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A B S T R A C T   

Sign language recognition is often carried out using hierarchical classification approach to reduce 
complexity and enhance accuracy. In this paper, mutli-label classification is proposed for cate
gorization of a sign based on its lexical attributes followed by final classification of the sign. 
Results are presented for classification of 100 isolated signs from the Indian sign language 
recorded using multiple surface electromyogram and inertial measurement units on both the 
forearms of 10 different signers. Signals from both the hands are processed in an integrated 
manner to identify static or dynamic state of the two hands. Moreover, symmetry in the motion of 
two hands is also utilized for sign categorization using novel features. In the classic tree-based 
categorization of signs, there is error propagation, which results in a classification error of 
6.22%. Whereas in the proposed mutli-label classification approach, error propagation is avoided 
and the average classification error of 2.73% is observed.   

1. Introduction 

A language provides humans with a structured means to exchange information with each other. While languages like Hindi and 
English use verbal or written mode of communication, sign languages, on the other hand, involve the use of visual gestures and signs. 
People with hearing and speech disabilities can communicate more naturally in sign language as compared to verbal languages. 
However, since most people do not understand sign languages, there is often a communication barrier experienced by a person wishing 
to converse in sign language. The use of a human interpreter or written form of communication is not always convenient. According to 
the Census 2001 of the Ministry of Home Affairs [1], there are around 1.26 million deaf people and around 1.64 million people with 
speech disability in India, while there are only 250 certified sign language interpreters in India. An electronic, wearable sign language 
recognition system shall be very useful in reducing the communication barrier that exists between a signer and a non-signer. There are 
several challenges in designing such a system. 

Sign language is not unique worldwide and varies, at times significantly, in different countries and within a country. The Indian 
Sign language (ISL) and sign languages in general, consist of non-manual components such as facial expressions and body language as 
well as manual components related with configuration and motion of hands [2,3]. Since majority of signs can be recognized based on 
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the manual components, this work is focussed on developing a wearable ISL translator using manual components of signing for 
classification. The manual components may further be categorized into one-handed or two-handed signs and static or dynamic signs [2, 
3]. In one-handed signs, the signer almost always uses the dominant hand, which is the right hand of a right-handed signer and the left 
hand for a left-handed signer. The dominant hand could be performing a static posture such as signing a numeral or the hand may 
follow a specific trajectory while held in the same or varying posture. In two-handed signs, the dominant hand may be more active as 
compared to the non-dominant hand, described as the dominance condition [4]. Then, the dominant hand may be dynamic while the 
non-dominant hand may be static. Otherwise, both the hands may be active and may have similar hand shape and movement, which is 
referred to as the symmetry condition [4]. In this work, the attributes explained above are utilized to design a multi-label classifier for 
initial categorization of an isolated sign, following which the final classification is carried out. 

Sign language recognition has been reported with several sensing technologies and recognition algorithms. In [5], around 240 
approaches for sign language recognition that use various sensing modalities as well as different machine learning algorithms have 
been reviewed. Based on the sensing technology, sign language recognition systems can be broadly classified as follows.  

1. Vision-based systems: These systems track the motion of hands using camera mounted in front of the signer [6,7]. The Kinect 
sensor, that initially became popular for providing gesture-based control in Microsoft’s Xbox gaming console, has been used to 
develop sign language recognition systems [6]. While Kinect provides the colour and depth video streams, Leap Motion sensors 
provide accurate hand and finger tracking, which is very useful for sign language recognition [6]. In [7], The authors used hand 
shape, velocity and position of hand as subunits to classify isolated signs and signed sentences from video stream with up to 97.3% 
accuracy. Use of skin tone or coloured gloves is also used in designing hand tracking algorithms [5]. However, vision-based 
recognition systems are not wearable and their performance may be affected by factors such as lighting condition, background, 
occlusion and limited view of capturing.  

2. Wearable sensor-based systems: These systems consist of contact sensors such as those that can measure the bending of fingers, or 
motion and rotation of hand and/or fingers, such as accelerometers and gyroscopes [8]. The sensors may be placed in a glove. Sign 
language recognition using signals acquired from one Data Glove [9] and two CyberGloves, one on each hand [10] have been 
reported in literature. A precision and recall rate of 96.6% and 95.7%, respectively have been reported for classification of 74 
distinct sentences based on 107-word vocabulary in [9]. For large databases with 5113 isolated signs and 750 different sentences, 
classification accuracies of 95.4% and 91.9% are reported in [10]. However, wearing a glove equipped with multiple sensors may 
interfere with natural signing, which requires different hand postures and motions.  

3. Alternatively, armbands with multiple inertial measurement units (IMU) and surface electromyogram (sEMG) have been used for 
sign language recognition [11–13]. Surface electromyogram measures the electrical potentials generated in the muscles in a 
non-invasive manner from the sensors placed on the skin surface. Electromyogram provides rich information about hand gestures 
and has been used for health monitoring, studying muscle fatigue, developing prosthetic limb controls and in sign language 
recognition systems [8]. An IMU consist of a tri-axial accelerometer, which measures information related to linear acceleration and 
orientation, and a tri-axial gyroscope, which measures the turn rate about the orthogonal axis. Each sensing modality provides 
certain advantages as well as some limitations. In fact, the utilities of different sensing modalities for classification of signs in ISL 
have been assessed analytically in [14] and it is found that when multiple sensors and multiple modalities are used together, sign 
language recognition improves. 

