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A B S T R A C T   

The malware detection methods are classified into two categories, namely, dynamic analysis 
(active analysis) and static analysis (passive analysis). These methods undergo unusual obstruc
tion, and challenges that are process complexity, limitation over detection accuracy. The static 
method serves to discover malicious applications using various parameters like permission 
analysis, signature verification. It can be regularly obfuscated. Dynamic techniques entail 
investigating the performance of an application by administering it in a restricted environment. 
The complex version of a portable executable often emerges with an intervention by hardening 
the dynamic analysis centric malware detection methods. The various constraints of these dy
namic and static models contribute to this manuscript represents a Multi-Level Malware detection 
using Triad Scale (MLMTS) built on regression coefficients. The proposed method MLMTS spans 
into three levels, such that the first and second level performs static analysis, and the third level 
performs the dynamic analysis. The second and third levels of the hierarchy invoke upon the 
ambiguous decision of their respective predecessor level. The proposed work is based on the 
Machine Learning (ML) model that determines the triad scale by applying linear regression for 
each level of malware detection. The call sequences of the portable executable, arguments passed 
to these call sequences and their fallouts (resultant values) in respective order of three levels of 
the MLMTS method. The experimental study manifests the significance of the proposal compared 
to the other recent malware detection methods.   

1. Introduction 

The malicious software that is often termed as malware intends to infiltrate, infect, or intrude the cryptographic verification of the 
owner in the computer system. According to contemporary statistics [1], an average of 400 million malware models is recognized per 
annum. Currently, the malware family has boosted through the software modules engineered by incredible software skills [2]. The 
attacks can anonymize the source of the attack [2] and considerably succeeds in hacking the potential industrial structures known as 
the Stuxnet [3]. Anonymized sources are significant challenges to contemporary malware detection strategies. Extensive utilization of 
computer-networks is vulnerable to potential malware attacks. The dynamic network connectivity exposes the vulnerabilities of the 
corresponding network, which entertains the attackers to exploit these vulnerabilities to inject the malware into the respective system. 
The Intel organization has estimated the impact of malware in terms of loss of revenue as above 400 billion (USD 400 * 109) dollars 
worldwide per annum [1]. These statistics concreting the need for potential malware detect and defense mechanisms. 

The malware detection by static analysis intends to determine the malware scope of the file structure. The static analysis detects 
malware by exploring the call sequences and byte sequences of the given portable executable (PE). The static analysis compares the call 
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sequences and byte sequences of the given PE, which represents the malware samples [4] using the statistical methods. The contextual 
factors of the target domain have often influenced the other inputs such as data-flow, dependent executables, data, and control flows to 
compare with malware samples. These static methods can explore the overall execution path without process overhead. However, the 
static analysis methods of malware detection are often abandoning due to obfuscation notions of call identities, binary structures, and 
also denies exploring the execution path of the given PE. Dynamic analysis detects the malware by executing the given PE in a virtual 
environment, which aids to track the events, data flow, and in-built memory. The behavior of these data flows and events are further 
used to determine malware behavior. However, the dynamic analysis methods often exhibit the processing overhead as NP-hard [4]. 
Hence, these dynamic analysis methods have considered as the counterpart of static analysis methods, which can enhance the malware 
detection accuracy [4]. During the runtime, the behavioral log of the PE manifests the resources and limits to detect only malware 
having a behavioral flow. Hence, it might need inputs to be stimulated for exploring the overall segments of code. One of the 
time-consuming factors is the challenges encountered to execute the program in a controlled area within the stipulated time. Moreover, 
some contemporary malware categories can identify the virtual environment and hibernate the malevolent intent of the corresponding 
PE [5] as a countermeasure to malware detection by dynamic analysis. 

However, dynamic analysis of malware detection exhibits low-level mutation strategies like obfuscation or packing of runtime, 
which could not influence behavioral attributes as significant benefits. Besides, malware detection by dynamic analysis can provide 
actual information regarding data-flow and control. Hence, dynamic models are often prioritized for implementing the static-analysis 
in malware identification. 

Malware detection by static analysis performs without actually running the program [5]. The opcode sequences (extracted by 
disassembling the binary) control flow graphs extracted from the given PE are used as inputs by these static analysis measures [6]. 

The malware detection methods of both static and dynamic analysis categories have advantages and disadvantages. The static 
analysis does not implement executable programs, so its main advantage over its dynamic counterpart is free from implementation 
costs. However, static analysis suffers from a lack of support for filled symbols and restrictions related to sophisticated obfuscation. 
Compared to static analysis, dynamic analysis can effectively scan packaged malware as it unpacks during execution, and its original 
code shall load into the main memory. However, the consumption of time and resources is an obvious drawback since malware samples 
have to be analyzed successively in reality. Consequently, these shortcomings limit its adoption in business analysis applications. 

According to the above-mentioned malware-detection statistics, it is observed that there is an opportunity for the research to derive 
new malware detection strategies. The proposed work explores the usage of machine learning techniques in malware detection. 

The organization of the manuscript is as follows. Section 2 examines the related research about malware detection strategies. 
Section 3 contains a detailed explanation of the methods and materials of the proposed machine learning-based malware detection 
model. Sections 4 and 5 explored the experimental study and conclusions of the findings in the respective order. 

2. Related research 

One of the evolving research topics is the selection of optimal features for malware detection using machine learning. The works [7, 
8] have presented supervised learning approaches to perform malware detection using static features. The contemporary contribution 
[7] has considered the APIs, DLLs (Dynamic Link Libraries), and header feature of PE frequencies. The other contribution [8] has 
considered the statistics of the Opcode frequency of examined PE-files as features. The optimal feature selection methods such as 
“Information gain” and “hybrid filter-wrapper technique” are used by these two contributions [7,8] in respective order. 

