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Abstract

Agricultural disease image recognition has an important role to play in the field

of intelligent agriculture. Some advanced machine learning methods associated

with the development of artificial intelligence technology in recent years, such as

deep learning and transfer learning, have begun to be used for the recognition of

agricultural diseases. However, the adoption of these methods continues to face

a number of important challenges. This paper looks specifically at deep learn-

ing and transfer learning and discusses the recent progress in the use of these

advanced technologies for agricultural disease image recognition. Analysis and

comparison of these two methods reveals that current agricultural disease data

resources make transfer learning the better option. The paper then examines

the core issues that require further study for research in this domain to con-

tinue to progress, such as the construction of image datasets, the selection of big

data auxiliary domains and the optimization of the transfer learning method.

Creating image datasets obtained under actual cultivation conditions is found

to be especially important for the development of practically viable agricultural

disease image recognition systems.
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1. Introduction

A recent report by the Food and Agriculture Organization of the United

Nations suggests that more than one third of the natural loss of agricultural

production every year is caused by agricultural diseases and pests [1], making

these the most important factors currently affecting agricultural production and5

food security [2]. Agricultural production is complex and there are numerous

agricultural diseases and pests that need to be taken into account. Traditional

approaches that rely on laboratory-based observations and experiments can eas-

ily lead to incorrect diagnoses. Alongside of this, a lack of professional agricul-

tural technicians often makes it difficult to identify diseases and pests soon10

enough for adequate remedial action to be undertaken. In order to overcome

these problems, a number of researchers have turned to using machine learning

methods and computer vision technology for the identification of agricultural

diseases and pests. In recent years, efforts have been made to support this by

integrating existing knowledge about plant pathology and related matters into15

image recognition technology research. Generally, this first of all involves ana-

lyzing and processing image data relating to plant diseases and pests. After this,

a machine learning model is built to obtain different levels relating to different

image features. Finally, a classifier is used to enable the rapid and accurate

recognition of different types of diseases and pests. All of the studies adopting20

this approach have the ultimate goal of providing technical guidance for the

prevention and control of agricultural diseases and pests [3].

The image recognition of agricultural diseases is more challenging than the

recognition of agricultural pests. A variety of machine learning methods have

been addressed to this that date back to the 1980s. These include clustering25

method [4][5][6], SVM (Support Vector Machine) classifier [7][8][9], Bayesian

classifier [10][11][12] and shallow neural network methods [13][14][15]. A lot of

this work is ongoing. However, when traditional machine learning methods are

adopted for the practical image recognition of agricultural diseases, they often
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have a number of shortcomings:30

• First of all, they are highly dependent on the quality of the original disease

images, so the requirements placed upon the image acquisition environ-

ment and acquisition methods are very strict.

• Secondly, the realization of these methods is typically very complex and

involves a series of operations such as image preprocessing, image segmen-35

tation, feature extraction and classifier construction that themselves need

further study to improve their effectiveness.

• Thirdly, if the number of training samples is large, the efficient construc-

tion of corresponding models can be difficult using these traditional ma-

chine learning methods.40

The explosive growth in available Internet data that has happened alongside

of the development of modern intelligent agriculture is making it ever-more

important to use more advanced and intelligent machine learning methods to

exploit the opportunities presented by this data to improve the effectiveness of

agricultural disease image recognition [16].45

Recent advances in machine learning methods, such as deep learning and

transfer learning, have resulted in significant breakthroughs in a number of

application fields and they have started to be adopted for the purposes of agri-

cultural disease image recognition. Even here, however, numerous problems

remain to be solved. Thus, explorations of how best to apply these new ma-50

chine learning methods to agricultural disease image recognition have become an

important focus of research in this domain. This paper reviews various new ma-

chine learning models and advanced intelligent image recognition technologies

and their current application in the field of agriculture to assess and analyze the

current state-of-the-art in agricultural disease image recognition. On the basis55

of this analysis, it also identifies the remaining challenges that existing methods

are going to have to overcome. By undertaking this systematic review, we hope

to provide a source of reference for further explorations of how best to make use
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of advanced machine learning methods and technologies for agricultural disease

image recognition.60

2. Overview of advanced image recognition technologies

Most traditional image recognition methods consist of a few key steps, such

as image preprocessing, image segmentation, feature extraction, and classifier

design [17]. Overall, this procedure is complicated and there are several issues

that compound this problem. One such issue is that some of the key steps re-65

quire further study to achieve better levels of accuracy. Another issue is that the

feature parameters often need to be designed manually, which depends on sig-

nificant amounts of prior knowledge. The number of manually designed feature

parameters is also limited, so it is difficult to take advantage of large bodies of

pre-existing data. Fortunately, some advanced image recognition technologies70

based on artificial intelligence and machine learning are able to overcome these

problems. So, and for instance, end-to-end machine learning methods do not re-

quire as many complex steps. In the case of deep learning for image recognition,

it is possible to extract image features automatically, thus reducing dependence

on experts to inform the modeling process.75

The deep learning approach was first proposed by Hinton et al. in 2006 [18].