In this work, the signals are recorded using multiple sEMG and inertial sensors placed on both the forearms of the subjects so that 
the system is wearable and convenient to use when conversing in sign language. A novel multi-label classification (MLC) aided sign 
recognition is proposed, where the labels are selected according to the lexical attributes of signs as reported in [4]. Novel features are 
proposed for classification of static and dynamic motion of hands during signing as well as for determining symmetric motion of hands. 
Hence, the signals recorded from the two hands are processed in an integrated manner to improve recognition. Results are reported for 
100 commonly used words from the Indian sign language. The proposed approach is compared with tree-classification approach 
reported in literature. 

The remaining paper is organised as follows. Section 2 contains a brief overview of the techniques used in sign language recog
nition. The details of the experimental setup used in this work and the proposed algorithm are presented in Section 3. Novel features 
are also proposed for categorization of one- or two-hand signs into static and dynamic, and for determining symmetric motion in two- 
hand signs. Performance of the proposed MLC-aided classification is compared with the classic tree-classification as well as flat 
classification approach in Section 4. Results indicate that accuracy improves, while execution time is comparable with the existing 
algorithms. Section 5 concludes the paper. 

2. Related literature 

2.1. Use of sign language models in sign recognition 

Sign language, like any other verbal language, has been studied for its phonological and lexical construction. Various models have 
been reported in literature to describe the structure of signs in terms of subunits, which is equivalent to a phoneme in a verbal language 
[15,5]. According to the Stokoe model, subunits of a sign language may be categorized according to shape, location and movement of 
the hand [16,15,2]. The handshape is described by the configuration of the fingers and orientation of the palm, while location of the 
hand is determined relative to the body. For example, as shown in Fig. 1a and 1b, a one-hand (index finger pointing out and other 
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fingers forming a fist) facing up is the sign for the digit ‘1’, whereas one-hand facing front is the sign for ‘you’ in ISL [17]. Also, a sign 
may require a local movement, such as that of fingers or wrist, or movement of complete hand along a trajectory in space. For instance, 
one-hand is moved in an arc and only the orientation of the hand is changed from down to up, it means ‘tomorrow’ in ISL (shown in 
Fig. 1c), while to sign ‘week’ one-hand facing out at chest level is moved to right, as shown in Fig. 1d. Continuous signing has been 
described to consist of sequential organization of movement and static posture, termed as the Movement-Hold model [16]. 

For one-handed signs, the aforementioned models are sufficient, however, in two-handed signs, the relation between the movement 
and posture of the two hands has also been modelled [16,18]. Battison in 1978 proposed two constraints on the lexical of two-handed 
signs, namely the symmetry condition and the dominance condition [18]. According to the symmetry condition, when both the hands 
have dynamic motion, they must consist of same handshape and movement, which may be alternating. Under the dominance con
dition, if handshapes are not same for the two hands, then one hand must be in static posture, while the other hand articulates the 
meaning. In this case, the static hand is the non-dominant hand of the signer, which is the left hand for a right-handed signer and the 
right hand for a left-handed signer. For instance, in the sign for ‘rectangle’, both hands are in one-hand posture and move away from 
each other as shown in Fig. 1e, while in the sign for ‘plate’, the right one-hand facing down moves in a circle on top of the left hand, 
which remains static, open and facing up, as shown in Fig. 1f. Another point to be noted is that left-handed signers perform mirror 
image of the signs performed by right-handed signers [16]. 

There are certain sign language recognition systems where the signals recorded using various wearable sensors during signing are 
simply used for feature extraction and classification, without considering the language model. For instance, in [11], sEMG and IMU 
data was collected from four subjects in multiple sessions for 80 signs in the American sign language. The sensors were placed only on 
the dominant hand and processed for feature extraction, feature selection and classification. An average classification accuracy of 
96.16% was achieved using support vector machine (SVM) classifier. In [12], the signals from Myo armbands on both hands were 
processed for feature extraction and classification using a multi-dimensional HMM and classification accuracy up to 96.15% was 
achieved for 13 gestures from the American sign language. On the other hand, sign language models such as Stokoe model and the 
Movement-Hold model have been employed during classification of signs [3,9,10,13]. For instance, the video streams for both hands 
were segmented into static and dynamic subunits and handshape information was also incorporated to improve classification accuracy 
[3]. In [9,10], the data from a CyberGlove and position trackers on both hands were segmented into sign and movement epenthesis, 
which is the transition phase between two adjacent signs. Also, the sign descriptors given by Stokoe have been used during classifi
cation. In [13], sign attributes were used to design an optimized-tree structure for hierarchical classification of signs using wearable 
armbands with sEMG and IMU sensors. In the first stage, the sign was classified as one- or two-handed. From the signs belonging in the 
selected category, the sign was then classified according to hand orientation in the second stage. In the third stage, the sign was 
classified according to signal amplitude to further limit the set of signs from which a multi-stream HMM identifies the sign being 
performed. For two-handed signs, the data from both hands was processed independently and the final recognition was achieved by 
probabilistically combining the decisions of classifiers for each hand. 

In literature, sign attributes and the movement-hold model have been utilized extensively. However, the relative motion of two 
hands as described by Battison [4] has not yet been employed for sign language classification, to the best of our knowledge. In this 
paper, the signs are first categorized according to one- or two-handedness, static or dynamic state of both dominant and non-dominant 
hand, and also symmetric or asymmetric motion of the two hands. Moreover, MLC approach is proposed for categorization, as 
described in the following section. 

