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Abstract

Whether or not viruses are alive remains unsettled. Discoveries of giant viruses

with translational genes and large genomes have kept the debate active. Here, a

fresh approach is introduced, based on the organisational definition of life from

within systems biology. It views living as a circular process of self-organisation and

self-construction which is ‘closed to efficient causation’. How information combines

with force to fabricate and organise environmentally obtained materials, given an

energy source, is here explained as a physical embodiment of informational con-

straint. Comparing a general virus replication cycle with Rosen’s (M,R)-system

shows it to be linear, rather than closed. Some viruses contribute considerable or-

ganisational information, but so far none is known to supply all required, nor the

material nor energy necessary to complete their replication cycle. As a result, no

known virus replication cycle is closed to efficient causation: unlike cellular obligate

parasites, viruses do not match the causal structure of an (M,R)-system. Analysis

based in identifying a Markov blanket in causal structure proved inconclusive, but

using Integrated Information Theory on a Boolean representation, it was possible

to show that the causal structure of a virocell is not different from that of the host

cell.

∗k.farnsworth@qub.ac.uk
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Introduction

he first half of 2020 has seen one particular virus (SARS-Cov2) dominate world news,

o much that viruses appear to be at the forefront of public interest in biological research

nd in this context an old debate has reemerged: “Are viruses alive?”. According to

n informal survey (Racaniello, 2014), expert opinion remains divided roughly a third

ach between yes, no and don’t know. This is not surprising given that the debate

eems still to be resolved. Eleven years ago, an emphatic statement was made against

ncluding viruses among the living (Moreira and Lopez-Garcia, 2009), quickly countered

y (sometimes indignant) responses of matching boldness (Claverie and Ogata (2009);

egde et al. (2009)) and more nuanced responses (e.g. Forterre (2010b)). The discovery

f giant viruses(Raoult and Forterre, 2008; Abergel et al., 2015; Claverie and Abergel,

018), especially the Pandoraviruses, having genome sizes reaching that of parasitic

ukaryotes (Nadège et al., 2013) and Tupanviruses with their batteries of translational

enes (Abrahão and et al., 2018; Rodrigues et al., 2020) has further stirred the debate

e.g. Claverie and Abergel (2010); Abergel et al. (2015); Brandes and Linial (2019)). It

lso attracted philosophers of science who having analysed the debate, concluded that

t is misguided (van Regenmortel, 2016; Koonin and Starokadomskyy, 2016). Whether

r not viruses belong within the category of living has again become highly topical and

ontentious.

The answer, of course, has as much to do with how we define life as it does with

he nature of viruses and that is the main criticism the philosophers had of the debate

n virology. For van Regenmortel (2016), the idea of viruses as a form of life is no

ore than a misconception (at best a vivid metaphor) brought about by the liberal
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se of anthropomorphic expressions in virology. He quotes the well known virology

extbook (Flint et al., 2009), in which (for emphasis) the authors state that “viruses do

ot actually do anything”: even the orthodox view acknowledges that they are passive

enetic parasites (citing Lwoff (1957) for this). With such confident statements, that

ight have been the end of it, but it was not.

For a start, many virologists now consider the whole replication cycle of the virus,

nsisting that the virus should not be confused with the virion and that to do so is

quivalent to exclusively focussing on the spore stage of bacteria, or (more obliquely)

n pollen. It does not help to say, as some do, that viruses are on the boundary of

ife, first because that does not answer the question and second because it pre-supposes

boundary between life and non-life, where none has yet been agreed. The “what

s life?” debate is arguably even more contentious than the question of viruses and

ertainly older, so there is a danger of jumping out of the virology ‘frying pan’ into the

etaphysical ‘fire’ by addressing that head-on. It may be, however, that the question

f viruses has not found consensus precisely because the most fundamental and general

nderstanding of life has not yet been given due prominence in the discussion (e.g. the

urvey of the topic by Herrero-Uribe (2011) has received little attention to-date). This

nderstanding is that life is the process of enacting closure to efficient causation (Rosen,

991), meaning that a living system is the cause of itself. This is an idea initially

onceptualised by Immanuel Kant (Ginsborg, 2006; Gambarotto and Illetterati, 2014),

iven rigorous definition by Robert Rosen, (1991) and practical interpretation as ‘every

atalyst necessary for life is produced by the living system itself’ (paraphrasing Cárdenas

t al. (2010), referring to (Kauffman, 1986)), placing it at the heart of systems biology

Westerhoff and Hofmeyr, 2005) as a particular approach within it: the organisational

pproach (Bich and Damiano, 2012; Moreno and Mossio, 2015).