Unlike traditional shallow machine learning, deep learning models are better

able to express features and what is being learned. A key difference between deep

learning and traditional methods is that the features in deep learning models

can be automatically learned from big data rather than needing to be manually80

designed [19]. Theoretically, deep learning models can also contain thousands

of parameters, making them more expressive. Introduction of deep learning

methods significantly improves the efficiency and accuracy of image recogni-

tion. In 2012, deep learning made a particularly influential breakthrough in the

field of computer vision. Hinton’s research team won the ImageNet [20] image85

classification competition by explicitly drawing upon a deep learning method

[21]. The accuracy rate produced by their approach was more than 10% higher
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than the second-placed technique. However, despite its notable advantages, as

a supervised learning method, deep learning still has several shortcomings. For

example, its modeling quality remains heavily dependent on large-scale labeled90

training samples [22].

Transfer learning is another advanced machine learning method. This was

first proposed by Yang et al. [23] in 2005. In comparison to traditional machine

learning methods and deep learning, the biggest advantage of transfer learning

is that it can transfer trained model parameters or learned knowledge to the95

target domain to help the training of new models. As a result, target domains

that lack large-scale labeled data can still be effectively modeled. This approach

to using knowledge acquired in one field to assist with the learning of a task in a

new field is closer to the human learning process. Transfer learning is considered

to be the most effective new machine learning strategy in terms of reducing the100

cost of human supervision. By using current deep learning methods, large-scale

labeled data can be used to learn the knowledge pertaining to a source domain

and transfer learning can then be used to build a model in a different, target

domain, significantly improving the resulting model. As a result, in recent

years, transfer learning has attracted a growing amount of interest in the field105

of machine learning [24][25]. Since 2016, papers relating to transfer learning

and its application have come to occupy an important position in some of the

most prestigious international conferences in the field of artificial intelligence,

such as AAAI, ICML, NIPS, etc. [26][27][28]. Over the past 5 years, more than

700 academic papers discussing different aspects of transfer learning have been110

published [29]. At present, in the international field of artificial intelligence,

transfer learning is widely considered to be the next major breakthrough after

deep learning. Thus, it is rapidly becoming one of the principal focuses of

artificial intelligence and machine learning research [30].
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3. Advanced image recognition technologies of agricultural diseases115

3.1. Methods based on deep learning

3.1.1. Deep learning models

The concept of deep learning comes from artificial neural network research.

It combines low-level features to form more abstract high-level representations

of attribute categories or features, thereby producing a distributed feature rep-

resentation of the data. If one assumes that there is a system, S, which has n

layers (S1, ..., Sn) with I as the input and O as the output, the deep learning

procedure can be expressed as follows:

I =⇒ S1 =⇒ S2 =⇒ ... =⇒ Sn =⇒ O

If the output O is equal to the input I, i.e., the input I does not change after

passing through the system, no information is lost when the input, I, passes

through each layer, Si, or the lost information is redundant. In other words, the120

output of Si at any layer is another form of input, I. So, the basic idea of deep

learning is to obtain a hierarchical representation of the input information by

superposing multiple layers, with the output of the previous layer being used as

the input of the next layer. The parameters in the system can be adjusted to

obtain a series of hierarchical features for each layer, Si.125

At present, the most commonly used deep learning network models include

Convolutional Neural Networks (CNNs) [31], Recurrent Neural Network (RNN)

[32] and Deep Belief Networks (DBN) [33]. CNNs are typical of these kinds

of deep network models. They are feedforward neural networks with a deep

structure and a convolution computation function [34]. They have the ability130

to represent learned features and can conduct shift-invariant classification of in-

put information according to their hierarchical structure. Through convolution

and pooling operations, CNNs can automatically learn the features of images

at different levels. First, they learn color and brightness, then they obtain local

details such as edges, corners and lines, before acquiring more complex informa-135

tion and structures such as texture and geometry. From these various features
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they are finally able to form the concept of whole objects. This learning pro-

cess is consistent with the hierarchical abstraction process associated with how

human beings recognize images. CNN architectures consist of three parts: the

first part is an input layer; the second part is composed of a combination of n140

convolutional layers and a pooling layer; and the third part is a fully connected

multi-layer perceptron classifier. Different CNNs can be constructed to cover

specific situations, as long as the above principles are followed. Figure 1 gives

an example of CNN, which consists of different convolutional layers and pooling

layers.145

Figure 1: An example of convolutional neural network

To ensure that the feature extraction is as accurate as possible, the network

layers making up the second and third parts are usually combined together,

according to the specific requirements of the task being undertaken. The formal

representation of a CNN’s general structure is as follows [35][36]:

INPUT =⇒ [[CONV ] ∗ n =⇒ POOL?] ∗m =⇒ [FC] ∗ k,

where, CONV denotes a convolutional layer that may overlap n times; and

POOL denotes an affixed pooling layer that is optional. The above structure

can be repeated m times and then connected with a full connection layer FC,

which can be iterated k times. According to this definition, the core of a CNN

is composed of multiple convolutional layers, with each convolutional layer con-150

taining multiple convolution kernels. These can scan a whole image from left

to right and from top to bottom to obtain the output data. This is called a
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feature map. The first convolutional layer in the network captures local de-

tailed information about an image, with each pixel of the output image only

using a small amount of the information contained in the input image. The155

subsequent convolutional layers are used to capture more complex and abstract

information. Once an image has passed through several convolutional layers, an

abstract representation of it can be obtained at different levels. As a result of

its powerful ability to extract and process image features, CNNs have become

one of the most important methods in the field of image recognition.160

3.1.2. Works based on deep learning

When traditional machine learning methods are used for agricultural disease

image recognition, the feature parameters used to construct a model need to be

designed manually, which is heavily dependent upon prior knowledge. This prior

feature design is not necessary when using deep learning frameworks based on165

CNN. Instead, multi-level features in an image can be automatically extracted

during the modeling process. The larger the training sample data, the more

accurate the recognition results obtained. Over the past five years, an increas-

ingly large number of researchers have adopted deep learning methods to carry

out research in the field of agricultural disease image recognition.170

For single-type crop disease image classification and recognition, most stud-

ies have focused on tomatoes, rice and cucumbers. In the case of tomato disease

image recognition, Brahimi et al. (2017) [37] used a CNN model to classify their

dataset, which contained 14,828 images of tomato leaves infected with nine dis-

eases. This model achieved an accuracy of 99.18%. Fuentes et al. (2017) [38]175

investigated the effectiveness of a range of different deep learning networks for

tomato disease classification. These included Faster R-CNN, R-FCN, and SSD.

On the basis of this they were able to find a suitable architecture and method

for local and global class annotation and data augmentation. This increased

the accuracy of the results and reduced the number of false positives. Guo et180

al. (2019) [39] used a multi-scale AlexNet recognition model to implement a

tomato leaf disease image recognition system on the Android mobile platform.
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This model managed to achieve a high average recognition accuracy for each

disease in its early, middle and late stages. Fuentes et al. (2020) [40] have

further proposed a practical deep meta-architecture-based method with a dedi-185

cated feature extractor to recognize plant diseases. This method was designed

to be able to identify the location of diseases in any given image. It was verified

on a tomato plant disease and pest dataset that they collected themselves in

complex real-field scenarios and achieved good results.

When it comes to rice disease image recognition, Liang et al. (2019) [41]190

used CNN to construct an effective rice blast disease feature extraction and

classification model and compared its performance against methods using LBPH

and Haar-wavelet transforms. The results showed that the proposed model

had a stronger recognition ability than the other methods and its classification

accuracy exceeded 95%. Bhattacharya et al. (2019) [42] used a deep learning195

method to identify three kinds of disease in rice leaves, bacterial blight, blast,

and brown mark. In this case, they achieved an accuracy of 78.44%. Liu et al.

(2019) [43] used a CNN model to recognize rice sheath blight and compared its

effectiveness with the performance of a traditional SVM method. The results

showed that the recognition accuracy of CNN could reach 97%, while the best200

accuracy SVM could achieve was 95%.

Ma et al. (2018) [44] adopted a deep CNN for the purposes of cucum-

ber disease image recognition. This study used augmented datasets containing

14,208 symptom images to construct a symptom-based recognition system that

could identify four cucumber diseases, i.e., anthracnose, downy mildew, powdery205

mildew, and target leaf spots. This achieved a recognition accuracy of 93.4%.

Lin et al. (2019) [45] proposed a semantic segmentation algorithm based on

CNN that could segment the powdery mildew on cucumber leaf images at pixel

level. This reached an average pixel accuracy of 96.08%, outperforming tra-

ditional segmentation methods such as K-means, Random forest, and GBDT210

(Gradient Boosting Decision Tree).

Some studies have focused on other plant disease image recognition. Tan

et al. (2015) [46] centered their attention upon apple pathology image recogni-
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tion and diagnosis, proposing an elastic momentum parameter-learning method

based on CNN that obtained a recall rate of 98.4% by using error back propaga-215

tion analysis of sampled elements. Zhang et al. (2018) [47] proposed a method

for identifying citrus canker based on the AlexNet model, with an optimized

network structure that could reduce the network parameters while maintaining

the same degree of accuracy. Their results showed a recognition accuracy for

both positive and negative samples that reached 98%. This was better than220

the performance of a number of traditional machine learning methods, such as

decision trees, KNN, SVM and Adaboost. Amara et al. (2017) [48] applied a

deep CNN based on the LeNet architecture to detect two well-known banana

diseases in actual field images: banana leaf spot disease; and banana spot dis-

ease. This study was noteworthy because it also considered the influence of225

various challenging factors when undertaking the modeling, including different

degrees of illumination, complex backgrounds and different resolutions, sizes

and orientations.

