
Computers and Electrical Engineering xxx (xxxx) xxx

Please cite this article as: Saud S. Alotaibi, Computers and Electrical Engineering, https://doi.org/10.1016/j.compeleceng.2020.106886

0045-7906/© 2020 Published by Elsevier Ltd.

Regression coefficients as triad scale for malware detection

Saud S. Alotaibi a,*

a Department of Information Systems, College of Computer and Information Systems, Umm Al Qura University, Makkah, Saudi Arabia

A R T I C L E I N F O

Keywords:
Malware detection
Call sequences
Control flow graphs
Triad scale
T-test
Portable executable
API-call

A B S T R A C T

The malware detection methods are classified into two categories, namely, dynamic analysis
(active analysis) and static analysis (passive analysis). These methods undergo unusual obstruc
tion, and challenges that are process complexity, limitation over detection accuracy. The static
method serves to discover malicious applications using various parameters like permission
analysis, signature verification. It can be regularly obfuscated. Dynamic techniques entail
investigating the performance of an application by administering it in a restricted environment.
The complex version of a portable executable often emerges with an intervention by hardening
the dynamic analysis centric malware detection methods. The various constraints of these dy
namic and static models contribute to this manuscript represents a Multi-Level Malware detection
using Triad Scale (MLMTS) built on regression coefficients. The proposed method MLMTS spans
into three levels, such that the first and second level performs static analysis, and the third level
performs the dynamic analysis. The second and third levels of the hierarchy invoke upon the
ambiguous decision of their respective predecessor level. The proposed work is based on the
Machine Learning (ML) model that determines the triad scale by applying linear regression for
each level of malware detection. The call sequences of the portable executable, arguments passed
to these call sequences and their fallouts (resultant values) in respective order of three levels of
the MLMTS method. The experimental study manifests the significance of the proposal compared
to the other recent malware detection methods.

1. Introduction

The malicious software that is often termed as malware intends to infiltrate, infect, or intrude the cryptographic verification of the
owner in the computer system. According to contemporary statistics [1], an average of 400 million malware models is recognized per
annum. Currently, the malware family has boosted through the software modules engineered by incredible software skills [2]. The
attacks can anonymize the source of the attack [2] and considerably succeeds in hacking the potential industrial structures known as
the Stuxnet [3]. Anonymized sources are significant challenges to contemporary malware detection strategies. Extensive utilization of
computer-networks is vulnerable to potential malware attacks. The dynamic network connectivity exposes the vulnerabilities of the
corresponding network, which entertains the attackers to exploit these vulnerabilities to inject the malware into the respective system.
The Intel organization has estimated the impact of malware in terms of loss of revenue as above 400 billion (USD 400 * 109) dollars
worldwide per annum [1]. These statistics concreting the need for potential malware detect and defense mechanisms.

The malware detection by static analysis intends to determine the malware scope of the file structure. The static analysis detects
malware by exploring the call sequences and byte sequences of the given portable executable (PE). The static analysis compares the call

* Corresponding author.
E-mail address: ssotaibi@uqu.edu.sa.

Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng

https://doi.org/10.1016/j.compeleceng.2020.106886
Received 20 December 2019; Received in revised form 6 October 2020; Accepted 14 October 2020

mailto:ssotaibi@uqu.edu.sa
www.sciencedirect.com/science/journal/00457906
https://www.elsevier.com/locate/compeleceng
https://doi.org/10.1016/j.compeleceng.2020.106886
https://doi.org/10.1016/j.compeleceng.2020.106886
https://doi.org/10.1016/j.compeleceng.2020.106886

Computers and Electrical Engineering xxx (xxxx) xxx

2

sequences and byte sequences of the given PE, which represents the malware samples [4] using the statistical methods. The contextual
factors of the target domain have often influenced the other inputs such as data-flow, dependent executables, data, and control flows to
compare with malware samples. These static methods can explore the overall execution path without process overhead. However, the
static analysis methods of malware detection are often abandoning due to obfuscation notions of call identities, binary structures, and
also denies exploring the execution path of the given PE. Dynamic analysis detects the malware by executing the given PE in a virtual
environment, which aids to track the events, data flow, and in-built memory. The behavior of these data flows and events are further
used to determine malware behavior. However, the dynamic analysis methods often exhibit the processing overhead as NP-hard [4].
Hence, these dynamic analysis methods have considered as the counterpart of static analysis methods, which can enhance the malware
detection accuracy [4]. During the runtime, the behavioral log of the PE manifests the resources and limits to detect only malware
having a behavioral flow. Hence, it might need inputs to be stimulated for exploring the overall segments of code. One of the
time-consuming factors is the challenges encountered to execute the program in a controlled area within the stipulated time. Moreover,
some contemporary malware categories can identify the virtual environment and hibernate the malevolent intent of the corresponding
PE [5] as a countermeasure to malware detection by dynamic analysis.

However, dynamic analysis of malware detection exhibits low-level mutation strategies like obfuscation or packing of runtime,
which could not influence behavioral attributes as significant benefits. Besides, malware detection by dynamic analysis can provide
actual information regarding data-flow and control. Hence, dynamic models are often prioritized for implementing the static-analysis
in malware identification.

Malware detection by static analysis performs without actually running the program [5]. The opcode sequences (extracted by
disassembling the binary) control flow graphs extracted from the given PE are used as inputs by these static analysis measures [6].

The malware detection methods of both static and dynamic analysis categories have advantages and disadvantages. The static
analysis does not implement executable programs, so its main advantage over its dynamic counterpart is free from implementation
costs. However, static analysis suffers from a lack of support for filled symbols and restrictions related to sophisticated obfuscation.
Compared to static analysis, dynamic analysis can effectively scan packaged malware as it unpacks during execution, and its original
code shall load into the main memory. However, the consumption of time and resources is an obvious drawback since malware samples
have to be analyzed successively in reality. Consequently, these shortcomings limit its adoption in business analysis applications.

According to the above-mentioned malware-detection statistics, it is observed that there is an opportunity for the research to derive
new malware detection strategies. The proposed work explores the usage of machine learning techniques in malware detection.

The organization of the manuscript is as follows. Section 2 examines the related research about malware detection strategies.
Section 3 contains a detailed explanation of the methods and materials of the proposed machine learning-based malware detection
model. Sections 4 and 5 explored the experimental study and conclusions of the findings in the respective order.