This paper will proceed by first adding a physicalist analysis of cause to this, essen-

ially cybernetic explanation, showing how it discriminates life from non-life, then by
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onsidering contemporary definitions of the virus to arrive at a test for whether these

iological entities can be considered living in any known circumstances. The main point

s that the study of viruses sheds new light on the nature of life itself.

What is life?

n posing this question, physicist Erwin Schrödinger (1944) inspired the deep scientific

tudy of what it is that biologists examine, with the realisation that one had to reach

eneath biological empiricism to find an answer. Despite that, biology textbooks com-

only provide a list of attributes for living organisms: reproduction, metabolism, etc.

e.g. Soloman et al. (2002)) and this is the standard approach in determining what is

live (Van Regenmortel, 2010). It is far from satisfactory, since many things generally

greed to be non-living posses at least some of the attributes (fire, some computer al-

orithms etc. (Cleland and Chyba, 2002)) and many organisms, not least viruses, lack

ome of them. Rosslenbroich (2016) reviewed properties that have been proposed as

ndicative of life, but it remains the case that we cannot identify a boundary between

iving and non-living by ticking off the set of attributes, since it is unclear what subset

f these is necessary and sufficient. In a well known objection, interspecific hybrid or-

anisms such as mules would not qualify as living because they cannot reproduce and

lso then, do not evolve. This highlights the difference between identifying an individual

rganism as alive and considering a class of organisms as potential members of the living

Koonin and Starokadomskyy, 2016). An organism may be dead but be a member of

class that has the attributes of life and a thing may have the attributes, but not be

live, e.g. some autocatalytic chemical systems (Segrè et al., 2000; Zepik et al., 2001)

nd their hypothetical simulations (e.g. Hordijk and Steel, 2004; Hordijk et al., 2012;

arkovitch and Lancet, 2014). The objection that some of these cannot evolve by natu-

al selection (Vasas et al., 2012) is not decisive because evolvability is an attribute of all
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nsembles of imperfectly reproducing entities which compete over a limiting resource,

o it cannot identify a boundary between a non-living state of matter and a living sys-

em (Bruylants et al., 2010), on the contrary, it must span the transition between them

Nghe et al., 2015). Even those with a more synthetic (as opposed to reductionist) frame

f mind have set attribute requirements, such as enclosing membranes (Damiano and

uisi, 2010), and ribosomes (based on the three kingdoms of life proposed by Woese et al.

1990)), though the RNA-first hypothesis allows for pre-ribosomal life (Benner, 2010)

nd Raoult and Forterre (2008) and Forterre (2010a) offer a counter argument which

ncludes viruses along with ribosomal organisms. Cornish-Bowden and Cárdenas (2017)

mphasised that the last common ancestor, LUCA, was not necessarily, or even likely to

e close to the origin of life and to this extent LUCA tells us little about the transition

rom proto-life to life proper and, as they say there, “It hardly matters whether giant

iruses are regarded as alive or not, because it is impossible to believe that life started

ith a self-organizing system with many proteins”: in other words, life cannot be defined

y a threshold in molecular richness either. All of the ‘list definitions’ so far proposed

re contestable (Piast, 2019; Bich, 2019) and mostly exclude viruses.

.1 Life as organisation: the organisational biology approach

he organisational approach (Bich and Damiano, 2012), a strand within systems biology

hat is gathered under the heading of “current theories of life” in a substantial recent

eview of the topic by Cornish-Bowden and Cárdenas (2020), holds more promise as it

efines life as a process enacted by a physical system: focussing on the difference between

he active process of being alive and the passive (e.g. decay) process of being dead.