Fig. 1. Some common signs in Indian Sign Language.  
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2.2. Multi-label classification 

Multiclass classification problem may be handled using flat classification, hierarchical classification or multi-label classification. In 
flat classification, the classifier assigns one of the multiple classes to an instance or the input feature vector in a single stage of 
classification [19]. In the learning phase, a function h : 𝒳 → 𝒴is learned from the training data (xi,yi),i = 1, …, m, where mis the 
number of observations in training data, xi ∈ X (= Rd)is the input feature vector from the d-dimension feature set and class label is 
denoted by yi ∈ 𝒴, where 𝒴 = {y1,y2,…,yq}. For an unseen feature vector x̂, h(x̂)is used to predict the associated class label ŷi. Flat 
classification approach has been used for sign language recognition in [11,12]. Since relations among classes are not exploited, the 
complexity of a flat classifier increases as the number of classes increase. In hierarchical approach, classification is carried out in 
multiple stages and in each stage, there could be a binary or multiclass classifier at a parent node [19]. The classifier at each parent 
node may be designed using features more discriminative for the possible labels in that stage. For instance, an optimized tree is 
proposed for hierarchical classification of signs in [13], as explained in Section 2.1above. Here, the number of signs to which the input 
feature vector may be associated with in the final classification step progressively reduce with each stage of classification, in turn 
decreasing the complexity of the classifier. However, if there is an incorrect decision at any parent node, the error propagates 
downwards into the remaining stages of the hierarchy. 

In hierarchical classification, multiple labels are assigned to the input feature vector, but one at a time in each stage of classifi
cation. However, in MLC, an input feature vector may be associated with more than one label in a single stage of classification. The 
training data consist of (xi,Yi),i = 1, …, m, where xi is the feature vector as defined earlier and Yi⊆𝒴is the set of labels associated with xi. 
For a new observation x̂, the learned function may predict a set of labels Ŷ i⊆𝒴as true. MLC has been used in various applications such 
as text categorization, recommender systems, and annotation of multimedia such as music and images [20,21]. MLC may be designed 
using problem transformation approach or algorithm adaptation approach. In problem transformation, MLC is redefined to transform 
it into conventional classification problems, such as a multiclass classification problem [20,21]. Some examples of MLC using problem 
transformation are binary relevance, classifier chain and label powerset. In algorithm adaptation, the conventional learning techniques 
are adapted to handle MLC. For example, multi-label k-nearest neighbour classifier (ML-kNN), multi-label decision tree and rank-SVM 
can assign more than one label to an unseen observation. In this paper, problem transformation approaches are employed for initial 
categorization of a sign due to their simplicity and applicability in the considered scenario. 

In binary relevance (BR), one binary classifier is learned for each possible label, y1,y2,…,yq ∈ 𝒴[20]. Given an observation in the 
training data (xi,Yi), label associated with xiin the kth binary learner, k = 1, 2, …q, is given as 

zk =

{
1, if yk ∈ Yi
0 otherwise. (1) 

An unseen feature vector x̂, is tested with all the q-binary classifiers and a true prediction implies the presence of that label in the 
label set associated with the unseen feature vector, that is Ŷ i = {yk|ẑk = 1}. BR technique treats each label as distinct and does not 
utilize the relations that may exist between labels. In classifier chain (CC) technique, q-binary classifiers are trained in a specific order 
depending on the ranking of labels [20]. Also, xiis stacked with the actual label relevance (zk) of the previous label in the chain to 
utilize label dependence during classification. Let {yr1,yr2,…, yrq} be the rank-ordered label set. The ith input feature vector for the kth 
binary learner is [xi,zr(k − 1)]. For a new observation x̂, the kth binary learner in the chain uses [x̂, ẑr(k− 1)] as the input feature vector to 
determine ẑk. Another MLC technique that uses problem transformation and label dependencies is Label Powerset (LP) [20]. In LP 
approach, each unique label combination in the training data is assigned a pseudo-label and a single-label multiclass classifier is 
learned with the input feature matrix and the pseudo-labels. The learned model can predict a pseudo-label for a new observation, 
which is associated with a set of labels in 𝒴. The limitation of this method is that the number of possible pseudo-labels 2qmay be very 
large for a large number of labelsq. Also, the model can only be trained to classify the label combinations that are present in the training 
data. 

Twelve different MLC techniques have been tested with eleven publicly available multi-label datasets derived from domains such as 
biomedical, multimedia and text categorization in [21]. Among the problem transformation approaches, LP-approach namely hier
archy of multi-label classifiers (HOMER), BR and CC are found to perform the best in terms of 13 evaluation measures. HOMER is a 
computationally efficient LP approach for handling large number of labels. The LP approach may be employed when there are only a 
few labels in the multi-label set, as in the case of the dataset used in this work. In [22], authors used BR, LP and CC approach to classify 
phonemes in Tamil language from audio signals and achieved the best accuracy of 93.6% with the LP approach. MLC has been used for 
human walking activity recognition in [23] using an accelerometer that may be placed in four different locations on the body. The 
authors combinedly classified the signal for different sensor placements and activities using LP approach to achieve a Hamming score 
of 99.6% for 10 walking activities, which was better than the score achieved with multiclass classifiers for individual sensor place
ments. In this paper, a sign is first categorized according to four attributes using MLC on signals recorded from multi-modality, 
wearable sensors. Then, the sign is recognized from the set of signs in the determined category, using multiclass classification, as 
explained in the following section. 
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3. Proposed ISL recognition 

