
Science of Computer Programming 202 (2021) 102546
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A clock-based dynamic logic for schedulability analysis of

CCSL specifications ✩

Yuanrui Zhang a,b,c, Frédéric Mallet d, Huibiao Zhu e, Yixiang Chen c, Bo Liu b,
Zhiming Liu b,∗
a School of Mathematics and Statistics, Southwest University, China
b RISE, College of Computer & Information Science, Southwest University, China
c MoE Engineering Research Center for Software/Hardware Co-design Technology and Application, East China Normal University, China
d I3S Laboratory, UMR 7271 CNRS, INRIA, Université Nice Sophia Antipolis, France
e Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 November 2019
Received in revised form 17 September
2020
Accepted 17 September 2020
Available online 14 October 2020

Keywords:
Clock constraint specification language
Dynamic logic
Real-time embedded systems
Schedulability analysis
Theorem proving

The Clock Constraint Specification Language (CCSL) is a clock-based formalism for the
specification and analysis of real-time embedded systems. The major goal of schedulability
analysis of CCSL specifications is to solve the schedule problem, which is to answer
‘whether there exists a clock behaviour (also called a ‘schedule’) that conforms to a given
CCSL specification’. Existing works on schedulability analysis of CCSL specifications are
mainly based on model checking or SMT-solving. In this paper, however, we propose a
theorem-proving approach to the problem. To this end, we define a clock-based dynamic
logic (cDL) in which we can specify the clock behaviours and the clock relations in CCSL.
With cDL, given a CCSL specification SP, we can express its schedule problem as a cDL
formula φsp . Then solving the schedule problem is equivalent to checking the validity of
φsp in the proof system of cDL. By analyzing the proof tree of φsp , we can generate a
concrete schedule satisfying SP. Compared to the previous approaches, our method is not
limited to special types of CCSL specifications and schedules and does not depend on the
bounds that are set for approximate checking. We implement our cDL in Coq. We use an
example throughout the paper to illustrate our method.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The clock constraint specification language (CCSL) [2] is a specification language for specifying the constraints between
the occurrences of events in real-time embedded systems (RTESs). It was firstly defined as an annex of UML/MARTE [3],
but later developed as an independent language equipped with a formal semantics [4]. CCSL gives a concrete syntax to deal
with logical clocks, made popular by Leslie Lamport [5] and synchronous languages (such as Esterel). In CCSL, ‘clocks’ are
treated as first-class citizens for capturing discrete-time events, and clock expressions are used for specifying the logical
and chronometrical constraints between the occurrences of events. CCSL is a specification language and not a programming

✩ This paper is an extended version of the conference paper [1] at TASE 2019: 13th International Symposium on Theoretical Aspects of Software
Engineering.

* Corresponding author.
E-mail addresses: zhangyrmath@126.com (Y. Zhang), zhimingliu88@swu.edu.cn (Z. Liu).
https://doi.org/10.1016/j.scico.2020.102546
0167-6423/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.scico.2020.102546
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2020.102546&domain=pdf
mailto:zhangyrmath@126.com
mailto:zhimingliu88@swu.edu.cn
https://doi.org/10.1016/j.scico.2020.102546

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
clock def1

c � ca $ 1

clock def2

c′ � ca ∨ cb

...
clock rel1

ca#cb

clock rel2

ca ≺ cb
...

Clock-labelled Transition System

φsp = I→〈psp〉(tt 	�(ψsp ∧ψ∅))
clock-based Dynamic Logic

Proof Calculus

φ1
...

ψ1

φ2
...

ψ4

φ3
...

ψ9

ψ5

ψ2

φ4 φ5

ψ6 φ6

ψ3

φsp

proof tree

yes/no

Tools: Isabelle, Coq, ...

QF-FOL formulae

e.g. σ = v4
1{v1, v3}{v1, v3, u1}ω

...
free clock2

cb

free clock1

ca

all clock behaviours all clock relations

CCSL specification SP

Expensive Formulae: e.g.

φ′ = ∀i ∈N+.Hσ (i, c1)≥ Hσ (i, c2)

yes/no

Our approach

transform
express

generalize

SMT-solving

mechanize

analysis

SMT-solving

SMT-solving-based

approach

Fig. 1. Theorem-proving approach for schedulability analysis of CCSL specifications.

language. It only allows an abstract specification of a set of possible behaviours and does not attempt to provide a single
operational deterministic execution. All the values are ignored to focus only on clock issues. CCSL has been widely used in
the specification and analysis of different RTESs, e.g. see [6–8].

One important aspect in the formal analysis of CCSL is schedulability analysis of CCSL specifications. The major goal of the
analysis is to answer whether ‘there exists a schedule for a given CCSL specification’. Here a schedule is a clock behaviour
expressed as a sequence of the occurrences of clocks (whose formal definition is given in Sect. 2). The decidability of
this problem still remains open [9]. However, there are existing methods based on model checking and SMT-solving that
give a partial solution of this problem [10,11,9,12]. The model-checking-based approach [10,11] relies on a transformation
from CCSL specifications into finite automata, but only a part of CCSL specifications whose corresponding automata are finite
(which are also called ‘safe CCSL specifications’ [13]) can be treated in this way. On the other hand, [9,12] proposed an SMT-
solving-based approach which relies on encoding a CCSL specification directly into a first-order logical (FOL) formula. In this
approach, the authors focus on searching a type of schedules called ‘periodic schedules’ [9] for a given CCSL specification
by SMT-solving the FOL formula. However, solving the FOL formula always needs to set a bound (a positive number that
decides the iterative steps in the SMT-solving procedure) and the result of the search of the schedules depends on this
bound.

In this paper, we propose a theorem-proving approach to schedulability analysis of CCSL specifications, which is not lim-
ited to special types of CCSL specifications and does not depend on the bounds set to FOL formulae. To this end, we define
a variation of dynamic logic called ‘clock-based dynamic logic’ (cDL) and develop a proof calculus in order to specify and
analyze the schedule problem. We build cDL by extending first-order dynamic logic (FODL) [14] with clocks as primitives
and inheriting the so-called ‘normalized trace formula’ of differential temporal logic2 (dTL2) [15]. With these features the
schedule problem of a CCSL specification can be specified as a cDL dynamic formula. cDL supports both modelling the dy-
namic clock behaviour of the specification as its program model and specifying the static clock relations of the specification
as its logical expression in a single formalism. The key idea behind our approach is that, the proof in cDL makes use of
the syntactical structure of cDL program models so that a cDL dynamic formula can be decomposed into quantifier-free FOL
(QF-FOL) formulae (i.e. verification conditions), which in turn can be proved using SMT-solving. With cDL the schedulability
analysis can be made at an abstraction level where the concept of clock and the synchronous execution mechanism can be
fully stressed.

Our method is illustrated in Fig. 1. A CCSL specification SP consists of a set of clocks and a set of relations between
clocks. The schedule problem of SP can be captured as a dynamic formula φsp in cDL. This is achieved by transforming all
2

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
clocks whose behaviours can be captured as a clock-labelled transition system (see Sect. 2.3) into a cDL program model
psp , and expressing all clock relations as a cDL formula ψsp . In this way, we reduce the schedule problem of SP into a
verification problem of the cDL formula φsp . With the inference rules of cDL, φsp can be proven with the generation of a
proof tree. All verification conditions on the leaf nodes of the proof tree are QF-FOL formulae, which can thus be solved
by an SMT-solving procedure [16]. By analyzing the proof tree, a concrete schedule that satisfies the specification can be
generated (e.g. schedule σ). Except for the process of generating the proof tree, all other procedures can be carried out
automatically. The whole cDL system can be mechanized by popular theorem provers like Isabelle [17], Coq [18], etc.

Compared to the previous approaches mentioned above, the whole analysis process of our approach does not rely on
state exploration so it does not require the specification SP to be a safe one. And since all verification conditions are
quantifier-free, we do not need to set a bound for an approximate solving. This is different from the existing SMT-solving-
based approach mentioned above, where the FOL formula that directly encodes the schedule problem contains quantifiers
(e.g. formula φ′ in Fig. 1) and a bound has to be set in order to eliminate them. Because of this reason, in our approach
the search for a schedule does not depend on the bound but on whether we can prove the cDL formula that captures the
schedule problem.

To summarize, the contributions of this paper are:

(i) We construct cDL and its proof calculus, and we mechanize cDL using Coq.
(ii) We propose a method for schedulability analysis of CCSL specifications based on cDL.

For (ii), we focus on the encoding from CCSL specifications into cDL formulae and how the schedule problem can be solved
through derivations of cDL.

cDL is partially based on ‘CCSL dynamic logic’ [19], which is designed for characterization and verification of a simple
CCSL specification R̃el (consisting of a set of clock relations) of a given synchronous system p. In CCSL dynamic logic, clock
relation Rel is taken as a primitive, and the satisfaction of the specification can be captured as a formula of the form
‘[p] � (Rel1, ..., Reln)’. In cDL we use temporal formulae of the form ‘�ψ ’ to express clock relations, which is more general
than [p] � (Rel1, ..., Reln). It is known that CCSL dynamic logic is not expressive enough to handle the schedule problem in
CCSL, which can be expressed as a normalized trace formula of the form ‘〈p〉φ 	�ψ ’ in cDL (see Sect. 4). Normalized trace
formulae can express the existence of a trace satisfying both a state property1 (φ) and a temporal property (�ψ).

This paper is an extended version of the conference paper [1], where cDL was defined and the method for schedulability
analysis of CCSL specifications was proposed. There the algorithm for analyzing the proof tree of a valid cDL formula can only
generate a bounded schedule, which is, a finite prefix of a schedule. In this paper, we take one step further by improving the
algorithm there, so that the modified algorithm (Algorithm 2) can generate a complete schedule. Furthermore, this paper is
more comprehensive with well and completely defined preliminaries, introductions to FODL and dTL2, and a full definition
of the substitution in cDL (Sect. 4.2). Also, we add the proofs of important propositions (Appendix A) and of the soundness
of the cDL proof system (Appendix B). Graphical illustrations of some concepts and examples are provided throughout the
paper for better understanding (e.g. Examples 2.3, 4.3, 4.4 and Example 5.2).

The rest of this paper is organized as follows: Sect. 2 briefly introduces the formalism CCSL, which is necessary for
understanding the content of this paper. Sect. 3 introduces an illustrative example, which is used throughout the paper to
explain our contributions. We define in Sect. 4 the syntax and semantics of cDL. In Sect. 5, we present the proof system of
cDL and analyze its soundness, completeness and decidability. Sect. 6 proposes a method for schedulability analysis of CCSL
in cDL. In Sect. 7 we discuss our implementation of cDL in Coq, and give an example of how cDL formulae can be captured
and proved in Coq. We discuss the related work in Sect. 8, and draw our conclusions in Sect. 9 with a discussion about
possible future work.

2. The clock constraint specification language

The version of CCSL presented here is based on [9,20]. CCSL consists of two parts: logical clocks and the constraints
between clocks. In Sect. 2.1, we introduce the logical clock and the related concepts. In Sect. 2.3, we introduce the constraints
between clocks and the related concepts. We give the semantics of CCSL and the definitions of CCSL specifications and the
schedule problem. In Sect. 2.3 we introduce clock-labelled transition systems — an automata semantics of CCSL.

2.1. Logical clock

Logical clock In CCSL, a logical clock captures the occurrences of an event in RTESs over a discrete time model. It is an
infinite sequence, defined as a function c :N+ → {0, 1}, where N+ = {1, 2, ..., n, ...} is the set of natural numbers. Each c(i)
(i ∈N+) can be either ‘tick’ (represented as 1) or ‘idle’ (represented as 0), representing that the event associated to c occurs
or not at the instant i. We use C to denote a finite set of clocks.

1 I.e., a property that is evaluated at a state.
3

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
c1

c2

(a) c1 ≺ c2

σ(1) σ (4) σ (7)

c′

c

(b) c � c′ $ n (n= 5)

Fig. 2. A possible schedule of CCSL constraints.

Clock sequence & Schedule Given a set of clocks C , the state of clocks in C at an instant captures the ticks of all clocks in C
at that instant. It can be denoted as a function η : C→{0, 1}. Given a set of clocks C , a clock sequence (or simply ‘sequence’)
is a finite or infinite sequence of states of clocks in C . It is defined as a down-closed partial function κ :N+� (C→{0, 1}),
which satisfies for any i ∈N+ , if i ∈ dom(κ), then for any j < i, j ∈ dom(κ).

Since for any function η, there exists exactly one set of ticked clocks: αη = {c | η(c) = 1} corresponding to it, we can
use αη to denote η. Hence a sequence can be also written as: κ = α1α2...αn.... If a set of ticked clocks α = {c}, we simply
write it as c.

A schedule is an infinite clock sequence, denoted by σ . A finite clock sequence is also called a ‘bounded schedule’ in
some references, e.g. [9,12].

Configuration Given a set of clocks C , the number of times each clock has ticked at an instant is denoted as a function
h : C→N (where N =N+∪{0}). Given a set of clocks C and a clock sequence κ , a configuration Hκ is an infinite sequence
that keeps track of the number of times each clock has ticked at each instant in clock sequence κ . It is defined as a function
Hκ :N→ (C→N) s.t.:

Hκ (i, c)=df

⎧⎨⎩ 0, if i = 0
Hκ (i − 1, c)+ 1, if i > 0, c ∈ κ(i)
Hκ (i − 1, c), if i > 0, c /∈ κ(i).

Hκ (0, c) = 0 indicates that at the beginning no clock ticks.

Example 2.1. In Fig. 2(a), there are two clocks: c1, c2, C = {c1, c2}. Clock c1 = 101100100100..., clock c2 = 010100110010....
Schedule σ = {c1}{c2}{c1}{c1, c2}∅∅{c1, c2}{c2}∅{c1}{c2}∅..., where for example we have σ(1) = {c1}, σ(4) = {c1, c2} and
σ(7) = {c1, c2} (they are indicated by the dashed rectangle in Fig. 2). The configuration Hσ for example satisfies: Hσ (0, c1) =
0, Hσ (1, c1) = 1, Hσ (2, c1) = 1, Hσ (3, c1) = 2.

2.2. Clock constraint

Clock Constraint In CCSL, a clock constraint captures a constraint between clocks. It can be either a clock relation or a
clock definition.

Clock relations describe binary relationships between clocks, their syntax is defined as:

Rel ::= c1 ≺ c2 | c1 � c2 | c1 ⊆ c2 | c1 # c2,

where c1, c2 are arbitrary clocks. The semantics of clock relations σ �ccsl Rel is defined in Fig. 3. ‘Causality’ and ‘Precedence’
describe a asynchronous dependence relation between two events. ‘Causality’ captures a constraint between c1 and c2 in
which the ticks of clock c2 are caused by the ticks of clock c1, in other words, c2 cannot tick before c1 ticks. ‘Precedence’
captures a similar constraint as ‘Causality’ but it does not allow that two clocks tick at the same instant, in other words,
it expresses that c1 ticks strictly faster than c2 ticks. ‘Subclock’ and ‘Exclusion’ describe a synchronous relation between
two events. ‘Subclock’ captures a constraint between c1 and c2 in which c1 can only tick if c2 ticks at the same instant;
‘Exclusion’ captures a constraint between c1 and c2 in which c1, c2 cannot tick at the same instant.

Clock definitions define new clocks by composing the existing clocks in different ways. A clock definition is of the form:

Cdf ::= c � E

where E is a clock expression defined by the following grammar:

E ::= c1 + c2 | c1 ∗ c2 | c1 � c2 | c1 � c2 | c1 � c2 | c ∝ n | c $ n | c1 ∨ c2 | c1 ∧ c2.

c1, c2 are arbitrary clocks, n ≥ 1. The semantics of clock definitions σ �ccsl Cdf are defined in Fig. 3. ‘Union’ defines a clock
c that ticks at any instant when either c1 or c2 ticks. ‘Intersection’ defines a clock c that ticks at any instant when both c1
and c2 tick. ‘Sample’ defines a clock c that samples c1 based on c2. c ticks at any instant when c2 ticks for the first time
after a tick of c1. ‘Strict Sample’ is similar to ‘Sample’, but it does not allow clock c to tick at any instant when both c2 and
c1 tick. ‘Interruption’ defines a clock c that ticks at all instants when c1 ticks until c2 ticks for the first time. ‘Periodicity’
4

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
Causality: σ �ccsl c1 � c2 iff ∀i ∈N+.Hσ (i, c1)≥ Hσ (i, c2)

Precedence: σ �ccsl c1 ≺ c2 iff ∀i ∈N+.Hσ (i, c1) > Hσ (i, c2)∨ (Hσ (i, c1)= Hσ (i, c2)∧ c1 /∈ σ(i))
Subclock: σ �ccsl c1 ⊆ c2 iff ∀i ∈N+.c1 ∈ σ(i)→ c2 ∈ σ(i)

Exclusion: σ �ccsl c1 # c2 iff ∀i ∈N+.c1 /∈ σ(i)∨ c2 /∈ σ(i)

Union: σ �ccsl c � c1 + c2 iff ∀i ∈N+.c ∈ σ(i)↔ (c1 ∈ σ(i)∨ c2 ∈ σ(i))

Intersection: σ �ccsl c � c1 ∗ c2 iff ∀i ∈N+.c ∈ σ(i)↔ (c1 ∈ σ(i)∧ c2 ∈ σ(i))

Strict Sample: σ �ccsl c � c1 � c2 iff

∀i ∈N+.c ∈ σ(i)↔ (

c2 ∈ σ(i)∧
∃ j.(0 < j < i)∧ c1 ∈ σ(j)∧ (∀k.(j ≤ k < i)→ c2 /∈ σ(k))

)

Sample: σ �ccsl c � c1 � c2 iff

∀i ∈N+.c ∈ σ(i)↔ (

c2 ∈ σ(i)∧
∃ j.(0 < j ≤ i)∧ c1 ∈ σ(j)∧ (∀k.(j ≤ k < i)→ c2 /∈ σ(k))

)

Interruption: σ �ccsl c � c1 � c2 iff ∀i ∈N+.c ∈ σ(i)↔ (c1 ∈ σ(i)∧ ∀ j.(0 < j ≤ i)→ c2 /∈ σ(j))

Periodicity: σ �ccsl c � c′ ∝ n iff ∀i ∈N+.c ∈ σ(i)↔ (c′ ∈ σ(i)∧ ∃m ∈N+.Hσ (i, c′)=m · (n+ 1))

Delay: σ �ccsl c � c′ $ n iff ∀i ∈N+.Hσ (i, c)=max(Hσ (i, c′)− n,0)

Infimum: σ �ccsl c � c1 ∧ c2 iff ∀i ∈N+.Hσ (i, c)=max(Hσ (i, c1), Hσ (i, c2))

Supremum: σ �ccsl c � c1 ∨ c2 iff ∀i ∈N+.Hσ (i, c)=min(Hσ (i, c1), Hσ (i, c2))

Fig. 3. Semantics of CCSL.

defines a clock c that ticks every n ticks of clock c′ . c ticks at any instant when c′ ticks, and there are n ticks of c′ (not
including the tick of c′ at the instant) after the last instant when c ticks. ‘Delay’ defines a clock c that ticks at any instant
when c′ ticks and before the instant c′ has ticked for n or more than n times. ‘Infimum’ defines the slowest clock that is
faster than both c1 and c2. c ticks at any instant when the faster clock between c1 and c2 ticks. ‘Supremum’ defines the
fastest clock that is slower than both c1 and c2. c ticks at any instant when the slower clock between c1 and c2 ticks.