Generally, disease image recognition research focused on multiple crops is

more commonplace than research focused on single types of crops. Sladojevic230

et al. (2016) [49] proposed a deep neural network model that could recognize 13

different kinds of plant diseases out of a collection of images of both healthy and

diseased leaves. The recognition accuracy of this model was between 91% and

98%. Soni et al. (2016) [50] used probabilistic neural networks to identify various

crop leaf diseases and applied their model to the identification of different plant235

leaf diseases in images randomly collected from the Internet. By combining

batch normalization with global pooling, Sun et al. (2017) [51] developed a

recognition model for plant leaf diseases that could recognize 26 kinds of leaf

diseases in 14 species of plants. Here, the average accuracy on an augmented

test dataset was 99.56%, while the weighted average recall and accuracy score240

reached 99.41%. Park et al. (2017) [52] used a deep learning method to train a

dataset and provided a mechanism for the dynamic analysis of disease images,

with the goal of being able to achieve the diagnosis and prediction of diseases.

Ferentinos et al. (2018) [53] used healthy and diseased leaf images from a variety
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of plants to train different CNN models to perform plant disease detection and245

diagnosis. In their results, VGGNet (Visual Geometry Group Network) achieved

the best recognition accuracy, reaching 99.53% when classifying 17,548 images

of plant leaves. Li et al. (2018) [54] adopted an unsupervised method to train

a deep convolution generative adversarial network on 54,306 images from the

public dataset, PlantVillage. This model was able to identify 14 species of crops250

and 26 kinds of diseases, with an accuracy of 89.83% on a dedicated test set.

Barbedo et al. (2019) [55] used the GoogleNet architecture to train a CNN

model on more than 40,000 images captured using different devices, such as

smartphones and compact cameras. The accuracy ranged from 75% to 100%

for different crops. Huang et al. (2019) [56] proposed a novel deep neural255

network structure consisting of two sub-models that was able to separate the

leaves in an original image from the background. Various popular pre-trained

models were then used to extract features and classify diseases, achieving a

disease image recognition accuracy of 87.45% in the AI Challenger competition

in 2019. Aside from these various approaches, Cósta et al. (2019) [57] have260

proposed a hierarchical method to optimize standard deep learning models for

the classification of apple, peach and tomato diseases.

There has been a general augmentation in the number of studies applying

deep learning techniques to agricultural disease image recognition and classi-

fication over recent years. As artificial intelligence and big data technology265

continues to develop, deep learning looks set to have more and more impact on

practical disease management applications in agricultural production.

3.1.3. Discussion

From the above, we can see that the introduction of deep learning into

the field of agricultural disease image recognition has resulted in a number of270

valuable achievements. However, deep learning methods are heavily data-driven,

making them subject to the following limitations:

• In the absence of large-scale labeled training sets, the training process is

prone to over-fitting, making it difficult to build an ideal model;
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• As the complexity of the models grows, the number of parameters increases275

exponentially, restricting their generalizability;

• For each new dataset and task, the models need to be trained from scratch,

adding to the hardware performance requirements and computational cost

and potentially limiting their practical applicability.

As a result, deep learning methods still require a good deal of research and280

development for them to be truly effective.

In the field of agriculture, the variety of crops and their diseases makes the

factors affecting deep learning modeling especially complex [58]. A key problem

is that there is an urgent need for more datasets for modeling to be constructed

and for existing datasets to be expanded. When summarizing the status of deep285

learning in relation to field planting, Guo and Tai (2019) [59] pointed out that

the main problem at present is the lack of labeled data. When it comes to

image classification, data enhancement, fine-tuning and other machine learning

technologies are needed to improve the quality of labeling. At present, there are

few public agricultural disease image datasets, especially labeled ones, and it is290

time-consuming and expensive to label disease images manually. This lack of

disease image datasets undermines the quality of deep learning models. Barbedo

(2018) [60] investigated how the size and diversity of datasets can impact the ef-

fectiveness of different deep learning techniques when applied to plant pathology.

The image database used in this investigation included a number of different295

types of plants, each of which had clearly distinct characteristics in terms of

the number of samples, the number of diseases and changes in conditions. The

results indicated that CNN was the most powerful method for dealing with

problems of plant disease image recognition, but the recognition accuracy was

still significantly limited by the size of the image dataset.300

Unfortunately, the problem of dataset scarcity is difficult to solve in the short

term. Some researchers have sought to address the problem by constructing agri-

cultural disease image datasets. Hughes and Salathé (2015) [61], for instance,

have released a dataset through the online platform PlantVillage that contains
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more than 50,000 images showing healthy and infected leaves of plants. Chen305

and Yuan (2018) [62] have constructed a dataset called the Image Database

for Agricultural Diseases and Pests (IDADP) that contains nearly 50,000 high-

quality disease and pest images collected in greenhouses or fields. Arsenovic

et al. (2019) [63] have also recently introduced a dataset containing 79,265

images. Traditional augmentation methods and state-of-the-art generative ad-310

versarial networks were adopted to further expand the number of images in this

dataset. Together, these datasets provide a good resource for research relating

to agricultural disease image recognition, but there is still work to be done.

A second issue with existing deep learning approaches is that there are nu-

merous technical problems that still need to be solved. One such problem is that315

deep learning classifiers are typically treated as black boxes by researchers be-

cause of their opacity. Thus, the classification mechanisms associated with deep

learning need to be better understood and easier to interpret. Brahimi et al.

