aggregate and coarse 299 

aggregate based on rheological properties of SCC, and at last, overlapped the contour plots to 300 

acquire the multiple performance requirements (Fig. 9).  301 

 302 

Fig. 8 Additional SCC mixtures used to validate the derived statistical models. Adapted from 303 

[37] 304 
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 305 

Fig. 9 Optimization of cementitious materials composition by overlapping the contour plots. 306 

Adapted from [38] 307 

As for mix optimization of geopolymer/alkali-activated materials, Li et al. [39] proposed 308 

a mixture proportioning methodology according to the performance requirements of 309 

alkali-activated concrete and used the simplex centroid design for optimizing three types of 310 

aggregates to obtain the optimized bulk density. Mermerdas et al. [40] applied simplex lattice 311 

design to optimize three independent variables (curing age, curing temperature, and volume of 312 

binder) of geopolymer mortars and to maximize the compressive strength of FA and GGBS. 313 

Shi et al. [16] used simplex lattice design to correlate the ingredients of ternary cement blends 314 

(cement, slag and FA) on ASR expansion with only seven experimental trials. Then, the 315 

ternary contour diagram was used to analyse the composition effect on ternary composite 316 

blends (Fig. 10). Li et al. [41] used BBD to investigate the effect of the degree of sol ratio, the 317 

content of slag and age on fracture toughness and their interaction on fracture properties 318 

before and after freeze-thaw resistance of alkali–slag concrete. Bektas et al. [42] used BBD to 319 

investigate the influence of three critical mix factors (alkali content, W/B ratio and ground 320 

clay brick content) in three-levels to measure four responses (alkali–slag reaction expansion, 321 

Fc, Ft and modulus of elasticity) in two replicates of 15 runs. Cai et al. [43] applied BBD to 322 

analyse the influence of activator solution–slag ratio, sand ratio and slag content and their 323 
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interaction on the freeze-thaw cycles of the alkali–slag concrete. Then, the predicted model 324 

was built to evaluate the effect of air bubble characteristic on freeze-thaw cycles in cold 325 

regions.  326 

 327 

Fig. 10 Ternary contour diagram of composition design for composite cement. Adapted from 328 

[16] 329 

As for mix optimization of UHPC, Ghafari et al. [15] present an accurate analytical 330 

approach based on simplex lattice design to optimize the component of UHPC. The main 331 

strategy of this method can be described in seven steps, as follows: (1) constructing the main 332 

optimum objective to obtain the highest compressive strength, acceptable scope of 333 

workability and economical cost of raw materials; (2) selecting the mixture design method, 334 

where D-optimal techniques are recommended; (3) defining the constraint bounds of mixture 335 

components, parameters and these variation ranges in the defined experiments; (4) developing 336 

the design matrix based on the D-optimal mixture trials; (5) collecting the experimental data; 337 

(6) building the analytical model to predict the properties of UHPC; (7) optimizing the 338 

mixture proportion of UHPC to satisfy the desirable value of the response variable. Soliman 339 

and Tagnit-Hamou [44] proposed a modified approach combining a full-factorial design 340 

approach and particle-packing model to optimize UHPC as follows: (1) particle packing of 341 
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aggregates, and (2) building the optimized model by investigating the combined effect of W/B 342 

ratio and high range water-reducing admixture. 343 

3.2. Optimization designs for sustainable concrete applications 344 

Some industrial wastes are blended with cement clinker to prepare Portland cement or 345 

used as concrete constituents for sustainable application, which are widely investigated by 346 

academics and engineers. Existing experimental design of industrial wastes applications has 347 

attempted to explore the alternative of SCM and their performances in the concrete industry 348 