The work [9] has presented a method that segregates the assembly program into small features and produces CFGs set in respective 
to distinct program functions. The work [10] has shown a disassembled dataset and generated CFGs, which illustrates the flow of code 
segments. The methods described in both of these contributions [9,10] considering the selected features as feature-vector and assessing 
the cosine similarity measures of the corresponding feature-vector. 

As stated, the static models could not quickly identify malware that utilizes evasion methods. Moreover, adding some of the false 
API-calls in the executable header might defuse the malware detection ability of these static analysis methods. Hence, the dynamic 
analysis could be required as a complement for the static methods [5]. 

Some of the dynamic methods are using the API-calls and respective properties to learn the behavior of the given PE. The work [11] 
presented an approach that discovers the behavior of the given sample by using 2-gram features listed from system calls and their 
arguments. Here, they detect new malware classes with the same behavior as unknown malware. The work [12] has utilized 4-gram 
features for modeling the sequences of API-call. Further, this method [12] estimates the average confidence of these 4-grams to 
categorize the new samples as malware or benign. The contribution [13] has concentrated on memory and register values in the form 
of a semantic group and then used in the way of 3-gram input to perform NB classification. 

The other contemporary static analysis methods are utilizing the memory dump visuals of executable raw files to explore the 
malware features using data mining. The other contemporary contribution [14] proposed a K-Nearest-Neighbor (KNN) based classi
fication strategy applied to the wavelet transformation of the image portrayed from the binary executables loaded into memory. The 
other contemporary model [15] has applied a deep learning approach on gray images of the binary executables. However, the major 
shuffle in the sequence of calls often portrays the new signature of the grayscale images from the binary executables. However, the 
major sequence calls are reorganized frequently to identify the new signature of the grayscale images, which tends to load the binary 
executables into the memory. 

The contemporary model [16] portrayed a mining method that extracts the features from call sequences related to the behavioral 
context. However, the technique fails to track the features if obfuscation is applied to the executables. The contemporary method 
Droidcat [17] has determined a technique for extracting the context-related features from the call sequences of the obfuscated binary 
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executables. The significance of these methods is uncertain about detecting the zeroth day binary executable. For each dynamic 
feature, the set of four static features has been considered as a set to generate the hash value as signature [18]. The diversity of the 
features has limited the performance of this method. 

The studies on dynamic malware detection have attracted extensive attention [19–21]. These methods often rely on the flow of the 
call graphs and the execution sequence of the API calls as dynamic features to denote the behavior. These methods are evincing the 
process complexity, and computational overhead as the call sequence extraction is prominent and straightforward to identify the scope 
of malware behavior. The detection of malware includes individual functionality and comparatively intricate for providing appro
priate countermeasures are known as an analog attack. The other malware detection strategy [22] is considering the credibility of the 
dynamically loaded linked libraries and the weightage (frequency) of the calls to system-level operations from the portable executables 
in respective order. The other contemporary model [23] has adopted a method that categorizes the binary executables as trojans, 
benign, viruses, and worms. This method primarily processes the input dataset through data normalizing, and later it predicts lower 
and upper boundaries of the features. Further, it discovers the set of rules based on the pattern matching procedure. 

The review of contemporary models has addressed the significant scope to define malware prediction strategies using API calls, and 
input arguments passed to these API calls and their returned values. The majority of the models have relied on either graph flows, n- 
gram features of control/data among appealed API-calls, or the information of strings to characterize the behavior of binaries. Each of 
these approaches has benefits and limitations. For instance, some models that rely on similarities among graphs often exhibit con
straints such as memory space and time-consuming. Moreover, the graph-mining methods are complex, since their process complexity 
is often noticed as NP-complete. The other category of methods is using features or data tuples to depict the malware. These methods 
are not competent to extend the set of usage in features or data tuples. Unlike these contemporary models, the method “Robust features 
to detect Malicious activity based on API calls, their Arguments and Return values (MAAR)” [24] introduced a novel model to generate 
features that are independent of the dataset. The model “MAAR” produces a small group of robust features based on the integration of 
return values and arguments. 

A Machine Learning Approach to Predict Advanced Malware (MLAPAM)” [25] and “A Multi-Dimensional Machine Learning 
Approach (MDMLA) to Predict Advanced malware” [26] are two contemporary malware detection methods. These methods are using 
distinctive factors of advanced malware as features in the training phase. The advanced malware combines multiple code blocks 
developed in different languages, applying cryptography and performing obfuscation. The distinct properties explored by advanced 
malware such as Stuxnet [3], which compares the traditional malware with the features of other malware to define a rule dictionary 
through the learning phase of the machine-learning approach. The contributions [25,26] have explored new features and derived 
correlation between these distinguishing features. However, the complexities and constraints observed under malware categories 
remain the same. 

The critical constraints of these contemporary contributions stated in the above description are the poor specificity and sensitivity 
towards the identification of the zeroth day attack and malware defined under lessons learned from the contemporary malware defense 
and detection methods. The severe false alarming often appeared in the advanced malware detection are derived by the combination of 
code developed in several languages, which are encrypted or obfuscated. Besides that, the impact of newly defined malware weakens 
the dictionary of rules derived from signatures stated and recommended for malware detection [26]. Concerning this, a novel malware 
detection strategy that uses regression coefficients as a triad scale for malware detection is proposed in this manuscript. The proposed 
method is centric to the correlation between all modes of input parameters (call sequences, arguments, and fallouts), which intends to 
boost the sensitivity, specificity, and detection accuracy of the new malware (zero-day attacks, malware critically differs with existing 
malware’s architecture). The proposed model MLMTS derives a scale from the correlation of call sequences, arguments, and fallouts 
together lead to the improvement in the specificity, sensitivity, and accuracy with minimal false alarms towards malware detection. 