3.1. ISL database 

Three sEMG sensors and two 6 degree-of-freedom IMUs were placed on both the forearms of the signers in an armband configu
ration, as shown in Fig. 2a. The sEMG and IMU signals were recorded at 90μs and 6.7ms sample intervals, respectively using the Delsys 
Trigno wireless system, shown in Fig. 2b. The sensors are synchronized in time and they transmit the signals wirelessly to a base 
station, which is connected to a PC via USB where signals are recorded and later processed. The skin was cleaned and the sensors were 
placed on the skin using double-sided adhesive interface to limit motion artifact. 10 volunteers comprising of 7 females and 3 males in 
the age group of 21–35 years of which 3 were left-handed and remaining right-handed gave informed consent to participate in the 
study. Each volunteer performed 20 repetitions of 100 commonly used signs in ISL, as given in the ISL video dictionary [17]. The 
volunteers were comfortably seated on a chair and an audio stimulus was used to indicate the beginning of a signing duration. The 
volunteers were given 3 s to complete a repetition of a sign and 5 s rest between each repetition, during which the volunteers were 
asked to keep the hands on the thighs in a resting position. Additional 5 min rest was given between each sign recording to avoid 
muscle fatigue. Hence, 20,000 samples of observations were collected containing around 15 hrs of usable recording. 

ISL signs with different lexical attributes were selected; details of which are mentioned in Table I. Inspired by the sign language 
model given by Battison explained in Section 2.1, a sign is labelled as follows:  

(i) Two-handed: A sign is two handed if the non-dominant hand is also used during the sign. In all the signs, the dominant hand is 
either required to make a posture with or without motion along a trajectory. If the non-dominant hand remains in rest position 
during the signing duration, the sign is considered to be one-handed. For instance, as shown in Fig. 1, the signs for ‘rectangle’ 
and ‘plate’ are two handed and the remaining four signs are one-handed.  

(ii) Dynamic dominant hand: If a sign requires the dominant hand to undergo a local motion or motion along a trajectory, it is 
considered to be dynamic. Otherwise, it is considered to be static. For instance, as shown in Fig. 1, the dominant hand is in 
dynamic motion in the signs for ‘tomorrow’, week, ‘rectangle’ and ‘plate’, while it is static in signs for ‘one’ and ‘you’.  

(iii) Dynamic non-dominant hand: The condition for dynamic dominant hand is also applicable for the non-dominant hand for two- 
handed signs. For one-handed signs, the non-dominant hand is always considered to be static. In Fig. 1, all signs except the sign 
for ‘rectangle’ have static non-dominant hand.  

(iv) Symmetric: For two-handed signs, the sign may require that the hands move in mirror symmetry. Otherwise, the hands have 
asymmetric motion such as for one-handed signs, non-dominant hand static signs or even when both hands are in motion. In 
Fig. 1, the sign for ‘rectangle’ has symmetric motion of both hands, while the remaining signs will be categorized as having 
asymmetric motion. 

The possible sign categories according to the four sign attributes and the corresponding labelling used for sign categorization are 
listed in Table 1. The signals recorded during signing are pre-processed and MLC is used to categorized into a category using MLC. The 
final classification for recognition of the performed sign is carried out from amongst the signs in the identified category. 

3.2. Signal processing 

The signals recorded using the sEMG sensors and IMUs were processed as follows, before carrying out feature extraction.  

1 Missing sample interpolation: Missing samples in the recorded signals were determined using linear interpolation of adjacent 
samples.  

2 Baseline removal: A moving-average filter of length 125 ms was used to estimate the baseline of sEMG signals, which was removed.  
3 IMU calibration: For each IMU, the accelerometer and gyroscope signals were calibrated to compensate the bias and scale factors.  
4 Detection of activity duration: Activity duration for each repetition of the sign was determined using gyroscope signals, for each 

hand. To perform a sign, the signer must lift the active hand(s) in a space in front of the torso, referred to as the signing space [17]. 

Fig. 2. (a) Placement of sensors on forearm, (b) Recording setup.  
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Also, after performing the sign, the signer brings his hands down in the resting position. A tri-axial gyroscope measures the turn rate 
ω along the x-, y- and z- axis of the sensor in deg/s. For the kth IMU, k = 1, …, 4, the square root of Euclidean norm of gyroscope 
signals was evaluated as, 

‖ ωk(n) ‖=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ω2
kx(n) + ω2

ky(n) + ω2
kz(n)

√

, (2)   

where n denotes the time sample. Fig. 3a and 3b show the norms of gyroscope signals for IMU1 and IMU3 placed on the dominant and 
the non-dominant hands, respectively for the sign ‘Plate’. When the hand is in rest position or in a static posture, norms of gyroscope 
signals remain close to zero. Amplitudes of signals are high during any motion and peaks are observed between adjacent pauses. Hence, 
the beginning of the first peak and the end of the last peak in the norm of the gyroscope signals was detected to determine the activity 
duration, which are marked in dotted black lines in Fig. 3a and 3b. Since dominant hand is used in all signs, peaks are always observed 
in gyroscope signals of IMU1 and IMU2. However, when no peaks of at least 50◦/s were detected in the signals from gyroscopes placed 
on the non-dominant hand, for instance for one-handed signs, the activity duration detected on the dominant-hand was selected as the 
duration over which the signals from the non-dominant hand are processed.  