2. Related research

One of the evolving research topics is the selection of optimal features for malware detection using machine learning. The works [7,
8] have presented supervised learning approaches to perform malware detection using static features. The contemporary contribution
[7] has considered the APIs, DLLs (Dynamic Link Libraries), and header feature of PE frequencies. The other contribution [8] has
considered the statistics of the Opcode frequency of examined PE-files as features. The optimal feature selection methods such as
“Information gain” and “hybrid filter-wrapper technique” are used by these two contributions [7,8] in respective order.

The work [9] has presented a method that segregates the assembly program into small features and produces CFGs set in respective
to distinct program functions. The work [10] has shown a disassembled dataset and generated CFGs, which illustrates the flow of code
segments. The methods described in both of these contributions [9,10] considering the selected features as feature-vector and assessing
the cosine similarity measures of the corresponding feature-vector.

As stated, the static models could not quickly identify malware that utilizes evasion methods. Moreover, adding some of the false
API-calls in the executable header might defuse the malware detection ability of these static analysis methods. Hence, the dynamic
analysis could be required as a complement for the static methods [5].

Some of the dynamic methods are using the API-calls and respective properties to learn the behavior of the given PE. The work [11]
presented an approach that discovers the behavior of the given sample by using 2-gram features listed from system calls and their
arguments. Here, they detect new malware classes with the same behavior as unknown malware. The work [12] has utilized 4-gram
features for modeling the sequences of API-call. Further, this method [12] estimates the average confidence of these 4-grams to
categorize the new samples as malware or benign. The contribution [13] has concentrated on memory and register values in the form
of a semantic group and then used in the way of 3-gram input to perform NB classification.

The other contemporary static analysis methods are utilizing the memory dump visuals of executable raw files to explore the
malware features using data mining. The other contemporary contribution [14] proposed a K-Nearest-Neighbor (KNN) based classi
fication strategy applied to the wavelet transformation of the image portrayed from the binary executables loaded into memory. The
other contemporary model [15] has applied a deep learning approach on gray images of the binary executables. However, the major
shuffle in the sequence of calls often portrays the new signature of the grayscale images from the binary executables. However, the
major sequence calls are reorganized frequently to identify the new signature of the grayscale images, which tends to load the binary
executables into the memory.

The contemporary model [16] portrayed a mining method that extracts the features from call sequences related to the behavioral
context. However, the technique fails to track the features if obfuscation is applied to the executables. The contemporary method
Droidcat [17] has determined a technique for extracting the context-related features from the call sequences of the obfuscated binary

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

3

executables. The significance of these methods is uncertain about detecting the zeroth day binary executable. For each dynamic
feature, the set of four static features has been considered as a set to generate the hash value as signature [18]. The diversity of the
features has limited the performance of this method.

The studies on dynamic malware detection have attracted extensive attention [19–21]. These methods often rely on the flow of the
call graphs and the execution sequence of the API calls as dynamic features to denote the behavior. These methods are evincing the
process complexity, and computational overhead as the call sequence extraction is prominent and straightforward to identify the scope
of malware behavior. The detection of malware includes individual functionality and comparatively intricate for providing appro
priate countermeasures are known as an analog attack. The other malware detection strategy [22] is considering the credibility of the
dynamically loaded linked libraries and the weightage (frequency) of the calls to system-level operations from the portable executables
in respective order. The other contemporary model [23] has adopted a method that categorizes the binary executables as trojans,
benign, viruses, and worms. This method primarily processes the input dataset through data normalizing, and later it predicts lower
and upper boundaries of the features. Further, it discovers the set of rules based on the pattern matching procedure.

The review of contemporary models has addressed the significant scope to define malware prediction strategies using API calls, and
input arguments passed to these API calls and their returned values. The majority of the models have relied on either graph flows, n-
gram features of control/data among appealed API-calls, or the information of strings to characterize the behavior of binaries. Each of
these approaches has benefits and limitations. For instance, some models that rely on similarities among graphs often exhibit con
straints such as memory space and time-consuming. Moreover, the graph-mining methods are complex, since their process complexity
is often noticed as NP-complete. The other category of methods is using features or data tuples to depict the malware. These methods
are not competent to extend the set of usage in features or data tuples. Unlike these contemporary models, the method “Robust features
to detect Malicious activity based on API calls, their Arguments and Return values (MAAR)” [24] introduced a novel model to generate
features that are independent of the dataset. The model “MAAR” produces a small group of robust features based on the integration of
return values and arguments.

A Machine Learning Approach to Predict Advanced Malware (MLAPAM)” [25] and “A Multi-Dimensional Machine Learning
Approach (MDMLA) to Predict Advanced malware” [26] are two contemporary malware detection methods. These methods are using
distinctive factors of advanced malware as features in the training phase. The advanced malware combines multiple code blocks
developed in different languages, applying cryptography and performing obfuscation. The distinct properties explored by advanced
malware such as Stuxnet [3], which compares the traditional malware with the features of other malware to define a rule dictionary
through the learning phase of the machine-learning approach. The contributions [25,26] have explored new features and derived
correlation between these distinguishing features. However, the complexities and constraints observed under malware categories
remain the same.

The critical constraints of these contemporary contributions stated in the above description are the poor specificity and sensitivity
towards the identification of the zeroth day attack and malware defined under lessons learned from the contemporary malware defense
and detection methods. The severe false alarming often appeared in the advanced malware detection are derived by the combination of
code developed in several languages, which are encrypted or obfuscated. Besides that, the impact of newly defined malware weakens
the dictionary of rules derived from signatures stated and recommended for malware detection [26]. Concerning this, a novel malware
detection strategy that uses regression coefficients as a triad scale for malware detection is proposed in this manuscript. The proposed
method is centric to the correlation between all modes of input parameters (call sequences, arguments, and fallouts), which intends to
boost the sensitivity, specificity, and detection accuracy of the new malware (zero-day attacks, malware critically differs with existing
malware’s architecture). The proposed model MLMTS derives a scale from the correlation of call sequences, arguments, and fallouts
together lead to the improvement in the specificity, sensitivity, and accuracy with minimal false alarms towards malware detection.

3. Methods and materials

The contribution of this manuscript is hybridizing both formats of static and dynamic analysis properties. The proposed method,
“Multi-Level Malware detection using Triad Scale (MLMTS)” uses the call sequences, arguments, and fallouts [24] as features. The
usage of these features in hierarchical order intends to depict the zero-day attacks and exhibit the features extracted on the dataset
possessing the discerning capability. A test-set is utilized to justify the proposal that comprises novel families and variants of malware.
MLMTS generates the feature-sets, which combine the call sequences, input arguments, or/and their corresponding return values
during runtime. The results exhibit that the proposed model of multi-level linear regression that portrayed a triad scale using projected
features for each level is significant than the contemporary models concerning minimal false alarming, maximal accuracy of malware
detection with minimal process overhead.

