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Abstract

The non-overlapping indexing problem is defined as follows: pre-process a given

text T[1, n] of length n into a data structure such that whenever a pattern P [1,m]

comes as an input, we can efficiently report the largest set of non-overlapping

occurrences of P in T. The best-known solution is by Cohen and Porat [ISAAC

2009]. The size of their structure is O(n) words and the query time is optimal

O(m+nocc), where nocc is the output size. Later, Ganguly et al. [CPM 2015 and

Algorithmica 2020] proposed a compressed space solution. We study this problem

in the cache-oblivious model and present a new data structure of size O(n log n)

words. It can answer queries in optimal O(mB + logB n+ nocc
B ) I/O operations,

where B is the block size. The space can be improved to O(n logM/B n) in the

cache-aware model, where M is the size of main memory. Additionally, we study

a generalization of this problem with an additional range [s, e] constraint. Here

the task is to report the largest set of non-overlapping occurrences of P in T, that

are within the range [s, e]. We present an O(n log2 n) space data structure in the

cache-aware model that can answer queries in optimal O(mB + logB n+
nocc[s,e]

B )

I/O operations, where nocc[s,e] is the output size.
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1. Introduction and Related Work

Text indexing is fundamental to many areas in Computer Science such as

Information Retrieval, Bioinformatics, etc. The primary goal here is to pre-

process a long text T[1, n] (given in advance), such that whenever a shorter

pattern P [1,m] comes as query, all occ occurrences (or simply, starting positions)5

of P in T can be reported efficiently. Such queries can be answered in optimal

O(m + occ) time using the classic Suffix tree data structure [1, 2]. It takes

O(n) words of space. In this paper, we focus on a variation of the text indexing

problem, known as the non-overlapping indexing, which is central to data

compression [3, 4].10

Problem 1 (Non-overlapping Indexing). Preprocess a text T[1, n] into a data

structure that supports the following query: given a pattern P [1,m], report a

largest set of occurrences of P in T (denote its size by nocc), such that any two

(distinct) text positions in the output are separated by at least m characters.

The range non-overlapping indexing is a generalization of the above problem.15

Problem 2 (Range Non-overlapping Indexing). Preprocess a text T[1, n] into a

data structure that supports the following query: given a pattern P [1,m] and a

range [s, e], report a largest set of occurrences of P in T, that are within the range

[s, e] (denote its size by nocc[s,e]), such that any two (distinct) text positions in

the output are separated by at least m characters.20

Both these problems are well studied in the internal memory (RAM) model of

computation. The initial solutions were obtained via a reduction to the orthogonal

range next value problem. Although efficient, they were not optimal in terms of

query time [5, 6, 7]. The first non-trivial solutions were by Cohen and Porat [4]:

they presented an O(n) space and optimal O(m+ nocc) query time solution for25

Problem 1 and an O(n logε n) space and near-optimal O(m+ log logn+nocc[s,e])

query time solution for Problem 2, where ε > 0 is an arbitrarily small constant.
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To achieve these results, they exploited the periodicity of both pattern and

(substrings of) text. Subsequently, Ganguly et al. [8, 9] presented the first

succinct space solution for Problem 1 and an optimal query time solution for30

Problem 2. We revisit these problems in the secondary memory model in the

context of very large input data. Here we assume that the data (and the data

structure) is too big to fit within the main memory, therefore deployed in a

(much larger, but slower) secondary memory. Popular models of computation are

(i) the cache-aware model and (ii) the cache-oblivious model. We now present a35

brief description of both models.

Models. In the cache-aware model (a.k.a. external memory model, I/O model,

and disk access model), introduced by Aggarwal and Vitter [10] the CPU is

connected directly to an internal memory (of size M words), which is then

connected to a very large external memory (disk). The disk is partitioned into40

blocks/pages and the size of each block is B words. The CPU can only work on

data inside the internal memory. Therefore, to work on some data in the external

memory, the corresponding blocks have to be transferred to internal memory.