5 Detection of signing duration: As shown in Fig. 3c and 3d, the duration between the instances when the amplitude of first peak of 
the norm of the gyroscope signal drops below 50◦/s and the amplitude of last peak increases above the same, was determined. This 
is the actual signing duration, where the duration of hands being lifted to the signing space and being taken back to the rest position 
are removed from the detected activity duration. The signing duration detected for the dominant and the non-dominant hands are 
plotted in dotted black lines in Fig. 3c and 3d, respectively. 

Table 1 
Sign categories and sign attributes for MLC labelling.  

Sign Categories Sign Attributes A1: Two- 
Handed 

A2: Dynamic 
dominant hand 

A3: Dynamic non- 
dominant hand 

A4: 
Symmetric  

Examples (Number of signs in 
the category)     

C1: One-hand static Good, 1, C, you (16) 0 0 0 0 
C2: One-hand dynamic Bad, right, key (29) 0 1 0 0 
C3: Two-hand static A, Doctor, Pray (10) 1 0 0 1 
C4: Dominant dynamic, non- 

dominant static 
Plate, bank, lock (19) 1 1 0 0 

C5: Two-hand, both dynamic and 
symmetric 

Rectangle, shop, pipe (19) 1 1 1 1 

C6: Two-hand, both dynamic and 
asymmetric 

Meat, work, add (7) 1 1 1 0  

Fig. 3. Detected durations for the sign ‘Plate’ (a) Activity duration of dominant hand, (b) activity duration of non-dominant hand, (a) signing 
duration of dominant hand, (b) signing duration of non-dominant hand. 
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Novel features are proposed to categorize a sign according to the four attributes mentioned in Section 3.1 based on the recorded 
signals. Let the specific force vector of tri-axial accelerometer of the kth IMU after calibration, be 

fk(n) =
[

fkx(n) fky(n) fkz(n)
]
. (3) 

Normalized peak-to-peak values: The peak-to-peak value of accelerometers on the non-dominant hand, normalized with respect to 
the maximum of the peak-to-peak values of all accelerometer signals is evaluated over detected activity durations, as given in (4). 
Similarly, the normalized peak-to-peak values for gyroscope signals of non-dominant hand sensors are evaluated. 

ps
kl =

max(skl(n)) − min(skl(n))
max({max(smr(n)) − min(smr(n)), ∀m ∈ {1, 2, 3, 4} and r ∈ {x, y, z}})

, (4)  

where skl(n) is the specific force fkl(n) when ps
klis evaluated for accelerometer signals and it is turn rate ωkl(n) when ps

klis evaluated for 
gyroscope signals. In (4), k∈{3, 4} corresponding to sensors on the non-dominant hand, l∈{x, y, z}, n = 1, …Nand N is the number of 
samples in activity duration. For one-handed signs, since the non-dominant hand is not lifted to the signing space, the normalized peak- 
to-peak values for accelerometer and gyroscope signals is expected to be lower as compared to that of two-handed signs. 

Normalized standard deviations: The standard deviation (std) of signal from an accelerometer, gyroscope or sEMG sensor (denoted by 
e) on the non-dominant hand, normalized with respect to the maximum standard deviation of the corresponding signals from sensors 
on both hands is evaluated over the detected activity duration, using 

σs
kl =

std(skl(n))
max({std(smr(n)), ∀m ∈ {1, 2, 3, 4} and r ∈ {x, y, z}})

, (5)  

where k, l and n have same meaning as in (4) and sk(n) are the signal samples in activity duration. If non-dominant hand is not in 
activity, the normalized standard deviations are expected to remain low. 

Euclidean distance to determine symmetric motion between two hands: The accelerometer signals fkl(n), k∈{1, 2, 3, 4} and l∈{x, y, z} are 
normalized to make their mean over the activity duration as zero. Then, Euclidean distance is evaluated over corresponding accel
erometer signals from either hand, that is between the accelerometer signals of IMU1 and IMU3, and IMU2 and IMU4, as 

d
(
f1z, f3z

)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

n=1

(
f1z(n) − f3z(n)

)2

√
√
√
√ , (6)  

where n are the samples in activity duration. Fig. 4a and 4b show the signals for signs ‘rectangle’ and ‘plate’, respectively recorded from 
accelerometers in IMU1 and IMU3. The corresponding accelerometer signals have similar variation with time in Fig. 4a. By removing 
the mean, the difference in accelerometer signals due to difference in orientation is compensated. Hence, only the variation of specific 

Fig. 4. Accelerometer signals, (a) f1(n) and f3(n) for sign ‘Rectangle’, (b) f1(n) and f3(n) for sign ‘Plate’ (c) f1z(n) and f3z(n) for sign ‘Rectangle’ after 
mean-removal, (d) f1z(n) and f3z(n) for sign ‘Plate’ after mean-removal. 
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force of the corresponding accelerometers with time would affect the Euclidean distance. The mean-removed signals for accelerom
eters along z-axis in IMU1 and IMU3 are shown in Fig. 4c and 4d, respectively. In the sign for ‘rectangle’, the hands move in mirror 
symmetry and the Euclidean distance evaluated using (6) is 1.17, whereas in the sign for ‘plate’, the hands have asymmetric motion 
and the Euclidean distance is 9.36. The Euclidean distance is also low for two-hand static signs, since both hands lift into the signing 
space and then remain static. 