[22,26,30,31,33,40,45,65,85,94,98,101,102], which are summarized in Appendix B. However, 349 

further study of the sustainable concrete application is needed by comparing the different 350 

chemical composition and particle characteristics. De Brito et al. [46] presented a ternary 351 

phase diagram to provide the chemical composition of various binder types from 81 352 

publications. As shown in Fig. 11, the chemical composition of industrial wastes are 353 

diversities and significantly determined on the source of the raw materials, and it cannot 354 

directly be replaced with the equivalent mass of cement because of the amorphous particles is 355 

different from the cement. Furthermore, certain experimental studies of sustainable 356 

optimization were focused on cost and environmental impact [53,76,84,88,91]. 357 

 358 

Fig. 11 CaO-SiO2-Al2O3 ternary phase diagram for the cement blends of sustainable concrete. 359 

Adapted from [46] 360 
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4.  Summary and discussion 361 

Based on the 80 applications of RSMs in the existing literature and its analysis, some 362 

critical information of statistical models to optimize the mixture proportioning of 363 

cement-based materials, including RSM method, test specimen, factors (independent variables) 364 

and its responses (dependent variables), were collected. The summary is listed in Appendix B. 365 

4.1 Selection of design strategy 366 

As it is shown in Appendix B, CCD is the most popular method for mixture 367 

proportioning optimization in cement-based materials. CCD comprises a two-level factorial 368 

design, centre point and a star design in which test points with a distance α from the centre 369 

point. CCD provides a considerable high efficiency with up to six factors if all optimizations 370 

are carried in parallel instead of sequentially experiments. It is often used to be regarded as a 371 

better alternative of the full factorial design because it can offer similar results with a smaller 372 

number of experiments [17]. In addition, both linear and quadratic regression models are 373 

permitted to be determined by these design strategies, and the interactive effects of various 374 

independent factors and critical points (minimum, maximum and saddle points) can be 375 

evaluated. 376 

Another popular method is simplex design, including the simplex-lattice design and 377 

simplex-centroid design. The factors of these strategies are the component of a mixture, and 378 

the factor levels are not independent. If there are three ingredients of the mixture, the 379 

constrained experimental region is constructed to a trilinear coordinate system as shown in 380 

[16,38]. Each of the three sides of the triangle represents a mixture that has only two 381 

components, and the missing component labelled on the opposite corner. 382 

However, BBD has not been employed as extensive as the above-mentioned strategies in 383 

cement-based materials. While in BBD strategy, all points located at a spherical region of 384 
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radius 2 . And also, BBD does not contain any corner points of the cubic region to avoid the 385 

upper and lower limits of the given constraints. This would be available for BBD when the 386 

extreme vertices are prohibitively expensive or impossible to complete owing to the constraints 387 

of the experimental conditions. 388 

Anyway, the prevalence of CCD usage in cement-based materials is partly attributed to 389 

that it is easy to follow the other researcher’s steps. As for geopolymer/alkali-activated 390 

materials and UHPC with various ingredients and several performance requirements, 391 

D-optimal design or Doehlert design [47] or BBD might be a better beneficial strategy. 392 

4.2 Selection of factors and responses 393 

The W/B ratio and mixture components are the prevalent factors in experimental design 394 

optimization, then fluidity and strength as the most popularly used response. Each response of 395 

mixture optimization is often expressed with a polynomial function of factors such as W/B 396 

ratio, cement content, admixture dosage and SCM replacement. Changing of W/B ratio leads 397 

to a remarkable variation of concrete properties. In general, selection of the factors and its 398 

level should be according to the preliminary tests or practical experience and not depending 399 

on the researcher’s convenience. Furthermore, performing heavy single-variable studies with 400 

the purpose to optimize with three or more factors should be avoided [14]. 401 

Recently，the multiple response problem of cement-based materials has become a 402 

concern. Jiao et al. [38] overlapped several critical contour lines of each response to acquire 403 

the multiple performance requirements. Ferdosian and Camoes [31] employed D-optimal 404 

design to develop a combined desirability with different important weights for their 405 

corresponding solutions. These multi-objective optimization approaches need a further 406 

systematic study. 407 
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Obviously, the choice of the variable levels in the optimization process is more important 408 