3. Methods and materials 

The contribution of this manuscript is hybridizing both formats of static and dynamic analysis properties. The proposed method, 
“Multi-Level Malware detection using Triad Scale (MLMTS)” uses the call sequences, arguments, and fallouts [24] as features. The 
usage of these features in hierarchical order intends to depict the zero-day attacks and exhibit the features extracted on the dataset 
possessing the discerning capability. A test-set is utilized to justify the proposal that comprises novel families and variants of malware. 
MLMTS generates the feature-sets, which combine the call sequences, input arguments, or/and their corresponding return values 
during runtime. The results exhibit that the proposed model of multi-level linear regression that portrayed a triad scale using projected 
features for each level is significant than the contemporary models concerning minimal false alarming, maximal accuracy of malware 
detection with minimal process overhead. 

This proposed model is a regression centric specification scale to estimate the call sequences of any portable executable is prone to 
malevolent or benevolent. The static malware detection methods usually consider the call sequences (the sequence of function calls) of 
the portable executables (PEs). In contrast, the dynamic methods rely on the execution flow discovered by executing the suspected PEs 
in a virtual place isolated from the system environment. However, the call sequences centric malware detection methods often are 
unsuccessful due to the obfuscation version of the calls or new calls involved in a sequence. Nevertheless, dynamic methods are 
critically infeasible and complexed in terms of execution and detection. Hence, the proposal of this manuscript utilizes the arguments 
and fallouts (outcomes of the call in a sequence observed from Portable Executable). The triad-scale is defined from the n-gram call 
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sequences, n-gram arguments of each call sequence, and n-gram fallouts of each call sequence of dynamic size range from 1 to n. The 
block diagram of MLMTS is shown in Fig. 1, and standard and nonstandard acronyms used in the further description have also listed in 
Table 1. 

The overall contribution is a machine learning approach, which contains the training and labels prediction phases. The training 
process has carried in a sequence of tasks listed as  

(i) Preprocessing that removes the unqualified records from the corpus of labelled records given for the training phase of the 
proposal  

(ii) Finding n-gram patterns of the call sequences, which are the sequence of portable executables, exists in one or more of the 
records labelled either positive or negative.  

(iii) Finding the argument patterns of each n-gram call sequence pattern, which are the sequence of portable executables, exists in 
one or more of the records labelled either positive or negative.  

(iv) Finding the fallout patterns of each n-gram call sequence pattern, which are the sequence of portable executables, exists in one 
or more of the records labelled either positive or negative.  

(v) Optimizing the n-gram patterns of call sequences, which are the call sequences having a high correlation with only label positive 
or negative. 

Fig. 1. Block diagram representation of MLMTS.  
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(vi) Optimizing the argument patterns of respective n-gram call sequence patterns is the call sequences having a high correlation 
with only label positive or negative.  

(vii) Optimizing the fallout patterns of the respective call sequence patterns is the call sequences having a high correlation with only 
label positive or negative.  

(viii) Built the specification scale for both labels using the optimal call sequence patterns, argument patterns, and fallout patterns 

The label prediction process also referred to as the testing phase, carried in multiple phases listed as,  

(i) For each unlabeled record, find the all possible call sequence patterns of diversified size  
(ii) For each unlabeled record, find the argument patterns of diversified size  

(iii) For each unlabeled record, find fallout patterns of diversified size  
(iv) For each unlabeled record, perform the predictive analysis by using the triad scales built from the correlation of the (i) n-gram 

call sequence patterns, (ii) n-gram argument patterns, (iii), and n-gram fallout patterns in respective order. 

The following sections reveal the methodology used in each of the phases described above related to training and label prediction of 
machine learning. The list of notations used in the mathematical model are listed in the following table (see Table 2). 

3.1. Preprocessing 

This phase discards the portable executables that are not engaged either of the labels positive (malware), negative (benign) in the 
given training corpus. Further explores the call sequencesCS, argument sequencesAS, and fallout sequencesFSof each malicious 
portable executable (PE) of the given training corpus. The call sequence{r∃r ∈ CS}represents the functions stacked in corresponding PE 
shall execute in the corresponding sequence. An argument sequence{ar∃ar ∈ AS}of the PE represents the arguments in stacked order, 
which have passed to each function in the call sequence of the respective PE. Similarly, it derives the fallouts sequence{fo∃fo ∈ FS} of 
each PE of the given corpus. A fallout sequence represents the return values of the functions that appeared in the call sequence of the 
respective PE. 

Table 1 
List of standard and nonstandard acronyms used.  

PE Portable Executable 

DLLs Dynamic Link Libraries 
IG Information Gain 
CFG Control Flow Graph 
MLMTS Machine Learning-based malware detection using Triad Scale 
MAAR Malicious activity based on API calls, their Arguments and Return 
MLAPAM Machine Learning Approach to Predict Advanced malware 
MDMLA Multi-Dimensional Machine Learning Approach 
MCC Matthews’s correlation coefficient  

Table 2 
List of notations used and respective descriptions.  