Example 2.2. Fig. 2(a) illustrates the clock relation c1 ≺ c2. We can see that the tick of c2 always depends on the tick of c1
(the dependence relation is indicated by the red arrows) and c1 and c2 do not tick at the same instant. At each instant the
semantics of Precedence is satisfied, e.g., at the instant 3, Hσ (3, c1) > Hσ (3, c2).

Fig. 2(b) illustrates the clock definition c � c′ $ n (when n = 5).

Clock Specification & Free Clock Given a set of clock constraints C , σ �ccsl C is defined s.t. σ �ccsl cn for all cn ∈ C . A CCSL
specification is a pair

SP ::= 〈C̃df , R̃el〉,
where C̃df is a set of clock definitions, R̃el is a set of clock relations. σ �ccsl SP is defined s.t. σ �ccsl R̃el and σ �ccsl C̃df .
We use C(SP) to denote all clocks appearing in SP.

Given a CCSL specification SP = 〈C̃df , R̃el〉, we use F(SP) to denote the set of all free clocks appearing in C̃df ∪ R̃el.
A ‘free clock’ is a clock that does not appear on the left side of any clock definitions of the form ‘c � E ’ in a specification.

Schedule Problem Given a CCSL specification SP = 〈C̃df , R̃el〉, the schedule problem is to determine whether ‘there exists
a schedule σ of C(SP) s.t. σ �ccsl SP’. In a schedule of a CCSL specification, we are only interested in those instants at which
at least one clock ticks. According to the semantics of CCSL (Fig. 3), instants at which no clock ticks have no impact on the
satisfaction relation between a schedule and a specification. In other words, if σ is a schedule of a specification, and σ ′
is the schedule obtained by inserting or removing arbitrary number of instants at which no clock ticks into the schedule
σ , then σ ′ is also a schedule of the specification. For example, if σ = {c1}{c2}{c1}{c2}... is a schedule of the specification
SP = 〈∅, {c1 � c2}〉, then schedule σ ′ = {c1}{c2}∅{c1}{c2}... (obtained by inserting an instant at which no clock ticks into σ)
is also a schedule of SP, because at the instant 3, Hσ (3, c1) ≥ Hσ (3, c2) holds since no clock ticks. Therefore, in the schedule
problem, we always focus on the schedules that contain no instants at which no clock ticks (except for instant 0), i.e., every
schedule σ must satisfy: σ(i) �= ∅ for any i ∈N+ .

2.3. Clock-labelled transition system

Clock-labelled Transition System In CCSL, the clock behaviour can be captured as a special type of finite transition systems,
called a ‘clock-labelled transition system’ (cLTS) [20]. A cLTS is a tuple

A= 〈L, T , l0,C〉

5

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
l1 l2

g2?{v1}
∅

g1?{v1}

{v1, u1}

∅
s1

∅

{v1}
s2

∅

{v3}
l3

∅
{v1}

{v3}
{v1, v3} l3

p1 l4 l5

g2?{v1, v3}
∅

g2?{v1}

g1?{v1, v3}

∅
g1?{v1}

∅

{v1, u1, v3}

{v1, u1}
(a) (b1) (b2) (c) (c’) (d)

g1 = h(v1, u1) < 4, g2 = h(v1, u1)= 4
p1 = ∅⊕ {v1} ⊕ {v3} ⊕ {v1, v3}, p2 = ∅⊕ g1?{v1} ⊕ g1?{v1, v3}
p3 = ∅⊕ g2?{v1} ⊕ g2?{v1, v3}, p4 = ∅⊕ {v1, u1} ⊕ {v1, u1, v3}

Fig. 4. Examples of cLTSs.

where L is a set of locations, l0 is an initial location. T ⊆ L × (G × (C→ {0, 1})) × L is a set of transitions. A transition
(l, g?α, l′) ∈ T (also denoted as l

g?α−−→ l′) can be fired from l to l′ when guard g is true and exactly the clocks in α ⊆ C tick.
G is a set of guards. The guard g is of the form

g =df h(c1, c2)��k,

where k ∈Z, �� ∈ {<, ≤, >, ≥, =}. When g is the Boolean true expression, it can be omitted and we simply write α. We
use h(c1, c2) to represent the difference between h(c1) and h(c2): h(c1, c2) =df h(c1) − h(c2), where the unary function h is
defined in Sect. 2.1. In cLTSs, T satisfies that for each location l ∈ L, (l, ∅, l) ∈ T .

A clock sequence σ = α1α2...αi ... is accepted by a cLTS if from the initial location l0 there is a path l0
g1?α1−−−→ l1

g2?α2−−−→
...

gi ?αi−−−→ li ... in the cLTS, where each guard gi (i ≥ 1) is evaluated to be true. We use Seq(A) to denote the set of all
sequences accepted by A, and we use Sch(A) to denote the set of all schedules accepted by A.

Example 2.3. Fig. 4(a) shows the cLTS of the constraint u1 � v1 $ 5, where L = {l1, l2}, the initial location is l1, C = {u1, v1}.
There are 5 transitions in T : (l1, ∅, l1), (l1, g1?{v1}, l1), (l1, g2?{v1}, l2), (l2, {v1, u1}, l2), (l2, ∅, l2). g1, g2 are given in the
lower part of the table. Let σ = v1 v1 v1 v1{v1, u1}ω , then σ ∈ Sch(A).

Note that p2, p3, p4 will be used later in conjunction with this example.

Synchronous Product The synchronous product of A1,...,An , denoted by A1 ‖ ... ‖ An , captures the common behaviours
of all n cLTSs. They synchronize only when they all agree on whether their common clocks tick or not. Formally, let Ai =
〈Li, Ti, l0,i, Ci〉 (1 ≤ i ≤ n), then A1 ‖ ... ‖An is defined as a tuple 〈L, T , l0, C〉 where

(1) L = L1 × ... × Ln;
(2) (〈l1, ..., ln〉, (∧n

i=1 gi)?(
⋃n

i=1 αi), 〈l′1, ..., l′n〉) ∈ T iff 〈li, gi?αi, l′i〉 ∈ Ti for 1 ≤ i ≤ n and α j ∩ Ck = αk ∩ C j for any 1 ≤ j ≤
k ≤ n;

(3) l0 = 〈l0,1, ..., l0,n〉;
(4) C =⋃n

i=1 Ci .

The condition ‘α j ∩ Ck = αk ∩ C j ’ guarantees that all n cLTSs agree on whether their common clocks tick or not in their own
transitions. Refer to [20] for more explicit explanations.

In cLTS we use a ‘compositional transition’ [l, g1?α1 ⊕ ... ⊕ gn?αn, l′] as a shorthand to express the set of transitions
(l, g1?α1, l′),...,(l, gn?αn, l′) with the same locations l, l′ . Later in Sect. 4, we see that the operator ⊕ here is actually the
choice operator of the program model of cDL.

Example 2.4. Fig. 4(c) shows the synchronous product Ac =Ab1 ‖Ab2 where Ab1 and Ab2 (shown in Fig. 4(b1) and (b2)
respectively) are the cLTSs of the free clocks v1 and v3 respectively. Fig. 4(d) shows the synchronous product Ad =Aa ‖
Ac =Aa ‖Ab1 ‖Ab2. In Ac , e.g., the transition (l3, {v1}, l3) of Ac is the synchronization of the transition (s1, {v1}, s1) of Ab1
and the transition (s2, ∅, s2) of Ab2, where l3 = 〈s1, s2〉. In Ad , e.g., the transition (l4, g2?{v1, v3}, l5) is the synchronization
of the transition (l1, g2?{v1}, l2) of Aa and the transition (l3, {v1, v3}, l3) of Ac , where l4 = 〈l1, l3〉, l5 = 〈l2, l3〉. Let Ca , Cc be
the set of clocks of Aa and Ac respectively. Since Ca = {v1, u1} and Cc = {v1, v3}, we have {v1} ∩ Cc = {v1, v3} ∩ Ca = {v1}
holds.

Fig. 4(c’) shows the same cLTS as Fig. 4(c), but we use a compositional transition [l3, p1, l3] to express all 4 transitions
〈l3, ∅, l3〉, 〈l3, {v1}, l3〉, 〈l3, {v3}, l3〉 and 〈l3, {v1, v3}, l3〉. p1 is shown in the lower part of the table.

cLTS Semantics of CCSL Any CCSL definition c � E (or any free clock c) can be captured as a cLTS Ac�E (or Ac). For any
schedule σ , there is

σ �ccsl c � E iff σ ∈ Sch(Ac�E).
6

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
Clock behaviour Corresponding cLTS

c � c′ $n

h(c′, c)= n− 1?{c′}
∅

h(c′, c) < n− 1?{c′}

{c′, c}

∅

c

∅

c

Fig. 5. Encodings of some clock behaviours.

in1

clock: i1

in2

clock: i2

step1

clock: v1

step2

clock: v2

capacity: ≤ 5

buffer1

buffer2

step3

clock: v3

out

clock: o

Fig. 6. A component of an application.

Fig. 5 gives the encoding of the clock definition c � c′ $ n and the general free clock c, which we use in our example in
Sect. 3. Fig. 4(a) is a special case of the cLTS of c � c′ $ n when n = 5. The encoding of other clock definitions can be found
in [20–22].

With the cLTS semantics of CCSL definitions, the behaviour of clocks of any CCSL specification SP = 〈C̃df , R̃el〉 can be
encoded as a cLTS ASP by making the synchronous product of the cLTSs of all clock definitions and all free clocks in SP .
Formally, ASP = (‖c�E∈C̃df A

c�E) ‖ (‖c∈F(SP) Ac). The following proposition shows that ASP exactly captures the behaviour
of SP.

Proposition 2.1. Given a specification SP= 〈C̃df , R̃el〉, for any schedule σ of C(SP),

σ �ccsl C̃df iff σ ∈ Sch(ASP). (1)

Proposition 2.1 is a direct result from the cLTS theory proposed in [20], where there is

σ �ccsl SP iff σ ∈ Sch(A′), (2)

with A′ = (‖Rel∈R̃el ARel) ‖ (‖c�E∈C̃df Ac�E) being the synchronous product of the cLTSs of all clock relations and clock
definitions of SP. Here in Proposition 2.1, the proposition (1) is a special case of (2), where we only consider the behaviour
of the clocks of SP. For the free clocks F(SP) which are in R̃el but not in any clock definition of C̃df , we encode them into
cLTSs to capture their behaviours.

3. An illustrative example

In this section we consider an illustrative example which is used throughout this paper. This example is originally from
[20]. As Fig. 6 shows, a component of a practical application contains two inputs in1, in2, three computations step1, step2,
step3, two buffers buffer1, buffer2 and an output out . step1, step2 and step3 are three independent modules running con-
currently. step1 (resp. step2) needs an input from in1 (resp. in2) for a computation and after the computation it produces a
result in the buffer. step3 needs intermediate results from both step1 and step2 for a computation and after the computa-
tion it returns a result to the output out . The component continuously receives inputs and produces outputs in a streaming
fashion.

In this component, by associating each action with a clock, we can use CCSL, as an annex language of this model, to
capture the logical constraints between clocks. As a simple case, let us consider two basic specifications SP1, SP2 in the
following table:
7

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
C̃df R̃el F(SPi) (i ∈ {1,2})
SP1 u1 � v1 $ 5 v1 ≺ v3, v3 � u1 v1, v3

SP2 u1 � v1 $ 5, u2 � v1 ∨ v2
v1 ≺ v3, v3 � u1, i1 � v1,

i2 � v2, u2 ≺ v3, v3 � o

i1, i2, v1,

v2, v3,o

where SP1 specifies a basic relation between step1 and step3: step3 must occur later than step1, but before buffer1 reaches
its maximum capacity: 5 outputs of step1. This constraint can be expressed by two clock relations: v1 ≺ v3, v3 � u1. Here
the clock u1 is newly defined, it ticks as the clock v1 but delayed by 5 ticks. This can be expressed as a clock definition:
u1 � v1 $ 5. SP2 defines a more refined specification by adding more clock constraints in the sets C̃df , R̃el. SP2 specifies all
dependency relationships between actions in the application. See [20] for more complex specifications of this example.

After obtaining the clock specifications, designers can have a better understanding of this component by performing
schedulability analysis of these specifications. One important problem in schedulability analysis is the schedule problem
as mentioned in Sect. 1. For a CCSL specification, there may be no schedules, or one or more schedules satisfying it. E.g.,
Fig. 7 shows two possible schedules satisfying the specification SP1. By analyzing the schedule problem, unimplementable
specifications can be found as early as possible in the development process of an RTES.

In this paper, we take SP1 as an example. We show how our proposed method can be used to describe and analyze the
schedule problem of SP1.

4. Syntax and semantics of cDL

In this section we propose a logic called ‘clock-based dynamic logic’ (cDL) in order to suitably characterize the CCSL
specifications. cDL extends FODL with clocks as primitives and inherits the concept of normalized trace formulae from dTL2

to express and verify temporal properties. cDL provides a proof system for reasoning about the schedule problem at a high
level. It can be encoded into higher-order logic for implementation issues. We firstly give a brief introduction to FODL and
dTL2 as a background. Then we define the syntax of cDL in Sect. 4.2. At last we give its semantics in Sect. 4.3.

4.1. First-order dynamic logic and dynamic temporal logic dTL2

First-order dynamic logic. Dynamic logic [23] is an extension of modal logic for reasoning about programs. FODL [14,24]
is a type of dynamic logic able to express programs in the domain of first-order arithmetic theory. A program model p in
FODL is a regular program, defined as follows:

p ::= x := e | P ? | p; p | p⊕ p | p∗,

where e is an arithmetical expression and P is a quantifier-free Boolean expression. x := e is an assignment, it assigns to
the variable x the value of an arithmetical expression e. P ? is a test, it means at the current state, the program proceeds
if the proposition P is true. ;, ⊕, ∗ are the sequence, non-deterministic choice and finite loop operator respectively. p; q
means the program first executes p, and after p terminates, it executes q. p ⊕ q means the program either executes p or
executes q, it is a non-deterministic choice. p∗ means the program executes p for a finite number of times.

An FODL formula φ is defined as follows:

φ ::= tt | e ≤ e | 〈p〉φ | ¬φ | φ ∧ φ | ∀x.φ,

where tt is Boolean true, ≤ represents the ‘less than’ relation in the arithmetic theory. 〈p〉φ is called a ‘dynamic formula’.
It is formed by embedding a regular program p into a modal logical formula �φ. 〈p〉φ expresses that ‘after some execution
of p, φ holds’, which is a state property of p. One can refer to [24] for more details.

The dynamic temporal logic dTL2. dTL2 [15] is an augmentation of differential dynamic temporal logic (DDTL) [25], which
enriches FODL with differential equations for expressing the behaviour of hybrid systems and ‘dynamic temporal formulae’ of
the form ‘〈p〉�φ’ and ‘〈p〉�φ’ for expressing the temporal properties of p. Dynamic temporal formulae 〈p〉d (d ∈ {�φ, �φ})
express that there exists a trace of p satisfying the temporal formula d. In DDTL, there are no suitable rules to support
the derivations of formulae of the form 〈p〉�φ. Based on DDTL, dTL2 introduces a type of more general formulae called

v1

v3

u1

(a)

v1

v3

u1

(b)

Fig. 7. Two possible schedules for SP1.
8

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
‘normalized trace formulae’ which are of the forms ‘〈p〉φ ��ψ ’ and ‘〈p〉φ 	 �ψ ’, and proposes relative rules to support
their derivations. Normalized trace formula is able to express both state and temporal properties of a single trace (whose
meaning will be given in Sect. 4.2). One can refer to [15] for more details about dTL2.

4.2. The syntax of cDL

In order to characterize the behaviour model of CCSL clocks (i.e., the cLTS) in logic, we introduce a program model called
‘clock program model’ (CPM) based on the regular program model of FODL [14,24].

Definition 4.1 (Syntax of CPM). The syntax of CPM is defined in BNF as follows:

p ::= α | g?α | ε | ‡ | p; p | p⊕ p | p∗ | pω.

The intuitive meaning for each sentence is as follows. α is a set of ticked clocks and g is a guard in cLTS (see Sect. 2
for their definitions). We also call α a ‘clock event’ (or simply ‘event’) in CPM. Each event consumes one unit of time. The
guarded clock event g?α means ‘at current time, if g is true, then α executes, else the program halts’. The evaluation of g
does not consume any time. ε represents an ‘empty program’, it does nothing and does not consume time. ‡ represents a
‘halting program’, it halts the program and nothing can happen after that. ; , ⊕, ∗ are the sequence, non-deterministic choice
and finite loop operator that are directly inherited from FODL. p; q means that the program first executes p, and after p
terminates, it executes q. p ⊕q means that the program either executes p, or executes q, it is a non-deterministic choice. p∗
means that the program executes p for a finite number of times. ω is the infinite loop operator. pω means that the program
p executes for infinitely many times and never terminates.

Note that we use the same symbol ‘ω’ to express the infinite loop in CPM (Definition 4.1) and an infinite clock sequence
that repeats a segment (Sect. 2) at the same time. The precedence of the operators in CPM is declared from the highest to
the lowest as: ω, ∗, ;, ⊕.

As we will see in Sect. 6.1, any cLTS can be encoded as a CPM. The schedules accepted by a cLTS exactly correspond to
the words accepted by its corresponding CPM (as stated in Proposition 6.4).