than the design itself. Every level of RSM must be appropriate and provide valuable 409 

information. When the design points are too close together, it will not result in the obvious 410 

influence of the corresponding response. On the contrary, if design points are at the extreme 411 

point of a reasonable region, the responses are often hard to adopt. 412 

4.3 Selection of experimental domain 413 

Although RSM has many outstanding characteristics and has been widely used for 414 

mixture design and process optimization of various experiments, the fitting models can be 415 

only suitable for the experimental domain and are not accurate for extrapolation. In addition, 416 

discrete variables cannot be selected for experimental optimization. For example, a specific 417 

type of SCM or any other mixture components cannot be considered in the mixture 418 

optimization problems. 419 

In order to overcome the defects of RSM strategy, some researchers attempt to integrate 420 

of RSM with other machine learning algorithms, such as artificial neural networks [48-50], 421 

fuzzy classification [51]. These combined approaches have been demonstrated experimentally 422 

by providing well precision in data learning and prediction. Although these solutions have 423 

been used in several other fields, little research has been reported of these applications in 424 

mixture proportion optimization. 425 

4.4 Current challenges for the applications of sustainable concrete 426 

In general, reducing the environmental impact and resources consumption of sustainable 427 

concrete is related to replace cement clinker with solid wastes, which contains many 428 

ingredients and are always subject to multi-performance requirements. Statistical 429 

experimental design has been developed to optimize the mixture proportion of sustainable 430 

concrete. However, target performance during the optimization process may be mutually 431 
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exclusive, which leads to numerous redundant works. The combined desirability of various 432 

weighted values and their corresponding solutions has been developed a multi-objective 433 

optimization [5,31,40,84]. The simultaneous nonlinear optimization with desirability function 434 

should be further studied in the future.  435 

So far, many multi-variable problems for sustainable concrete optimization have become 436 

increasingly common. It is difficult to coordinate the raw materials properties and their 437 

dosage are often lacks a theoretical basis. Furthermore, little attention has been focused on the 438 

independent factors and their interactions of sustainable concrete applications. 439 

5.  Conclusions and Prospective 440 

Based on the review and discussions in this paper, the conclusions can be drawn as 441 

below: 442 

(1) The RSM is a sequential procedure to provide a suitable approximation for the fitting 443 

functional models between various independent factors and their responses. Then, 444 

linear, quadratic and interactive relationships of these models can be evaluated. And 445 

also, the minimum, the maximum and the saddle points of optimization region can be 446 

evaluated available. So, many applications in modelling a variety of cement-based 447 

materials field have been attempted, as shown in Appendix B. 448 

(2) CCD is the most commonly used method in cement and concrete mixture design. 449 

Most studies considered four or less independent variables. The W/B ratio and 450 

mixture components are the prevalent factors in experimental design optimization, 451 

and then the fluidity and strength as the most popularly used response. However, 452 

D-optimal design or BBD or Doehlert design might be better for 453 

geopolymer/alkali-activated materials and UHPC with various ingredients and 454 

several performance requirements. 455 
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(3) The choice of factors and their levels is very important for experimental optimization 456 

by using RSM. Each level should be appropriate and provide valuable information, 457 

and it is necessary to assure the responses within the acceptable region of the 458 

optimum value. 459 

(4) The multiple or competing performance requirement of mixture design has become a 460 

concern. The in-depth investigations are needed to combine and compare with other 461 

modelling techniques. Previous studies investigated the combination of D-optimal 462 

method and particle packing models. However, artificial neural network and fuzzy 463 

logic for modelling mixture optimization issues may be a promising research 464 

direction.  465 

(5) Further study of sustainable concrete optimization is needed by comparing the 466 

different chemical composition and particle characteristics. However, target 467 

performance during the optimization process may be mutually exclusive, which leads 468 

to numerous redundant works. So, the simultaneous nonlinear optimization with 469 

desirability function should be further studied in the future. 470 

(6) Although plenty of studies have been reported in the previous literature with the 471 

laboratory experiment in the cement-based materials field, little attention has focused 472 

on the applications in engineering practice. Thus, more attempts relating to the 473 

practical project by using RSM are needed. 474 
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Appendix A. List of symbols. 478 