The transfer of a block from external memory to internal memory (or vice versa)

is referred to as an I/O operation. The operations inside the internal memory45

are orders of magnitude faster than the time for an I/O operation. Therefore,

they are considered free, and the efficiency of an algorithm is measured in terms

of the number of I/O operations. The cache-oblivious model is essentially the

same as above, except the following key twist: M and B are unknown at the

time of the design of algorithms and data structures [11, 12]. This means, if a50

cache-oblivious algorithm performs optimally between two levels of the memory

hierarchy, then it is optimal at any level of the memory hierarchy. Lastly, cache-

oblivious algorithms are usually more intricate than cache-aware algorithms.

Generally, we assume M > B2+Θ(1), known as the tall cache assumption.

Our Results. For the non-overlapping indexing problem, we present an O(n log n)55

(resp., O(n logM/B n)) space solution in the cache-oblivious (resp., cache-aware)

model. For the range non-overlapping indexing problem, we present anO(n log2 n)
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space solution in the cache-aware model. In both cases, the occurrences are

reported in their sorted order and the number of I/O operations is optimal.

2. Preliminaries and Basic Structures60

2.1. Suffix Trees

The suffix tree data structure of T[1, n] (denoted by ST) is a compact trie

of all n suffixes of T [2]. It has n leaves and at most (n − 1) internal nodes

(each having at least two children). Corresponding to each leaf in ST, there is a

unique suffix in T. Specifically, the ith leftmost leaf `i corresponds to the ith65

lexicographically smallest suffix of T, denoted by T[SA[i], n]. The array SA is

called the suffix array of T. Edges in ST are labeled and the concatenation of

edge labels on the path from the root to a node u is called its path, denoted by

path(u). Also, size(u) denote the number of leaves under u. The locus of a string

S in ST, denoted by locus(S) is the node closest to root, such that S is a prefix70

of the node’s path. The suffix range of a string S, denoted by [sp(S), ep(S)] is

the range of (contiguous) leaves in the subtree of locus(S). Therefore, the set

of occurrences of S is {SA[i] | sp(S) ≤ i ≤ ep(S)}. The suffix range of S can be

computed in O(|S|) time. Space is O(n) words for both suffix array and suffix

tree.75

There also exist linear-space suffix tree representations in both secondary

memory models. The solution in the cache-aware model is by Ferragina [13]

and is called the String-B tree. The cache-oblivious solution is by Brodal and

Fagerberg [14], which is based on an intricate concept of decomposing the

tree into what they call Giraffe trees. In both cases, the locus, as well as the80

suffix range of any string S can be computed in optimal O(|S|/B + logB n) I/O

operations.

2.2. Sorted Range Reporting on Arrays

Definition 3. Let A[1, n] be an array of n integers. A sorted range reporting

query [s, e] on A asks to report the elements in the subarray A[s, e] in their85

ascending order.
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We now present two useful results.

Lemma 4. There exists an O(n log n) space cache-oblivious data structure that

can answer sorted range reporting queries on arrays in optimal O((e− s+ 1)/B)

I/O operations.90

Proof. Let L(t, l) be the list of all (i, A[i]) pairs with i ∈ [t, t + l − 1] in the

ascending order of A[i]. Maintain L(1, l), L(1 + l, 2l), L(1 + 2l, 3l), . . . , L(1 +

lbn/lc, n) for l = 2, 4, 8, · · · , 2blognc. The total space is O(n log n).

To answer a query [s, e], compute l = 2blog(e−s+1)c and k = lbe/lc. Then,

simply merge the two sorted lists L(k − l + 1, k) and L(k + 1, k + l) and discard95

those elements that are not in A[s, e]. The correctness follows from the fact

that k − l + 1 ≤ s ≤ e ≤ k + l. The number of I/O operations required is

2l/B = O((e− s+ 1)/B).

Lemma 5. There exists an O(n logM/B n) space cache-aware data structure that

can answer sorted range reporting queries on arrays in optimal O((e− s+ 1)/B)100

I/O operations.