Statistical features evaluated over signing duration: Mean and median are estimated over the signing duration for the Euclidean norm 
of gyroscope signals defined in (2). Also, standard deviation of accelerometer and gyroscope signals for all sensors is evaluated over the 
signing duration. These features yield significantly lower values for static postures as compared to when estimated over dynamic 
motion, provided the durations of signer lifting his hands to signing space and taking them back to rest position are excluded from the 
evaluation. 

Features for multiclass (MC) classification: Other than the features proposed above, the features commonly reported in literature are 
also evaluated for final classification from the set of signs in the determined category. Since it is required to capture the variation of 
motion with respect to time, the sEMG and IMU signals are segmented into windows of 500 ms. The MC-related features listed in 
Table 2 are evaluated for each window. For sEMG signals, time domain features such as mean absolute value (MAV), variance (VAR), 
zero crossing rate (ZCR), skewness (SkewT), kurtosis (KurtT), frequency domain features such as mean frequency (MNF) and median 
frequency (MDF) have been reported for classification of signs [11,13]. In Table 2, ek = 1

N
∑N

n=1ek(n)is the mean of sEMG signal for 
sensor k∈{1, …, 6}, over a signal segment having Nsamples. The threshold μ for detecting ZCR is taken as twice the standard deviation 
of the sEMG signal recorded during rest duration. The power spectral density (PSD) of an sEMG signal, P is weighted using the cor
responding frequency f to evaluate MNF, whereas MDF is the frequency at which the area under the PSD is divided into half. The AR 
coefficients aq are evaluated for segments of sEMG signals such that the prediction error w(n) is uncorrelated, white noise. Skew and 
kurtosis are also evaluated for sEMG signals as given in Table 2, where μn is the nth order central moment evaluated using the 
probability density function (PDF) of the signal [24]. Spectral skewness (SkewF) and spectral kurtosis (KurtF) reported in [24] for 
classification of finger gestures are also evaluated. The spectral moments are evaluated just like central moments, however, PSD of the 
signal is used in place of PDF. For accelerometer and gyroscope signals, mean and standard deviation are evaluated. In the next section, 
the proposed MLC-aided classification of signs is presented. 

3.3. Proposed MLC aided SLR 

For SLR, signals recorded using sEMG and IMU sensors placed on the hands of a signer were processed as depicted in Fig. 5. Basic 
pre-processing steps, explained in Section 3.2 were carried out for handling missing values and signal biases. Then, activity duration 
and signing duration were detected separately for sensors on the dominant and the non-dominant hands. The features proposed MLC 
and MC classification, as stated in Table 2, were extracted. The features were standardized so that the values of each feature have zero 
mean and unit variance. Also, principal component analysis (PCA) was applied on the MLC-related features to select reduced feature 
sets, while maintaining 99% variance. Different MLC techniques were employed to compare their performance for sign categorization. 
In BR, one probabilistic SVM [25] with Gaussian kernel was learned for each attribute mentioned in top row of Table 1. In CC, the label 
chain was created using the same sequence of attributes as mentioned in Table 1, with two-handed categorization as the first label in 
the chain. Here too, probabilistic SVM was used for categorization of a sign according to each attribute, but the true labels from the 
previous label in the chain were concatenated with the feature vector, as explained in Section 2.2. In LP, only one multiclass SVM was 
trained for MLC by assigning a pseudo-label to each of the six categories mentioned in the first column of Table 1. 

For a new observation, MLC was first used to determine the label for each of the four attributes. In BR and CC approaches, it is also 
possible that the predicted attribute labels do not correspond to any of the 6 possible categories. Then, the new observation was 
classified from the set of all signs, following the flat classification approach. Also, if the posterior probability estimated using prob
abilistic SVM of an MLC label taking a value 0/1 was less than 0.8, the estimated MLC label was ignored and the remaining MLC labels 
were used to determine the set of signs for the final classification stage. For example, if the labels for attributes A1, A2 and A3 were 
predicted as 1, 1, and 1, respectively, each with posterior probability greater than 0.8, whereas that for attribute A4 was predicted with 
a lower probability, the signs contained in both categories C5 and C6 (as stated in Table 1) were considered in the final classification of 

Table 2 
MLC and MC related features.  

MLC-related features (no signal segmentation) MC-related features (evaluated over 500ms signal segments) 

pf
kl, pω

kl, for k∈{3, 4}, l∈{x, y, z}  MAV =
1
N
∑N

n=1
|ek(n)|, k ∈ {1,⋯,6} AR coefficients, aq, q = 1,…3 ek(n) =

∑Q
q=1aqek(n − q)+ w(n)

σf
kl, σω

kl, σe
kl, for k∈{3, 4}, l∈{x, y, z}  VAR =

1
N
∑N

i=1
(ek(n) − ek)