Symbol Description 

RSM response surface method 

CCD central composite design 

BBD Box- Behnken design 

CCF face-centred central composite design 

ANOVA analysis of variance 

UHPC ultra-high performance concrete 

HPC high performance concrete 

SCC self-compacting concrete 

ASR alkali-silica reaction 

W/B Water-binder ratio 

SCM supplementary cementitious material 

SF silica fume 

FA fly ash 

QP quartz powder 

GBFS Granulated blast furnace slag 

Vca volume of coarse aggregate 

Vfa volume of fine aggregate 

SP superplasticizer 

Fc 28-day compressive strength 

Ft flexure strength 

479 

Jo
urn

al 
Pre-

pro
of



26 

Appendix B. Applications of RSM for mixture optimization of cement-based materials. 480 

RSM method Specimen Factors Reponse(s) R2 
Number of 
experiments 

Year Ref. 

CCD SCC W/B ratio, Binder, SP, Vca fluidity, rheology, Fc slump=0.95, Fc=0.83 15 2000 [52] 

Factorial design mortar SF, FA, GBFS SP, setting time, drying shrinkage,fc,cost  13/26* 2002 [53] 

CCD SCC cement, limestone filler, SP, W/B ratio fluidity, Fc slump=0.98, Fc=0.97 21 2002 [54] 

BBD mineral aggregate six types of silica sand void content 0.96 54 2003 [55] 

Full factorial 
design 

steel fibre reinforced 
concrete 

aspect ratio, volume of steel fibre fracture energy, characteristic length  10 2004 [56] 

CCD SCC pulverised fuel ash, SP, cement, W/B 
ratio 

fluidity, rheology, segregation ratio, Fc slump=0.99, 
rheology=0.98, 
segregation ratio=0.99, 
Fc=0.99 

21 2004 [57] 

CCD foam concrete filler-cement ratio, FA, foam volume Fc, dry density Fc=0.958, dry 
density=0.987 

20 2006 [58] 

BBD bridge deck overlay 
concrete 

SF, FA, slag Fc, Ft, chloride permeability, abrasion 
resistance 

 15 2006 [59] 

Bucher–Bourgund 
design 

frost-resistant concrete W/B ratio, entrained air pore, number of 
cycles 

residual strain  7 2007 [60] 

simplex centroid 
design 

blends of industrial wastes red clay, granite waste, kaolin waste water absorption, shrinkage, modulus of rupture  10/40 2008 [61] 

simplex centroid 
design 

HPC cement, FA, GBFS, SP, Vca, Vfa fluidity, Fc  78 2009 [49] 

CCD SCC cement, W/B ratio, FA, SP Fc, modulus of elasticity Fc=0.823 31 2009 [62] 

simplex centroid 
design 

drilling fluid Bentonite, low molar carboxymethyl 
cellulose, high molar carboxymethyl 
cellulose 

apparent viscosity, plastic viscosity  10/30 2010 [63] 

BBD high-strength lightweight 
concrete 

temperature, binder content, binder type specific gravity, water absorption, crushing 
strength 

 18 2011 [64] 

fractional factorial 
design 

SCC binder, W/B, binder type, SP, 
sand-aggregate ratio 

fluidity, Fc, shrinkage, creep  19 2012 [37] 

    (continued on next page) 
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RSM method Specimen Factors Reponse(s) R2 
Number of 
experiments 

Year Ref. 