he process of living counters the second law of thermodynamics by maintaining (and,

s a by-product of success, reproducing) the integrity of the very system that enacts

he process. Rosslenbroich (2016), quoting Hofmeyr (2007)(p. 217) provides a good

ummary: “for systems biology, the defining difference between a living organism and
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ny nonliving object should be that an organism is a system of material components that

re organised in such a way that the system can autonomously and continuously fabricate

tself, i.e. it can live longer than the lifetimes of all its individual components. Systems

iology, therefore, goes beyond the properties of individual biomolecules, taking seriously

heir organisation into a living whole.” Self-referential systems are highly characteristic

f life (Louie and Poli, 2011). In the face of the second law of thermodynamics as

ell as a variable environment, self-maintenance implies both self-regulation (multiple

omeostatic processes) and continuous (or at least frequent) re-construction of all of the

ystems parts: autopoiesis (Luisi, 2003; Varela et al., 1974; Zeleny, 1981) (these are not

he same - see e.g. Bich et al. (2020)). This in turn requires the system to complete at

east one thermodynamic work cycle (Kauffman, 2000); i.e. it must export entropy to

ts environment by degrading energy to counter the second law in order to do work (in

he thermodynamic sense). The work obtained from the closed thermodynamic cycle is

ealised as constrained (chemical) forces that together constitute the anabolic processes

f self-maintenance - see discussion of work-constraint cycles in (Moreno and Mossio,

015, Section 1.2.1). By this, the organism assembles its body parts from material

ound in its environment (anabolism) and breaks down degraded parts (catabolism)

o excrete them. These activities do not necessarily have to happen all the time, nor

ll at the same time, but they all have to happen at least some of the time during

hich the system can be claimed to be alive. The general concept of the organisational

pproach is summarised by Rosen’s (M ,R)-system theory (Rosen, 1985, 1991, 2000),

n which processes are abstracted to categories, in the mathematical sense. Rosen’s

deas have been developed further by several authors, notably here, Louie who in 2013,

h.13 applied it to “Relational Virology” and Hoffmeyr, who has provided a concrete

escription of the cell as a hierarchical causal cycle Hofmeyr (2017): these and related

nsights will be used further in the present work.

In the organisational approach, process is usually described in cybernetic terms, al-
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owing it either to be a cybernetic model of the organisation of material transformations,

r literally an algorithm (e.g. a computer program). Let us set the latter aside since

t will next be argued that life can only exist as a material system. The cybernetics of

ife can in principle be embodied by any appropriate substance (as long as it works),

ut a computer algorithm (such as part of Conway’s Game of Life (Gardner, 1970))

onceived and written by a human operator and running on a manufactured computer

oes not qualify because it has no natural independent existence: it is no less an artefact

f human technology than a lightbulb.

.2 Information embodiment and processing

ll known life is a cybernetic process embodied in material: it is an integrated combina-

ion of relationships among diverse molecular components. (We will see why this must

e so when both information and matter are identified as the ingredients of biological

unction). Embodied information underlies this diversity of molecular species and all the

elationships among them. Embodied information is the pattern in space (and time) of

nsembles of basic components (typically atoms), consistent with Landauer’s (1996) prin-

iple that all information is physical - see also Karnani et al. (2009). This is not merely

onceptual: using information theory, Jiang and Xu (2010) have calculated the amount

f information that is embodied in biological systems such as viruses and bacteria as a

hole (taking a topical example, the bat coronavirus Rp3/2004, embodies 5772 bits of

ffective information in a genome of 59472 bits, coding 13 different proteins). Crucially,

hough, the information Jiang and Xu (2010) counted was only enough to reconstruct a

irus given the amino acid and nucleotide building blocks: no virus contains the infor-

ation needed to make these, they are given by the host cell. The information embodied

y the shape of molecules can be estimated from their structural topology (Rashevsky,

955) and that of the nucleotides in RNA and DNA has been calculated by Sarkar et al.

1978), with other molecules and a more general treatment provided by Bonchev (1979,
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003); famously, Morowitz (1955) calculated the total embodied information of a typical

acterial cell to be 4.6× 1010 bits.

Embodied information is a familiar idea in relation to ‘information polymers’, but

uch more general: the type on printed pages, the magnetic stripes of hard disks, the

harge variations in silicon memory chips and the electron cloud shapes of all molecules

nd other physical entities embody information in the spatial arrangement of their parts

Hazen, 2009; Rashevsky, 1955). Known life is information that is embodied in molec-

lar shapes, in the act of processing information by pattern matching to synthesise,

eplicate, detect, disassemble and organise itself as a system composed of the material

arts which embody the information it processes (Farnsworth et al., 2013). The ‘lock

nd key’ mechanism underlying much of biochemistry (not just receptors and ligands)

xemplifies embodied pattern matching: steric and charge-distribution complementarity

mong molecules finds the maximum mutual information among molecules. The infor-

ation embodying pattern of a physical entity is termed its form in what follows (see

lso Cademartiri et al. (2012) for discussion of the role of shape in self-assembly).