(2018) [64] have made some effort in this direction by using saliency maps as a

visualization method for some state-of-the-art CNN architectures focused on the320

identification of plant diseases. Parameter optimization in deep learning models

is another area of concern. Darwish et al. (2020) [65] looked at hyper-parameter

optimization in CNN models and adopted an orthogonal learning particle swarm

optimization algorithm to optimize the number of hyper-parameters and identify

their optimal values. With regard to the overall technical framework for deep325

learning, rather than seeking to undertake general object recognition tasks, Lee

et al. (2020) [66] examined certain CNN-based methods in detail and proposed

a more intuitive method for identifying diseases independent of specific crops.

This may help to improve the current technical framework and make it easier

to refine existing agricultural disease image recognition methods. In addition330

to these considerations, although deep learning is largely more effective than

traditional methods, it is also important to look at ways in which deep learning

and traditional methods might be integrated to build upon their complementary

advantages [67].

Finally, there is an urgent practical need to combine the excellent benefits335
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of deep learning with the increasingly popular range of smart mobile terminals

to promote the diagnosis and control of agricultural diseases. In this vein,

inspired by the work of Johannes et al. (2017) [68], Picón et al. (2019) [69]

used different mobile devices to capture and analyze images of three different

European endemic wheat diseases. In agricultural production, there is a need340

not only to identify the presence of diseases, but also to pay attention to their

severity. Wang et al. (2017) [70] trained some deep CNN models to diagnose

the severity of apple black rot, drawing upon images from the PlantVillage

dataset that were further annotated by botanists according to four levels of

severity. It should also be noted that, in view of the complexity of agricultural345

environments, apart from images of diseased leaves and other organs, there is

also a need for associated data relating to external factors, such as temperature,

humidity, and type of soil, when undertaking image recognition [71].

3.2. Methods based on transfer learning

3.2.1. Transfer learning models350

As mentioned above, the quality of deep learning models is heavily depen-

dent on large datasets. In the field of agriculture, the diversity of crop species

and disease types often makes it hard to have enough target data to meet the

modeling requirements of deep learning. Transfer learning offers a way of get-

ting around this problem. It is especially effective in circumstances where there355

is insufficient training data when developing machine learning models [27]. The

basic idea underlying this method is to transfer knowledge from a source do-

main to a target domain by relaxing the assumption that the training data and

the test data must be independent and identically distributed. A comparison

between traditional methods and transfer learning is shown in Figure 2.360

Formally speaking, there are two basic concepts in transfer learning: a do-

main; and a task [72]. A domain, D, consists of two factors: an edge probability

distribution, P (X); and a feature space, χ, where X = {x1, x2, ..., xn} ∈ χ is

the feature vector of a sample in the feature space, and P (X) represents the

edge probability of X in the feature space. There are two differences between a365
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Figure 2: Different learning processes between traditional methods and transfer learning

source domain and a target domain: one relates to the feature space; the other

relates to the edge probability distribution, which can be different even when

the feature spaces are the same. A task, T , contains two elements: one is the

label space, Y ; the other is the prediction function, f , which can be obtained by

learning how to map the elements of the feature space to the label space, thereby370

providing a prediction label for each sample. The difference between two tasks

refers to the difference in the label space between them or the difference in the

prediction function, f , when the label spaces are the same.

Transfer learning can be defined formally as follows: Given an auxiliary

domain, Ds, an auxiliary task, Ts, a target domain, Dt, and a target task, Tt, a375

prediction function, ft, can be established for the target task, Tt, in the target

domain, Dt, with the help of knowledge learned from an auxiliary domain, Ds,

and an auxiliary task, Ts.

According to the above definition, transfer learning can use existing well-

constructed models or knowledge in a big data domain to solve the modeling380

problems associated with a small data domain. Given the current lack of disease

image data resources, this method offers a potential way forward for intelligent

agricultural disease image recognition.

3.2.2. Works based on transfer learning

According the types of transfer strategies adopted, transfer learning methods385

can basically be divided into homogeneous transfer learning and heterogeneous

transfer learning [29]. The former is the kind of transfer learning most often used
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in the field of agricultural disease image recognition. It incorporates instance-

based transfer learning and parameter-based transfer learning.

In instance-based transfer learning, the source domain and the target domain390

have numerous overlapping features and use the same or similar datasets. By

means of re-weighting, part of the data in the source domain can be reused

for modeling of the target domain. Inspired by this idea, Fang et al. (2017)

[73] optimized the TrAdaBoost method to develop an instance-based transfer

learning system that could solve the problem of insufficient labeled training395

samples in agricultural disease image recognition. Experimental results showed

that this method offered significant improvements over methods based on KNN

and SVM. Wang et al. (2018) [74] used 2,430 images from the IDADP dataset

[75], including eight kinds of disease for two crop species, to train six kinds of

CNNs with different depths as a way of exploring the potential efficiency gains400

provided by instance-based transfer learning. Their results demonstrated that a

combination of CNN and transfer learning was effective for agricultural disease

image classification with small-scale datasets. They obtained an accuracy of

90.84% when using a CNN model with five convolutional layers. Liu et al.