CS Call Sequences 
AS Argument Sequences 
FS Fallout Sequences 
nS N-Gram Sequences 
P+, P− Positive and Negative Records 
′i′ Index 
np N-Gram Pattern 
snp
+ Support 

vi
+

Vector 

csp Call Sequence Pattern 
pτ, Probability Threshold 
onP Optimal N-Gram Features 
arP Argument Patterns 
foP Fallout Patterns 
|r| Record-Size 
csc+ Confidence 

sscsP
+

Specification Scale  
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3.2. Optimizing the n-gram patterns 

Sets arC+,arC− from the setAS, and the setsfoC+, foC from the setFS.  
Optimizing-N-gram-Patterns(nS, P+, P− )Begin // member function that performs n-gram feature optimization, which receives n-gram sequencesnSand respective positive and negative records as the 

setsP+, P−

Let an index′i′ is initialized to 1 
For each index{i∃i = 1, 2, ..., n}, Begin // having a value in the range of minimum pattern size1to max pattern sizen 

Extract i-gram call sequence patterns from the setnSas a setnPi 
For eachi-gram sequence pattern{np∃np ∈ nPi∧|np|≅i}Begin // Find the support of the n-gram patternnpconcerning the label positive, which is as follows 
snp
+ = (

∑|P+|

j=1 {1∃np⊆r ∧ r ∈ P+})*(|P+|)
− 1// this denotes the ratio of source records having the n-gram patternnpas subset against the total number of call 

sequences labelled as positive and listed in the setP+.  
Move the supportsnp

+ to a vectorvi
+

Similarly, find the support of the call sequence patterncspregarding the label negative, which is as follows 
snp
− = (

∑|P− |

j=1 {1∃np⊆rj ∧ rj ∈ P− })*(|P− |)
− 1// this denotes the ratio of call sequences having the call sequence patternnpas subset against the total number of 

call sequences labelled as negative and listed in the setP− .  
Then move the supportsnp

− to a vectorvi
−

End 
Further, scale the variance between the vectors vi

+ , vi
− using a competent distribution diversity assessment method called dual tailed t-test [27] (see 

Section3.3).  
If the t-score and p-value [27] observed from the dual tailed t-test has used further to estimate the optimality of thei − gramcall sequence patterns as follows. 
The resultant p-value is greater than the given probability thresholdpτ; the i − grampatterns are optimal and move thesei − grampatterns to the 

setonPrepresenting the resultant optimal n-gram features. 
The process explored in previously mentioned statements executes for each index′i′value range from 1 to n. 

Return the optimal n-gram features as a setonP 
End 

End // of the Optimizing-N-gram-Patterns(nS, P+, P− )  

3.3. T-Test for distribution diversity estimation 

The distribution diversity has taken as a parameter to estimate the optimality of the features listed as n-gram call sequence pat
ternscsP, n-gram argument patternsarP, and n-gram fallout patternsfoPtowards the labels positive and negative. The detailed explo
ration of the optimal feature selection is described in the section above (Section3.2). The t-test is adapted to estimate the distribution 
diversity of the features towards positive and negative labels. This section delineates the method of performing the t-test to identify 
distribution diversity. From the contribution [27], the scheme that evaluates the distribution diversity known as the t-test is used for 
selecting the optimal features relevant to both labels. Here, the t-test is included for selecting the optimal-features associated with both 
the positive and negative records of the corpusCS. 

The diversity between any two distinct vectors can depict using T-score as, 

vstdev
+ =

(
∑|v+|

i=1
(xi − 〈v+〉)2

)

*(|v+| − 1)− 1

vstdev
− =

(
∑|v− |

j=1

(
xj − 〈v− 〉

)2

)

*(|v− | − 1)− 1

t stdev =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

vstdev
+ + vstdev

−

√

t − score = (〈v+〉 − 〈v− 〉)*(t stdev)− 1

(1) 

In (Eq (1)), the notations〈v+〉, 〈v− 〉entails the mean of the respective vectors v+, v−
The notationsxi,xjrefer to the entries of the vectors in sequence from the index 1 to vector sizes |v+|, |v− |represented by i, jin 

respective order. 
Finds the ratio of the absolute difference of the means〈v+〉 − 〈v− 〉against the aggregate of the standard deviations of corresponding 

vectorsv+, v− . 
Then compute p-value [27] (degree-of probability) in the t-table [27] for attained t-score. Here, the p-value, which is lower than the 

probability thresholdpτ, signifies that both the vectors are different; therefore, the patterns represented by the entries of the corre
sponding vectors has said to be optimal-feature. 

3.4. Optimizing call sequence n-grams 

For each call sequence{r∃r ∈ CS}of the setCS, find all possible call sequence patterns of size 1 to record-size|r|. Move all possible call 
sequence patterns of count(|r| + 1)*(|r|)*2− 1discovered from the record{r∃r ∈ CS}to the setcsP. The setCShas to partition into two sets 
such that one represents all the records of the set having a positive label, and the other set represents the records of the negative label. 
This phase discovers the setsCS+,CS− form the setCS. Further, invokes the member function Optimizing_N-gram_Patterns(csP, CS+,CS− ) 
that returns optimal call sequence patterns, which has been received asocsP 
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3.5. Optimizing the argument patterns 

Prepare a corpusarCthat contains the set of records as follows. Each record{ar∃ar ∈ arC}of the set shall contain the sequence of 
arguments, which have passed to the sequence of calls in the record{r∃r ∈ CS}of the corpusCSand entails the label assigned to the 
corresponding call sequence record{r∃r ∈ CS}. Further, partition the corpusarC into two setsarC+, and arC− , such that the 
setarC+contains the records that exist in the corpusarCand having the label positive. The other setarC− contains the records of the 
corpusarCthat are having label negative. Each record{ar∃ar ∈ arC} of the setarCwith indexirepresents the arguments passed to the call 
sequence of the record{r∃r ∈ CS}with indexiin the corpusCS. The similar process stated in the above section (Section3.4) has been used 
to list the total(|ar| + 1)*(|ar|)*2− 1number of argument sequence patterns from each argument sequence{ar∃ar ∈ AS}as a setarP. 
Further, invoke the function called “Optimizing_N-gram_Patterns(arP, arC+,arC− )” (see Section3.2) that returns optimal call sequence 
patterns, which has been received as a setoarP. 