This proposed model is a regression centric specification scale to estimate the call sequences of any portable executable is prone to
malevolent or benevolent. The static malware detection methods usually consider the call sequences (the sequence of function calls) of
the portable executables (PEs). In contrast, the dynamic methods rely on the execution flow discovered by executing the suspected PEs
in a virtual place isolated from the system environment. However, the call sequences centric malware detection methods often are
unsuccessful due to the obfuscation version of the calls or new calls involved in a sequence. Nevertheless, dynamic methods are
critically infeasible and complexed in terms of execution and detection. Hence, the proposal of this manuscript utilizes the arguments
and fallouts (outcomes of the call in a sequence observed from Portable Executable). The triad-scale is defined from the n-gram call

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

4

sequences, n-gram arguments of each call sequence, and n-gram fallouts of each call sequence of dynamic size range from 1 to n. The
block diagram of MLMTS is shown in Fig. 1, and standard and nonstandard acronyms used in the further description have also listed in
Table 1.

The overall contribution is a machine learning approach, which contains the training and labels prediction phases. The training
process has carried in a sequence of tasks listed as

(i) Preprocessing that removes the unqualified records from the corpus of labelled records given for the training phase of the
proposal

(ii) Finding n-gram patterns of the call sequences, which are the sequence of portable executables, exists in one or more of the
records labelled either positive or negative.

(iii) Finding the argument patterns of each n-gram call sequence pattern, which are the sequence of portable executables, exists in
one or more of the records labelled either positive or negative.

(iv) Finding the fallout patterns of each n-gram call sequence pattern, which are the sequence of portable executables, exists in one
or more of the records labelled either positive or negative.

(v) Optimizing the n-gram patterns of call sequences, which are the call sequences having a high correlation with only label positive
or negative.

Fig. 1. Block diagram representation of MLMTS.

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

5

(vi) Optimizing the argument patterns of respective n-gram call sequence patterns is the call sequences having a high correlation
with only label positive or negative.

(vii) Optimizing the fallout patterns of the respective call sequence patterns is the call sequences having a high correlation with only
label positive or negative.

(viii) Built the specification scale for both labels using the optimal call sequence patterns, argument patterns, and fallout patterns

The label prediction process also referred to as the testing phase, carried in multiple phases listed as,

(i) For each unlabeled record, find the all possible call sequence patterns of diversified size
(ii) For each unlabeled record, find the argument patterns of diversified size

(iii) For each unlabeled record, find fallout patterns of diversified size
(iv) For each unlabeled record, perform the predictive analysis by using the triad scales built from the correlation of the (i) n-gram

call sequence patterns, (ii) n-gram argument patterns, (iii), and n-gram fallout patterns in respective order.

The following sections reveal the methodology used in each of the phases described above related to training and label prediction of
machine learning. The list of notations used in the mathematical model are listed in the following table (see Table 2).

3.1. Preprocessing

This phase discards the portable executables that are not engaged either of the labels positive (malware), negative (benign) in the
given training corpus. Further explores the call sequencesCS, argument sequencesAS, and fallout sequencesFSof each malicious
portable executable (PE) of the given training corpus. The call sequence{r∃r ∈ CS}represents the functions stacked in corresponding PE
shall execute in the corresponding sequence. An argument sequence{ar∃ar ∈ AS}of the PE represents the arguments in stacked order,
which have passed to each function in the call sequence of the respective PE. Similarly, it derives the fallouts sequence{fo∃fo ∈ FS} of
each PE of the given corpus. A fallout sequence represents the return values of the functions that appeared in the call sequence of the
respective PE.

Table 1
List of standard and nonstandard acronyms used.

PE Portable Executable

DLLs Dynamic Link Libraries
IG Information Gain
CFG Control Flow Graph
MLMTS Machine Learning-based malware detection using Triad Scale
MAAR Malicious activity based on API calls, their Arguments and Return
MLAPAM Machine Learning Approach to Predict Advanced malware
MDMLA Multi-Dimensional Machine Learning Approach
MCC Matthews’s correlation coefficient

Table 2
List of notations used and respective descriptions.

CS Call Sequences
AS Argument Sequences
FS Fallout Sequences
nS N-Gram Sequences
P+, P− Positive and Negative Records
′i′ Index
np N-Gram Pattern
snp
+ Support

vi
+

Vector

csp Call Sequence Pattern
pτ, Probability Threshold
onP Optimal N-Gram Features
arP Argument Patterns
foP Fallout Patterns
|r| Record-Size
csc+ Confidence

sscsP
+

Specification Scale

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

6

3.2. Optimizing the n-gram patterns

Sets arC+,arC− from the setAS, and the setsfoC+, foC from the setFS.
Optimizing-N-gram-Patterns(nS, P+, P−)Begin // member function that performs n-gram feature optimization, which receives n-gram sequencesnSand respective positive and negative records as the

setsP+, P−

Let an index′i′ is initialized to 1
For each index{i∃i = 1, 2, ..., n}, Begin // having a value in the range of minimum pattern size1to max pattern sizen

Extract i-gram call sequence patterns from the setnSas a setnPi
For eachi-gram sequence pattern{np∃np ∈ nPi∧|np|≅i}Begin // Find the support of the n-gram patternnpconcerning the label positive, which is as follows
snp
+ = (

∑|P+|

j=1 {1∃np⊆r ∧ r ∈ P+})*(|P+|)
− 1// this denotes the ratio of source records having the n-gram patternnpas subset against the total number of call

sequences labelled as positive and listed in the setP+.
Move the supportsnp

+ to a vectorvi
+

Similarly, find the support of the call sequence patterncspregarding the label negative, which is as follows
snp
− = (

∑|P− |

j=1 {1∃np⊆rj ∧ rj ∈ P− })*(|P− |)
− 1// this denotes the ratio of call sequences having the call sequence patternnpas subset against the total number of

call sequences labelled as negative and listed in the setP− .
Then move the supportsnp

− to a vectorvi
−

End
Further, scale the variance between the vectors vi

+ , vi
− using a competent distribution diversity assessment method called dual tailed t-test [27] (see

Section3.3).
If the t-score and p-value [27] observed from the dual tailed t-test has used further to estimate the optimality of thei − gramcall sequence patterns as follows.
The resultant p-value is greater than the given probability thresholdpτ; the i − grampatterns are optimal and move thesei − grampatterns to the

setonPrepresenting the resultant optimal n-gram features.
The process explored in previously mentioned statements executes for each index′i′value range from 1 to n.