(2018) [76] used a deep similarity network to learn the representative features405

in normal maize images, then used a transfer learning method to learn the

features in diseased maize images. The results indicated that this method can

identify ten kinds of common maize diseases with an accuracy of 90%.

In parameter-based transfer learning, the source domain and the target do-

main can share the model parameters. In other words, a model trained by a410

large amount of data in a source domain can be applied to a target domain for

prediction. The advantage of parameter-based transfer learning is that it can

make full use of the similarities between multiple models. Currently, a number

of excellent deep learning models are making use of this method. Inspired by

these models, a lot of studies have undertaken agricultural disease image recog-415

nition research based on parameter-based transfer learning. Drawing upon the

VGGNet model, Jia et al. (2017) [77] adopted the transfer learning method

to train a CNN model to detect tomato diseases and pests. This achieved an
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average classification accuracy of 89%. Zhang et al. (2018) [78] proposed an

improved method based on the VGG16 model (VGGNet with 16 weight layers)420

for cotton disease image recognition. Here, the original Softmax layer was re-

placed by a six-tag Softmax classifier, so as to optimize the model’s structure

and parameters. Coulibaly et al. (2019) [79] also used the VGG16 model as the

basis of an approach that combined transfer learning with feature extraction

to build an identification system for mildew in pearl millet. This achieved an425

encouraging accuracy of 95%. Chai and Li (2019) [80] proposed a classification

model where transfer learning was used to optimize the VGG19 model (VG-

GNet with 19 weight layers). The multi-layer structure of the trained CNN was

used to gradually upgrade low-level features to higher-level abstract features,

thus improving the model’s feature learning ability. This produced good results430

when engaging in tomato disease image classification. Ding et al. (2018) [81]

undertook transfer learning based on the AlexNet model and designed an eight-

layer CNN model that was then used to train a network via transfer learning.

When the learning rate was 0.001, the recognition accuracy for 12,836 images

of common leaf diseases in five typical crops (i.e. rice, wheat, maize, cotton and435

soybean), taken from the PlantVillage dataset, was more than 95%. Long et al.

(2018) [82] adopted the transfer learning method to transfer knowledge learned

by applying the AlexNet model to the ImageNet dataset, to the recognition of

diseased camellia leaves. Alongside of this, the powerful feature learning and

feature expression abilities of a deep CNN were applied to automatically learn440

the features of the diseased camellia leaves. The resulting average recognition

accuracy was 96.53%. Wang et al. (2019) [83] also used transfer learning based

on the AlexNet model to realize a classification task for ten kinds of tomato

disease images, including healthy leaves. Zhang et al. (2019) [84]undertook

transfer learning to fine-tune a GoogleNet model pre-trained on the ImageNet445

dataset. They compared its performance with three traditional machine learn-

ing methods, SVM, KNN and BPNN (Back Propagation Neural Network), when

evaluating a dataset containing 1,200 images collected by smart phones. The

proposed method achieved the best accuracy 99.6% when identifying cherry leaf
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diseases. Yin et al. (2018) [85] used a pre-trained CaffeNet model as a pro-450

totype and used a fine-tuning method to construct an automatic identification

system for cercospora leaf spot. Here, the root mean square error of the model

reached 0.63 in experimental testing. To further improve the performance of

neural networks under limited computing resources, the Inception model has

been proposed. Tlhobogang et al. (2018) [86] used transfer learning to retrain455

the Inception model on 54,306 images from the PlantVillage dataset for the

purposes of disease classification. Qiang et al. (2019) [87] integrated the In-

ceptionV3 model with transfer learning and fine-tuning to identify leaf diseases

in agricultural plants and achieved an accuracy of 95.8% on the PlantVillage

dataset. Chen et al. (2019) [88] proposed an approach that combined data en-460

hancement and transfer learning to optimize the InceptionV3 model for maize

plant disease recognition, thereby achieving significant improvements in recogni-

tion accuracy. In parameter-based transfer learning, the choice of model is very

important. A number of studies have therefore compared the effects of transfer

learning on a variety of deep learning models. Yuan et al. (2018) [89] proposed465

a small sample crop disease image recognition method based on CNN parameter

transfer learning. Using eight kinds of disease images from the IDADP dataset,

they compared the outcome of fine-tuning two popular deep learning frame-

works, AlexNet and VGGNet, and the traditional machine learning method,

SVM. The results showed that the proposed method was better for small sam-470

ple crop disease image recognition, achieving an average accuracy of 95.93%.