3.6. Optimizing the fallout patterns 

The process that follows to list the fallout sequence patterns is very much similar to listing argument sequences, which discovers(| 
fo| + 1)*(|fo|)*2− 1several patterns from each fallout sequence{fo∃fo ∈ FS}. Further, list the fallout sequence patterns as a setfoP. 
Prepare the corpusfoCthat contains a set of records, such that each record{fr∃fr ∈ foC}contains the sequence of fallouts (returning 
arguments), resulting from the sequence of calls that exist in the record{r∃r ∈ CS}of the corpusCSand entails the label assigned to the 
corresponding call sequence record{r∃r ∈ CS}. Each record{fr∃fr ∈ foC}of the setfoCwith index′i′represents the fallouts exhibited by the 
call sequence of the record{r∃r ∈ CS}with index′i′ in the corpusCS. 

Further, partition the corpusfoCinto two setsfoC+, and foC− , such that the setfoC+contains the records that exist in the cor
pusfoCand having the label positive. The other setfoC− contains the records of the corpusfoCthat are having label negative. Further, a 
similar version of optimal pattern selection has adapted that invokes “Optimizing_N-gram_Patterns(foP, foC+,foC− )” (see Section3.2) 
that returns optimal n-gram patterns, which has to receive as a setofoP. 

3.7. Triad scale by regression coefficients 

This section delivers the regression coefficients for diversified features listed optimal n-gram patterns, which have been discovered 
from their empirical probabilities of the n-gram patterns.  

Find-Regression-Coefficients(nP)begin// the function that discovers regression coefficients of the feature formats 
ss = (

∑|nP|
j=1{s(npj)∃npj ∈ nP})*|nP|− 1// Find the mean of the empirical probabilities of the optimal n-gram patterns as the regression coefficient  

ssd = (
∑|nP|

j=1{

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ss − s(npj))
2

√

∃npj ∈ nP})*|nP|− 1// Finding the root mean square distance (mean deviation) of the empirical probability of the optimal n-gram 
patterns  

ssl = ss − ssd// the absolute distance of the empirical probability and respective mean deviation is the lower bound of the regression coefficient 
ssu = ss + ssd// the aggregate of the empirical probability and respective mean deviation is the upper bound of the regression coefficient 
Return (ss, ssl, ssu)// returns the regression coefficient, respective lower and upper bounds as triad scale 

End // of Find-Regression-Coefficients(nP)  

3.7.1. Triad scale of the call sequence patterns 
The regression coefficients of the call sequence patternscsP+ have derived by invoking the function Find-Regression-Coefficients 

(csP+), which returns the regression coefficients(sscsP
+ , sslcsP+ , ssucsP

+ )as triad scale of the call sequence patterns of the positive label. 
Similarly, the triad scale(sscsP

− , sslcsP− , ssucsP
− )of the call sequence patterns for the negative label has to estimate by invoking the function 

Find-Regression-Coefficients(csP− ), 

3.7.2. Triad scale of the argument patterns 
The setarP+argument patterns of the positive label have to pass as an input parameter of the function Find-Regression-Coefficients 

(arP+)that return a set of regression coefficients(ssarP
+ , sslarP

+ , ssuarP
+ )as a triad scale. Similarly, the triad scale(ssarP

− , sslarP
− , ssuarP

− )of the 
argument patterns for the negative label has to be estimated by invoking the function Find-Regression-Coefficients(arP+)with argu
ment sequence patternsarP− of the negative label as an input parameter. 

3.7.3. Triad scale of the fallout patterns 
The regression coefficients(ssfoP

+ , sslfoP
+ , ssufoP

+ )of the fallout patterns of the positive label as triad scale have to receive from the 
function Find-Regression-Coefficients(foP+), which has to invoke through the set of argument patternsarP+of the positive label. The 
triad scale (ssfoP

− , sslfoP
− , ssufoP

− )of the fallout patterns of the negative label has emerged as the return set of the function Find-Regression- 
Coefficients(arP− ), which has to invoke through the fallout patterns of the setfoP− as an input parameter. 

3.8. Label prediction 

For a given unlabeled call sequencerof the sizem extracted from portable executable, derive all possible call sequence patterns. The 
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total number of patterns discovered from the call sequencer ism*(m + 1)*2− 1which have buffered into the setcsPT. Further, extract the 
arguments passed to the calls in the given call sequence recordrand prepare a recordarTexhibiting these arguments in the sequence of 
calls of the given record. Similarly, define a recordfoT that represents the calls’ fallouts in the sequence of the given recordr. The 
sequence of fallouts in foT represents the sequence of the calls in the recordr. 

Further, discover the possible argument patterns from the recordarTand list them in a setarPT. The total number of argument 
patternsp has to estimate asp = |arT|*(|arT| + 1)*2− 1. Similarly, portray the possible patterns of the fallouts from the record foTas a 
setfoPTof sizeq = |foT|*(|foT| + 1)*2− 1. 