CCD recycled masonry and 
concrete 

cement, degree of compaction moisture content, dry density  13 2012 [65] 

CCD High flowing concrete GBFS, FA, W/B ratio, SP fluidity, Fc, Durability slump=0.9841, 
Fc=0.9315, 
carbonaion=0.9717 

21 2012 [66] 

CCD SCC cement, W/B ratio, FA, SP fluidity, Fc, modulus of elasticity fluidity=0.905, 
Fc=0.920, modulus of 
elasticity=0.818 

31 2012 [67] 

CCD oil well cement slurry SP, SCM, temperature yield stress, plastic viscosity   40 2012 [68] 

BBD alkali–slag concrete solution-slag ratio, slag, sand Air bubble spacing coefficient, Air bubble 
specific surface area, Grades of freeze-thaw 
resistance 

 17 2013 [43] 

Factorial design pervious concrete W/B ratio, cement, Vca fresh density, hardened density, void ratio, Fc fresh density=0.79, 
hardened 
density=0.97, void 
ratio=0.98, Fc=0.87 

13 2013 [69] 

fractional factorial 
design 

concrete W/B, cement, fineness modulus of 
aggregate, SP 

Fc  46/92 2013 [70] 

CCD warm mix asphalt binder, resident, compaction 
temperature 

air void, bulk specific gravity, voids filled with 
asphalt binder, stability, fluidity 

air void=0.94, bulk 
specific gravity=0.96, 
stability=0.77, 
fluidity=0.89 

20 2013 [71] 

CCD UHPC cement, SF fluidity, Fc slump=0.9949, 
Fc=0.9913 

13 2013 [36] 

simplex lattice 
design 

HPC cement, grinded dune sand, limestone 
filler 

fluidity, Fc slump=0.78, Fc=0.91 21 2014 [72] 

      2014  

Factorial design concrete FA, metakaolin, testing age Fc, chloride permeability, sorptivity, water 
absorption 

 9 2014 [73] 

Full factorial 
design 

concrete binder, W/B, Vfa/Vca Fc 0.8 27 2014 [74] 

BBD silicate cement  water-soluble polymer, chemical 
additive, SP 

Fc  27 2014 [75] 
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RSM method Specimen Factors Reponse(s) R2 
Number of 
experiments 

Year Ref. 

BBD  alkali–slag concrete alkali, W/B ratio, ground clay expansion, Fc, Ft, modulus of elasticity expansion=0.886, 
Fc=0.889, Ft=0.900, 
modulus of 
elasticity=0.847 

30 2014 [42] 

CCD normal weight concrete W/B ratio, Vca, SP fluidity, Fc, splitting tensile strength, cost slump=0.992, 
Fc=0.837, splitting 
tensile strength=0.825, 
cost=1.000 

20 2014 [76] 

CCD self-compacting UHPC steel fibre, powder-aggregate ratio Ft, fluidity Ft=0.91, fluidity=0.92 20 2014 [35] 

CCD modified asphalt mixture asphalt, polyethene terephthalate 
modifier 

fluidity, void, stability, bulk specific gravity slump=0.9880, 
void=0.9980, 
stability=0.9853, bulk 
specific 
gravity=0.9883 

13 2015 [77] 

CCD SCC binder, W/B ratio, SP fluidity, Fc, filling capacity, sieve segregation slump=0.96, Fc=0.86, 
filling capacity=0.95, 
sieve segregation=0.94 

20 2015 [78] 

CCD SCC binder, W/B ratio, SCM fluidity, Fc, segregation factor  27 2015 [79] 

CCF cement paste W/B ratio, FA/B ratio, nano-iron 
oxide-to-binder 

fluidity, Fc slump=0.855, 
Fc=0.852 

20 2015 [80] 

simplex lattice 
design 

UHPC cement, sand, SF, QP, SP, steel fibre fluidity, Ft slump=0.74, Ft=0.90 53 2015 [15] 

BBD pervious concrete three admixture paste thickness, slump, film drying time paste thickness=0.92, 
slump=0.89, film 
drying time=0.69 

18 2015 [81] 

BBD  alkali–slag concrete sol ratio, slag, age on fracture toughness initiation fracture toughness, unstable fracture 
toughness, crack mouth opening displacement, 
critical effective crack 

 17 2015 [41] 

simplex lattice 
design 

mortar cement, SF, nano-silica fluidity, Fc, Ft, splitting strength, density, 
absorption, capillary water 

 13 2016 [82] 

simplex lattice 
design 

alkali-activated cement cement, FA, slag ASR expansion  17 2016 [16] 

    (continued on next page) 
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RSM method Specimen Factors Reponse(s) R2 
Number of 
experiments 

Year Ref. 