Return the optimal n-gram features as a setonP
End

End // of the Optimizing-N-gram-Patterns(nS, P+, P−)

3.3. T-Test for distribution diversity estimation

The distribution diversity has taken as a parameter to estimate the optimality of the features listed as n-gram call sequence pat
ternscsP, n-gram argument patternsarP, and n-gram fallout patternsfoPtowards the labels positive and negative. The detailed explo
ration of the optimal feature selection is described in the section above (Section3.2). The t-test is adapted to estimate the distribution
diversity of the features towards positive and negative labels. This section delineates the method of performing the t-test to identify
distribution diversity. From the contribution [27], the scheme that evaluates the distribution diversity known as the t-test is used for
selecting the optimal features relevant to both labels. Here, the t-test is included for selecting the optimal-features associated with both
the positive and negative records of the corpusCS.

The diversity between any two distinct vectors can depict using T-score as,

vstdev
+ =

(
∑|v+|

i=1
(xi − 〈v+〉)2

)

*(|v+| − 1)− 1

vstdev
− =

(
∑|v− |

j=1

(
xj − 〈v− 〉

)2

)

*(|v− | − 1)− 1

t stdev =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

vstdev
+ + vstdev

−

√

t − score = (〈v+〉 − 〈v− 〉)*(t stdev)− 1

(1)

In (Eq (1)), the notations〈v+〉, 〈v− 〉entails the mean of the respective vectors v+, v−
The notationsxi,xjrefer to the entries of the vectors in sequence from the index 1 to vector sizes |v+|, |v− |represented by i, jin

respective order.
Finds the ratio of the absolute difference of the means〈v+〉 − 〈v− 〉against the aggregate of the standard deviations of corresponding

vectorsv+, v− .
Then compute p-value [27] (degree-of probability) in the t-table [27] for attained t-score. Here, the p-value, which is lower than the

probability thresholdpτ, signifies that both the vectors are different; therefore, the patterns represented by the entries of the corre
sponding vectors has said to be optimal-feature.

3.4. Optimizing call sequence n-grams

For each call sequence{r∃r ∈ CS}of the setCS, find all possible call sequence patterns of size 1 to record-size|r|. Move all possible call
sequence patterns of count(|r| + 1)*(|r|)*2− 1discovered from the record{r∃r ∈ CS}to the setcsP. The setCShas to partition into two sets
such that one represents all the records of the set having a positive label, and the other set represents the records of the negative label.
This phase discovers the setsCS+,CS− form the setCS. Further, invokes the member function Optimizing_N-gram_Patterns(csP, CS+,CS−)
that returns optimal call sequence patterns, which has been received asocsP

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

7

3.5. Optimizing the argument patterns

Prepare a corpusarCthat contains the set of records as follows. Each record{ar∃ar ∈ arC}of the set shall contain the sequence of
arguments, which have passed to the sequence of calls in the record{r∃r ∈ CS}of the corpusCSand entails the label assigned to the
corresponding call sequence record{r∃r ∈ CS}. Further, partition the corpusarC into two setsarC+, and arC− , such that the
setarC+contains the records that exist in the corpusarCand having the label positive. The other setarC− contains the records of the
corpusarCthat are having label negative. Each record{ar∃ar ∈ arC} of the setarCwith indexirepresents the arguments passed to the call
sequence of the record{r∃r ∈ CS}with indexiin the corpusCS. The similar process stated in the above section (Section3.4) has been used
to list the total(|ar| + 1)*(|ar|)*2− 1number of argument sequence patterns from each argument sequence{ar∃ar ∈ AS}as a setarP.
Further, invoke the function called “Optimizing_N-gram_Patterns(arP, arC+,arC−)” (see Section3.2) that returns optimal call sequence
patterns, which has been received as a setoarP.

3.6. Optimizing the fallout patterns

The process that follows to list the fallout sequence patterns is very much similar to listing argument sequences, which discovers(|
fo| + 1)*(|fo|)*2− 1several patterns from each fallout sequence{fo∃fo ∈ FS}. Further, list the fallout sequence patterns as a setfoP.
Prepare the corpusfoCthat contains a set of records, such that each record{fr∃fr ∈ foC}contains the sequence of fallouts (returning
arguments), resulting from the sequence of calls that exist in the record{r∃r ∈ CS}of the corpusCSand entails the label assigned to the
corresponding call sequence record{r∃r ∈ CS}. Each record{fr∃fr ∈ foC}of the setfoCwith index′i′represents the fallouts exhibited by the
call sequence of the record{r∃r ∈ CS}with index′i′ in the corpusCS.

Further, partition the corpusfoCinto two setsfoC+, and foC− , such that the setfoC+contains the records that exist in the cor
pusfoCand having the label positive. The other setfoC− contains the records of the corpusfoCthat are having label negative. Further, a
similar version of optimal pattern selection has adapted that invokes “Optimizing_N-gram_Patterns(foP, foC+,foC−)” (see Section3.2)
that returns optimal n-gram patterns, which has to receive as a setofoP.

3.7. Triad scale by regression coefficients

This section delivers the regression coefficients for diversified features listed optimal n-gram patterns, which have been discovered
from their empirical probabilities of the n-gram patterns.

Find-Regression-Coefficients(nP)begin// the function that discovers regression coefficients of the feature formats
ss = (

∑|nP|
j=1{s(npj)∃npj ∈ nP})*|nP|− 1// Find the mean of the empirical probabilities of the optimal n-gram patterns as the regression coefficient

ssd = (
∑|nP|

j=1{

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ss − s(npj))
2

√

∃npj ∈ nP})*|nP|− 1// Finding the root mean square distance (mean deviation) of the empirical probability of the optimal n-gram
patterns

ssl = ss − ssd// the absolute distance of the empirical probability and respective mean deviation is the lower bound of the regression coefficient
ssu = ss + ssd// the aggregate of the empirical probability and respective mean deviation is the upper bound of the regression coefficient
Return (ss, ssl, ssu)// returns the regression coefficient, respective lower and upper bounds as triad scale

End // of Find-Regression-Coefficients(nP)

3.7.1. Triad scale of the call sequence patterns
The regression coefficients of the call sequence patternscsP+ have derived by invoking the function Find-Regression-Coefficients

(csP+), which returns the regression coefficients(sscsP
+ , sslcsP+ , ssucsP

+)as triad scale of the call sequence patterns of the positive label.
Similarly, the triad scale(sscsP

− , sslcsP− , ssucsP
−)of the call sequence patterns for the negative label has to estimate by invoking the function

Find-Regression-Coefficients(csP−),

3.7.2. Triad scale of the argument patterns
The setarP+argument patterns of the positive label have to pass as an input parameter of the function Find-Regression-Coefficients

(arP+)that return a set of regression coefficients(ssarP
+ , sslarP

+ , ssuarP
+)as a triad scale. Similarly, the triad scale(ssarP

− , sslarP
− , ssuarP

−)of the
argument patterns for the negative label has to be estimated by invoking the function Find-Regression-Coefficients(arP+)with argu
ment sequence patternsarP− of the negative label as an input parameter.