Proof. Consider the definition of L(t, l) in the proof of Lemma 4. Since M and

B are known in advance, maintain L(1, l), L(1 + l, 2l), L(1 + 2l, 3l), . . . , L(1 +

lbn/lc, n) with l = (M/B)j/2 for j = 0, 1, 2, . . . , blogM/B nc. The total space is

O(n logM/B n).105

Given a query [s, e], first compute l and j, such that t = (M/B)j/2 ≤

e− s+ 1 ≤ (M/B)(j+1)/2. If t is small enough, say below (M/B)1/2, then the

entire subarray A[s, e] can be taken to the internal memory and sorted. Otherwise,

the query can be answered by merging O((M/B)1/2 logM/B n) sorted lists of

total length Θ(e− s+ 1). This can be implemented in optimal O((e− s+ 1)/B)110

I/O operations.

3. Non-Overlapping Indexing - Cache Obliviously

Our data structure consists of a (cache-oblivious) suffix tree ST, and a sorted

range reporting structure as in Lemma 4 over the suffix array SA. Additional
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structures will be introduced along the way. We start with a definition.115

Definition 6 (Shortest Period). Let Q be the shortest prefix of P such that P

can be written as the concatenation of α ≥ 1 copies of Q and a (possibly empty)

prefix R of Q. i.e., P = QαR. Then, we denote the length of Q by period(P ).

We say that an input pattern P is periodic if period(P ) ≤ |P |/2 (equivalently

α ≥ 2), else (i.e., α = 1), we say P is aperiodic. The first step of our query120

algorithm is to check if P is periodic or not, and we rely on the result in Lemma 7.

Lemma 7. Given a pattern P [1,m] which appears at least once in T, there exists

an algorithm that finds if P is periodic or not in O(m/B+logB n) I/O operations

using an O(n log n) space structure. Also, the algorithm returns period(P ) if P

is periodic.125

Proof. We start with some terminologies. A substring T[i, i+ l − 1] is right-

maximally-periodic iff T[i, i+ l − 1] is periodic and T[i, i+ l] is aperiodic. Let

l1, l2, ..., lk be the lengths of all substrings starting at position i that are right-

maximally-periodic in their ascending order and let q1, q2, ..., qk be their respective

period(·)’s. From the definition of periodic and aperiodic, lj−1 ≤ qj and 2·qj ≤ lj ,130

therefore 2 · lj−1 ≤ lj for all j ∈ [2, k]. Also, 2k−1l1 ≤ lk ≤ n − i + 1 and the

number k of right-maximally-periodic prefixes of T[i, n] can be bounded by

1 + log(lk/l1) = O(log n). Moreover, any substring T[i, i+m− 1] of length m is

periodic (with period qj) iff 2 · qj ≤ m ≤ lj for some j.

The proof of Lemma 7 is straightforward from the discussion above. For each135

T[i, n], we maintain the lengths and periods of all its right-maximally-periodic

prefixes. The space required is O(n log n) words. When a pattern P [1,m] comes,

the algorithm first finds an occurrence i of P in T in O(m/B + logB n) I/O

operations. Then from the lengths of all right-maximally-periodic prefixes (and

their periods) of T[i, n], it decides if P is periodic or not in (log n)/B = O(logB n)140

I/O operations. The algorithm also retrieves period(P ), if P is periodic.
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3.1. Handling aperiodic case

When P is aperiodic, occ = Θ(nocc). Therefore, obtain all occurrences of P in

their ascending order and do the following: report the first occurrence and report

any other occurrence iff it is not overlapping with the last reported occurrence.145

This step can be implemented in occ/B = Θ(nocc/B) I/O operations. Thus, the

total number of I/O operations in this case is O(m/B + logB n+ nocc/B).

3.2. Handling periodic case

We start with the following simple observation by Ganguly et al. [9].

Observation 8. If we list all the occurrences of P = QαR in T in the ascending150

order, we can see clusters of occurrences holding the following property: two

consecutive occurrences (i) within a cluster, are exactly period(P ) distance apart

and (ii) not within a cluster cannot have an overlap of length period(P ) or more.