Example 4.1. The behaviour of clocks u1, v1, v3 in SP1 (given in Sect. 3, whose cLTS corresponds to Fig. 4(d) in Sect. 2.3)
can be captured as a CPM psp1 = pω

2 ⊕ p∗2; p3; pω
4 , where p2, p3, p4 are given in the lower part of the table in Fig. 4.

cDL extends FODL with CPM as its program model and inherits normalized trace formula of the form 〈p〉φ 	�ψ from
dTL2 [15]. The following definition gives the syntax of cDL formulae.

Definition 4.2 (Syntax of cDL formulae). The cDL formula φ is defined in BNF as follows:

φ ::= φs | 〈p〉φ 	�φ | ¬φ | φ ∧ φ

where

φs ::= tt | e ≤ e | ¬φs | φs ∧ φs | ∀x.φs,

e ::= x | h(c) | η(c) | k | e+ e | e · e.

φs represents static formulae. In φs , tt is Boolean true, e is an integer arithmetic expression, x is a general variable in
the domain Z. We use Var to denote a set of general variables. The function h : C→N (given in Sect. 2.1) records the
number of ticks for each clock at the current instant. And the function η : C→ {0, 1} (given in Sect. 2.1) records the state
of each clock at the current instant. Because clocks do not appear alone in a cDL formula (they only appear alone in the
programs of a cDL formula), we can take h(c), η(c) as special variables related to the clock c ∈ C . We use Var(C) to denote
the set of all ‘clock-related variables’ h(c), η(c) for any c in C . k ∈Z is a constant. 〈p〉φ 	�ψ is a dynamic formula. The
term φ 	�ψ describes both a state property and a temporal property of an execution trace in clock programs. It consists
of a state formula φ and a temporal formula �ψ , with a conjunction operator 	 linking them. The formula 〈p〉φ 	 �ψ

means that there exists some execution of p s.t. (1) the execution trace satisfies the temporal property �ψ , and (2) after
the execution terminates (if it does), the state property φ also holds. For non-terminating executions of p, they do not need
to satisfy the condition (2).

As it will be seen in Sect. 6.1, the schedule problem for a CCSL specification can be expressed as a cDL formula. The
truth of the formula indicates the existence of a schedule of the specification (as stated in Theorem 6.1).

Example 4.2. The schedule problem of SP1 in Example 4.1 can be captured as a dynamic formula Isp1→〈psp1〉tt 	�(ψsp1 ∧
ψ∅), where the program psp1 can never terminate. It means that ‘under the initial condition Isp1 , there exists an infinite
trace of psp1 satisfying �(ψsp1 ∧ψ∅)’. The formula ψsp1 captures the set of clock relations in SP1 and the formula ψ∅ plays
the role of filtering out the traces of p, more details will be given in Sect. 6.
9

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
[·] is the dual operator of 〈·〉. Formulae of the form ‘[p]...’ mean that ‘all execution traces of p satisfy ...’. The disjunction
operator � is the dual operator of the conjunction operator 	. Formula [p]φ � �ψ means that for each trace of p, it
either satisfies �ψ , or terminates and satisfies φ. It can be expressed as formula ¬〈p〉¬φ 	�¬ψ . Other logical terms and
expressions such as ff (the Boolean false), φ1 ∨ φ2, φ1→ φ2, ∃x.φ, e1− e2, e1 = e2, e1 < e2,... can be expressed by the terms
and expressions defined in Definition 4.2.

In cDL, given a formula φ, we say a variable X is ‘bound’ in φ if

(1) X ∈ Var and X is in the scope of some quantifier ∀X , or
(2) X ∈ Var(C) (assume X = h(c) or X = η(c)),

(i) there exists a subformula of φ of the form 〈p〉ψ1 	�ψ2 s.t. X is in ψ1 	�ψ2 and c is in p, or
(ii) there exists a subprogram of φ of the form q; r s.t. X is in r and c is in q.

We say a variable X is ‘free’ in φ if it is not bound in φ. A substitution φ[e/X] replaces every free occurrence of the variable
X of φ with the expression e. An ‘admissible substitution’ guarantees that the meaning of a formula is the same before and
after the substitution. φ[e/X] is ‘admissible’ iff there exists no variable Y s.t. (1) Y is in e; and (2) Y is bound in φ[e/X].
Unless specially mentioned, all substitutions in this paper are assumed to be admissible.

4.3. The semantics of cDL

Kripke Frame & Trace The semantics of cDL is based on the Kripke frame (S, val) [24], where S is a set of states, val
interprets a program as a set of traces on S and a logical formula as a subset of S . A trace tr is a finite or infinite
sequence of states. Given a finite trace tr1 = s0s1...sn and a (possibly infinite) trace tr2 = u0u1...um..., we define tr1 · tr2 =df

s0s1...snu1u2...um... provided that sn = u0. Given any tr1, tr2, we define

tr1 ◦ tr2 =df

{
tr1 · tr2, if tr1 is finite
tr1, otherwise

.

Given two sets of traces S1, S2, S1 ◦ S2 is defined as:

S1 ◦ S2 =df {tr1 ◦ tr2 | tr1 ◦ tr2 is defined, tr1 ∈ S1, tr2 ∈ S2}.
We use tr(i) to denote the ith element of the trace tr, i ≥ 0. We use trb to denote the first element of the trace tr, trb = tr(0).
We use tre to denote the last element of the trace tr, provided that tr is finite.

Definition 4.3 (State and evaluation in cDL). Given a set of clocks C and a set of variables Var, a state s in cDL is defined as a
total function as follows:

(i) s maps each variable h(c) ∈ Var(C) to a value in domain N .
(ii) s maps each variable η(c) ∈ Var(C) to a value in domain {0, 1}.
(iii) s maps each variable x ∈ Var to a value in domain Z.

Given an expression e and a state s, an evaluation E vals(e) is defined as:

(1) If e = a, where a ∈ {x, h(c), η(c)}, then E vals(a) =df s(a).
(2) If e = k, then E vals(k) =df k.
(3) If e = e1�e2, where � ∈ {+, ·}, then E vals(e) =df E vals(e1)�E vals(e2).

With Definition 4.3 we can link the concept of traces in cDL and the concept of clock sequences in CCSL by defining the
traces of a clock sequence as follows.

Definition 4.4 (Trace of a clock sequence). Given a set of clocks C , the corresponding set of traces of a clock sequence κ ,
denoted as Trκ , is defined s.t. for all clocks c ∈ C and i ∈N+ , the following conditions hold:

(i) tr(0)(η(c)) = 0 and tr(0)(h(c)) = 0;
(ii) tr(i)(η(c)) = 1 iff c ∈ κ(i);
(iii) tr(i)(h(c)) = Hκ (i, c).

Definition 4.4 indicates that there exists a connection between the clock sequences in CCSL and the traces in cDL.
Intuitively, a clock sequence corresponds to a set of traces whose clock-related variables (of the form ‘h(c), η(c)’) exactly
record the information reflected by the sequence at each instant. From Definition 4.4 we note that only traces with all
variables η(c), h(c) (for any c ∈ C) being set to 0 at the beginning can capture the behaviour of clock sequences since we
10

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
s0 s1 s2

...
si

...κ(1) κ(2) κ(3) κ(i) κ(i + 1)

Fig. 8. The correspondence relation between a sequence κ and one of the traces tr ∈ Trκ .

assume Hκ (0, c) = 0 for any κ (Sect. 2.1). Thus we only focus on those traces that satisfy this condition. We call them
‘standard traces’.

Definition 4.5 (Standard traces). Given a set of clocks C , a standard trace tr (w.r.t. C) is defined s.t. tr(0)(η(c)) = 0 and
tr(0)(h(c)) = 0 for any c ∈ C .

Example 4.3. Fig. 8 shows a correspondence relation between a clock sequence κ and a trace tr ∈ Trκ . Let κ(1) = {c1}, κ(2) =
{c1, c2}, then s0, s1, s2 satisfy that s0(η(c1)) = s0(η(c2)) = s0(h(c1)) = s0(h(c2)) = 0, s1(η(c1)) = 1, s1(h(c1)) = Hκ (1, c1) = 1,
s1(η(c2)) = 0, s1(h(c2)) = Hκ (1, c2) = 0, s2(η(c1)) = 1, s2(h(c1)) = Hκ (2, c1) = 2, s2(η(c2)) = 1 and s2(h(c2)) = Hκ (2, c2) =
1.

The semantics of cDL is given as the following definition.

Definition 4.6 (Semantics of cDL formulae).
Given a set of clocks C and a set of variables Var, the semantics of cDL formulae is given as a Kripke frame (S, val),

where S is the set of all states defined in Definition 4.3, val is defined as follows:

• For CPM:
(1) val(ε) =df S .
(2) val(‡) =df ∅.
(3) val(α) =df {ss′ | s, s′ ∈ S; for any c ∈ α, s′(h(c)) = s(h(c)) + 1 ∧ s′(η(c)) = 1; for any d ∈ C − α, s′(h(d)) = s(h(d)) ∧

s′(η(d)) = 0; for any x ∈ V ar, s′(x) = s(x)}.
(4) val(g?α) =df {ss′ | s ∈ val(g), ss′ ∈ val(α)}.
(5) val(p; q) =df val(p) ◦ val(q).
(6) val(p ⊕ q) =df val(p) ∪ val(q).
(7) val(p∗) =df val(ε) ∪⋃

n≥1 val(p) ◦ ... ◦ val(p)︸ ︷︷ ︸
n

.

(8) val(pω) =df val(p) ◦ val(p) ◦ ...︸ ︷︷ ︸
∞

.

• For cDL formula:
(i) val(tt) =df S .
(ii) val(e1 ≤ e2) =df {s | E vals(e1) ≤ E vals(e2)}.
(iii) val(〈p〉φ 	�ψ) =df

{
s | there is a tr ∈ val(p) s.t. s= trb, tr ��ψ and

tre ∈ val(φ) if tre exists

}
.

(iv) val([p]φ ��ψ) =df

{
s | for all tr ∈ val(p) s.t. s= trb, tr ��ψ or

tre exists and tre ∈ val(φ)

}
.

(v) val(¬φ) =df {s | s /∈ val(φ)}.
(vi) val(φ ∧ψ) =df val(φ) ∩ val(ψ).
(vii) val(∀x.φ) =df {s | for any v0 ∈Z, s ∈ val(φ[v0/x])}.
The trace semantics of temporal formulae �ψ , �ψ is defined as follows:
(a) tr ��ψ iff every state s in tr (s �= trb) satisfies s ∈ val(ψ).
(b) tr ��ψ iff there exists a state s in tr (s �= trb) that satisfies s ∈ val(ψ).

The semantics of each CPM corresponds to a set of traces on S . ε defines the set of all traces with length 1. ‡ defines
the empty set. The event α defines a transition from a state s to a state s′ . Intuitively, at the current instant, if a clock c
(c ∈ α) ticks, variable h(c) is increased by 1 and variable η(c) is set to 1; if the clock c does not tick (c /∈ α), h(c) does not
change and η(c) is set to 0. Other variables in both s and s′ are kept the same. Traces satisfying g?α are exactly those traces
satisfying α whose beginning states satisfy g . Since the guard g is in fact a cDL formula, the definition of val(g) makes
sense. Each trace of p; q is formed by concatenating a trace of p and a trace of q. Each trace of p ⊕ q is either a trace of p
or a trace of q. The traces of program p∗ are defined as all finite traces with length 1, or traces of the form tr1 ◦ tr2 ◦ ... ◦ trn
where n ≥ 1, tri ∈ val(p) is finite (1 ≤ i < n). The traces of pω consist of all infinite traces of the form tr1 ◦ tr2... where each
tri ∈ val(p) is finite (i ≥ 1), or of the form tr1 ◦ tr2 ◦ ... ◦ trn where n ≥ 1, tr1, ..., trn−1 ∈ val(p) are finite, but trn ∈ val(p) is
infinite.

The semantics of each cDL formula corresponds to a set of states in S . (iii), (iv) are similar to the corresponding def-
initions in dTL2 [15]. Note that in cDL, for any temporal formulae �ψ and �ψ , ψ is a state formula. The semantics of
11

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
〈p〉φ 	�ψ

...

ψ ψ
...

ψ ∧ φ

ψ ψ
...

ψ
...

......

......

all traces of p

�ψ

�ψ vs.

[p]φ ��ψ

...
φ

ψ
...

...
ψ

...

......

......

all traces of p

�ψ

�ψ

(a) (b)

Fig. 9. The semantics of 〈p〉φ 	�ψ and [p]φ ��ψ .

temporal formulae �ψ and �ψ is given in (a) and (b), where we do not require that the first state of a trace tr satisfies
formula ψ . This stipulation helps traces better correspond to schedules because according to Definition 4.4 the 1st element
of a schedule exactly corresponds to the 2nd element of a trace. For a state property φ, we only consider its truth for
terminating traces. (v), (vi), (vii) directly come from the corresponding definitions in FODL [24].

Example 4.4. Fig. 9 gives a graphical illustration of the semantics of formulae 〈p〉φ 	�ψ , [p]φ ��ψ . In Fig. 9(a), a state
satisfies formula 〈p〉φ 	 �ψ (the blue state) iff there exists a trace of p (the 2nd and 3rd trace from top) satisfying the
temporal formula �ψ and if it terminates, the terminating state satisfies φ. In Fig. 9(b), a state satisfies formula [p]φ ��ψ

(the blue state) iff any trace of p either satisfies the temporal formula �ψ (the 2nd and 3rd trace from top), or it terminates
and satisfies φ (the 1st trace from top).

From Fig. 9 we see that the infinite traces are only required to satisfy the temporal formula because they never terminate.
With the semantics of cDL we introduce the satisfaction relation of cDL.

Definition 4.7 (Satisfaction relation). Given a Kripke frame (S, val), for any state s ∈ S and a cDL formula φ, the satisfaction
relation s |=cdl φ is defined as:

s |=cdl φ iff s ∈ val(φ).

If for all state s ∈ S , s |=cdl φ, then we call φ is ‘valid’, denoted by |=cdl φ.

CPM is in fact an ω-regular expression of an ω-regular language [26] based on clock events and guarded clock events
as words. This observation is important for the encoding from cLTS into CPM introduced in Sect. 6.1. We first define the
concept of ‘string’, as the basic element of the ω-regular language. Then we show how CPM denotes the ω-regular language
by defining a semantics of CPM based on strings.

Definition 4.8 (String). A string is a finite or infinite sequence ρ = a1a2...an... where ai (1 ≤ i ≤ n) is a clock event of the
form α or g?α, called a ‘word’. The concatenation between strings is defined as follows:

ρ1ρ2 =df

{
ρ1, if ρ1 is infinite
ρ1 	 ρ2, if ρ1 is finite

,

where for any finite string x1 = a1...an and string x2 = b1...bm..., x1 	 x2 =df a1...anb1...bm....

We use ρω to represent an infinite string that infinitely repeats string ρ , i.e., ρω =df ρρ...︸︷︷︸
∞

.

Let λ be the empty string that satisfies for any ρ , it holds that ρλ = λρ = ρ .
We define 4 operators on sets of strings:

(1) Concatenation: L1L2 =df {ρ1ρ2 | ρ1 ∈ L1, ρ2 ∈ L2}.
(2) Union: L1 ∪ L2 =df {ρ | ρ ∈ L1 or ρ ∈ L2}.
(3) Star Operator: L∗ =df ∪n≥0Ln , where Ln =df LL...L︸ ︷︷ ︸

n

.

(4) Omega Operator: Lω =df LL...L...︸ ︷︷ ︸
∞

.

From the definition of string in Definition 4.8, we can observe that clock sequence is in fact a special type of strings
where there is no guard in each clock event.
12

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
Definition 4.9 (CPM as an ω-regular expression).
CPM is an ω-regular expression, it denotes an ω-regular language in the sense of the semantics given as follows. For any

CPM p, the set of strings of p, denoted by Str(p) is defined as:

(i) Str(a) =df {a}, Str(ε) =df {λ}, Str(‡) =df ∅, where a is of the form α or g?α.
(ii) Str(q; r) =df Str(q)Str(r).
(iii) Str(q ⊕ r) =df Str(q) ∪ Str(r).
(iv) Str(q∗) =df Str(q)∗ .
(v) Str(qω) =df Str(q)ω .

We use Str to denote the language denoted by CPM in the sense of the semantics given above.
We use symbol ≡ to denote the equivalence between CPMs on strings, i.e., for any CPMs p, q, p ≡ q iff Str(p) = Str(q).

Intuitively, a string captures one deterministic behaviour of CPM and it can be seen as a sequential program of CPM. We
show this by defining the semantics of strings in Kripke frame as the following definition.

Definition 4.10 (Semantics of strings). Given a set of clocks C and a set of variables Var, the semantics of a string ρ =
a1a2...an... is given as a Kripke frame (S, val), where S is the set of all states defined in Definition 4.3, val(ρ) is defined as:

val(ρ)=df val(a1) ◦ val(a2) ◦ ... ◦ val(an) ◦

For a set of strings A, we define

val(A)=df

⋃
ρ∈A

val(ρ).

Since a string captures one behaviour of CPM, the set of strings of a CPM should capture all of its behaviours. Therefore,
there exists a correspondence relation between the string semantics and the trace semantics of CPM, stated as the following
proposition.

Proposition 4.1 (Relation between string semantics and trace semantics). Given a CPM p, we have

val(p)= val(Str(p)).

Proof. The proposition can be proved by induction on the structure of p. The base case is trivial, for example, we have
val(Str(a)) = val({a}) = val(a) where a is of the form α or g?α.

For the induction step, we only give q ⊕r for example, other cases are similar. By Definition 4.9, we have val(Str(q ⊕r)) =
val(Str(q) ∪ Str(r)) = val(Str(q)) ∪ val(Str(r)). By induction hypothesis, we have val(Str(q)) = val(q) and val(Str(r)) = val(r).
Therefore we have val(Str(q ⊕ r)) = val(q) ∪ val(r) = val(q ⊕ r). �

Proposition 4.1 says that the traces of a CPM are actually the traces of all strings of a CPM, which means that the set of
strings of a CPM actually captures all of its behaviours.

With Definition 4.10, we can have a better understanding of the relation between clock sequence κ and traces of CPM.

Proposition 4.2. Given a clock sequence κ , Trκ (defined in Definition 4.4) is exactly the set of all standard traces in val(κ).

Proposition 4.2 is direct according to Definitions 4.4, 4.5 and 4.10. Here we omit its proof. Proposition 4.2 will play a
crucial rule in the proof of Proposition 6.4 in Sect. 6.1.

5. Proof calculus of cDL

In this section, we propose a proof system for cDL, which is the logical framework for analyzing the schedule problem
of CCSL specifications. We first briefly introduce the background about sequent and sequent calculus in Sect. 5.1. Then we
introduce the proof rules in Sect. 5.2, and discuss the soundness, completeness and decidability of cDL in Sect. 5.3.