Discover the call sequence patterns that are common in both the sets csP, and csPTas a setccsp. Then find the positive and 
negative confidence of the call sequence patterns listed in the setccspas follows Eq (2), 3, (4). 

ccsp = csP ∩ csPT (2) 

// discover the call sequence patterns those are common in both the sets csP, and csPTas a setccsp 

csc+ =

(
∑|ccsp|

i=1

{
scspi
+ ∃cspi ∈ ccsp

}
)

*m− 1 (3) 

// Find the call sequence confidence for a positive label, which is the ratio of empirical probabilities of the respective call sequences 
obtained from the records labelled as positive of the training corpus 

csc− =

(
∑|ccsp|

i=1

{
scspi
− ∃cspi ∈ ccsp

}
)

*m− 1 (4) 

// Find the call sequence confidence for a negative label, which is the ratio of empirical probabilities of the respective call se
quences obtained from the records labelled as negative of the training corpus. 

Similarly, find the positive and negative confidence of the argument patterns and fallout patterns listed in the setsarPT, foPT Eq 
(5), 6, (7). 

carp = arPT ∩ arP (5) 

Find the patterns common in both setsarPT, arP 

arc+ =

(
∑|carp|

i=1

{
sarpi
+ ∃arpi ∈ carp

}
)

*p− 1 (6) 

Find the arguments confidence for a positive label, which is the ratio of empirical probabilities of the respective argument patterns 
obtained from the records labelled as positive of the training corpus. 

arc− =

(
∑|carp|

i=1

{
sarpi
− ∃arpi ∈ carp

}
)

*p− 1 (7) 

Find the arguments confidence for the negative label, which is the ratio of empirical probabilities of the respective argument 
patterns obtained from the records labelled as negative of the training corpus. 

Further phase finds the positive and negative confidence of the fallout patterns as follows in Eq (8), 9, (10). 

cfop = foPT ∩ foP (8) 

Find the patterns common in both sets foPT, foP 

foc+ =

(
∑|cfop|

i=1

{
sfopi
+ ∃fopi ∈ cfop

}
)

*q− 1 (9) 

Find the fallout confidence for the positive label, which is the ratio of empirical probabilities of the respective fallout patterns 
obtained from the records labelled as positive of the training corpus. 

foc− =

(
∑|cfop|

i=1

{
sfopi
− ∃fopi ∈ cfop

}
)

*q− 1 (10) 

Find the fallout confidence for the negative label, which is the ratio of empirical probabilities of the respective fallout patterns 
obtained from the records labelled as negative of the training corpus. 

Further, these confidence metrics has to correlate with identifying the label, which is as follows  

1 Label the given test record as positive regarding call sequence specification scales, if the  
a csc+ ≥ ssucsP

+ // Positive confidencecsc+of the call sequences of the given test record is greater than the upper bound of the 
specification scalessucsP

+ (see Section3.7.1) of the call sequencescsPfor the positive label. 
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b csc+ ≥ sscsP
+ &&csc− < sscsP

− // Positive confidencecsc+of the call sequences of the given test record is greater than the specification 
scalesscsP

+ of the call sequence patterns for a positive label, and negative confidencecsc− of the call sequences of the given test 
record is less than the specification scalesscsP

− of the call sequences for the negative label.  
c csc+ ≥ sslcsP+ &&csc− < sslcsP− // Positive confidencecsc+of the call sequences of the given test record is greater than or equal to the 

specification scale lower-boundsslcsP+ of the call sequence patterns for the positive label. And negative confidencecsc− of the call 
sequences of the given test record is less than the lower-bound of the specification scalesslcsP− of the call sequences for the negative 
label.  

2 Label the given test record as positive regarding argument specification scales, if the  
a arc+ ≥ ssuarP

+ // Positive confidencearc+of the argument patterns of the given test record is greater than the upper bound of the 
specification scalessuarP

+ of the argument patterns for the positive label (see Section3.7.2).  
b arc+ ≥ ssarP

+ &&arc− < ssarP
− // Positive confidencearc+of the argument patterns of the given test record is greater than the 

specification scalessarP
+ of the argument patterns for the positive label, and negative confidencearc− of the argument patterns of the 

given test record is less than the specification scale of the argument patterns for the negative label.  
c // Positive confidence of the argument patterns of the given test record is greater than or equal to the specification scale lower- 

bound of the argument patterns for the positive label. And negative confidence of the argument patterns of the given test record is 
less than the lower-bound of the specification scale of the argument patterns for the negative label.  

3 Label the given test record as positive regarding fallout specification scales, if the  
a // Positive confidence of the fallout patterns of the given test record is greater than the upper bound of the specification scale of 

the fallout patterns for the positive label (see Section3.7.3).  
b // Positive confidence of the fallout patterns of the given test record is greater than the specification scale of the fallout patterns 

for the positive label, and negative confidence of the fallout patterns of the given test record is less than the specification scale of 
the fallout patterns for the negative label.  

c // Positive confidence of the fallout patterns of the given test record is greater than or equal to the specification scale lower- 
bound of the fallout patterns for the positive label. And negative confidence of the fallout patterns of the given test record is 
less than the lower-bound of the specification scale of the fallout patterns for the negative label.  