3.7.3. Triad scale of the fallout patterns
The regression coefficients(ssfoP

+ , sslfoP
+ , ssufoP

+)of the fallout patterns of the positive label as triad scale have to receive from the
function Find-Regression-Coefficients(foP+), which has to invoke through the set of argument patternsarP+of the positive label. The
triad scale (ssfoP

− , sslfoP
− , ssufoP

−)of the fallout patterns of the negative label has emerged as the return set of the function Find-Regression-
Coefficients(arP−), which has to invoke through the fallout patterns of the setfoP− as an input parameter.

3.8. Label prediction

For a given unlabeled call sequencerof the sizem extracted from portable executable, derive all possible call sequence patterns. The

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

8

total number of patterns discovered from the call sequencer ism*(m + 1)*2− 1which have buffered into the setcsPT. Further, extract the
arguments passed to the calls in the given call sequence recordrand prepare a recordarTexhibiting these arguments in the sequence of
calls of the given record. Similarly, define a recordfoT that represents the calls’ fallouts in the sequence of the given recordr. The
sequence of fallouts in foT represents the sequence of the calls in the recordr.

Further, discover the possible argument patterns from the recordarTand list them in a setarPT. The total number of argument
patternsp has to estimate asp = |arT|*(|arT| + 1)*2− 1. Similarly, portray the possible patterns of the fallouts from the record foTas a
setfoPTof sizeq = |foT|*(|foT| + 1)*2− 1.

Discover the call sequence patterns that are common in both the sets csP, and csPTas a setccsp. Then find the positive and
negative confidence of the call sequence patterns listed in the setccspas follows Eq (2), 3, (4).

ccsp = csP ∩ csPT (2)

// discover the call sequence patterns those are common in both the sets csP, and csPTas a setccsp

csc+ =

(
∑|ccsp|

i=1

{
scspi
+ ∃cspi ∈ ccsp

}
)

*m− 1 (3)

// Find the call sequence confidence for a positive label, which is the ratio of empirical probabilities of the respective call sequences
obtained from the records labelled as positive of the training corpus

csc− =

(
∑|ccsp|

i=1

{
scspi
− ∃cspi ∈ ccsp

}
)

*m− 1 (4)

// Find the call sequence confidence for a negative label, which is the ratio of empirical probabilities of the respective call se
quences obtained from the records labelled as negative of the training corpus.

Similarly, find the positive and negative confidence of the argument patterns and fallout patterns listed in the setsarPT, foPT Eq
(5), 6, (7).

carp = arPT ∩ arP (5)

Find the patterns common in both setsarPT, arP

arc+ =

(
∑|carp|

i=1

{
sarpi
+ ∃arpi ∈ carp

}
)

*p− 1 (6)

Find the arguments confidence for a positive label, which is the ratio of empirical probabilities of the respective argument patterns
obtained from the records labelled as positive of the training corpus.

arc− =

(
∑|carp|

i=1

{
sarpi
− ∃arpi ∈ carp

}
)

*p− 1 (7)

Find the arguments confidence for the negative label, which is the ratio of empirical probabilities of the respective argument
patterns obtained from the records labelled as negative of the training corpus.

Further phase finds the positive and negative confidence of the fallout patterns as follows in Eq (8), 9, (10).

cfop = foPT ∩ foP (8)

Find the patterns common in both sets foPT, foP

foc+ =

(
∑|cfop|

i=1

{
sfopi
+ ∃fopi ∈ cfop

}
)

*q− 1 (9)

Find the fallout confidence for the positive label, which is the ratio of empirical probabilities of the respective fallout patterns
obtained from the records labelled as positive of the training corpus.

foc− =

(
∑|cfop|

i=1

{
sfopi
− ∃fopi ∈ cfop

}
)

*q− 1 (10)

Find the fallout confidence for the negative label, which is the ratio of empirical probabilities of the respective fallout patterns
obtained from the records labelled as negative of the training corpus.

Further, these confidence metrics has to correlate with identifying the label, which is as follows

1 Label the given test record as positive regarding call sequence specification scales, if the
a csc+ ≥ ssucsP

+ // Positive confidencecsc+of the call sequences of the given test record is greater than the upper bound of the
specification scalessucsP

+ (see Section3.7.1) of the call sequencescsPfor the positive label.

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

9

b csc+ ≥ sscsP
+ &&csc− < sscsP

− // Positive confidencecsc+of the call sequences of the given test record is greater than the specification
scalesscsP

+ of the call sequence patterns for a positive label, and negative confidencecsc− of the call sequences of the given test
record is less than the specification scalesscsP

− of the call sequences for the negative label.
c csc+ ≥ sslcsP+ &&csc− < sslcsP− // Positive confidencecsc+of the call sequences of the given test record is greater than or equal to the

specification scale lower-boundsslcsP+ of the call sequence patterns for the positive label. And negative confidencecsc− of the call
sequences of the given test record is less than the lower-bound of the specification scalesslcsP− of the call sequences for the negative
label.

2 Label the given test record as positive regarding argument specification scales, if the
a arc+ ≥ ssuarP

+ // Positive confidencearc+of the argument patterns of the given test record is greater than the upper bound of the
specification scalessuarP

+ of the argument patterns for the positive label (see Section3.7.2).
b arc+ ≥ ssarP

+ &&arc− < ssarP
− // Positive confidencearc+of the argument patterns of the given test record is greater than the

specification scalessarP
+ of the argument patterns for the positive label, and negative confidencearc− of the argument patterns of the

given test record is less than the specification scale of the argument patterns for the negative label.
c // Positive confidence of the argument patterns of the given test record is greater than or equal to the specification scale lower-

bound of the argument patterns for the positive label. And negative confidence of the argument patterns of the given test record is
less than the lower-bound of the specification scale of the argument patterns for the negative label.