5.1. Sequent calculus

Sequent Calculus & Rule In this paper we use Gentzen’s sequent [27] as the logical argumentation for the proof calculus
of cDL. A sequent has the form:
13

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
(a) Rules for special primitives in cDL

�[V ′/V],

⎧⎪⎨⎪⎩
(h(c1), ...,h(cn))= (x1 + 1, ..., xn + 1),

(η(c1), ..., η(cn))= (1, ...,1),

(η(d1), ..., η(dm))= (0, ...,0)

⎫⎪⎬⎪⎭⇒ φ ∧ψ,
[V ′/V]

�⇒〈α〉φ 	�ψ,

(α)

φ

〈ε〉φ 	�ψ
(〈ε〉)

g ∧ 〈α〉φ 	�ψ

〈g?α〉φ 	�ψ
(g?)

ff

〈‡〉φ 	�ψ
(〈‡〉) ζ1 : �⇒ Inv,
 ζ2 : · ⇒ Inv→〈p〉Inv 	�ψ

ζ : �⇒〈pω〉φ 	�ψ,

(〈ω〉)

�⇒∃x.Inv(x),
 · ⇒ ∀x > 0.(Inv(x)→[p]Inv(x− 1) ��ψ) · ⇒ (∃x≤ 0.Inv(x))→[p]�ψ

�⇒ [pω]φ ��ψ,

([ω]�)

(b) Rules mainly inherited from FODL and dTL2

(〈p〉φ 	�ψ)∨ (〈q〉φ 	�ψ)

〈p⊕ q〉φ 	�ψ
(⊕)

〈p〉(〈q〉(φ 	�ψ) 	�ψ)

〈p;q〉φ 	�ψ
(〈;〉)

φ ∨ 〈p; p∗〉(φ 	�ψ)

〈p∗〉(φ 	�ψ)
(〈∗n〉) �⇒ Inv,
 · ⇒ Inv→[p]Inv ��ψ · ⇒ Inv→ φ

�⇒ [p∗]φ ��ψ,

([∗]�)

ζ1 : �⇒∃x.Inv(x),
 ζ2 : · ⇒ ∀x > 0.(Inv(x)→〈p〉Inv(x− 1) 	�ψ) ζ3 : · ⇒ (∃x≤ 0.Inv(x))→ φ

ζ : �⇒〈p∗〉φ 	�ψ,

(〈∗〉)

(c) Rules of FOL
|=cdl

∧
φ∈� φ→∨

ψ∈
 ψ

�⇒

(o)

�,φ⇒ φ,

(ax)

�⇒ φ,
 �,φ⇒

�⇒

(cut)

�,¬φ⇒

�⇒ φ,

(¬r)

�⇒¬φ,

�,φ⇒

(¬l)

�⇒ φ,
 �⇒ψ,

�⇒ φ ∧ψ,

(∧r)

�,φ⇒

�,φ ∧ψ⇒

(∧l1)

�,ψ⇒

�,φ ∧ψ⇒

(∧l2)

�⇒ φ[x′/x],

�⇒∀x.φ,

(∀r)
�,φ[e/x] ⇒

�,∀x.φ⇒

(∀l) �⇒ φ,

�⇒ φ ∨ψ,

(∨r1)

�⇒ψ,

�⇒ φ ∨ψ,

(∨r2)

�,φ⇒
 �,ψ⇒

�,φ ∨ψ⇒

(∨l)

�,φ⇒ψ,

�⇒ φ→ψ,

(→r)

�⇒ φ,
 �,ψ⇒

�,φ→ψ⇒

(→l)

�⇒ φ[e/x],

�⇒∃xφ,

(∃r) �,φ[x′/x] ⇒

�,∃xφ⇒

(∃l)

Fig. 10. Proof Calculus of cDL.

�⇒
=df

∧
φ∈�

φ→
∨
ψ∈

ψ,

where �,
 are two finite multi-sets of logical formulae. A sequent � ⇒
 means that ‘if every formula holds in �, one can
conclude that some formula holds in
’. When � or
 is empty, we use · to denote it.

A rule in sequent calculus is of the form:

�1⇒
1 ... �n⇒
n

�⇒

It means that if �1 ⇒
1, ..., �n ⇒
n are all valid, so is � ⇒
. Each sequent �i ⇒
i in the upper part is called a
‘premise’, while the sequent � ⇒
 in the lower part is called ‘conclusion’. We use

�′ ⇒
′
�⇒

to represent a pair of sequent rules: �
′ ⇒
′

�⇒

and

�⇒

�′ ⇒
′ , i.e., � ⇒
 is valid iff �′ ⇒
′ is valid. Sometimes we write

ψ

φ
if for all �,
,

�⇒ψ,

�⇒ φ,

holds. It is easy to prove that

ψ

φ
just means ‘ψ implies φ’. We call �,
 the ‘context’ of the

formula φ in sequent � ⇒ φ,
 or �, φ⇒
.
Node & Proof Tree The derivation of a sequent forms a ‘proof tree’. Each sequent in the proof tree is a node, denoted by

ζ = 〈ν, τ 〉, where ζ is the node name, ν is a vector of its child nodes, τ is a rule name. In a proof tree,

a node ζ = 〈(ζ1, ..., ζn), ‘(r)’〉 is defined iff there is a derivation
ζ1 : �1⇒
1 ... ζn : �n⇒
n

ζ : �⇒

(r),

where (r) is the name of the rule, ζ1, ..., ζn are the child nodes of ζ in sequence from left to right. In a proof tree, we call a
node ζ a ‘successor’ of a node ζ ′ iff there exist n nodes (n > 0) ζ1, ..., ζn s.t. ζ is a child node of ζ1, ζ1 is a child node of ζ2,
..., ζn is a child node of ζ ′ . We call node 〈ν, τ 〉 a ‘leaf node’ if ν = ∅. If a leaf node is obtained from a termination rule (rule
(o), (ax) introduced below in Fig. 10(c)), we also call it a ‘valid node’, denoted as

√
. We call a proof tree ‘a valid proof tree’

if all its leaf nodes are valid.
Single-target Sequent/Proof Tree Since the proof system we give in this paper is mainly for decomposing one dynamic

formula for a CCSL schedule problem, we restrict ourselves to consider a special type of sequents where there is at most one
dynamic formula. We call them ‘single-target sequents’. We call a proof tree in which all nodes are single-target sequents
a ‘single-target proof tree’. Considering this type of sequents and proof trees is enough and does not reduce the ability of
sequents for proving all cDL formulae due to the following reasons:
14

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
(i) If there exists more than one dynamic formula in a cDL formula φ to be proved, since dynamic formulae are atomic
formulae in cDL, we can always translate it into a conjunctive/disjunctive normal form like φ = φ1 ∧ ... ∧ φn or φ =
φ1 ∨ ... ∨ φn , where each φi contains only one dynamic formula. Then we can prove φi one by one through n single-
target sequents: · ⇒ φ1, ..., · ⇒ φn .

(ii) As we will see in Sect. 5.2, every proof tree which starts at a single-target sequent can only have one dynamic formula
at all of its nodes because no extra dynamic formulae can be generated by any rules in the proof system of cDL (Fig. 10).

Unless specially mentioned, all sequents and proof trees discussed in this paper are single-targeted.

5.2. Proof rules

Our main contribution in the proof system of cDL is proposing the rules for special primitives: α, g?α, ε, pω in cDL.
They are listed in Fig. 10(a). Other rules in cDL are either directly inherited or can be derived from the proof system of
FODL [24], dTL2 [15] and FOL, which are listed in Fig. 10(b) and (c).

In Fig. 10(a), rule (α) says that under any context �,
, proving that some trace of α satisfies φ 	�ψ is equivalent to
proving that φ∧ψ holds after the execution of α. Variables in V are updated with new values according to α, while their old
values are stored in V ′ . α = {c1, ..., cn}, C −α = {d1, ..., dm}. V = (h(c1), ..., h(cn), η(c1), ..., η(cn), η(d1), ..., η(dm)) is a set of
variables whose values change as the execution of α. V ′ = (x1, ..., xn, y1, ..., yn, z1, ..., zm) is a set of new variables (w.r.t. �,
〈α〉φ 	�ψ ,
) corresponding to V . �[V ′/V] represents the context obtained by doing the substitution φ[V ′/V] for each
formula φ in �, where φ[V ′/V] is the shorthand of φ[x1/h(c1)]...[xn/h(cn)][y1/η(c1)]...[yn/η(cn)][z1/η(d1)]...[zm/η(dm)]
replacing variables h(c1)...h(cn), η(c1)...η(cn), η(d1)...η(dm) with variables x1, ..., xn , y1, ..., yn , z1, ..., zm respectively. The
vector equation (x1, ..., xn) = (e1, ..., en) is a shorthand for equations x1 = e1, ..., xn = en .

Example 5.1. Consider a sequent h(c1) = 0, η(c1) = 0, h(c2) = 0, η(c2) = 0 ⇒ 〈c1〉�h(c1) ≥ h(c2), by applying rule (α), we
obtain the derivation:

x1 = 0, y1 = 0,

h(c2)= 0, z1 = 0,

{
h(c1)= x1 + 1, η(c1)= 1,

η(c2)= 0

}
⇒ h(c1)≥ h(c2)

h(c1)= 0, η(c1)= 0,h(c2)= 0, η(c2)= 0⇒〈c1〉�h(c1)≥ h(c2)
(α)

,

where x1, y1, z1 are the corresponding new variables of h(c1), η(c1), η(c2) respectively. They keep the old values of the
variables h(c1), η(c1), η(c2) respectively, while the variables h(c1), η(c1), h(c2), η(c2) keep the current values in the premise
after the execution of the program c1. In the derivation above, h(c2) is kept unchanged.

Rule (〈ε〉) holds because we stipulate that the first element of any trace is unrelated to the temporal formula �ψ in
the definition of tr � �ψ (Definition 4.6). Rule (g?) moves the guard g out of the dynamic part ‘g?α’ as a static formula
g . Rule (〈‡〉) says formula 〈‡〉φ 	�ψ is a contradiction, because the program ‡ will halt and never produce any execution
trace. In rules (〈ω〉) and ([ω]�), the state property φ is irrelevant since an infinite loop program never terminates. Rule
(〈ω〉) says that the conclusion holds if we can find an invariant Inv s.t.: (1) Inv holds under the current context �,
; (2)
under any context, if Inv holds, then there exists a trace of p satisfying �ψ and after p terminates, Inv holds. Rule ([ω]�)
is similar to (〈ω〉), where x indicates the number of repetitions of p before every trace of p satisfying �ψ .

Example 5.2. Fig. 11 gives a graphical illustration of rules (〈ω〉), ([ω]�). The snake arrow indicates a trace. Fig. 11(a) shows
that to prove a state (the blue one) satisfies formula 〈pω〉φ 	�ψ , we firstly show that this state satisfies the invariant Inv,
then show that for any state (s1, s2, ..., si, ...), if it satisfies Inv, then there exists a trace (the red one) satisfying �ψ and if
it terminates, the terminating state satisfies Inv. If the trace does not terminate, then we have already obtained an infinite
trace that satisfies �ψ . Intuitively, the invariant Inv makes sure that we can always find a segment of trace of p that satisfies �ψ , by ‘concatenating’ all these segments, we obtain a trace of pω .

Fig. 11(b) shows that to prove the blue state satisfies formula [pω]φ ��ψ , firstly we show this state satisfies ∃x.Inv(x),
then show that for any state (s0,...,si , si+1, ..., s j , s j+1,...), if it satisfies Inv(k) for some k > 0, then for all traces starting from
this state, they either satisfy �ψ (the red traces), or terminate and satisfy Inv(k − 1). The decrease of number k guarantees
that there always exists a state (s j) from which all traces satisfy �ψ .

In Fig. 10(b), rule (⊕) expresses that some trace of p ⊕ q satisfies φ 	�ψ iff some trace of p or some trace of q satisfies
φ 	�ψ . Rule (〈; 〉) means that some trace of p; q satisfies φ 	�ψ iff some trace of p satisfies �ψ , and if it terminates,
there is some following trace of q satisfies φ 	�ψ . Rule (〈∗n〉) unwinds the loop program into a sequential one. It is based
on the equation p∗ ≡ ε⊕ (p; p∗), which means that the traces formed by executing p for n ≥ 0 times (val(p∗)) comprise of
the traces formed by executing p for 0 time (val(ε)) and the traces formed by executing p for n > 0 times (val(p; p∗)). Rules
([∗]�) and (〈∗〉) proceed the proof by eliminating the loop operator ∗, they are similar to rules (〈ω〉), ([ω]�) respectively.
But since all traces of p∗ are finite and will terminate, in rules ([∗]�), (〈∗〉), the terminating conditions (‘· ⇒ Inv→ φ’ and
15

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
s0

Inv
〈pω〉φ 	�ψ

s1

Inv

s2

Inv

...
si

Inv

si+1

Inv

...

...

...

...

...

...

...

...

...

p p p p p p

�ψ �ψ �ψ

all traces of pω

(a)

s0

∃x.Inv(x)
[pω]φ ��ψ ...

Inv(k)

si

Inv(k− 1)

si+1
...

Inv(0)

s j s j+1
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

p p

�ψ

p

�ψ

�ψ

all traces of pω

�ψ �ψ

(b)

Fig. 11. An illustration of Rule (〈ω〉), ([ω]�).

‘· ⇒ (∃x ≤ 0.Inv(x)) → φ’) for φ are considered. Rule ([∗]�) says that to prove all traces of p∗ either satisfy �ψ or terminate
and satisfy φ, we introduce an invariant Inv and prove (1) Inv holds under the current contexts �,
; (2) under any context,
if Inv holds, then all traces of p either satisfy �ψ , or terminate and satisfy Inv; (3) under any context, if Inv holds, then φ
holds. The explanation of rule (〈∗〉) is similar to ([∗]�), where the decrease of the number x in the invariant makes sure
that a finite trace of p∗ can be found whose terminating state satisfies φ.

In Fig. 10(c), rule (o) is an oracle rule indicating the termination of the proof, where all formulae in �,
 must be QF-FOL
formulae. Rule (o) means that to prove the validity of the conclusion, we check the validity of the QF-FOL logical formula in
the premise. As indicated in Sect. 1, this process can be handled through an SMT-solving procedure, which is independent
from the proof calculus of cDL. (ax) is another termination rule. Other FOL rules are classic and here we omit the details
of them. For convenience in the derivation of Sect. 6.4, we also list the FOL rules for connectors ∨, → and quantifier ∃.
However, they are not necessary in the proof system and can be derived from other FOL rules.

With the proof calculus of cDL we introduce the derivation of cDL.

Definition 5.1 (Derivation of cDL). For any cDL formula φ and a multi-set � of cDL formulae, we say φ is derivable from �,
denoted by � "cdl φ, iff the sequent � ⇒ φ can be derived to form a valid proof tree according to the rules in Fig. 10. If
� = ∅, we also write "cdl φ.

5.3. Soundness, completeness and decidability of cDL

cDL is sound, as stated in the following theorem.

Theorem 5.1 (Soundness of cDL). Given a Kripke framework (S, val), for any cDL formula φ ,

if "cdl φ, then |=cdl φ.

To prove Theorem 5.1 equals to prove the soundness of each rule in Fig. 10. The soundness of the rules in Fig. 10(b),
(c) is directly from the proof calculus of FODL [24] and dTL2 [15]. The soundness of the rules in Fig. 10(a) can be proved
directly according to the semantics of cDL. The only non-trivial cases are rule (α), rule (〈ω〉) and rule ([ω]�), whose proofs
are given in Appendix B.

Generally, like FODL, cDL is not complete due to Gödel’s incompleteness theorem [28]. A sub-logic of cDL whose formulae
are defined by using all terms and operators in cDL but the operator ω is relatively complete to arithmetic FOL due to the
relative completeness of dTL2 [15]. However, it still remains open whether cDL is relatively complete to arithmetic FOL. The
main reason is that for rules (〈ω〉) and ([ω]�), it is still not clear that for each CPM p, whether there exists an invariant
16

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
Inv s.t. falsehood of the premise implies falsehood of the conclusion, which is the key for proving the relative completeness
of cDL.

FODL and dTL2 are generally undecidable, because the process of generating the loop invariant for an arbitrary program
model whose domain includes Presburger arithmetic theory is generally undecidable [29]. However, we observe that CPM
only contains very simple arithmetic expressions (clock event α) and conditions (clock guard g). It is still not clear for us
whether the invariant in cDL is generally decidable or not.

6. Schedulability analysis of CCSL specifications in cDL

In this section we discuss how to analyze the schedule problem of CCSL specifications in the cDL calculus built in
previous sections. We first need to encode the schedule problem as a cDL formula, then prove the formula and analyze
the proof tree generated through this verification process. As indicated in Fig. 1, the encoding of the schedule problem of a
given CCSL specification SP = 〈C̃df , R̃el〉 can be accomplished in two steps:

1. Encoding the CCSL specification as ingredients of cDL, which includes two steps:
(i) Modelling the dynamic behaviour of all clocks C(SP) as a CPM psp . This can be done by encoding the synchronous

product of the cLTSs of all clock definitions in C̃df and the cLTSs of all free clocks in F(SP);
(ii) Encoding all static clock relations in R̃el as a temporal formula �ψsp .

2. Encoding the schedule problem into a cDL formula.

Sect. 6.1, Sect. 6.2 deal with the encoding in step 1.(i) and step 1.(ii) respectively. Sect. 6.3 deals with step 2. In Sect. 6.4,
we solve the schedule problem by analyzing its corresponding cDL formula.

6.1. Encoding the behaviour of clocks into cDL

The encoding from cLTS into CPM turns out to be a standard process of encoding Büchi automata into ω-regular lan-
guages [26]. From Definition 4.9 in Sect. 4 we see that a CPM is an ω-regular expression that denotes an ω-regular language
of Str. cLTS can be taken as a special type of Büchi automata that accept clock events or guarded clock events as words
and where all states are accepting states. The language accepted by this type of Büchi automata is exactly a subset of the
language Str. Next we first show how cLTSs can be taken as Büchi automata that accept the language Str, then based on
this we propose an algorithm (Algorithm 1) for encoding cLTS into CPM.

cLTSs taken as Büchi automata accept a subset of the language Str, stated as the following proposition.