Zhang et al. (2018) [90] explored using different deep learning frameworks, in-

cluding AlexNet, GoogleNet, and ResNet, to find the best combination when

they were fine-tuned by transfer learning. Experimental results showed that

the best combined model could identify tomato leaf diseases with an accuracy475

of 97.28%. Kamal et al. (2019) [91] proposed a faster transfer learning-based

technique for early plant disease detection and diagnosis drawing upon simple

leaf images of healthy and diseased plants. By fine-tuning various deep learning

models pre-trained on the ImageNet dataset, including VGG19, ResNet, Incep-

tionV3, MobileNet, NasNet-Mobile, DenseNet121 and DenseNet169, the accu-480
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racy reached 99.74% when classifying 28 kinds of diseases in 15 different species

of crops. Drawing upon the PlantVillage dataset, Too et al. (2019) [92] used

transfer learning to fine-tune then evaluate several deep CNN models, including

VGG16, InceptionV4, ResNet50, ResNe101, ResNe152 and DenseNets121. In

experiments, the DenseNets121 model achieved the best recognition accuracy at485

99.75%. Verma et al. (2020) [93] also used the PlantVillage dataset to develop

a transfer learning approach that fine-tuned the model parameters in AlexNet

and ResNet18 in order to assess the severity of diseases in grapevines.

3.2.3. Discussion

From the above, it can be seen that transfer learning is able to take models490

trained in a big data domain and relate them to a new domain, thereby delivering

high-quality model learning and construction on the basis of small amounts of

data. This method dispenses with the limitations associated with deep learning

methods and their dependence upon large amounts of labeled training data.

This makes transfer learning particularly suitable for agricultural disease image495

recognition when confronted with insufficient data resources. Most applications

of transfer learning in the field of agricultural disease image recognition are based

on parameter transfer, where a pre-trained model is fine-tuned by initializing

the new network parameters with existing parameter files, thus transferring

part of the pre-trained model to the target domain. This is an effective solution500

to the over-fitting problem typically associated with small-scale datasets, thus

speeding up the model’s training and saving time.

Transfer learning is becoming increasingly popular in the field of agricultural

disease image recognition. However, the modeling quality of transfer learning

can be affected by a number of different factors, such as the quality of the505

datasets, the selection of the prototypical models, negative transfer or excessive

transfer, and so on. In each of these cases, the final result may not meet the

desired requirements. Various issues in transfer learning therefore need further

research. First of all, selecting the correct prototypical model is very impor-

tant for parameter-based transfer learning. It would also seem that integrating510
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and optimizing multiple models may further improve accuracy [94], so this mer-

its further exploration. Secondly, most deep learning frameworks are complex

and not conducive to transfer, so transfer learning based on lightweight mod-

els needs more attention. A number of studies have used lightweight models,

such as SqueezeNet [95], InceptionV3 [96] and MobileNet [97], and it has been515

shown that this did not unduly affect their recognition accuracy. This method

has notable potential for scenarios with limited computing resources, such as

when using edge servers [98] or automatic recognition devices based on image

acquisition [99]. Generally-speaking, for practical applications, it is necessary

to find a balance between recognition accuracy, operating speed and network520

size when choosing the best framework.

3.3. Summary

In the above sections, we have reviewed advanced technologies that can be

used for agricultural disease image recognition, focusing in particular upon deep

learning and transfer learning. To facilitate a more intuitive comparison of these525

two methods, Table 1 summarizes their most important characteristics.

Table 1: Comparison between deep learning and transfer learning

Deep learning Transfer learning

training sample size large small

data distribution same different

data annotation required not necessary

model construction training from scratch fine-tuning existing model

model complexity high not high

modeling time long short

generalization weak strong

In general, because there are too many kinds of crop diseases and not enough

datasets, fine-tuning models that have been pre-trained on large-scale public

datasets, such as PlantVillage and ImageNet, so as to be able to undertake
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image recognition on the basis of relatively small samples, is preferable. The530

details of some relevant studies are given in Table 2, including the prototypical

model, dataset and obtained accuracy.

Table 2: Prototypical models, datasets and accuracies of related works

Reference Prototype model Dataset Accuracy

Mohanty[100] AlexNet, GoogleNet PlantVillage 99.35%

Brahimi[37] AlexNet, GoogleNet PlantVillage 99%

Durmus[95] AlexNet, SqueezeNet PlantVillage 95.65%

Amara[48] LeNet PlantVillage(extended) 92-99%

Jia[77] VGGNet tomato(own) 89%

Yuan[89] AlexNet, VGGNet PlantVillage, IDADP 95.93%

Wang[74] customized CNN PlantVillage, IDADP 90.84%

Liu[76] customized CNN maize(own) 90%

Luna[99] AlexNet tomato(own) 91.67%

Ferentinos[53] VGGNet, AlexNet PlantVillage 99.53%

Ding[81] AlexNet PlantVillage 95%

Zhang[90] AlexNet, ResNet PlantVillage 97.28%

Zhang[84] GoogleNet ImageNet, cherry(own) 99.6%

Lin[45] U-Net cucumber(own) 96.08%

Barbedo[55] GoogleNet various plant(own) 75-100%

Liu[96] InceptionV3, MobileNet ImageNet, PlantVillage 95.62%

Liang[41] customized CNN rice(own) 95.83%

Selvaraj[97] ResNet50, InceptionV2 banana(own) 90%

Qiang [87] InceptionV3 PlantVillage 95.8%

Too[92] DenseNets121 PlantVillage 99.75%

Wang[94] InceptionV3, ResNet PlantVillage, IDADP 96.61%

Verma[93] AlexNet, ResNet18 PlantVillage 87.6%
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It can be seen that, when based on large-scale open source datasets and pre-