3 Label the given test record as positive regarding fallout specification scales, if the
a // Positive confidence of the fallout patterns of the given test record is greater than the upper bound of the specification scale of

the fallout patterns for the positive label (see Section3.7.3).
b // Positive confidence of the fallout patterns of the given test record is greater than the specification scale of the fallout patterns

for the positive label, and negative confidence of the fallout patterns of the given test record is less than the specification scale of
the fallout patterns for the negative label.

c // Positive confidence of the fallout patterns of the given test record is greater than or equal to the specification scale lower-
bound of the fallout patterns for the positive label. And negative confidence of the fallout patterns of the given test record is
less than the lower-bound of the specification scale of the fallout patterns for the negative label.

4 Label the given test record as negative regarding call sequence specification scales, if the
a Positive confidence of the call sequences of the given test record is less than the specification scale of the call sequences for the

positive label, and the negative confidence (of the call sequences of the test record) is greater than the upper bound of the
specification scale of the call sequences (see Section3.7.2).

b Positive confidence of the call sequences of the given test record is less than the lower-bound of the specification scale of the call
sequences for a positive label. And the negative confidence (of the call sequences of the test record) is greater than the speci
fication scale (of the call sequences) for the negative label (see Section3.7.2).

5 Label the given test record as negative concerning argument specification scales, if the,
a // Positive confidence of the argument patterns of the given test record is less than or equals the specification scale of the

argument patterns for the positive label. And the negative confidence (of the argument patterns depicted from test records) is
greater than the upper bound of the specification scale of the argument patterns for the negative label (see Section3.7.2).

b // Positive confidence of the argument patterns (of the given test record) is less than the lower-bound of the specification scale of
the argument patterns for the positive label. And the negative confidence (of the argument patterns of the test record) is greater
than the specification scale (of the argument patterns) for the negative label (see Section3.7.2).

6 Label the given test record as negative regarding fallout triad scale, if the,
a // Positive confidence of the fallout patterns of the given test record is less than or equals the specification scale of the fallout

patterns for the positive label. And the negative confidence (of the fallout patterns of the test record) is greater than the upper
bound of the specification scale of the fallout patterns for the negative label (see Section3.7.3).

b // Positive confidence of the fallout patterns (of the given test record) is less than the lower-bound of the specification scale of the
fallout patterns for the positive label. And the negative confidence (of the fallout patterns of the test record) is greater than the
specification scale (of the fallout patterns) for the negative label (see Section3.7.3).

In contrast to the above conditions, the given record of call sequences can be treated as suspicious. However, the definition of these
conditions is solely domain-specific.

4. Experimental study

This section explores the empirical study carried to assess the performance of the proposed model and the other contemporary
models using the benchmark dataset. The performance significance of the proposed model must be scaled by comparing the observed
results of the classification assessment metrics namely, “Precision, Specificity, Sensitivity, Accuracy, F-measure, False Alarming, and
Matthews’s correlation coefficient (MCC)”. The manifested results from the proposed model MLMTS, the other contemporary models

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

10

“A Machine Learning Approach to Predict Advanced malware (MLAPAM)” [25] and “A Multi-Dimensional Machine Learning
Approach (MDMLA) to Predict Advanced malware” [26] are compared and concluded with the significance of the proposed model
towards malware detection.

4.1. The dataset

The dataset named Apimds[28] has been utilized for experiments, where 23,080 malware samples have been selected randomly
from the Malicia-project [29] and Virus Total [30] malware dataset that is boosted by adding known benign calls of 9436. The total
amount of records in the final dataset is 32516.

The metric precision indicates the ratio of records labelled correctly as positive to the total amount of falsely labelled records as
positive. Fig. 2 represents the graph between 10-folds and precision for MDMLA, MLAPAM, and MLMTS. The average precision for the
proposed method MLMTS that is perceived from the 10-fold strategy is 0.99 ± 0.005. While the average precision for the contemporary
methods MLAPAM and MDMLA are 0.968 ± 0.003 and 0.98 ± 0.003 in respective order. From the statistics, as shown in Table 3, it is
noticed that the proposed model MLMTS performs better when compared to contemporary MLAPAM and MDMLA methods.

The metric specificity denotes the ratio of correctly labelled records as negative against to total amount of negative label records.
Fig. 3 represents the graph between 10-folds and specificity for MDMLA, MLAPAM, and MLMTS. Average specificity for the proposed
method MLMTS and contemporary methods MLAPAM and MDMLA are observed from the 10-fold cross-validation as 0.976 ± 0.011,
0.926 ± 0.008, and 0.953 ± 0.008, respectively. From the statistics, it is noticed that the proposed model MLMTS outperforms the
contemporary MLAPAM and MDMLA methods.

The metric sensitivity denotes the ratio between the test records labelled correctly as positive, and the total amount of the positive
records provided for testing. Fig. 4 depicts the graph between 10-folds and sensitivity for MDMLA, MLAPAM, and MLMTS Average
sensitivity for the proposed method MLMTS that perceived from the 10-fold scheme is 0.987 ± 0.005. In contrast, the average
sensitivity for the contemporary methods MLAPAM and MDMLA are 0.926 ± 0.009 and 0.957 ± 0.009 in respective order. From the
statistics, it is noticed that the proposed model MLMTS is more significant when compared to contemporary MLAPAM and MDMLA
methods.

The metric accuracy indicates the total performance for selecting the labels of specified unlabeled records that is the ratio of cu
mulative of correctly labelled positive and negative records against the overall amount of records by both the labels provided for
testing. Fig. 5 signifies the graph between 10-folds and accuracy for MDMLA, MLAPAM, and MLMTS. Average accuracy for the
proposed method MLMTS and contemporary methods MLAPAM and MDMLA that perceived from the 10-fold scheme are 0.984 ±
0.003, 0.926 ± 0.007, and 0.956 ± 0.007, respectively. From the statistics, it is noticed that the proposed model MLMTS is considered
optimal when compared to contemporary MLAPAM and MDMLA methods.

The metric F-measure indicates the weighted harmonic mean of precision & recall. Fig. 6 depicts the graph between 10-folds and F-
Measure for MDMLA, MLAPAM, and MLMTS. The average F-Measure for the proposed method MLMTS that is perceived from the 10-
fold scheme is 0.983 ± 0.008. In contrast, the average F-measure for the contemporary methods MLAPAM and MDMLA are 0.947 ±
0.006 and 0.967 ± 0.006 in respective order. From the statistics, it is noticed that the proposed model MLMTS is more significant when
compared to contemporary MLAPAM and MDMLA methods.