Proposition 6.1 (cLTSs as Büchi automata). Given a cLTS A = 〈L, T , l0, C〉, we can take it as a Büchi automaton whose locations (i.e. L)
are all accepting locations. And for each transition (l, g?α, l′) ∈ T in the Büchi automaton A, g?α is taken as a word rather than a
guarded event in the cLTS A. In this Büchi automaton, a string ρ = a1a2...an... is accepted by A iff there exists a path l0

a1−→ l1
a2−→

... an−→ ln... in A. We denote the set of strings accepted by A as Str(A).
According to the theory of Büchi automata, the language accepted by A is an ω-regular language, i.e., Str(A) ∈ Str.

Proposition 6.1 is direct from the theory of Büchi automata, we omit the proof of it.
According to Definition 4.9 and Proposition 6.1, we propose the encoding from cLTS into CPM in Algorithm 1. Procedure

cLTS_2_CPM takes a cLTS A as input and returns the corresponding CPM p as output. It directly follows the process of
encoding a Büchi automaton into an ω-regular language. In cLTS_2_CPM, given a cLTS A = 〈L, T , l0, C〉, we use Al,l′ to
represent A as a non-deterministic finite automaton (NFA) with l the initial location and l′ the single accepting location,
denoted as Al,l′ = 〈L, T , l, C, l′〉. Note that Al,l′ and A share the same form, but differ in the accepting states and the types
of accepting traces. Procedure NFA_2_CPM is called in procedure cLTS_2_CPM, it encodes A, as an NFA Al,l′ , into a CPM.
Procedure NFA_2_CPM directly follows Brzozowski’s method [30] for encoding an NFA into a regular language, whose main
idea is to encode an NFA as a set of equations on regular expressions, then solve it by using Arden’s rule [31]. A finite
automaton Al,l′ with n locations can be encoded into exactly n equations following the principle explained in Algorithm 1,
where each equation (i) (1 ≤ i ≤ n) describes the transition relations between a location li to other locations (including
itself). Using Arden’s rule (explained in Proposition 6.2), we can solve the variables li one by one and finally obtain l1 — the
corresponding CPM of Al,l′ .

Proposition 6.2 (Arden’s rule in CPM). In the regular part of CPM that excludes the infinite loop program of the form pω, given any
CPMs p, q (where q �≡ ε), X ≡ q∗; p is the unique solution of the equation X ≡ p ⊕ q; X.

Proposition 6.2 is straightforward since from Definition 4.9 we know that the regular part of CPM is exactly a regular
expression.

From Algorithm 1 we observe that each CPM encoded from a cLTS is an infinite program, as stated in the following
proposition.
17

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
Algorithm 1 Encoding cLTS into CPM.
1: procedure cLTS_2_CPM(A = 〈L, T , l0, C〉)
2: for each l ∈ L do /*compute the CPM for all NFAs Al0,l and Al,l*/
3: pl0,l := NFA_2_CPM(Al0,l)

4: pl,l := NFA_2_CPM(Al,l)

5: p := ⊕l∈L(pl0,l; pω
l,l) /*compute the CPM of A*/

6: return p

7: procedure NFA_2_CPM(Al,l′ = 〈L, T , l, C, l′〉) /* |L| = n */
8: Build a set of equations according to Al,l′ :

l1 ≡ b1 ⊕ p11; l1 ⊕ p12; l2 ⊕ ...⊕ p1n; ln (1)

l2 ≡ b2 ⊕ p21; l1 ⊕ p22; l2 ⊕ ...⊕ p2n; ln (2)

...

ln ≡ bn ⊕ pn1; l1 ⊕ pn2; l2 ⊕ ...⊕ pnn; ln (n)

where l1, ..., ln are variables, l1 = l is the initial location of Al,l′ . pij (1 ≤ i ≤ j ≤ n) is of the form a1 ⊕ ... ⊕ ao , with ak (1 ≤ k ≤ o) in the form of α or
g?α. In any equation (i) (1 ≤ i ≤ n),

(i) term ‘pij; l j ’ (1 ≤ j ≤ n) appears on the right side of (i) iff there exists a compositional transition [li, pij , l j] in Al,l′ ;
(ii) bi = ε if li = l′;
(iii) bi = ‡ if li �= l′ .

9: for each k, k = n, n − 1, ..., 2, 1 do
10: transform equation (k) into the form lk ≡ p ⊕ q; lk .
11: By Proposition 6.2, obtain lk ≡ q∗; p from lk ≡ p ⊕ q; lk .
12: substitute lk on the right of other equations (k − 1), ..., (1) with q∗; p.

13: return l1.

Proposition 6.3. Given a cLTS A = 〈L, T , l0, C〉, let p = cLTS_2_CPM(A), then p is an infinite program, i.e., val(p) �= ∅ and all traces
of val(p) are infinite traces.

Proof. According to Algorithm 1, p has the form: ⊕l∈L(pl0,l; pω
l,l). Therefore the only possibilities that makes p not an infinite

program are 1) p = ‡; 2) pω
l,l ≡ ε for some l ∈ L. However, both conditions 1) and 2) are impossible because according to the

definition of cLTS (in Sect. 2.3), all locations of cLTS are accepting and for any l ∈ L, (l, ∅, l) is a transition of A. So p must
be an infinite program. �
Example 6.1. The cLTS of the specification SP1 (see Sect. 3): Asp1 (Fig. 4(d) in Sect. 2.3), is the synchronous product of the
cLTSs of u1 � v1 $ 5 (Fig. 4(a)) and free clocks v1, v3 (Fig. 4(b1), (b2)). By Algorithm 1, we can get psp1 = pω

l4,l4
⊕ pl4,l5 ; pω

l5,l5
,

where

pl4,l4 = NFA_2_CPM(Asp1,l4,l4)= p∗2,
pl4,l5 = NFA_2_CPM(Asp1,l4,l5)= p∗2; p3; p∗4,
pl5,l5 = NFA_2_CPM(Asp1,l5,l5)= p∗4,

p2, p3, p4 are shown in the lower part of Fig. 4. Thus we have

psp1 = (p∗2)ω ⊕ p∗2; p3; p∗4; (p∗4)ω ≡ pω
2 ⊕ p∗2; p3; pω

4 .

In particular, we give the process of solving the equations in procedure NFA_2_CPM(Asp1,l4,l4). The set of equations of
Asp1,l4,l4 is built as follows:

l4 ≡ ε⊕ p2; l4 ⊕ p3; l5 (1)

l5 ≡ ‡⊕ p4; l5 (2)

In (2) by Proposition 6.2 we obtain l5 ≡ p∗4; ‡. Substituting l5 in (1) and by Proposition 6.2 we obtain

l4 ≡ p∗2; (ε⊕ p3; p∗4; ‡)≡ p∗2;ε ≡ p∗2.

According to Algorithm 1 we can conclude a natural correspondence between the semantics of a cLTS and its corre-
sponding CPM.

Proposition 6.4 (Relation between cLTS and CPM). Let A be a cLTS and pA be its corresponding CPM obtained from Algorithm 1, then

{tr | there is a σ ∈ Sch(A) s.t. tr ∈ Trσ }
is the set of all standard traces accepted by pA.
18

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
Proposition 6.4 says that the infinite behaviour of a cLTS exactly corresponds to the behaviour of its corresponding CPM
obtained from Algorithm 1 in the sense of Definition 4.4. So if we can find a standard trace of a CPM, we then find a
schedule of its corresponding cLTS.

The proof of Proposition 6.4 is given in Appendix A

6.2. Encoding clock relations into cDL

Unlike the behaviour of clocks, clock relations can be treated as static properties. As declared in the following proposition,
they can be captured as a temporal formula in cDL.

Proposition 6.5 (Encoding clock relations as temporal formulae). Given a set of clock relations R̃el, we can build a temporal formula
as: ψR̃el ::=�

∧
h̄(Rel) s.t. σ �ccsl R̃el iff tr � ψR̃el for any σ and any tr ∈ Trσ . h̄(Rel) is defined as:

Rel h̄(Rel) Rel h̄(Rel)

c1 � c2 h(c1)≥ h(c2) c1 ≺ c2 h(c1) > h(c2)∨ (h(c1)= h(c2)∧ η(c1)= 0)

c1 ⊆ c2 η(c1)= 1→ η(c2)= 1 c1 # c2 η(c1)= 0∨ η(c2)= 0

Proposition 6.5 can be directly proved by Definition 4.4, Definition 4.6 and the semantics of CCSL relations (Fig. 3). Here
we omit its proof. Intuitively, for each clock relation Rel ∈ R̃el, h̄(Rel) exactly corresponds to the condition in the definition
of Rel shown in Fig. 3, that the schedule must satisfy at each instant in order to satisfy Rel.

Example 6.2. In the clock relations {v1 ≺ v3, v3 � u1} of SP1, h̄(v1 ≺ v3) corresponds to the condition in the definition
of v1 ≺ v3 that must be held at any instant i ∈ N+ by any schedule σ satisfying v1 ≺ v3, i.e., ‘Hσ (i, c1) > Hσ (i, c2) ∨
(Hσ (i, c1) = Hσ (i, c2) ∧ c1 /∈ σ(i))’ (see Fig. 3).

The clock relations {v1 ≺ v3, v3 � u1} of SP1 can be expressed as

�ψsp1 = �(h̄(v1 ≺ v3)∧ h̄(v3 � u1))

= �((h(v1) > h(v3)∨ (h(v1)= h(v3)∧ η(v3)= 0))∧ h(v3)≥ h(u1)).

6.3. Encoding the schedule problem into cDL

In Sects. 6.1, 6.2, we have encoded the behaviour of all clocks and all clock relations of a specification as ingredients of
cDL, the following proposition states that the schedule problem stated in Sect. 2 can be solved by proving a cDL formula.

Theorem 6.1 (Schedule problem in cDL). Given a CCSL specification SP = 〈C̃df , R̃el〉, the schedule problem of SP (stated in Sect. 2)
holds iff cDL formula

φSP = I→〈psp〉(tt 	�(ψsp ∧ψ∅))
is valid, where psp , ψsp are obtained from SP through Proposition 6.4 and Proposition 6.5, I =∧

c∈C(SP)(h(c) = 0 ∧ η(c) = 0), ψ∅ =∨
c∈C(SP) η(c) = 1.

I represents the initial environment of clock-related variables. We set all clock-related variables to 0, indicating at the
beginning no clock ticks. This corresponds to Hσ (0, c) = 0 for any schedule σ and clock c. Since all traces of psp are infinite,
the state property is set to tt. The formula ψ∅ means ‘at least one clock ticks at any instant’, which is used to avoid the
schedules that contains ∅ at any instant (as explained in Sect. 2).

Proof of Proposition 6.1. Assuming that I holds initially, there exists an (infinite) trace tr of psp satisfying ‘tt	�(ψsp∧ψ∅)’,
iff tr satisfies �(ψsp ∧ ψ∅), iff tr satisfies �ψsp and in tr each state contains at least one variable η(c) satisfying η(c) = 1.
According to Propositions 6.4, 6.5, there exists a schedule σ of the corresponding cLTS of SP that satisfies tr ∈ Trσ and
σ �ccsl R̃el. By Proposition 2.1, we know σ �ccsl C̃df , hence σ �ccsl SP. �
Example 6.3. We consider the schedule problem of SP1. According to Theorem 6.1, it can be expressed as a cDL formula:

φsp1 = Isp1→〈psp1〉tt 	�(ψsp1 ∧ψ∅),
where Isp1 =∧

c∈{v1,v3,u1} h(c) = 0 ∧ η(c) = 0, ψ∅ =∨
c∈{v1,v3,u1} η(c) = 1. psp1 , ψsp1 were given in Examples 6.1, 6.2 respec-

tively.
19

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
Algorithm 2 Generating a schedule from proof tree.
1: procedure Gen_Sch(ζ0 = 〈ν0, τ0〉, κ0) /* ζ0 is a valid proof tree */
2: � := {ζ0} /*nodes remaining to be analyzed*/
3: κ := κ0 /*initialize κ*/
4: while � �= ∅ do
5: take a ζ = 〈ν, τ 〉 in � and remove it from �
6: if ν = ∅ then continue /*a leaf node*/

7: if τ =‘(α)’ then
8: put all nodes of ν in �
9: α := T (ζ) /*α is the ‘target event’ of rule (α)*/

10: κ := κα
11: continue
12: else if τ =‘(〈∗〉)’ then /*set ν = (ζ1, ζ2, ζ3)*/
13: put ζ3 in �
14: κ ′ := Gen_Sch(ζ2, λ)

15: κ := κ(κ ′)k /*k is a witness of ‘∃x.Inv(x)’ in ζ1*/
16: continue
17: else if τ =‘(〈ω〉)’ then /*set ν = (ζ1, ζ2)*/
18: κ ′ := Gen_Sch(ζ2, λ)

19: κ := κ(κ ′)ω
20: continue
21: else /*where τ can be other cases, they do not contribute to the body of the schedule*/
22: put all nodes of ν in �
23: continue
24: return κ

6.4. Solving the schedule problem

In Theorem 6.1, if φSP is valid, the derivation of φSP actually provides a hint of what the schedules of SP may look
like. Essentially, the valid proof tree of φSP itself can be seen as a special ‘transition system’ that captures the behaviour
of all schedules of SP. By analyzing this proof tree, one can generate a possible schedule of SP expressed in the form of
κ1κ

ω
2 .
The generation procedure is described as Algorithm 2, where procedure Gen_Sch takes a valid proof tree ζ0 and a

clock sequence κ0 as inputs, and outputs a sequence κ . In Algorithm 2 we use ‘:=’ to mean the assignment and ‘=’
to represent the logical equality. Starting from the root node ζ0, procedure Gen_Sch traverses each node of the tree
and consecutively updates the sequence κ according to the rule at each node. Only 3 rules cause the change of the
sequence κ : (α), (〈∗〉) and (〈ω〉). In the analysis we only consider formulae of the forms defined in Definition 4.2
so we do not need to consider rules ([ω]�), ([∗]�). At line 10, sequence κ is appended with an event α if rule (α)

is applied at the current node. T (ζ) returns the target event of rule (α) (if rule (α) is applied to this node). E.g., for
node 6 of the proof tree 1 in Fig. 12, we have T (6) = {v1}. At line 15, the sequence κ is appended with a sequence
(κ ′)k , where κ ′ is computed by another invocation of procedure Gen_Sch. k is a value manually found to make the for-
mula ∃x.Inv(x) valid. The nodes ζ1, ζ2, ζ3 correspond to the child nodes of rule (〈∗〉) respectively (see rule (〈∗〉) in
Fig. 10(b)). At line 19, sequence κ is appended with an infinite sequence (κ ′)ω , where κ ′ is computed by another invoca-
tion of procedure Gen_Sch. The nodes ζ1, ζ2 correspond to the child nodes of rule (〈ω〉) respectively (see rule (〈ω〉) in
Fig. 10(a)).

Theorem 6.2 (Schedule generation in cDL). Given a CCSL specification SP = 〈C̃df , R̃el〉 and the cDL formula φSP = I → 〈psp〉(tt 	�(ψsp ∧ ψ∅)) of the schedule problem of SP, assume φSP is valid and generates a proof tree ζ0, let σ0 be the schedule generated by
procedure Gen_Sch(ζ0, ∅) given in Algorithm 2, then

σ0 is a schedule of SP.

The proof of Theorem 6.2 is given in Appendix A.

Example 6.4. Fig. 12 shows the derivation of the formula φsp1 in Example 6.3. In order to save space, we use a derivation

with multiple rules:
ζ2

ζ1
(r1,r2,...,rn) to mean that there are n (n ≥ 1) derivation steps between node ζ1 and node ζ2, and the

names of the inference rules being applied by each derivation step are listed on the right in order. E.g., the derivation from
node 1 to node 2 can be abbreviated as a derivation with multiple rules:

2 : Isp1⇒〈p∗2; p3; pω
4 〉tt 	�ψ

1 : · ⇒ Isp1→〈pω ⊕ p∗; p3; pω〉tt 	�ψ
(→r,⊕,∨r2)
2 2 4

20

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
√
.
.
.
.

4 : Isp1⇒∃k.Inv1(k)

√
.
.
.
.

t > 0, Inv1(t)⇒ g1

√
.
.
.
.

�1⇒ Inv1(t − 1)∧ψ

6 : t > 0, Inv1(t)⇒〈v1〉Inv1(t − 1) 	�ψ
(α)

t > 0, Inv1(t)⇒〈g1?v1〉Inv1(t − 1) 	�ψ
(g?,∧r)

t > 0, Inv1(t)⇒〈p2〉Inv1(t − 1) 	�ψ
(⊕,∨r2,⊕,∨r1)

5 : · ⇒ ∀k > 0.(Inv1(k)→〈p2〉Inv1(k− 1) 	�ψ)
(∀r,→r)

7 : · ⇒ (∃k≤ 0.Inv1(k))→〈p3; pω
4 〉tt 	�ψ

3 : Isp1⇒〈p∗2〉(〈p3; pω
4 〉(tt 	�ψ) 	�ψ)

(〈∗〉)

2 : Isp1⇒〈p∗2; p3; pω
4 〉tt 	�ψ

(〈;〉)

Isp1⇒〈pω
2 〉tt 	�ψ ∨ 〈p∗2; p3; pω

4 〉tt 	�ψ
(∨r2)

Isp1⇒〈pω
2 ⊕ p∗2; p3; pω

4 〉tt 	�ψ
(⊕)

1 : · ⇒ Isp1→〈pω
2 ⊕ p∗2; p3; pω

4 〉tt 	�ψ
(→r)

√
.
.
.
.

k′ ≤ 0∧ Inv1(k′)⇒ g2

√
.
.
.
.

�2⇒ψ

√
.
.
.
.

�2⇒ Inv2

√
.
.
.
.

�3⇒ Inv2 ∧ψ

11 : Inv2⇒〈{v1, u1, v3}〉Inv2 	�ψ
(α)

10 : · ⇒ Inv2→〈p4〉Inv2 	�ψ
(→r,⊕,∨r2,⊕,∨r2)

9 : �2⇒〈pω
4 〉tt 	�ψ

〈ω〉	

�2⇒ (〈pω
4 〉tt 	�ψ)∧ψ

∧r

8 : k′ ≤ 0∧ Inv1(k′)⇒〈{v1, v3}〉(〈pω
4 〉tt 	�ψ) 	�ψ

(α)

k′ ≤ 0∧ Inv1(k′)⇒〈g2?{v1, v3}〉(〈pω
4 〉tt 	�ψ) 	�ψ

(g?,∧r)

k′ ≤ 0∧ Inv1(k′)⇒〈p3; pω
4 〉tt 	�ψ

(〈;〉	,⊕,∨r2,⊕,∨r2)

7 : · ⇒ (∃k≤ 0.Inv1(k))→〈p3; pω
4 〉tt 	�ψ

(→r,∃l)

1 ... 3
κ := κ(κ ′)4

5 ... 6
κ ′ := κ ′{v1}

...