trained models, these methods are able to achieve high levels of accuracy when

undertaking plant disease image recognition. However, when pursuing this in-535

vestigation, it was found that both the scale of the plant disease image dataset

used for modeling and the environment in which the images were acquired can

have a great influence on the recognition accuracy. As most of the images in

the PlantVillage dataset were collected with a simple background or in a labo-

ratory environment with less interference, the recognition accuracy of systems540

constructed using the PlantVillage dataset is higher. Despite this apparent

advantage, when these systems are applied to actual scenes, their recognition

accuracy will inevitably decline because of the diverse character of the situ-

ations to which they are being applied [100]. This underscores the fact that

image recognition is much more difficult and complex in the actual cultivation545

conditions than in laboratory conditions. In a study undertaken by Ferentinos

et al. (2018) [53], images captured in the field were used to develop a model

for the identification of images captured in a laboratory. This model was still

able to perform effectively, with a recognition accuracy of up to 68%. When,

by contrast, images captured in the laboratory were used train a model for the550

identification of images collected in the field, the accuracy fell to just 33%. Over-

all, this suggests that, for the construction of practical systems, more diverse

training data is needed to improve the accuracy of the models. In particular,

it is very important build image datasets where the images are collected under

actual cultivation conditions. This is the best way to ensure that agricultural555

disease image recognition systems are able to achieve good results in practice.

4. Conclusion

This paper has reviewed the current state-of-the-art with regard to advanced

technologies for agricultural disease image recognition, focusing in particular

upon deep learning and transfer learning. Although this is a space that is560

attracting increasing attention, there remain problems with the practical appli-
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cation of these methods and technologies. The above discussion indicates that

future work needs to be especially dedicated to the following concerns:

• First of all, in the case of both deep learning and transfer learning, there

is an ongoing need for better disease image datasets containing images565

of actual cultivated crops in the field. This can serve as a cornerstone

of future improvements in sample quantity and quality. We have already

been involved in the construction of a dataset of agricultural disease images

collected in actual field environments, IDADP (mentioned above). The

image resolution in this dataset is very high, reaching 20 million pixels,570

and the number of images of each disease can be counted in the hundreds or

even thousands, making it eminently suitable for training and modeling in

machine learning research. The construction of this dataset is a sustained

effort and it continues to grow, year on year.

• Secondly, the burgeoning use of intelligent mobile terminals suggests that575

the construction of lightweight models needs to form an important part of

future research considerations. At present, a few studies focused on this

concern have been undertaken, including MobileNet [101] and EfficientNet

[102]. The lightweight character of these models makes them better able to

meet the needs of mobile users or edge computing in practical applications,580

but there needs to be more studies of this kind.

• Finally, agricultural disease images have obvious inter-class similarities

and intra-class differences. There are also numerous potential sources of

interference during image acquisition, including complex backgrounds and

changes in illumination. This presents transfer learning-related research585

on agricultural disease image recognition with a number of significant

challenges, especially with regard to auxiliary domain selection and the

integration of transfer methods. Most existing large-scale image datasets,

such as ImageNet and PlantVillage, are not dedicated solely to the provi-

sion of agricultural disease images in actual field settings, so any selection590

23



of auxiliary domains involves additional evaluation or restriction. Along-

side of this, at present, transfer learning methods relating to agricultural

disease image recognition research are all homogeneous in character. This

makes it difficult for these methods to use large amounts of multi-modal

data related to agricultural diseases on the Internet, such as text, images595

and videos, even though this data could indubitably help the progress of

learning and modeling. Future research therefore needs to devote some

effort to concerns such as the facilitation of multi-modal explanations by

aligning two or more different information sources and enabling transfer

learning over these heterogeneous sources for the purposes of prediction600

and modeling. In this way, it will be easier to ensure that knowledge

present in data coming from different feature spaces, such as text, can

be used to help with learning and modeling in the target domain. This

has the potential to substantially improve the performance of agricultural

disease image recognition systems based on transfer learning.605
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[57] Cósta J, Silva C, Ribeiro B. Hierarchical deep learning approach for

plant disease detection. In: Pattern Recognition and Image Analysis -780

9th Iberian Conference, Part II. 2019. p.383–393.

[58] Loey M, El-Sawy A, Afify M. Deep learning in plant diseases detection

for agricultural crops: A survey. International Journal of Service Science

Management Engineering and Technology. 2020;11(2):41–58.

[59] Guo X, Tai H. Current situation and prospect of deep learning application785

in field planting (in Chinese). Journal of China Agricultural University.

2019;24(1):119–129.

[60] Barbedo JGA. Impact of dataset size and variety on the effectiveness of

deep learning and transfer learning for plant disease classification. Com-

puters and Electronics in Agriculture. 2018;153:46–53.790
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