4 Label the given test record as negative regarding call sequence specification scales, if the  
a Positive confidence of the call sequences of the given test record is less than the specification scale of the call sequences for the 

positive label, and the negative confidence (of the call sequences of the test record) is greater than the upper bound of the 
specification scale of the call sequences (see Section3.7.2).  

b Positive confidence of the call sequences of the given test record is less than the lower-bound of the specification scale of the call 
sequences for a positive label. And the negative confidence (of the call sequences of the test record) is greater than the speci
fication scale (of the call sequences) for the negative label (see Section3.7.2).  

5 Label the given test record as negative concerning argument specification scales, if the,  
a // Positive confidence of the argument patterns of the given test record is less than or equals the specification scale of the 

argument patterns for the positive label. And the negative confidence (of the argument patterns depicted from test records) is 
greater than the upper bound of the specification scale of the argument patterns for the negative label (see Section3.7.2).  

b // Positive confidence of the argument patterns (of the given test record) is less than the lower-bound of the specification scale of 
the argument patterns for the positive label. And the negative confidence (of the argument patterns of the test record) is greater 
than the specification scale (of the argument patterns) for the negative label (see Section3.7.2).  

6 Label the given test record as negative regarding fallout triad scale, if the,  
a // Positive confidence of the fallout patterns of the given test record is less than or equals the specification scale of the fallout 

patterns for the positive label. And the negative confidence (of the fallout patterns of the test record) is greater than the upper 
bound of the specification scale of the fallout patterns for the negative label (see Section3.7.3).  

b // Positive confidence of the fallout patterns (of the given test record) is less than the lower-bound of the specification scale of the 
fallout patterns for the positive label. And the negative confidence (of the fallout patterns of the test record) is greater than the 
specification scale (of the fallout patterns) for the negative label (see Section3.7.3). 

In contrast to the above conditions, the given record of call sequences can be treated as suspicious. However, the definition of these 
conditions is solely domain-specific. 

4. Experimental study 

This section explores the empirical study carried to assess the performance of the proposed model and the other contemporary 
models using the benchmark dataset. The performance significance of the proposed model must be scaled by comparing the observed 
results of the classification assessment metrics namely, “Precision, Specificity, Sensitivity, Accuracy, F-measure, False Alarming, and 
Matthews’s correlation coefficient (MCC)”. The manifested results from the proposed model MLMTS, the other contemporary models 

S.S. Alotaibi                                                                                                                                                                                                             



Computers and Electrical Engineering xxx (xxxx) xxx

10

“A Machine Learning Approach to Predict Advanced malware (MLAPAM)” [25] and “A Multi-Dimensional Machine Learning 
Approach (MDMLA) to Predict Advanced malware” [26] are compared and concluded with the significance of the proposed model 
towards malware detection. 

4.1. The dataset 

The dataset named Apimds[28] has been utilized for experiments, where 23,080 malware samples have been selected randomly 
from the Malicia-project [29] and Virus Total [30] malware dataset that is boosted by adding known benign calls of 9436. The total 
amount of records in the final dataset is 32516. 

The metric precision indicates the ratio of records labelled correctly as positive to the total amount of falsely labelled records as 
positive. Fig. 2 represents the graph between 10-folds and precision for MDMLA, MLAPAM, and MLMTS. The average precision for the 
proposed method MLMTS that is perceived from the 10-fold strategy is 0.99 ± 0.005. While the average precision for the contemporary 
methods MLAPAM and MDMLA are 0.968 ± 0.003 and 0.98 ± 0.003 in respective order. From the statistics, as shown in Table 3, it is 
noticed that the proposed model MLMTS performs better when compared to contemporary MLAPAM and MDMLA methods. 

The metric specificity denotes the ratio of correctly labelled records as negative against to total amount of negative label records. 
Fig. 3 represents the graph between 10-folds and specificity for MDMLA, MLAPAM, and MLMTS. Average specificity for the proposed 
method MLMTS and contemporary methods MLAPAM and MDMLA are observed from the 10-fold cross-validation as 0.976 ± 0.011, 
0.926 ± 0.008, and 0.953 ± 0.008, respectively. From the statistics, it is noticed that the proposed model MLMTS outperforms the 
contemporary MLAPAM and MDMLA methods. 

The metric sensitivity denotes the ratio between the test records labelled correctly as positive, and the total amount of the positive 
records provided for testing. Fig. 4 depicts the graph between 10-folds and sensitivity for MDMLA, MLAPAM, and MLMTS Average 
sensitivity for the proposed method MLMTS that perceived from the 10-fold scheme is 0.987 ± 0.005. In contrast, the average 
sensitivity for the contemporary methods MLAPAM and MDMLA are 0.926 ± 0.009 and 0.957 ± 0.009 in respective order. From the 
statistics, it is noticed that the proposed model MLMTS is more significant when compared to contemporary MLAPAM and MDMLA 
methods. 

The metric accuracy indicates the total performance for selecting the labels of specified unlabeled records that is the ratio of cu
mulative of correctly labelled positive and negative records against the overall amount of records by both the labels provided for 
testing. Fig. 5 signifies the graph between 10-folds and accuracy for MDMLA, MLAPAM, and MLMTS. Average accuracy for the 
proposed method MLMTS and contemporary methods MLAPAM and MDMLA that perceived from the 10-fold scheme are 0.984 ±
0.003, 0.926 ± 0.007, and 0.956 ± 0.007, respectively. From the statistics, it is noticed that the proposed model MLMTS is considered 
optimal when compared to contemporary MLAPAM and MDMLA methods. 