7 ... 8
κ := κ{v1, v3}

... 9
κ := κ(κ ′)ω

10 11
κ ′ := κ ′{v1, u1, v3}

...

κ := λ
call (κ ′ := λ)

ret κ ′

call (κ ′ := λ)

ret κ ′

p2 = ∅⊕ g1?{v1} ⊕ g1?{v1, v3} p3 = ∅⊕ g2?{v1} ⊕ g2?{v1, v3}
p4 = ∅⊕ {v1, u1} ⊕ {v1, u1, v3} g1 = h(v1, u1) < 4
g2 = h(v1, u1)= 4 ψ =ψsp1 ∧ψ∅
Inv1(k)= (h(v1, u1)= 4− k)∧ (h(v1, v3)≥ 4− k)∧ h(v3, u1)≥ 0∧ 0≤ k≤ 4 Inv2 = h(v1, v3) > 0∧ h(v3, u1)≥ 0
�1 = {t > 0, Inv1(t)}[x1, x2, x3, x4/h(v1),η(v1),η(v3),η(u1)] ∪ {h(v1)= x1 + 1, η(v1)= 1, η(v3)= 0, η(u1)= 0}
�2 = (k′ ≤ 0∧ Inv1(k′))[y1, y2, y3, y4, y5/h(v1),h(v3),η(v1),η(v3),η(u1)] ∪ {h(v1)= y1 + 1,h(v3)= y2 + 1, η(v1)= 1, η(v3)= 1, η(u1)= 0}
�3 = Inv2[z1, z2, z3, z4, z5, z6/h(v1),h(v3),h(u1),η(v1),η(v3),η(u1)] ∪ {h(v1)= z1 + 1,h(v3)= z2 + 1,h(u1)= z3 + 1, η(v1)= 1, η(v3)= 1, η(u1)= 1}

Fig. 12. Derivation of formula Isp1→〈psp1〉tt 	�(ψsp1 ∧ψ∅).

Due to the limit of space, we move the derivation of node 7 to the top. We use

√
....
ζ

to denote the branch where from node ζ ,

all derivations will end in valid nodes
√

. The lower part of Fig. 12 gives the detailed content of each node, where p1 − p4,
g1, g2 have been declared in Fig. 4. x1, ..., x4, y1, ..., y5, z1, ..., z6 are new variables with respect to their contexts.

The derivation starts from the root 1, and stops if (i) all leaf nodes are valid nodes (
√

), or (ii) one of the leaf nodes is
not valid. The derivation of the formula φsp1 is a valid proof tree, with all leaf nodes are valid. The whole proof procedure
is semi-automatic, while the only places that need manual intervention are nodes 3 and 9, where two invariants Inv1, Inv2
need to be determined.

By calling procedure Gen_Sch(1, λ) (where λ is a special string defined in Definition 4.8), finally we can generate a
schedule

σ = v4
1{v1, v3}{v1, v3, u1}ω

of SP1. The path below the derivation in Fig. 12 shows the process of node enumeration in procedure Gen_Sch, where
variables κ , κ ′ denote the corresponding variables in Algorithm 2, ‘call/ret’ means the calling/return of a new procedure
Gen_Sch. The value of the variable κ is initiated to λ before dealing with node 1. The value of the variable κ is updated
after dealing with nodes 3, 6, 8, 9 and 11 in procedure Gen_Sch. E.g., after dealing with node 3, the variable κ is appended
by (κ ′)4 where the variable κ ′ = {v1} is computed from the branch 5 → ... → 6 → ..., while the witness of ∃k.Inv1(k) at
21

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
Table 1
The definition of formula φsp1 and its sequent in Coq.

1 (∗ Example in the paper∗)
2 (∗ clocks v1, u1 and v3∗)
3 Definition v1 : CName := (clk 1).
4 Definition u1 : CName := (clk 2).
5 Definition v3 : CName := (clk 3).
6
7 (∗ program p ∗)
8 (∗ g1, g2∗)
9 Definition g1 : g_exp := D(v1, u1) < 4.

10 Definition g2 : g_exp := D(v1, u1) == 4.
11
12 (∗ p2, p3, p4∗)
13 Definition p2 : CPM_exp := @ nil U g1?{v1} U g1?{v1|v3}.
14 Definition p3 : CPM_exp := @ nil U g2?{v1} U g2?{v1|v3}.
15 Definition p4 : CPM_exp := @ nil U @ {v1|u1} U @ {v1|u1|v3}.
16 (∗ p ∗)
17 Definition p : CPM_exp := p2^w U (p2^∗ ; p3 ; p4^w).
18
19 (∗ initial condition I ∗)
20 Definition I : cDL_exp := (h(v1) =’ 0 / \’ y(v1) =’ 0) / \’

21 (h(u1) =’ 0 / \’ y(u1) =’ 0) / \’ (h(v3) =’ 0 / \’ y(v3) =’ 0).
22
23 (∗ formula psi ∗)
24 (∗ formula expressing the specification ∗)
25 Definition psi_sp1 := (h(v1) >’ h(v3) \ /’ (h(v1) =’ h(v3) / \’ y(v3) =’

0)) / \’ h(v3) >=’ h(u1).
26 (∗ formula for expressing ‘at least one clock ticks at each instant of

a schedule’ ∗)
27 Definition psi_es := y(v1) =’ 1 \ /’ y(u1) =’ 1 \ /’ y(v3) =’ 1.
28 (∗ psi ∗)
29 Definition Psi := psi_sp1 / \’ psi_es.
30
31 (∗ Other components of the sequent ∗)
32 Definition Gamma0 : Gamma := nil.
33 Definition Delta0 : Delta := nil .
34 Definition V0 : list Var := nil .
35 Definition C0 : list CName := v1 :: u1 :: v3 :: nil .
36 Definition ntC0 : list CName := C0.
37
38 Theorem Example : <| Gamma0 , empty ==>
39 exp (I −>’ << p >> (tt ’ , Psi)) , Delta0 // V0, C0, ntC0 |>.

node 4 is 4. At node 8, the variable κ is appended by an event {v1, v3} due to the derivation of rule (α). Similar analysis
can be given for nodes 6, 9 and 11.

7. Mechanization of cDL

In order to show the potential applicability of our method, we have mechanized the cDL calculus in Coq [18] — a
theorem prover based on a type of higher-order typed λ−calculus called ‘calculus of inductive constructions’ (CIC). We use
CIC to define the syntax of cDL and to define the sequents of cDL as the propositions of CIC in an inductive way based
on the proof system given in Fig. 10. Each rule in the proof system of cDL is treated as an ‘axiom’ in Coq. To prove a cDL
formula, which is expressed as a λ−expression in CIC, we deduce it by applying these axioms in Coq. The axioms transform
the λ−expression into a quantifier-free arithmetical proposition in CIC, which can then be either proved in Coq or solved
in an SMT-procedure using tools like Z3. When the proposition is a linear integer arithmetic logic formula, it can also be
solved by the ‘Omega’ solver embedded in Coq [18].

In this paper, we only show how a cDL formula can be expressed and verified in Coq through an example. More details
about our implementation can be found online2 (where the example given below can also be found at the end of the code
file). We take the formula φsp1 = Isp1→〈psp1〉tt	�(ψsp1∧ψ∅) (in Example 6.3) as an example. Table 1 shows the definition
of the formula φsp1 and the sequent · ⇒ φsp1 in Coq.

In Coq, CPM and cDL formulae are defined as the inductive types CPM_exp and cDL_exp respectively. Clock names and
variables are defined as the types CName and Var. The CPM psp1 is defined as p at line 17, where p2, p3 and p4 define
the programs p2, p3 and p4 (shown in Fig. 4) respectively, the guards g1 and g2, the variables v1, u1 and v3 are defined
as g1, g2, v1, u1 and v3 respectively. The symbols ;, U, ˆ w and ˆ * define the operators ;, ⊕, ω and ∗ respectively. {a1 | a2
| ... | an} denotes a list of elements a1, ..., an (with nil denoting the empty list) in Coq. {c1 | c2 | ... | cn} with c1, ..., cn
: CName defines the set of clocks {c1, c2, ..., cn}. @{c1 | c2 | ... | cn} denotes the clock event {c1, c2, ..., cn} in CPM. g?{c1
| c2 | ... | cn} defines the guarded clock event g?{c1, ..., cn}, with g : g_exp defining the guard g . The guard expression is
defined as the type g_exp, where D(c1, c2) represents h(c1, c2) — the distance between h(c1) and h(c2) (in Sect. 2.3). The
initial condition Isp1 and the formula ψ = ψsp1 ∧ ψ∅ are defined as I and Psi at line 20 and line 29 respectively, where
h(c), y(c) represent clock-related variables h(c), η(c) respectively. The symbols ∼’, /\’, \/’, − >’ denote the logic connectives
¬, ∧, ∨, → respectively, while the symbols <=’, <’, >’, >=’, =’ represent the operators ≤, <, >, ≥, = in expression e.

The sequent · ⇒ φsp1 is defined as the theorem Example in Coq (at line 38). A sequent is defined as a 4-tuple <| G, pls1
==> pls2, D | >, where G and D represent the contexts � and
 respectively, pls1, pls2 are places for formulae that are
targeted at current sequent, they can be either empty (represented by empty) or contain a target formula φ (expressed as
exp phi). The formula φsp1 is defined as I − >’ << p >> (tt’, Psi), where << p >> (phi, psi) represents the dynamic formula
〈p〉φ 	ψ . V0, C0, ntC0 are auxiliary variables used in the derivation procedure.

We prove the theorem Example in Coq by applying the axioms defined as the rules of the proof system of cDL (Table 10).
Table 2 shows the procedure of proving theorem Example in Coq, where the correspondence relations between some axioms
and rules are declared in the lower part of the table. Compared to other rules, rule (α) is special in the implementation. In
Coq we use 3 axioms to split the simultaneous occurrences of clocks in a clock event, which is captured by the single rule
(α) in the proof system of cDL. Axiom r_Alpha_c deals with the occurrence of each clock, axiom r_Alpha_idle2 deals with

2 https://github .com /antitaboo /cDL-for-SA-of -CCSL/.
22

https://github.com/antitaboo/cDL-for-SA-of-CCSL/

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
Table 2
The procedure of proving Theorem Example.

1 Proof.
2 apply r_impR. (∗ rule −> r ∗)
3 apply r_Choice. (∗ rule choice ∗)
4 apply r_orR_2. (∗ rule \ / r 2 ∗)
5 apply r_Seq. (∗ rule sequence ∗)
6 apply r_Star_dia; exists inv1; split ; [| split]. (∗ rule <<star>> ∗)
7 − (∗@∗) apply r_extR. exists 4. simpl. split . (∗ rule ext r ∗)
8 + (∗@∗) intuition . + apply r_o. cbn. intros . omega. (∗ rule o ∗)
9 − apply r_allR. apply r_impR; apply r_impR. cbn. (∗ rule all r , rule

−> r ∗)
10 apply r_Choice. apply r_orR_2. apply r_Choice. apply r_orR_1. (∗

rule cho, \ / r 2, cho, \ / r 2 ∗)
11 apply r_Guard. apply r_andR; split . (∗ rule g?, / \ r ∗)
12 + (∗@∗) cbv. apply r_o;cbn. intros . omega. (∗ rule o ∗)
13 + cbv. apply r_Alpha_c. apply r_Alpha_idle2; apply r_Alpha_idle2;

apply r_Alpha_idle1; cbv. (∗ rule alpha ∗)
14 (∗@∗) apply r_o. cbn. intros . omega. (∗ rule o ∗)

15 − apply r_impR. apply r_placeL_add. apply r_extL. cbn. (∗ rule −> r,
ext l∗)

16 apply r_Seq. apply r_Choice. apply r_orR_2. apply r_Choice. apply
r_orR_2. (∗ rule sequence, cho, \ / r 2, cho, \ / r 2 ∗)

17 apply r_Guard. apply r_andR; split . (∗ rule g?, / \ r ∗)
18 ∗ (∗@∗) apply r_o. cbn. intros . omega. (∗ rule o ∗)
19 ∗ apply r_Alpha_c; apply r_Alpha_c; apply r_Alpha_idle2; apply

r_Alpha_idle1. cbn. (∗ rule alpha ∗)
20 apply r_andR; split . Focus 2. (∗ rule / \ r ∗)
21 { (∗@∗) apply r_o. cbn. intros . omega. } Unfocus. (∗ rule o ∗)
22 { apply r_Omega_dia; exists inv2; split . (∗ rule <<omega>> ∗)
23 − (∗@∗) apply r_o. cbn. intros. omega. (∗ rule o ∗)
24 − apply r_impR. apply r_Choice. apply r_orR_2. apply r_Choice.

apply r_orR_2. (∗ rule −> r, cho, \ / r 2, cho, \ / r 2 ∗)
25 apply r_Alpha_c; apply r_Alpha_c; apply r_Alpha_c; apply

r_Alpha_idle1; cbv. (∗ rule alpha ∗)
26 (∗@∗) apply r_o. cbn. intros . omega. (∗ rule alpha ∗)
27 }
28 Qed.

Axioms in Coq Rules in cCDL Axioms in Coq Rules in cCDL Axioms in Coq Rules in cCDL Axioms in Coq Rules in cCDL

r_Alpha_c,
r_Alpha_idle1,
r_Alpha_idel2

(α) r_Seq (〈; 〉) r_Guard (g?) r_Choice (⊕)

r_Star_dia (〈∗〉) r_Omega_dia (〈ω〉) r_o (o) r_andR (∧r)

r_allR (∀r) r_orR_1 (∨r1) r_orR_2 (∨r2) r_impR (→ r)

r_extR (∃r) r_extL (∃l)

the behaviour of the clocks that do not occur, while axiom r_Alpha_idle1 ends the whole procedure if the behaviours of all
clocks have been dealt with. We will not give the details of all axioms here, interested readers can refer to the code online
for more details.

The whole procedure of the proof in Table 2 corresponds to the derivation process of formula φsp1 given in Fig. 12, with
each line corresponding to exactly one derivation step in Fig. 12 (‘(*@*)’ indicating the lines whose corresponding derivation
is omitted in Fig. 12). For example, line 6 corresponds to the derivation from node 3 to nodes 4, 5, 7 in Fig. 12 where
rule (〈∗〉) is applied. Line 7, 9 and 15 correspond to the derivation from node 4, 5 and 7 of Fig. 12 respectively. For each
derivation in Fig. 12, several tactics may need to be applied. E.g., at line 7, which corresponds to the derivation from node 4
(not shown in Fig. 12), after applying axiom r_extR, we need to find a witness of k by using tactic exists, and then split the
conjunction with the tactic split. Any detailed introduction of these tactics is beyond the scope of this paper, one can refer
to [18] for more details.

The whole procedure of the proof terminates successfully with the key word ‘Qed’ (at line 28). All leaf nodes of the
proof tree end by using the tactic omega to solve the obtained quantifier-free linear integer arithmetic propositions in CIC
(at lines 8, 12, 14, 18, 21, 23, 26). However, this is not the general case, sometimes manual work might be needed for
the arithmetic propositions obtained at the leaf nodes might be non-linear. A more powerful SMT-solving tool (such as Z3)
could be used as a back-end tool to deal with these propositions in an efficient way.

Currently, this proof has been made entirely manually. But we can design a tactical in Coq to automatize most of these
selections of tactics. And that could be one of our future work.

Currently we do not realize the schedule generation algorithm (Algorithm 2). It can be considered either implemented
in Coq or implemented as an independent tool that receives valid proof trees produced by Coq as inputs. More work will
be put on that in the future.

8. Related work and discussion

8.1. Schedulability analysis of CCSL specifications

In CCSL, the state space of the cLTS of a CCSL specification depends on h(c1, c2) — the difference of the number of ticks
of two clocks c1 and c2. If all such differences are bounded, then this cLTS has a finite number of states. A CCSL specification
is often called ‘safe’ [13] if its corresponding cLTS is finite.

Previous approaches for solving the schedule problem of CCSL specifications are mainly based on model checking and
SMT-solving techniques.

In the model-checking-based approach [10,11], the schedule problem of a CCSL specification can be translated into the
reachability problem of finite state automata. A CCSL specification is transformed into a finite automaton, then reachability
23

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
analysis is made on its states. [10] proposes to encode a CCSL specification into a finite SPIN automaton, whose validity
can be checked by the model checking tool SPIN [32]. For unsafe specifications, a bound needs to be set to acquire finite
state automata, so only approximate checking is possible. E.g., in some previous works like [12,20], relation c1 ≺n c2 has
been adopted to bound the unsafe specification c1 ≺ c2, where n is a bound to limit the gap between the distance of the
ticks between c1 and c2. In [11], a rewriting system is built for CCSL and the behaviour of CCSL clocks is explored by
the rewriting tool Maude [33]. By rewriting CCSL expressions, any specification can be expanded into a (possibly infinite)
transition system and bounded model checking is then applied.

In the SMT-solving-based approach [9,12], a CCSL specification is directly encoded into an FOL formula with quantifiers
according to the semantics of CCSL shown in Fig. 3. This FOL formula captures the conditions that should hold at each
instant for the specification (e.g., the formula φ′ in Fig. 1). To solve the FOL formula, a bound needs to be set in order to
eliminate all quantifiers, and this bound indicates the number of instants at which the conditions are checked in an SMT-
solving procedure. E.g., after setting a bound n for formula φ′ in Fig. 1, it becomes

∧
1≤i≤n Hσ (i, c1) ≥ Hσ (i, c2) and we can

solve it in an SMT-solving procedure. By solving the FOL formula, a bounded schedule is obtained. [9] proposed a sufficient
(but not necessary) condition to check if a periodic schedule can be obtained from this bounded schedule. In this approach,
whether a periodic schedule can be found depends on the bound set for solving the FOL formula: If the bound is proper, a
schedule can be found; If the bound is too small, it might happen that no schedules can be found, but we still do not know
whether there exists a schedule or not.

Our approach to schedulability analysis of CCSL specifications is based on theorem proving. Compared to the previous
approaches, our approach is not limited to special types of CCSL specifications and does not depend on the bound that is set
for approximate checking. Different from the SMT-solving-based approach, which directly encodes a specification into an FOL
formula with quantifiers, our approach encodes a specification into a dynamic cDL formula. And by proving this dynamic
formula or its negation in cDL calculus, we can know exactly whether there exists a schedule or not and can generate one
if it exists. The proving process decomposes the dynamic formula into QF-FOL formulae according to the syntactic structure
of the CPM so that a bound can be avoided.