2  SkewT =
μ3

μ3/2
2

, SkewF =
μ̃3

μ̃3/2
2  d(f1l,f3l),d(f2l,f4l), l∈{x, y, z} ZCR =

∑N− 1
i=1 [sgn(ek(n) × ek(n +

1)) ∩ |ek(n) − ek(n + 1)|] ≥ μ  
KurtT =

μ4
μ2

2
, KurtF =

μ̃4

μ̃2
2  

Mean(‖ ωk(n) ‖),
Median(‖ ωk(n) ‖), n ∈ signing duration  

MNF =
∑M

m=1fmPm/
∑M

m=1Pm,

M=number of frequency bins  
Mean(fk(n)),STD(fk(n)), for k∈{1, 2, 3, 4}, d∈{x, 
y, z}, n∈activity duration 

std(fkl(n)),std(ωkl(n)), for k∈{1, 2, 3, 4}, l∈{x, y, z}, n∈
signing duration 

MDF =
∑MDF

j=1 Pj =
∑M

j=MDFPj =
1
2
∑M

j=1
Pj  

Mean(ωk(n)),STD(ωk(n)), for k∈{1, 2, 3, 4}, d∈{x, 
y, z}, n∈ signing duration  
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the sign. Hence, the probability of incorrect categorization was reduced, but the possible categories increased from 6 to 32. Conse
quently, in the final classification stage following the BR and CC-based categorization, 32 different models were learned. In LP-based 
MLC, however, an observation may only be categorized into one of the 6 categories mentioned in Table 1 and only six models were 
required to be learned for the final classification stage. In general, the categorization of a new observation lead to a reduced set of signs 
from amongst which the performed sign is to be identified. In the final stage of classification, PCA was applied on the subset of training 
features belonging to all the signs in a particular category, and a multiclass SVM with Gaussian kernel and one-vs-all encoding was 
learned. Hence, for a new observation, the MC-model for the determined category was used for classification. 

The MLC-aided SLR proposed above was compared with a tree-based SLR described as follows. The order of attributes mentioned in 
Table 1 was used for tree splitting, which is the optimal in terms of Gini’s diversity index. Starting with the entire training data, a 
binary classifier model was learned to classify a sign as one- or two-handed. Then, the subsets of training data corresponding to one- 
and two-handed signs were used to learn two more binary models that would classify the dominant hand as dynamic or static. Here, 
features of only the dominant hand were used while those of non-dominant hand were ignored. From the subset of data belonging to 

Fig. 5. The proposed MLC-aided SLR for Indian sign language recognition.  

Fig. 6. MLC-related features for sign categorization.  
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two-hand dominant-dynamic signs, a fourth classifier was learned to determine if the non-dominant hand is dynamic, using features of 
only the non-dominant hand. A fifth classifier was learned from the subset of data corresponding to two hand signs with both hands in 
dynamic motion to classify the sign as symmetric or asymmetric using features from both the hands. For each node, MLC-features were 
used in SVM classifier with Gaussian kernel. Finally, six multiclass classifiers were trained using subset of data belonging to the signs in 
the six categories using MC features. For a new observation, the sign was categorized using the tree structure, following which the sign 
was classified from the set of signs in the identified category. 

In the tree-based categorization, the set of possible signs at each node is a subset of the possible signs in its parent node. Hence, if at 
any node, the sign is incorrectly categorized, the set of signs from which classification is carried out in the final stage will not contain 
the actual sign. For instance, in tree-structure for a two-hand sign with both hands dynamic (category C5 or C6), if the sign is predicted 
as two-hand, dominant dynamic, but non-dominant static (category C4), the sign will be classified from amongst the signs in category 
C4, which will not contain the actual sign. Whereas, in MLC-based categorization, each attribute is determined from the data belonging 
to all the signs. For instance, the model used for categorization of attributes A1–A4 in BR and CC have the same set of data during 
training, and for a new observation, predictions for all the four attributes are combined to determine the sign category. Moreover, 
labels associated with low posterior probabilities are ignored. In LP, the categorization is again from the set of all signs. In the next 
section, the performance of proposed MLC-aided SLR is compared with the tree-based SLR. 

4. Experimental results 

The aim of the proposed SLR system is to determine the sign performed based on sEMG and IMU signals from both the hands. 
Firstly, the novel MLC-features proposed in Section 3.2 are assessed for their utility in sign categorization. Histograms of normalized 
peak-to-peak value and normalized standard deviation for accelerometer in IMU 3 on the non-dominant are plotted in Fig. 6a and 6b, 
respectively for observation belonging to one-handed and two-handed signs. As expected, their values are lower when the non- 
dominant hand is not used in the activity duration. Hence, they are useful in classifying a sign as one- or two-handed. Fig. 6c and 
6d show the histograms of median of Euclidean norm of gyroscope signal and standard deviation of accelerometer signal from IMU 2 
on the dominant hand. When evaluated over signing duration, these statistical measures provide acceptable discrimination between 
static and dynamic state of the dominant hand. Similarly, median of Euclidean norm of gyroscope signal from IMU 3 on the non- 
dominant hand provides a good distinction between static and dynamic state of the non-dominant hand, as shown in Fig. 6e. The 
histogram in Fig. 6f shows that the Euclidean distance between the mean-centred accelerometer signals from dominant and non- 
dominant hand is useful for determining whether the motion of the two hands is symmetric or asymmetric. For symmetric motion, 
Euclidean distance is in general lower as compared to that evaluated under asymmetric motion of hands. These MLC-related features 
were used with BR, CC, LP and tree-based approaches to categorize a new observation, as explained in Section 3.3. 