CCD concrete crumb rubber, metakaolin Fc, water absorption, unit weight Fc=0.9703, water 
absorption=0.8751, 
unit weight=0.8321 

9 2016 [83] 

CCD SCC W/B ratio, cement, Vfa, FA, SP fluidity, Fc, cost fluidity=0.9604, 
Fc=0.9547, cost=1 

52 2016 [84] 

CCD UHPC SF, SP, fibre, cement, W/B flexural toughness flexural 
toughness=0.85 

45 2016 [34] 

simplex lattice 
design 

geopolymer mortar FA, GBFS binder, curing time, curing temperature, Fc  7/14 2017 [40] 

simplex lattice 
design 

UHPC cement, SF, QP, quartz sand fluidity, Fc, air void slump=0.99, Fc=0.99, 
air void=0.80 

10 2017 [44] 

CCF eco-friendly UHPC micro-coral sand, coral sand Fc 0.97 10 2017 [30] 

CCD SCC W/B, marble powder-cement ratio fluidity, Fc  33 2017 [85] 

CCF mortar clinker, FA, debit grinding agent Fc 0.98 15 2017 [86] 

CCD warm mix asphalt compaction temperature, test 
temperature 

adhesion failure, direct tensile strength, fracture 
energy, broken aggregate 

 11/22 2017 [87] 

CCD high-strength SCC W/B, cement, FA, SP, Vfa Fc, fluidity, cost Fc=0.955, 
fluidity=0.960, cost=1 

52 2017 [88] 

CCF UHPC QP, quartz sand, water curing Fc, Ft Fc=0.984, Ft=0.830 16 2017 [32] 

CCD UHPC SF, sand, ultra-fine fly ash fluidity, Fc slump=0.9596, 
fc=0.9568 

28 2017 [31] 

simplex centroid 
design 

low carbon cementitious 
material 

cement, mineral admixture, hydrated 
lime 

fluidity, Fc, hydration heat, porosity, 
non-evaporable water 

 7 2018 [89] 

simplex centroid 
design 

alkali-activated concrete gravel, sand bulk density  7 2018 [39] 

simplex centroid 
design 

concrete Vca, Vfa, paste, cement, FA, slag rheology, Fc  16 2018 [38] 

BBD grout material cement, FA, microsilica, metakaolin fluidity, Fc, Ft, shrinkage slump=0.9647, 
Fc=0.9810, Ft=0.7966, 
shrinkage=0.8053 

16 2018 [90] 

BBD  foamed concrete cement, foam Fc, dry density, cost  15 2018 [91] 
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RSM method Specimen Factors Reponse(s) R2 
Number of 
experiments 

Year Ref. 

simplex centroid 
design 

SCC SP, stone powder, gravel, sand, cement fluidity, Fc  42 2018 [92] 

CCD geopolymeric binder modulus of sodium silicate, liquid, 
mineral admixture 

Fc 0.9736 15 2018 [27] 

CCD alkali-activated slag 
mortar 

Na2O, glass powder Fc, Ft Fc=0.9678, Ft=0.9754 13 2018 [26] 

CCD geopolymer composite NaOH molarity, Na2SiO3, curing 
temperature 

Fc, elastic modulus, Ft, flexural toughness, 
ductility index, tensile first crack strength, 
ultimate tensile strength, tensile strain capacity 