Our approach can be considered as a complement to the previous approaches. When no schedule can be found after
even setting a large bound, our approach can be adopted to try to give a formal proof of whether a schedule exists or not.
The structure of the CPM that reveals the behaviour of clocks of the CCSL specification can provide some hints on why a
schedule can or cannot exist, so as to help people have a better understanding of the specification. On the other side, when
problems are hard or fail to be proved by our approach, we can try the previous approaches to perform an approximate
checking with a proper bound.

The main disadvantage of our approach is that the verification procedure of cDL formulae is generally undecidable, which
means that we have to manually search loop invariants in the verification procedure. However, considering the simplicity
of CPM and the peculiarity of CCSL relations, it is possible to propose an automatic algorithm for generating loop invariants
for CPMs and logical formulae with particular shapes, which could be one of our future work.

8.2. Dynamic logic

Dynamic logic [34] is a formalism for modelling and reasoning about program specifications. Classical dynamic logics
like FODL [14] only capture state properties of programs. Process logic [35] firstly introduces temporal logic in dynamic
logic to express temporal properties of programs, where formulae of the form ‘〈p〉�ψ ’ were introduced. Later [36] proposes
a dynamic logic with modalities where formulae of the form ‘$ p % ψ ’ were introduced to mean the same as 〈p〉�ψ in
process logic. Process logic (similar for the dynamic logic with modalities) can only prove formulae of the form 〈p〉�ψ , for
formulae of the form ‘〈p〉�ψ ’, no inference rules were proposed for the sequential program p = q; r. dTL2 [15] introduces
the normalized trace formulae of the form ‘〈p〉φ 	�ψ ’ and their related rules to solve this problem.

The syntax and semantics of cDL are largely based on and extended from FODL and dTL2. In cDL we add the infinite loop
operator ω to capture the infinite clock behaviour in cLTS. The operator ω is necessary for capturing the schedule problem
of CCSL and its effect cannot be subsumed by the finite loop operator ∗. In fact, formula 〈pω〉�ψ and formula 〈p∗〉�ψ have
different meanings (the former is stronger than the latter), and so do their rules. Because of this, it is clear that cDL has a
different expressiveness from dTL2. More analysis will focus on the theory of cDL in the future.

9. Conclusion and future work

In this paper, we proposed a theorem-proving approach to schedulability analysis of CCSL specifications. To this end, we
propose a variation of dynamic logic cDL and its proof calculus, based on which we analyze the schedule problem in CCSL.
Based on FODL, cDL inherits the normalized trace formulae from dTL2 and introduces clock events and the infinite loop
operator ω as an extension in order to capture the cLTS models of CCSL specifications. With cDL, the schedule problem
can be expressed as a cDL formula and so as can be checked by verifying this formula in a semi-automatic way combining
theorem proving and SMT-solving. We also propose an algorithm for generating a schedule by analyzing the valid proof
tree generalized by a verification procedure. To show the potential applicability of our method we mechanize cDL in Coq.
Through an example, all these points are clearly illustrated.
24

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
The future work may focus on the following aspects: (1) Improving the implementation of cDL and evaluating its ap-
plicability in practice; (2) Analyzing the relative completeness of cDL and the decidability of the loop invariants in CPM;
(3) Proposing a general methodology for schedulability analysis of RTESs based on dynamic logic. As a general dynamic
logic, the application of cDL should not be limited to CCSL specifications. We believe it could also be used for schedulability
analysis of other specifications of synchronous systems, whose behaviour can be captured as a program model in cDL.

CRediT authorship contribution statement

Yuanrui Zhang: Conceptualization, Methodology, Software, Writing - original draft, Writing - review & editing. Frédéric
Mallet: Conceptualization, Supervision, Writing - review & editing. Huibiao Zhu: Writing - review & editing. Yixiang Chen:
Writing - review & editing. Bo Liu: Writing - review & editing. Zhiming Liu: Funding acquisition, Supervision, Writing -
review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We thank all the anonymous reviewers including those who reviewed the conference version published at TASE 2019
for their valuable comments on this work. This work was partly supported by the Capacity Development Grant of South-
west University (No. SWU116007), the NSFC (Key Project) (No. 61732019), the NSFC (Regular Project) (No. 61672435), the
NSFC-RS Project (No. 61811530327), the Special Foundation for Basic Science and Frontier Technology Research Program of
Chongqing (No. cstc2017jcyjAX0295), the National Key Research and Development Program of China (No. 2018YFB2101300),
and the National Natural Science Foundation of China (No. 61872145).

Appendix A. Proof of Proposition 6.4 and Theorem 6.2

Proof of Proposition 6.4. Given a cLTS A = 〈L, T , l0, C〉, let p = cLTS_2_CPM(A), first we show that Str(A) = Str(p), i.e., the
language accepted by A (as a Büchi automaton) is exactly the language of p (as an ω-regular expression). From Propo-
sition 6.1, A can be taken as a Büchi automaton that accepts a subset of the ω-regular language Str. According to the
theory of transforming Büchi automata into ω-regular language [26], we have Str(A) =⋃

l∈L Str(Al0,l)Str(Al,l)
ω , where L

is the set of all accepting states in the Büchi automaton A. For any Al,l′ and pl,l′ = NFA_2_CPM(Al,l′), since procedure
NFA_2_CPM is a standard process of transforming a finite automaton into a regular expression and the regular part of CPM
(that excludes the infinite loop program of the form pω) is a regular language, we have Str(Al,l′) = Str(pl,l′). Therefore
Str(A) =⋃

l∈L Str(pl0,l)Str(pl,l)
ω . By Definition 4.9 we have Str(A) = Str(⊕l∈L pl0,l; pω

l,l) = Str(p).
Now we get back to Proposition 6.4. For any schedule σ = α1α2...αn..., by the definition of Sch(A) (in Sect. 2.3), we

have σ ∈ Sch(A) iff there exists a path l0
a1−→ l1

a2−→ l2
a3−→ ...

an−1−−→ ln
an−→ ... in A, where ai (i ∈ N+) can be αi or gi?αi .

Then we have there is a string ρ = a1a2...an... accepted by the Büchi automaton A, i.e. ρ ∈ Str(A). Since Str(A) = Str(p),
ρ ∈ Str(p). By Proposition 4.2 we know that Trσ is the set of all standard traces in val(α1α2...αn...). Moreover, by the fact
that σ ∈ Sch(A), it is easy to see that every standard trace in val(α1α2...αn...) is a standard trace in val(ρ), because every
guard gi of αi (suppose ai = gi?αi) is true in A. Hence every trace of Trσ is a standard trace in val(ρ).

On the other side, for any standard trace tr ∈ val(p), from Proposition 6.3 tr must be infinite. By Proposition 4.1, there
must exist a string ρ ′ = a′1a′2...a′n... ∈ Str(p) s.t. tr ∈ val(ρ ′). Since Str(p) = Str(A), ρ ′ ∈ Str(A). Because val(ρ ′) �= ∅, so there

exists a path l0
a′1−→ l1

a′2−→ l2
a′3−→ ...

a′n−1−−→ ln
a′n−→ ... in the cLTS A. Let σ ′ be the schedule obtained by removing all guards in ρ ′ ,

we have σ ′ ∈ Sch(A). �
In the proof of Theorem 6.2 given below, we use

ζ2

ζ1
(r1,r2,...,rn) to denote a derivation with multiple rules: there are n

(n ≥ 1) derivation steps between node ζ1 and ζ2, and the names of the inference rules applied by each derivation step are
listed on the right in order.

Proof of Theorem 6.2. For any string ρ , let κ(ρ) be the clock sequence obtained from ρ by removing all guards in the clock
events of ρ .

In the valid proof tree of the sequent · ⇒ φS P , for any node ζ with a sequent of the form � ⇒ 〈p〉φ 	 �ψ,
 (where
〈p〉φ 	�ψ is the target formula), let ζ(p) be the proof tree which starts at node ζ as the root node, but ends at a node
where program p has just been eliminated in formula 〈p〉φ 	�ψ . Let κ be the clock sequence generated by analyzing the
proof tree ζ(p) through procedure Gen_Sch in Algorithm 2, we prove:
25

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
(a) there exists a string ρ s.t. ρ ∈ Str(p) and κ(ρ) = κ ;
(b) under the context � (i.e., provided that all formulae in � are true), there exists a trace tr ∈ val(ρ) s.t. tr � �ψ and

tre ∈ val(φ) if tre exists.

We prove (a), (b) by induction on the structure of p.
For the base case, according to Proposition 6.3, there is only one situation when p = a where a is of the form α or g?α.

We take p = g?α as an example, the case for p = α is similar. The proof tree ζ(p) is in the form of:

...

�⇒ g,

(1) : ...
�⇒〈α〉φ 	�ψ,

(α)

ζ : �⇒〈g?α〉φ 	�ψ,

(g?,∧r)

...

which ends at node (1) because at this node program p has just been eliminated. According to procedure Gen_Sch of
Algorithm 2, we know κ = α. Let ρ = g?α, clearly we have ρ ∈ Str(p) and κ(ρ) = κ . Since ρ = p, obviously under the
context � there is a trace tr ∈ val(ρ) satisfying tr ��ψ and tre ∈ val(φ) if tre exists.

For the induction step, we have 4 cases:

(i) p = q; r. The proof tree ζ(q; r) is in the form shown as follows:

...

ζ2 : �′ ⇒ 〈r〉φ 	�ψ,
′....
ζ1 : �⇒〈q〉(〈r〉φ 	�ψ),

ζ : �⇒〈q; r〉φ 	�ψ,

(〈;〉)

...

According to procedure Gen_Sch in Algorithm 2, we can split κ into two parts: κ = κ1κ2, where κ1 is the clock sequence
generated in procedure Gen_Sch from node ζ1 to node ζ2, and κ2 is the clock sequence generated in procedure Gen_Sch
after node ζ2. Since κ1 can be seen as the sequence generated by analyzing the proof tree ζ1(q) which ends at node ζ2
where program q has just been eliminated, and κ2 can be seen as the sequence generated by analyzing the proof tree
ζ2(r), by inductive hypothesis there exist ρ1 ∈ Str(q) and ρ2 ∈ Str(r) s.t. κ(ρ1) = κ1, κ(ρ2) = κ2. So ρ1ρ2 ∈ Str(q)Str(r) =
Str(q; r) = Str(p). Since κ = κ1κ2, κ(ρ1ρ2) = κ . Again by inductive hypothesis there are traces tr1 ∈ val(ρ1), tr2 ∈ val(ρ2)

satisfying: 1) under the context �, tr1 � �ψ and tr1,e ∈ val(〈r〉φ) if tr1,e exists; 2) under the context �′ , tr2 � �ψ and
tr2,e ∈ val(φ) if tr2,e exists. So it is not hard to see that the trace tr = tr1 ◦ tr2 ∈ val(ρ1) ◦ val(ρ2) = val(ρ1ρ2) satisfies
that tr ��ψ and tre ∈ val(φ) if tre exists.

(ii) p = q ⊕ r. The proof tree ζ(q ⊕ r) can be in the form shown as follows:

...

ζ1 : �⇒〈q〉φ 	�ψ,

ζ : �⇒〈q⊕ r〉φ 	�ψ,

(⊕,∨r1)

...

According to Algorithm 2 κ is actually generated by analyzing the proof tree ζ1(q) in procedure Gen_Sch. By hypothesis
analysis, we know there exists a string ρ ∈ Str(q) s.t. κ(ρ) = κ , and under the context � there is a trace tr ∈ val(ρ)

satisfying that tr ��ψ and tre ∈ val(φ) if tre exists. We observe that ρ ∈ Str(q) ⊆ Str(q) ∪ Str(r) = Str(q ⊕ r) = Str(p), so
the result is directly obtained.

(iii) p = q∗ . The proof tree ζ(q∗) is of the form:

...

ζ1 : �⇒∃x.Inv(x),

...

ζ4 : Inv(t)⇒〈q〉Inv(t − 1) 	�ψ

ζ2 : · ⇒ ∀x > 0.(Inv(x)→〈q〉Inv(x− 1) 	�ψ)
(∀r,→r) ...

ζ3 : · ⇒ (∃x≤ 0.Inv(x))→ φ

ζ : �⇒〈q∗〉φ 	�ψ,

(〈∗〉)

...

which ends at node ζ3 where program q∗ has just been eliminated. According to Algorithm 2, κ = κk
1 where κ1 is

the clock sequence generated in procedure Gen_Sch by analyzing the proof tree ζ4, k is a witness making Inv(k) valid
at node ζ1. By inductive hypothesis, there exists ρ1 ∈ Str(q) s.t. κ(ρ1) = κ1 and under the context in which Inv(t)
(t ≥ 1) holds, there is a trace trt ∈ val(ρ1) satisfying that trt,e � �ψ and trt,e ∈ val(Inv(t − 1)) if trt,e exists. So by let-
ting t = k, k − 1, ..., 1, we can obtain k such traces trk ,...,tr1. Let ρ = ρk

1, clearly ρ ∈ Str(q)k ⊆ Str(q)∗ = Str(q∗) = Str(p)

and κ(ρ) = κk(ρ1) = κk
1 = κ . Let tr = trk ◦ trk−1 ◦ ... ◦ tr1, it is easy to see that tr ∈ valk(ρ1) = val(ρ4

1) = val(ρ). By
the soundness of rule (〈∗〉), it is not hard to see that under the context �, tr � �ψ and tre ∈ val(φ) if tre ex-
ists.
26

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
(iv) p = qω . The proof tree ζ(qω) is of the form:

...

ζ1 : �⇒ Inv,

ζ3 : Inv⇒〈q〉Inv 	�ψ

ζ2 : · ⇒ Inv→〈q〉Inv 	�ψ
(→r)

ζ : �⇒〈qω〉φ 	�ψ,

(〈ω〉)

...

According to Algorithm 2, κ = κω
1 where κ1 is the clock sequence generated by analyzing the proof tree ζ2(q) in pro-

cedure Gen_Sch. By inductive hypothesis, there exists ρ1 ∈ Str(q) s.t. κ(ρ1) = κ1 and under the context Inv, there
is a trace tr1 ∈ val(ρ1) satisfying that tr1 � �ψ and tr1,e ∈ val(Inv) if tr1,e exists. Let Asp be the corresponding
cLTS of psp , since Str(psp) = Str(Asp), we have σ0 ∈ Str(Asp). So σ0 ∈ Sch(Asp), i.e., σ0 is a schedule of SP. Let
ρ = ρω

1 , clearly we have ρ ∈ Str(q)ω = Str(qω) = Str(p) and κ(ρ) = κω(ρ1) = κω
1 = κ . Let tr = tr1 ◦ tr1 ◦ ...︸ ︷︷ ︸

∞
, we have

tr ∈ val(ρ1) ◦ val(ρ1) ◦ ...︸ ︷︷ ︸
∞

= val(ρω
1) = val(ρ). By the soundness of rule (〈ω〉), it is easy to see that under the context

�, tr ��ψ and tre ∈ val(φ) if tre exists.

Now we focus on the proof tree of the sequent · ⇒ φS P itself, it is in the form shown as follows:
...

ζ0 : I⇒〈psp〉(tt 	�(ψsp ∧ψ∅))
· ⇒ I→〈psp〉(tt 	�(ψsp ∧ψ∅))

(→r)

σ0 in fact can be seen as the sequence generated by analyzing the proof tree ζ0(psp) in procedure Gen_Sch of Algorithm 2,
therefore we have:

(1) there exists a string ρ0 s.t. ρ0 ∈ Str(psp) and κ(ρ0) = σ0;
(2) under the context I , there exists a trace tr0 ∈ val(ρ0) s.t. tr0 ��(ψsp ∧ψ∅) and tr0,e ∈ val(tt) if tr0,e exists.

On the one hand, let Asp be the corresponding cLTS of psp , in the proof of Proposition 6.4 we have shown that Str(Asp) =
Str(psp). Since ρ0 ∈ Str(psp), ρ0 ∈ Str(Asp). By κ(ρ0) = σ0 and the fact that ζ0 is a valid tree, we can get σ0 ∈ Sch(A). So by
Proposition 2.1 there is σ0 �ccsl C̃df .

On the other hand, since κ(ρ0) = σ0, val(ρ0) ⊆ val(σ0). So we have tr0 ∈ val(σ0). From the fact that tr0 is a standard
trace in val(σ0) that satisfies (2), in fact we can get that all standard traces of val(σ0) satisfy (2). This is because of the
following two reasons: 1) for any standard trace tr ∈ val(σ0), all clock-related variables in tr can be complete determined
by σ0; 2) according to the construction of ψsp and ψ∅ in Theorem 6.1, ψsp, ψ∅ only contain clock-related variables. By
Proposition 4.2 we know all traces in Trσ0 satisfy (2). By Proposition 6.5, we obtain σ0 �ccsl R̃el.

σ0 �ccsl SP since σ0 �ccsl C̃df and σ0 �ccsl R̃el. That is, σ0 is a schedule of SP. �
Appendix B. Proof of soundness of cDL system

According to the analysis in Sect. 5.3, to prove Theorem 5.1, here we only need to give the proof of the soundness of

rules (α), (〈ω〉) and rule ([ω]�). The soundness of rule
�1⇒
1 ... �n⇒
n

�⇒

means that if |=cdl

∧
φ∈�1

φ→∨
ψ∈
1

ψ ,

..., |=cdl
∧

φ∈�n
φ→∨

ψ∈
n
ψ hold, then |=cdl

∧
φ∈� φ→∨

ψ∈
 ψ holds.

Proof of the soundness of rule (α). By the definition of the rule of the form:
�′ ⇒
′
�⇒

in Sect. 5.1, we need to prove the

following two propositions:

(i) If ∀s ∈ S , s |=cdl (
∧

φ∈� φ[V ′/V] ∧ P) → ((φ∧ψ) ∨∨
φ∈
 φ[V ′/V]), then ∀s ∈ S , s |=cdl

∧
φ∈� φ→ (〈α〉φ 	�ψ ∨∨

φ∈
 φ).
(ii) If ∀s ∈ S , s |=cdl

∧
φ∈� φ→ (〈α〉φ 	�ψ ∨∨

φ∈
 φ), then s |=cdl (
∧

φ∈� φ[V ′/V] ∧ P) → ((φ ∧ψ) ∨∨
φ∈
 φ[V ′/V]).