The categorization algorithms were tested on the entire dataset using 5-fold cross validation. In Fig. 7, the ‘Final’ incorrect cate
gorizations are the number of times the actual sign was not from the category determined by the categorization algorithms and 
subsequently the sign will be misclassified. These incorrect categorizations are out of the total number of observations, which is 
20,000. In tree-based approach, once an error is made in the categorization of a sign based on an attribute, A1 to A4, the error 
propagates. Hence, the number of incorrect categorizations progressively increase with each stage of categorization. However, in MLC- 
based approaches, the number of incorrect categorizations at each stage is not dependent on that of the previous stage. In BR and CC, 
when the posterior probabilities provided by probabilistic SVM along with the predicted label for an attribute are not considered, the 
resulting numbers of incorrect categorizations are higher than the tree-based approach, as shown by the dotted lines in Fig. 7. 
However, when labels with low posterior probabilities are ignored, the final set of signs is more likely to consist of the actual sign and 
the total number of incorrect categorizations reduce. The lowest number of incorrect categorizations is provided by the LP approach. In 
LP approach, the categorization is not carried out in stages. Unlike in all the other methods, a single model is learned in LP approach to 
categorize the sign into one of the six possible categories, each represented by a pseudo-label. The predicted pseudo-label is converted 
into the multi-label representation shown in Table 2, to determine the incorrect categorizations of attributes, plotted in Fig. 7. 

The error in final classification of new observations from the set of signs in the categories determined by one of the considered 
approaches is shown in Fig. 8. The error in final classification of signs has been evaluated over all observations using 5-fold cross- 

Fig. 7. Result of sign categorization.  
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validation, as the ratio of sum of incorrect predictions of signs and the total number of observations, which is 20,000. When flat 
classification approach is used and a single model learned from labelled data of all the 100 signs is used to predict the sign corre
sponding to a new observation, the error is maximum at 7.42%. When a new sign is first categorized using the tree-approach explained 
in Section 3.3, and then multiclass classification is carried out from the subset of signs in the identified category, the error is classi
fication reduces to 6.22%. The classification error is even lower when MLC-based SLR is used. The classification errors obtained using 
BR and CC-based sign categorization (considering posterior probabilities to determine the reliability of the predicted label) followed by 
final multiclass classification are 3.46% and 3.66%. The lowest classification error of 2.73% is obtained with LP-based SLR. 

Fig. 9 shows the boxplot of the classification accuracies of all the 100 signs, when different techniques are used for classification. 
The red-line inside the box indicates the median of the classification accuracies obtained for the 100 signs while the upper and lower 
edges indicate the 75th and 25th percentiles, respectively. The extreme values are indicated by whiskers and the outliers are marked 
with ‘+’ symbol. As seen in Fig. 9a, MLC-aided SLR performs better as compared to flat classification and tree-based classification. The 
classification accuracies of all the 100 signs for different classification approaches was also tested using one-way analysis of variance 
(ANOVA). A highest p-value of 1.2327 × 10− 7 between the groups for tree-based and MLC-based SLR indicates that the improvement in 
the classification accuracies is statistically significant. LP-based SLR provides the best overall classification across all the considered 
signs. 

The considered approaches are compared in terms of computation time in Table 3. While flat classification uses only one model to 
classify 100 signs, it requires the most amount of time for training as well as testing. Tree-based categorization reduces the complexity 
of the classifier and hence, requires the least amount of time for learning the classifier models as well as for classifying new obser
vations. When BR and CC are used for sign categorization using probabilistic SVM, the number of models required to be trained for 
final classification increase, hence increasing the time required for learning all the models, as compared to tree-based approach. LP- 
based SLR requires relatively smaller number of models for sign categorization and final classification as compared with BR and CC- 
based approaches. Hence, the computation time required to train LP-based SLR is also less as compared to the other two MLC ap
proaches, however it is higher than the tree-based SLR. The time required for categorization and final classification of new obser
vations using BR, CC and LP-based SLRs is higher than that of tree-based SLR. However, the average time required for testing 
mentioned in Table 3 is for 4000 new observations. This indicates that the signs will be classified within a millisecond making the SLR 
system feasible for real-time operation. In future, the work will be extended to allow classification of continuously signed sentences 
using sEMG and IMU sensors. 

5. Conclusion 

In this work, isolated signs from the Indian sign language are classified by processing signals from multiple sEMG and IMUs placed 
on both the forearm of signers in an integrated manner. Multiple labels are assigned to the observations in the recorded database 
according to four attributes of the sign being performed, making the database one of its kind in the domain of SLR. Signing duration is 
determined from the detected activity duration and its utility is demonstrated in extracting features that may classify the sign as static 
or dynamic. Euclidean distance between mean-centred accelerometer signals recorded from corresponding sensors on the two hands is 
shown to be useful for determining the symmetric motion between two hands. Multi-label classification approaches, namely BR, CC 
and LP are compared for their performance in categorizing a sign according to its lexical attributes. Then, the sign is classified from the 
set of signs belonging to the identified category using multiclass classification. Sign language recognition is also carried out using flat 
classification and tree-based approach. Flat classification shows highest classification error of 7.42% and requires more time for 
learning the models and classifying new observations as compared to all the other approaches. The tree-based approach results in a 
classification error of 6.22% in least amount of time. The MLC-based SLRs provide even lower classification errors and LP-based SLR 
yields the best performance with minimum categorization error of 2.73% and computation time comparable with the tree-based 
approach. 

Fig. 8. Result of final sign classification.  
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