The metric F-measure indicates the weighted harmonic mean of precision & recall. Fig. 6 depicts the graph between 10-folds and F- 
Measure for MDMLA, MLAPAM, and MLMTS. The average F-Measure for the proposed method MLMTS that is perceived from the 10- 
fold scheme is 0.983 ± 0.008. In contrast, the average F-measure for the contemporary methods MLAPAM and MDMLA are 0.947 ±
0.006 and 0.967 ± 0.006 in respective order. From the statistics, it is noticed that the proposed model MLMTS is more significant when 
compared to contemporary MLAPAM and MDMLA methods. 

Fig. 7 signifies the graph between 10-folds and false alarming rates for MDMLA, MLAPAM, and MLMTS. The average false alarming 
rate for the proposed method MLMTS and contemporary methods MLAPAM and MDMLA that perceived from the 10-fold scheme are 
0.016 ± 0.003, 0.074 ± 0.007, and 0.044 ± 0.007, respectively. From the statistics, it is noticed that the proposed model MLMTS is 
optimal with minimal false alarming that compared to contemporary MLAPAM and MDMLA methods. 

The metric Matthews Correlation Coefficient (MCC) is utilized in machine learning to measure the quality of binary classifications. 

Fig. 2. Graphical representation of precision at 10-folds for the proposed MLMTS method and contemporary MDMLA and MLAPAM (Machine 
Learning Approach to Predict Advanced Malware) methods. 
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Fig. 8 depicts the graph between 10-folds and MCC for MDMLA, MLAPAM, and MLMTS. The average MCC for the proposed method 
MLMTS that is perceived from the 10-fold scheme is 0.961 ± 0.007. In contrast, the average MCC for the contemporary methods 
MLAPAM and MDMLA are 0.828 ± 0.014 and 0.896 ± 0.017 respectively. From the statistics, it is noticed that the proposed model 
MLMTS is more significant towards binary classification process that compared to contemporary MLAPAM and MDMLA methods. 

All factors of performance analysis verified under the metrics, those recommended for machine learning have acclaimed the 

Table 3 
Average and Standard Deviation (SD) for the various metrics.   

Precision Specificity Sensitivity Accuracy F-measure False Alarming MCC 

MLMTS 0.99 ± 0.005 0.976 ± 0.011 0.987 ± 0.005 0.984 ± 0.003 0.983 ± 0.008 0.016 ± 0.003 0.961 ± 0.007 
MLAPAM 0.968 ± 0.003 0.926 ± 0.008 0.926 ± 0.009 0.926 ± 0.007 0.947 ± 0.006 0.074 ± 0.007 0.828 ± 0.014 
MDMLA 0.98 ± 0.003 0.953 ± 0.008 0.957 ± 0.009 0.956 ± 0.007 0.967 ± 0.006 0.044 ± 0.007 0.896 ± 0.017  

Fig. 3. Graphical representation of specificity at 10-folds for the proposed method MLMTS and contemporary MDMLA and MLAPAM methods.  

Fig. 4. Graphical representation of sensitivity at 10-folds for the proposed MLMTS method and contemporary MDMLA and MLAPAM methods.  

Fig. 5. Graphical representation of accuracy at 10-folds for the proposed MLMTS method and contemporary MDMLA and MLAPAM methods.  
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significance of the proposed model. The qualitative factors considered to boost the significance of the experimental study are, the 
records pooled up as a set to perform the testing process shall evince the least correlation with the records undertaken for the training 
process, which helps to reflect the zeroth-day attacks. As stated in the literature review, contemporary methods resulted in poor 
specificity, sensitivity, and detection accuracy. Whereas the proposed method, MLMTS, is using all three possible formats of the 
features, which are n-gram patterns of call sequences, arguments, and fallouts. Hence, the MLMTS can detect the malware with 
maximal accuracy, specificity, and sensitivity that manifested due to the rules defined under the correlation of all these input formats. 

Fig. 6. Graphical representation of F-measure at 10-folds for the proposed MLMTS method and contemporary MDMLA and MLAPAM methods.  

Fig. 7. Graphical representation of false alarming rate at 10-folds for the proposed MLMTS method and contemporary MDMLA and MLA
PAM methods. 

Fig. 8. Graphical representation of the Matthews correlation coefficient at 10-folds for the proposed MLMTS method and contemporary MDMLA 
and MLAPAM methods. 
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5. Conclusion 

A machine learning approach is to identify the malware scope of a portable executable that has been proposed in this manuscript. 
Unlike contemporary models, this method performs the detection process in three phases. Among these, the first and second phases are 
using call sequences, and arguments passed to these call sequences, and the third phase uses the fallouts of these calls. According to 
this, the first and second phases fall into the category of static analysis, and the third phase falls into the dynamic analysis category. The 
execution of the second and third phases initiates if the predecessor phase is not confident to classify the given portable executable. The 
proposal is a multi-level linear regression technique that defines a triad scale from the input given for each phase. The empirical study 
has carried on the benchmark malware dataset. The performance significance of the proposed model is scaled by comparing the results 
obtained from the contemporary models MLAPAM and MDMLA, which have been executed on the same dataset. The significance of the 
proposal has been scaled by comparing the results obtained from the metrics such as Precision, Specificity, Sensitivity, Accuracy, F- 
measure, False Alarming, and MCC. 

Regarding resultant values of these metrics, the proposed method MLMTS outperformed the contemporary methods MLAPAM and 
MDMLA with minimal false alarming and maximal specificity, sensitivity, and accuracy. The other two metric values F-measure, and 
MCC, also evincing the significance of the proposed method. The contribution of the proposed work motivates future research towards 
the development of fuzzy guided malware detection by using the triad scales as a member function. 
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