In rule (α), recall that we have assumed α = {c1, ..., cn}, C−α = {d1, ..., dm} (see Sect. 5.2). And V ′ = (x1, ..., xn, y1, ..., yn,

z1, ..., zm) is a set of new variables (w.r.t. �, 〈α〉φ 	�ψ ,
) corresponding to V = (h(c1), ..., h(cn), η(c1), ..., η(cn), η(d1), ...,
η(dm)). P =∧

1≤i≤n h(ci) = xi + 1 ∧∧
1≤i≤n η(ci) = 1 ∧∧

1≤i≤m η(di) = 0.
For (i), for any s ∈ S , if s |=cdl

∧
φ∈� φ, we show that s |=cdl 〈α〉φ 	�ψ ∨∨

φ∈
 φ. Construct an s′ such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
s′(h(ci))= s(h(ci))+ 1, for any 1≤ i ≤ n
s′(η(ci))= 1, for any 1≤ i ≤ n
s′(η(di))= 0, for any 1≤ i ≤m
s′(z)= s(z), for each new variable z′ ∈ V ′
s′(y)= s(y), for other variable y /∈ V

. (B.1)
27

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
Since the variables in V ′ are all new variables w.r.t. the contexts �,
, we can assume that for any z′ ∈ V ′ , s(z′) = s′(z′).
Because if it is not the case actually we can consider another state s′′ , whose value differs state s only on those variables
in V ′ (which satisfies s′′(z′) = s′(z′) for any z′ ∈ V ′). Since s |=cdl

∧
φ∈� φ, obviously s′′ |=cdl

∧
φ∈� φ. And if we can prove

s′′ |=cdl 〈α〉φ 	�ψ ∨∨
φ∈
 φ, then we also have s |=cdl 〈α〉φ 	�ψ ∨∨

φ∈
 φ.
Since s |=cdl

∧
φ∈� φ, from (B.1) we get s′ |=cdl

∧
φ∈� φ[V ′/V] ∧ P . So s′ |=cdl (φ∧ψ) ∨∨

φ∈
 φ[V ′/V] from the assumption
of (i). If s′ |=cdl

∨
φ∈
 φ[V ′/V], obviously s |=cdl

∨
φ∈
 φ by the definition of s′ in (B.1). Hence s |=cdl 〈α〉φ 	�ψ ∨∨

φ∈
 φ.
If s′ |=cdl φ ∧ψ , from the construction of s′ easy to see that ss′ ∈ val(α). According to the semantics of 〈α〉φ 	�ψ (Defini-
tion 4.6) there is s |=cdl 〈α〉φ 	�ψ . Therefore s |=cdl 〈α〉φ 	�ψ ∨∨

φ∈
 φ.
For (ii), for any s ∈ S , if s |=cdl

∧
φ∈� φ[V ′/V] ∧ P , we need to show s |=cdl (φ ∧ψ) ∨∨

φ∈
 φ[V ′/V]. Construct an s′ such
that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

s′(h(ci))= s(xi), for any 1≤ i ≤ n
s′(η(ci))= s(yi), for any 1≤ i ≤ n
s′(η(di))= s(zi), for any 1≤ i ≤m
s′(z)= s(z), for each new variable z′ ∈ V ′
s′(y)= s(y), for other variable y /∈ V

. (B.2)

Since s |=cdl
∧

φ∈� φ[V ′/V], from (B.2) we get s′ |=cdl
∧

φ∈� φ. So s′ |=cdl 〈α〉 	�ψ ∨∨
φ∈
 φ from the assumption of (ii).

If s′ |=cdl
∨

φ∈
 φ, obviously s |=cdl
∨

φ∈
 φ[V ′/V] from the definition of s′ in (B.2). If s′ |=cdl 〈α〉 	�ψ , since s |=cdl P , from
the construction of s′ easy to see that s′s ∈ val(α). Again, according to the semantics of 〈α〉 	 �ψ we have s |=cdl φ ∧ ψ .
Both situations above conclude that s |=cdl (φ ∧ψ) ∨∨

φ∈
 φ[V ′/V]. �
Proof of the soundness of rule (〈ω〉). We need to prove that for any �,
,

if
∧
φ∈�

φ→ (Inv∨
∨
φ∈

φ) and Inv→〈p〉Inv 	�ψ hold, then
∧
φ∈�

φ→ (〈pω〉φ 	�ψ ∨
∨
φ∈

φ) holds. (B.3)

Due to the arbitrariness of �,
, we can assume
∧

φ∈� φ holds and
∨

φ∈
 φ does not hold. Otherwise the proposition above
holds obviously. Thus it equals to prove that

if Inv and Inv→〈p〉Inv 	�ψ hold, then 〈pω〉φ 	�ψ holds. (B.4)

In fact we only need to prove 〈pω〉�ψ since all traces of pω are infinite (see Definition 4.6). According to the assumption
of proposition (B.4), the infinite trace tr of pω that satisfies �ψ can be constructed as one of the following two forms:

(i) tr = tr1 ◦ tr2 ◦ ... ◦ trn ◦ ..., where each tri (i ≥ 1) is a finite trace of p, and it satisfies tri,b |=cdl Inv, tri,e |=cdl Inv and
tri ��ψ .

(ii) tr = tr1 ◦ tr2 ◦ ... ◦ trm , where each tri (1 ≤ i < m) is finite, trm is infinite. Each tri satisfies tri ∈ val(p), tri,b |=cdl Inv,
tri,e |=cdl Inv and tri ��ψ , while trm satisfies trm ∈ val(p), trm,b |=cdl Inv, trm ��ψ .

Suppose tr � �ψ , by Definition 4.6 there exists an i ≥ 0 s.t. tr(i) |=cdl ¬ψ . No matter what forms trace tr is in, there
must exist an N ≥ 1 s.t. trace trN contains state tr(i). But this contradicts the fact that trN � �ψ . Therefore tr � �ψ , so
〈pω〉φ 	�ψ holds. �

The soundness of rule ([ω]�) can be proved in a similar way as rule (〈ω〉).

Proof of the soundness of rule ([ω]�). Similar to the proof of rule (〈ω〉), due to the arbitrariness of � and
, we only
need to prove that

if ∃x.Inv(x),∀x > 0.(Inv(x)→[p]Inv(x− 1) ��ψ) and (∃x≤ 0.Inv(x))→[p]�ψ hold, then [pω]φ ��ψ holds.

We only need to prove [pω]�ψ since all traces of pω are infinite. Set k the number that makes Inv(k) hold. If k ≤ 0,
then we get [p]�ψ holds. So all traces of p satisfy �ψ . Since any trace of pω is either a trace of p or must have a prefix
in p, we have [pω]�ψ holds. So [pω]φ ��ψ holds. If k > 0, we now show that [pk+1]�ψ holds. Actually, any trace tr of
pk+1 must be of the form:

(1) tr = tr1 ◦tr2 ◦ ... ◦trk+1, where tri (1 ≤ i ≤ k +1) is finite. Each tri satisfies tri ∈ val(p). tr1,b |=cdl Inv(k). For any 1 ≤ j ≤ k,
either tr j ��ψ , or tr j,e |=cdl Inv(k − j), tr j+1,b |=cdl Inv(k − j) holds. And trk+1 ��ψ .

(2) tr = tr1 ◦ tr2 ◦ ... ◦ trm , where 1 ≤m ≤ k +1, tr1, ..., trm−1 is finite, trm is infinite. Each tri (1 ≤ i ≤m) satisfies tri ∈ val(p).
tr1,b |=cdl Inv(k). For any 1 ≤ j ≤ m − 1, either tr j � �ψ , or tr j,e |=cdl Inv(k − j), tr j+1,b |=cdl Inv(k − j) holds. And
trm ��ψ .
28

Y. Zhang, F. Mallet, H. Zhu et al. Science of Computer Programming 202 (2021) 102546
From both forms we have tr � �ψ since either trk+1 or trm is a suffix of it. Hence [pk+1]�ψ . Because any trace of pω is
either a trace of pk+1 or must contain a prefix in pk+1, [pω]�ψ holds. �
References

[1] Y. Zhang, F. Mallet, H. Zhu, Y. Chen, A logical approach for the schedulability analysis of ccsl, in: 2019 International Symposium on Theoretical Aspects
of Software Engineering (TASE), 2019, pp. 25–32.

[2] F. Mallet, Clock constraint specification language: specifying clock constraints with UML/MARTE, Innov. Syst. Softw. Eng. 4 (3) (2008) 309–314.
[3] OMG, UML profile for MARTE: modeling and analysis of real-time embedded systems, Tech. Rep., OMG, formal/11-06-02, June 2011.
[4] C. André, Syntax and Semantics of the Clock Constraint Specification Language (CCSL), Research Report RR-6925, INRIA, 2009.
[5] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Commun. ACM 21 (7) (1978) 558–565.
[6] J. Peters, R. Wille, N. Przigoda, U. Kühne, R. Drechsler, A generic representation of CCSL time constraints for UML/MARTE models, in: DAC, ACM, 2015,

pp. 122:1–122:6.
[7] E.-Y. Kang, P.-Y. Schobbens, Schedulability analysis support for automotive systems: from requirement to implementation, in: SAC, ACM, 2014,

pp. 1080–1085.
[8] H. Yu, J.-P. Talpin, L. Besnard, T. Gautier, H. Marchand, P.L. Guernic, Polychronous controller synthesis from MARTE/CCSL timing specifications, in:

MEMOCODE, IEEE, 2011, pp. 21–30.
[9] M. Zhang, F. Mallet, H. Zhu, An SMT-based approach to the formal analysis of MARTE/CCSL, in: ICFEM ’16, Springer, 2016, pp. 433–449.

[10] L. Yin, J. Liu, Z. Ding, F. Mallet, R. de Simone, Schedulability analysis with ccsl specifications, in: APSEC (1), IEEE Computer Society, 2013, pp. 414–421,
978-1-4799-2143-0.

[11] M. Zhang, F. Dai, F. Mallet, Periodic scheduling for MARTE/CCSL: theory and practice, Sci. Comput. Program. 154 (2018) 42–60.
[12] M. Zhang, Y. Ying, Towards SMT-based LTL model checking of clock constraint specification language for real-time and embedded systems, in: LCTES

’17, ACM, 2017, pp. 61–70.
[13] F. Mallet, J.-V. Millo, R. de Simone, Safe CCSL specifications and marked graphs, in: MEMOCODE, IEEE, 2013, pp. 157–166.
[14] D. Harel, First-Order Dynamic Logic, LNCS, vol. 68, Springer, 1979.
[15] J.-B. Jeannin, A. Platzer, dTL2: differential temporal dynamic logic with nested temporalities for hybrid systems, in: IJCAR, in: Lecture Notes in Computer

Science, vol. 8562, Springer, 2014, pp. 292–306.
[16] C. Barrett, P. Fontaine, C. Tinelli, The SMT-LIB Standard: Version 2.6, Tech. Rep, Department of Computer Science, The University of Iowa, 2017, available

at www.SMT-LIB .org.
[17] T. Nipkow, L.C. Paulson, M. Wenzel, Isabelle/HOL — A Proof Assistant for Higher-Order Logic, LNCS, vol. 2283, Springer, 2002.
[18] Y. Bertot, P. Castéran, Interactive Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive Constructions, Texts in Theoretical

Computer Science, An EATCS Series, Springer, 2004.
[19] Y. Zhang, H. Wu, Y. Chen, F. Mallet, Embedding CCSL into dynamic logic: a logical approach for the verification of CCSL specifications, in: FTSCS 2018,

Gold Coast, Australia, 2018.
[20] F. Mallet, R. de Simone, Correctness issues on MARTE/CCSL constraints, Sci. Comput. Program. 106 (2015) 78–92.
[21] F. Mallet, J.-V. Millo, Boundness issues in ccsl specifications, in: Formal Methods and Software Engineering, Springer, Berlin, Heidelberg, 2013, pp. 20–35.
[22] F. Mallet, Automatic generation of observers from MARTE/CCSL, in: RSP, IEEE, 2012, pp. 86–92.
[23] V.R. Pratt, Semantical considerations on Floyd-Hoare logic, in: FOCS, IEEE Computer Society, 1976, pp. 109–121.
[24] D. Harel, D. Kozen, J. Tiuryn, Dynamic logic, SIGACT News 32 (1) (2001) 66–69.
[25] A. Platzer, A temporal dynamic logic for verifying hybrid system invariants, in: LFCS ’07, Springer, 2007, pp. 457–471.
[26] W. Thomas, Automata on Infinite Objects, MIT Press, Cambridge, MA, USA, 1991, pp. 133–191.
[27] G. Gentzen, Untersuchungen über das logische Schließen, Ph.D. thesis, NA, Göttingen, 1934.
[28] K. Gödel, Über formal unentscheidbare Sätze der Principia mathematica und verwandter Systeme, Monatshefte Math. Phys. 38 (1) (1931) 173–198.
[29] A. Blass, Y. Gurevich, Inadequacy of computable loop invariants, ACM Trans. Comput. Log. 2 (1) (2001) 1–11.
[30] J.A. Brzozowski, Derivatives of regular expressions, J. ACM 11 (4) (1964) 481–494.
[31] D.N. Arden, Delayed-logic and finite-state machines, in: SWCT (FOCS), IEEE Computer Society, 1961, pp. 133–151.
[32] G.J. Holzmann, The model checker spin, IEEE Trans. Softw. Eng. 23 (5) (1997) 279–295.
[33] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C. Talcott, All About Maude – A High-Performance Logical Framework, How to

Specify, Program and Verify Systems in Rewriting Logic, Lecture Notes in Computer Science, vol. 4350, Springer, 2007.
[34] V.R. Pratt, Semantical consideration on Floyd-Hoare logic, in: 17th Annual Symposium on Foundations of Computer Science (sfcs 1976), 1976,

pp. 109–121.
[35] D. Harel, D. Kozen, R. Parikh, Process logic: expressiveness, decidability, completeness, J. Comput. Syst. Sci. 25 (2) (1982) 144–170.
[36] B. Beckert, S. Schlager, A sequent calculus for first-order dynamic logic with trace modalities, in: R. Goré, A. Leitsch, T. Nipkow (Eds.), Automated

Reasoning, Springer, Berlin, Heidelberg, 2001, pp. 626–641.
29

http://refhub.elsevier.com/S0167-6423(20)30154-4/bibD4A21E06A05FFC8AD2CEDD558B456ECEs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibD4A21E06A05FFC8AD2CEDD558B456ECEs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibC50A7F6A5B140F36F51B5F84B667787Fs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibBCEC8FC6BC5C0F26D947C1ABC83396ADs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib19E1715563A6A3F6514EE6CDE29DD430s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibFEA9591A240DBC0A2B35713745E48E7Cs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib94E09069C1A00329D3BA6B0C5FCC0724s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib94E09069C1A00329D3BA6B0C5FCC0724s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib6BF7A18B1B7E6FD88132AD812377C958s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib6BF7A18B1B7E6FD88132AD812377C958s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibE5142E6178FFAD3EC56E08B1EC0A765Ds1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibE5142E6178FFAD3EC56E08B1EC0A765Ds1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib7EEAB3D16E8919408CBB42250E0E3A74s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib9E55CEE8B280252007E382036F4A51D0s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib9E55CEE8B280252007E382036F4A51D0s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib7643D838C0F5F883096627A3CDBE30BCs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib102B04AAA8B6E9C6B01D24920061E65Ds1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib102B04AAA8B6E9C6B01D24920061E65Ds1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib98BB8B6A5EB1042FC28275C80F9D69D7s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib78A412B1C46382CA644AF751AD7C3F4Ds1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib563AD4F816BA790F58DD4EBEAD301E0Ds1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib563AD4F816BA790F58DD4EBEAD301E0Ds1
http://www.SMT-LIB.org
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib6C8786847B4FB3100369665197DF6183s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib1D31BE41419A0C377424A07F6F4C0614s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib1D31BE41419A0C377424A07F6F4C0614s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib50CA834F860A27355361C8E79EB36A30s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib50CA834F860A27355361C8E79EB36A30s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib88B232616FB47BA143C55493B9F3F935s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibAFA3799FDE9CC8E5299C943B0934FB21s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibB1A8661E443D1CED9234DF17282FC15Bs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibB729BBFA436A1E191FDC9D29D2DEDD50s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib9182082BC7EBAC1305CD72745A98130Bs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib316B2773E9EB5DD6FE28903A0B3D5CADs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibD8F16DFD4EC1AB65B21045D546F9E961s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib13805B5CC1E1507AEC24E6FC7B1343D3s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib1FDD027062B92A4525D01EB11BD849F8s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib0D567BBA4ABD05F479D8E953BA45031Ds1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibB2635E9C45DCDF51DDA5F121AFA756B8s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibC0A2E1EBE1D269EB10A296687F7430CEs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibFDEFDB9D9BA9D7F3DF6093180413424As1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibA70917575B6B8269226B66BF0F2DF657s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibA70917575B6B8269226B66BF0F2DF657s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibAF9FD4769078D041D80FBB927DCB3654s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bibAF9FD4769078D041D80FBB927DCB3654s1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib73C12E6A9439E9A8D023FDFF22FE82EAs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib876A89F6C59F44ED4032C50C76D15E8Cs1
http://refhub.elsevier.com/S0167-6423(20)30154-4/bib876A89F6C59F44ED4032C50C76D15E8Cs1

	A clock-based dynamic logic for schedulability analysis of CCSL specifications
	1 Introduction
	2 The clock constraint specification language
	2.1 Logical clock
	2.2 Clock constraint
	2.3 Clock-labelled transition system

	3 An illustrative example
	4 Syntax and semantics of cDL
	4.1 First-order dynamic logic and dynamic temporal logic dTL2
	4.2 The syntax of cDL
	4.3 The semantics of cDL

	5 Proof calculus of cDL
	5.1 Sequent calculus
	5.2 Proof rules
	5.3 Soundness, completeness and decidability of cDL

	6 Schedulability analysis of CCSL specifications in cDL
	6.1 Encoding the behaviour of clocks into cDL
	6.2 Encoding clock relations into cDL
	6.3 Encoding the schedule problem into cDL
	6.4 Solving the schedule problem

	7 Mechanization of cDL
	8 Related work and discussion
	8.1 Schedulability analysis of CCSL specifications
	8.2 Dynamic logic

	9 Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Proof of Proposition 6.4 and Theorem 6.2
	Appendix B Proof of soundness of cDL system
	References