Fig. 7 signifies the graph between 10-folds and false alarming rates for MDMLA, MLAPAM, and MLMTS. The average false alarming
rate for the proposed method MLMTS and contemporary methods MLAPAM and MDMLA that perceived from the 10-fold scheme are
0.016 ± 0.003, 0.074 ± 0.007, and 0.044 ± 0.007, respectively. From the statistics, it is noticed that the proposed model MLMTS is
optimal with minimal false alarming that compared to contemporary MLAPAM and MDMLA methods.

The metric Matthews Correlation Coefficient (MCC) is utilized in machine learning to measure the quality of binary classifications.

Fig. 2. Graphical representation of precision at 10-folds for the proposed MLMTS method and contemporary MDMLA and MLAPAM (Machine
Learning Approach to Predict Advanced Malware) methods.

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

11

Fig. 8 depicts the graph between 10-folds and MCC for MDMLA, MLAPAM, and MLMTS. The average MCC for the proposed method
MLMTS that is perceived from the 10-fold scheme is 0.961 ± 0.007. In contrast, the average MCC for the contemporary methods
MLAPAM and MDMLA are 0.828 ± 0.014 and 0.896 ± 0.017 respectively. From the statistics, it is noticed that the proposed model
MLMTS is more significant towards binary classification process that compared to contemporary MLAPAM and MDMLA methods.

All factors of performance analysis verified under the metrics, those recommended for machine learning have acclaimed the

Table 3
Average and Standard Deviation (SD) for the various metrics.

Precision Specificity Sensitivity Accuracy F-measure False Alarming MCC

MLMTS 0.99 ± 0.005 0.976 ± 0.011 0.987 ± 0.005 0.984 ± 0.003 0.983 ± 0.008 0.016 ± 0.003 0.961 ± 0.007
MLAPAM 0.968 ± 0.003 0.926 ± 0.008 0.926 ± 0.009 0.926 ± 0.007 0.947 ± 0.006 0.074 ± 0.007 0.828 ± 0.014
MDMLA 0.98 ± 0.003 0.953 ± 0.008 0.957 ± 0.009 0.956 ± 0.007 0.967 ± 0.006 0.044 ± 0.007 0.896 ± 0.017

Fig. 3. Graphical representation of specificity at 10-folds for the proposed method MLMTS and contemporary MDMLA and MLAPAM methods.

Fig. 4. Graphical representation of sensitivity at 10-folds for the proposed MLMTS method and contemporary MDMLA and MLAPAM methods.

Fig. 5. Graphical representation of accuracy at 10-folds for the proposed MLMTS method and contemporary MDMLA and MLAPAM methods.

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

12

significance of the proposed model. The qualitative factors considered to boost the significance of the experimental study are, the
records pooled up as a set to perform the testing process shall evince the least correlation with the records undertaken for the training
process, which helps to reflect the zeroth-day attacks. As stated in the literature review, contemporary methods resulted in poor
specificity, sensitivity, and detection accuracy. Whereas the proposed method, MLMTS, is using all three possible formats of the
features, which are n-gram patterns of call sequences, arguments, and fallouts. Hence, the MLMTS can detect the malware with
maximal accuracy, specificity, and sensitivity that manifested due to the rules defined under the correlation of all these input formats.

Fig. 6. Graphical representation of F-measure at 10-folds for the proposed MLMTS method and contemporary MDMLA and MLAPAM methods.

Fig. 7. Graphical representation of false alarming rate at 10-folds for the proposed MLMTS method and contemporary MDMLA and MLA
PAM methods.

Fig. 8. Graphical representation of the Matthews correlation coefficient at 10-folds for the proposed MLMTS method and contemporary MDMLA
and MLAPAM methods.

S.S. Alotaibi

Computers and Electrical Engineering xxx (xxxx) xxx

13

5. Conclusion

A machine learning approach is to identify the malware scope of a portable executable that has been proposed in this manuscript.
Unlike contemporary models, this method performs the detection process in three phases. Among these, the first and second phases are
using call sequences, and arguments passed to these call sequences, and the third phase uses the fallouts of these calls. According to
this, the first and second phases fall into the category of static analysis, and the third phase falls into the dynamic analysis category. The
execution of the second and third phases initiates if the predecessor phase is not confident to classify the given portable executable. The
proposal is a multi-level linear regression technique that defines a triad scale from the input given for each phase. The empirical study
has carried on the benchmark malware dataset. The performance significance of the proposed model is scaled by comparing the results
obtained from the contemporary models MLAPAM and MDMLA, which have been executed on the same dataset. The significance of the
proposal has been scaled by comparing the results obtained from the metrics such as Precision, Specificity, Sensitivity, Accuracy, F-
measure, False Alarming, and MCC.

Regarding resultant values of these metrics, the proposed method MLMTS outperformed the contemporary methods MLAPAM and
MDMLA with minimal false alarming and maximal specificity, sensitivity, and accuracy. The other two metric values F-measure, and
MCC, also evincing the significance of the proposed method. The contribution of the proposed work motivates future research towards
the development of fuzzy guided malware detection by using the triad scales as a member function.

Author statement

All authors confirm that we have participated sufficiently in the work to take public responsibility for the content, including
participation in the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author confirms that this
material or similar material has not been and will not be submitted to or published in any other publication before its appearance in the
Computers and Electrical engineering.

Declaration of Competing Interest

All author states that there is no conflict of interest.

References

[1] Zimba Aaron. malware-free intrusion: a novel approach to ransomware infection vectors. Int J Comput Sci Inform Secur 2017;15(2):317–25.
[2] Sood Aditya K, Enbody Richard J. Targeted cyberattacks: a superset of advanced persistent threats. IEEE Secur Priv 2012;11(1):54–61.
[3] Lindsay Jon R. Stuxnet and the limits of cyber warfare. Secur Stud 2013;22(3):365–404.
[4] Cesare Silvio, Xiang Yang, Zhou Wanlei. Malwise an effective and efficient classification system for packed and polymorphic malware. IEEE Trans Comput 2012;

62(6):1193–206.
[5] Yan Jinpei, Qi Yong, Rao Qifan. “Detecting malware with an ensemble method based on deep neural network. Secur Commun Netw 2018;2018:16. Article ID

7247095.
[6] Rudra Kumar M, Kumar Gunjan V. Review of machine learning models for credit scoring analysis. Revista Ingeniería Solidaria 2020;16(1):1–16.
[7] Baldangombo Usukhbayar, Jambaljav Nyamjav, Horng Shi-Jinn. A static malware detection system using data mining methods. Int J Artif Intell Appl 2013;4(4):