Fc=0.9951, elastic 
modulus=0.9977, 
Ft=0.9924, flexural 
toughness=0.9837, 
ductility 
index=0.9731, tensile 
first crack 
strength=0.9876, 
ultimate tensile 
strength=0.9791, 
tensile strain 
capacity=0.9850 

20 2018 [25] 

CCD rubbercrete mixture W/B ratio, crumb rubber fluidity, unit weight, void, Fc  45 2018 [20] 

CCD self-consolidating mortar SF, slag, SP, W/B ratio fluidity, Fc, segregation slump=0.9589, 
Fc=0.8561, 
segregation=0.8141 

30 2018 [93] 

CCD normal concrete two types of plastic waste aggregate fluidity, Fc slump=0.8198, 
Fc=0.9750 

13 2018 [94] 

CCF polymer 
nanocomposite-modified 
asphalt 

nanosilica additive, temperature complex modulus, phase angle, viscosity complex 
modulus=0.9995, 
phase angle=0.9989, 
viscosity=0.9995 

13 2019 [95] 

Full factorial 
design 

SCC cement, FA, W/B, SP fluidity, Fc slump=0.9319, 
Fc=0.9343 

18 2019 [51] 

CCD recycled concrete 
aggregate 

cement, slump, recycled coarse 
aggregate 

Fc 0.9881 17 2019 [96] 

CCD geopolymer sisal fibre, activator, curing time Fc, toughness, modulus of elasticity  18 2019 [24] 
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RSM method Specimen Factors Reponse(s) R2 
Number of 
experiments 

Year Ref. 

CCRD fibre reinforced concrete  aspect ratio, cement, W/B ratio fluidity, Fc, Ft, split tensile strength, water 
absorption 

slump=0.98, Fc=0.95, 
Ft=0.98, split tensile 
strength=0.93, water 
absorption=0.8640 

20 2019 [97] 

CCF alkali-activated paste slag, anhydrous sodium metasilicate 
activator 

Fc, Ft, water absorption Fc=0.9856, Ft=0.9913, 
water 
absorption=0.8994 

15 2019 [23] 

CCD geopolymer concrete Vfa, FA, waste foundry sand Fc 0.99 14 2019 [22] 

CCD UHPC porous aggregate, shrinkage reducing 
admixture 

autogenous shrinkage 0.9296 11 2019 [29] 

CCF UHPC nano-silica, waste glass powder fluidity, Fc, drying shrinkage slump=0.93, Fc=0.98, 
drying shrinkage=0.96 

10 2019 [33] 

CCD eco-efficient SCC limestone powder, FA, SP fluidity, Fc slump=0.9679, 
Fc=0.9695 

20 2019 [98] 

BBD pervious concrete aggregate size bulk density, apparent density, void  24 2020 [99] 

BBD blended paste cement, SF, FA, QP fluidity, rheology, hydration heat, Fc, drying 
shrinkage 

slump=0.9613, 
rheology=0.9818, 
hydration heat=0.9975, 
Fc=0.9955, drying 
shrinkage=0.9459 

16 2020 [5] 

CCF concrete manufactured sand, metakaolin, waste 
paper sludge ash 

Fc, permeability coefficient, sorptivity permeability 
coefficient=0.9745,  

17 2020 [100] 

CCD cementitious composites cement, curing time Fc 0.97 14 2020 [101] 

CCD strain-hardening UHPC W/B ratio, SCM, distribution modulus fluidity, rheology, Fc, fracture toughness  20/60 2020 [28] 

CCD geopolymer mortar molarity, binder, sodium silicate to 
sodium hydroxide ratio 

Fc, drying shrinkage Fc=0.9063, drying 
shrinkage=0.9296 

27 2020 [102] 

Note: * two groups, 11 mixtures for each one. 481 

 482 
 483 
 484 
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Highlights 

� Applications of statistical experimental optimization of cement-based materials 

are reviewed 

� The characteristics of the applications of mixture optimization are summarized in 

table 

� A critical discussion of mixture optimization and sustainable concrete application 

is presented 
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