Lemma 9. Let π be the number of clusters. Then π = O(nocc).

Proof. Two occurrences i, j not within the same cluster overlap only if i is the155

last occurrence in a cluster and j is the first occurrence within the next cluster

(follows from Observation 8(ii)). However, only one of them can be a part of the

final output. Therefore, nocc ≥ π/2.

Definition 10. An occurrence is a cluster-head (resp., cluster-tail) iff it is the

first (resp., last) occurrence within a cluster. Also, let L′ (resp., L′′) be the list160

of all cluster heads (resp., tails) in their ascending order.

Observe that the distance between two consecutive non-overlapping occurrences

within the same cluster, denoted by λ is period(P ) · dm/period(P )e. See Fig 1.

Let Ci be the ith leftmost cluster and Si (resp., S∗i ) be a largest set of non-

overlapping occurrences in Ci including (resp., excluding) the first occurrence

L′[i] in Ci. Specifically,

Si = {L′[i] + kλ | for k = 0, 1, 2, 3, .. as long as L′[i] + kλ ≤ L′′[i]}
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S∗i = {period(P )+L′[i]+kλ | for k = 0, 1, 2, 3, .. as long as period(P )+L′[i]+kλ ≤ L′′[i]}

Therefore, the final output can be generated by just examining L′ and L′′ using165

the procedure in Algorithm 1. This step takes only O(nocc/B) I/O operations. The

correctness follows from Observation 8.

What remains to show is, how to compute L′ and L′′ efficiently.

Algorithm 1 Reports the largest set of non-overlapping occurrences of P in T.

1: report S1

2: for (i = 2 to π) do

3: if (the last reported occurrence and L′[i] are non-overlapping) then

report Si

4: else report S∗i

5: end for

3.3. Computing L′′: The List of Cluster Tails

We use the following observation by Ganguly et al. [9]: a text position y is the170

rightmost occurrence of P within a cluster (i.e., cluster-tail) iff T[y, n] is prefixed by

P = QαR, but not by QP = Q1+αR. This means, L′′ is the sorted list of all elements

in the set {SA[i] | i ∈ [sp(P ), ep(P )] ∧ i /∈ [sp(QP ), ep(QP )]} of size π (see Fig 2).

The first step is to compute locus(P ) and locus(QP ), which takes |P |/B+ |QP |/B+

logB n = O(m/B + logB n) I/O operations. Then L′′ can be obtained via two sorted175

range reporting queries on SA, in O(π/B) I/O operations.

Figure 1: Here P = catcatca, x is the cluster-head and y = x + 21 is the cluster-tail. Then,

the largest set of non-overlapping occurrences with the first occurrence included, and the first

occurrence excluded are {x, x + 9, x + 18} and {x + 3, x + 12, x + 21}, respectively.
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Figure 2: Highlighted are the regions corresponding to cluster tails.

3.4. Computing L′: The List of Cluster Heads

Clearly, for each cluster of P in T, there is a corresponding cluster of
←−
P in

←−
T . Here

←−
T (resp.,

←−
P ) is the reverse of T (resp., P ). Then, we have the following observation.

Observation 11. Let z be the last occurrence of
←−
P within a cluster of

←−
P in

←−
T , then180

(n+ 2−m− z) is the first occurrence of P within the corresponding cluster of P in T.

Therefore, we simply construct and maintain our previous data structure for

computing L′′, but on
←−
T . When P comes as input to the original problem, we find L′′

corresponding to
←−
P in

←−
T . Then, simply report (n+ 2−m−L′′[i])’s in the descending

order of i. Note that we need to maintain the suffix tree (and its cache-oblivious185

version) of
←−
T as well. Additional space required is O(n logn).

In summary, both L′ and L′′ can be computed in O(m/B + logB n + π/B) I/O

operations using an O(n logn) space structure. The final output can be generated in

additional O(nocc/B) I/O operations. Also, π = O(nocc) from Lemma 9. Therefore,

by combining everything, we have the following result.190

Theorem 12. There exists a data structure that is initialized with a text T[1, n], takes

O(n logn) words of space and supports the following query in the cache-oblivious model.