113.
[8] Alazab M, Huda S, Abawajy J, Islam R, Yearwood J, Venkatraman S, Broadhurst R. A hybrid wrapper-filter approach for malware detection. J Netw 2014;9(11):

2878–91.
[9] Alam Shahid, Nigel Horspool R, Traore Issa. MARD: a framework for metamorphic malware analysis and real-time detection. In: 2014 IEEE 28th International

Conference on Advanced Information Networking and Applications. IEEE; 2014. p. 480–9.
[10] Mehra Vishakha, Jain Vinesh, Uppal Dolly. DACOMM: detection and classification of metamorphic malware. In: 2015 Fifth International Conference on

Communication Systems and Network Technologies. IEEE; 2015. p. 668–73.
[11] Rieck K, Trinius P, Willems C, Holz T. Automatic analysis of malware behavior using machine learning. J Comput Secur 2011;19(4):639–68.
[12] Ravi Chandrasekar, Manoharan R. malware detection using windows API sequence and machine learning. Int J Comput Appl 2012;43(17):12–6.
[13] Van Nhuong N, Nhi VTY, Cam NT, Phu MX, Tan CD. Semantic set analysis for malware detection. In: IFIP International Conference on Computer Information

Systems and Industrial Management. Springer; 2015. p. 688–700.
[14] Liu L, Wang BS, Yu B, Zhong QX. Automatic malware classification and new malware detection using machine learning. Front Inform Technol Electron Eng

2017;18(9):1336–47.
[15] Yajamanam S, Selvin VRS, Di Troia F, Stamp M. Deep Learning versus gist descriptors for image-based malware classification. Icissp 2018:553–61.
[16] Pektaş Abdurrahman, Acarman Tankut. “malware classification based on API calls and behavior analysis. IET Inf Secur 2017;12(2):107–17.
[17] Cai H, Meng N, Ryder B, Yao D. Droidcat: effective android malware detection and categorization via app-level profiling. IEEE Trans Inf Forensics Secur 2018;14

(6):1455–70.
[18] Kilgallon Sean, Rosa Leonardo De La, Cavazos John. “Improving the effectiveness and efficiency of dynamic malware analysis with machine learning. In: 2017

Resilience Week (RWS). IEEE; 2017. p. 30–6.
[19] Yousefi-Azar Mahmood, Hamey Leonard GC, Varadharajan Vijay, Chen Shiping. Malytics: a malware detection scheme. IEEE Access 2018;6:49418–31.
[20] Saracino A, Sgandurra D, Dini G, Martinelli F. Madam: effective and efficient behavior-based android malware detection and prevention. IEEE Trans Dependable

Secure Comput 2016;15(1):83–97.
[21] Ding Yuxin, Xia Xiaoling, Chen Sheng, Li Ye. A malware detection method based on family behavior graph. Computers & Security 2018;73:73–86.
[22] Udayakumar N, Anandaselvi S, Subbulakshmi T. Dynamic malware analysis using machine learning algorithm. In: 2017 International Conference on Intelligent

Sustainable Systems (ICISS). IEEE; 2017. p. 795–800.
[23] Jerlin MAsha, Marimuthu K. “A new malware detection system using machine learning techniques for API call sequences. J Appl Secur Res 2018;13(1):45–62.
[24] Salehi Zahra, Sami Ashkan, Ghiasi Mahboobe. MAAR: robust features to detect malicious activity based on API calls, their arguments, and return values. Eng

Appl Artif Intell 2017;59:93–102.
[25] Mehmet Barış, Yaman. A machine learning approach to predict advanced malware. pp, (2019): 1–5.
[26] Bahtiyar Şerif, Yaman Mehmet Barış, Altıniğne Can Yılmaz. A multi-dimensional machine learning approach to predict advanced malware. Comput Netw 2019;

160:118–29.

S.S. Alotaibi

http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0001
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0002
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0003
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0004
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0004
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0005
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0005
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0006
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0007
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0007
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0008
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0008
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0009
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0009
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0010
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0010
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0011
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0012
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0013
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0013
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0014
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0014
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0015
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0016
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0017
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0017
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0018
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0018
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0019
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0020
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0020
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0021
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0022
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0022
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0023
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0024
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0024
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0026
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0026

Computers and Electrical Engineering xxx (xxxx) xxx

14

[27] Budak Hüseyin, Taşabat Semra Erpolat. A modified t-score for feature selection. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A-Uygulamalı Bilimler ve
Mühendislik 2016;17(5):845–52.

[28] Ki Youngjoon, Kim Eunjin, Kim Huy Kang. A novel approach to detect malware based on API call sequence analysis. Int J Distrib Sens Netw 2015;11(6):659101.
[29] Malicia Project, http://malicia-project.com/dataset.html. Volume 14, Issue 1, February Pages 15-33, 2015.
[30] VirusTotal, https://www.virustotal.com.2017.

Dr Saud S. Alotaibi received the Bachelor of Computer Science degree from King Abdul Aziz University, Jeddah, KSA, in 2000, the Master’s degree in Computer Science
from King Fahd University, Dhahran, KSA, in May 2008, the Ph.D. degrees in Computer Science from Colorado State University, Fort Collins, USA, in August 2015. From
January 2009 to 2010, he worked as a Deputy of the IT Center for eGovernment and Application Services at Umm Al-Qura University, Makkah, KSA. Currently, he is an
assistant professor with the Department of Information Systems, College of Computer and Information Systems. His-current research interests include Emotional In
telligence, Data Mining, Natural Language Processing, Machine Learning, Deep Learning, Computer Networks, Wireless Sensor Networks, and Network Security.

S.S. Alotaibi

http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0027
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0027
http://refhub.elsevier.com/S0045-7906(20)30739-4/sbref0028
http://malicia-project.com/dataset.html
https://www.virustotal.com.2017

	Regression coefficients as triad scale for malware detection
	1 Introduction
	2 Related research
	3 Methods and materials
	3.1 Preprocessing
	3.2 Optimizing the n-gram patterns
	3.3 T-Test for distribution diversity estimation
	3.4 Optimizing call sequence n-grams
	3.5 Optimizing the argument patterns
	3.6 Optimizing the fallout patterns
	3.7 Triad scale by regression coefficients
	3.7.1 Triad scale of the call sequence patterns
	3.7.2 Triad scale of the argument patterns
	3.7.3 Triad scale of the fallout patterns

	3.8 Label prediction

	4 Experimental study
	4.1 The dataset

	5 Conclusion
	Author statement
	Declaration of Competing Interest
	References