Given a string P [1,m], the data structure reports the largest set of non-overlapping

occurrences of P [1,m] in T in their sorted order in optimal O(m
B

+ logB n+ nocc
B

) I/O

operations, where nocc is the output size.195

The space complexity can be improved in the cache-aware model.
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Theorem 13. There exists a data structure that is initialized with a text T[1, n], takes

O(n logM/B n) words of space and supports the following query in the cache-aware model.

Given a string P [1,m], the data structure reports the largest set of non-overlapping

occurrences of P [1,m] in T in their sorted order in optimal O(m
B

+ logB n+ nocc
B

) I/O200

operations, where nocc is the output size.

Proof. We modify our data structure for Theorem 12 as follows. Replace the sorted

range reporting structure of Lemma 4 by Lemma 5. Also, discard the structure of

Lemma 7, because in the cache-aware model, period(P ) can be computed in O(m/B)

I/O operations [15].205

4. Range Non-Overlapping Indexing in Cache-Aware Model

The range non-overlapping problem is to preprocess a text T[1, n] into a data

structure that supports the following query: given a pattern P [1,m] and a range [s, e],

report the largest set of occurrences of P in T, that are within the range [s, e] (denote its

size by nocc[s,e]), such that any two (distinct) text positions in the output are separated210

by at least m characters. The problem is a combination of the non-overlapping indexing

problem and the position restricted pattern matching problem [16, 17, 18, 19, 20, 21].

When s = 1 or e = n, we call this the one-sided range non-overlapping indexing

problem. We now proceed to present our solutions in the cache-aware model.

4.1. The Data Structure215

In [22], Afshani et al. showed that an array A[1, n] can be preprocessed into an

O(n logn) space structure, such that given a query ([i, j], k), we can report the top-k

elements in A[i, j] in their sorted order in optimal O(logB n + k/B) I/O operations.

Using standard techniques, this result can be extended as follows: an array A[1, n]

can be preprocessed into an O(n log2 n) space structure, such that given a query220

([i, j], [s, e], k), we can report the top-k elements in {A[t] | t ∈ [i, j], A[t] ∈ [s, e]} in

sorted order in optimal number of I/O operations. The main component of data

structure for range non-overlapping indexing is essentially this structure with A being

the suffix array of T. As before, we handle the aperiodic and periodic cases separately.
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4.2. Handling aperiodic case225

Find the suffix range of P and then report all those occurrences of P that are

within [s, e] in their sorted order. This step can be performed in optimal I/O operations

using the structure described above. Then, scan them in the ascending order and

do the following: report the first occurrence and report any other occurrence iff it is

not overlapping with the last reported occurrence. Total number of I/O operations230

required is O(m/B + logB n+ nocc[s,e]/B).

4.3. Handling periodic case

First, we find all cluster-heads that are within the range [s, e] in their sorted order.

Additionally, we find the first occurrence of P in T[s, e] and add to the beginning of

this list and call it L′. Similarly, find all cluster-tails that are within the range [s, e] in235

their sorted order. Additionally, we find the last occurrence of P in T[s, e] and add it

to the end of this list and call it L′′. In order to perform these steps in optimal I/O

operations, we rely on our O(n log2 n) space structure. To obtain our final answer,

we simply run Algorithm 1 described in Section 3.2. The correctness and the I/O

complexity can be easily verified.240

Theorem 14. There exists an O(n log2 n) space data structure for the range non-

overlapping indexing problem in the cache-aware model, where n is the length of the

input text T. The data structure supports reporting the largest set of non-overlapping

occurrences of an input pattern P [1,m] within a given range [s, e] in their sorted order

in optimal O(m
B

+ logB n+
nocc[s,e]

B
) I/O operations, where nocc[s,e] is the output size.245

Remark. In the case of one-sided range non-overlapping indexing, the space complexity

of the result in Theorem 14 can be improved to O(n logn).
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