The information embodied as a particular configuration of molecules of a biological

ystem at a particular time can be regarded as its global system state at that time. This

s the combination of the form of its genome and the form of the set of all its other

olecules combined. The number of possible states was termed the biological entropy

y Jose (2020), who specified it as the product of number of possible genomes and

he number of configurations of sensory states of the system that could embody time-

ependent information about itself and its environment (where in this context ‘sensor’

eans a set of molecules whose state depends on the the states of other molecules in

he system). Jose (2020) summarised the total information capacity of a hypothetical

opulation of organisms, with a genome encoded by an alphabet of X base-pairs (= 4

n known life) and length L, and given Si different sensors s1 · · ·Si) for each ei of a total

umber B of entities (sets of molecules) to sense, in which the jth sensor detects Pj
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ttainable and detectable levels (i.e. values) of ei. The upper bound of the population

nformation capacity he calculated as:

Ctot = XL
( B∑

i

ei

Si∑

j

sj

Pj∑

k

pk

)
. (1)

This information capacity (which counts every possible configuration of organisms

ith the specified complexity) acts as a dynamic working memory for the system that is

onsidered to be processing information. XL counts all mathematically possible genome

equences, far more than biologically meaningful, but by specifying a particular genome

rom among all XL, the information of the genome is maximised in the Shannon (in-

ormation entropy) sense - as calculated by Jiang and Xu (2010). Epigenetic switching

nables state changes within the genome of all cellular organisms (Holliday, 2006), open-

ng the way for information processing, but for an individual whose genome constitutes

static instruction set (i.e. it is not susceptible to changes in the system nor the envi-

onment), implementation of the instructions is as an automaton: it is part of a linear

ausal chain. In this static genome case all dynamic information processing must be

ound in the interdependence (sensing) of the non-genetic molecular configurations (we

ould say cytoplasmic system within cells). If that is absent as well, we are left with

static information statement, which is the characteristic of non-living entities, con-

rasting with the dynamic information processing characteristic of life. In other words,

urely genomic information (XL) is only effective at the evolutionary scale (the focus of

ose’s 2020 study), or when it is combined with cytoplasmic molecular forms (e.g. when

virus accesses its host cell’s molecular machinery).

Information pattern matching (e.g. the sensory processing, referred to above) is part

f life, only if it is functional in the sense that it is a necessary part of a causal relation

ith the effect of contributing to the process of living as a whole (Farnsworth et al.,

017b). So information processing is only effective if it is causative and only functional if
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he cause is a contribution to the organisationally higher level process of life (Walker and

avies, 2013, 2017; Farnsworth et al., 2017a) (note that Mossio et al. (2009) more strictly

efined biological function as causal relations subject to closure). One implication is that

ife is a nested hierarchy of control structures in which obviously lower level interactions

xercise casual power over higher. The idea that higher levels can exercise causal power

ver lower (and the same) levels of organisation is still controversial, but supported by

everal key authors (Auletta et al., 2008; Ellis, 2012; Jaeger and Calkins, 2012; Noble,

012; Walker, 2014; Walker et al., 2016). It is less puzzling when we consider the physical

asis of causation to find that embodied information is an elemental component, along

ith physical force, of all that appears to be cause, as explained next.

.3 The physical meaning of causality: form and function

he philosophy literature includes a large, venerable and diverse cannon on causation.

or scientists, interest begins with Aristotle who separated the notion often traslated

s ‘cause’ into four categories: material, efficient, formal, and ultimate (final cause). In

is account, causation involves all four because they are the four natures (or aspects) of

ausation. Most modern philosophers seem to pay little attention to this as by far the

ajority of their current work concerns efficient cause only, which is usually taken to be

he only true cause (many believe the other three were not really causes at all). Efficient

ause is the dynamic action of transformation, moving or converting one thing to another

nd it coincides with a rough ‘common sense’ idea about causation. Although several

rominent philosophers agree with Bertrand Russel, (1912-1913) whose highly influential

aper concluded that cause was a figment of the imagination, most practicing scientists

till need and use the idea: as Nancy Cartwright argues, science would be “crippled”

y abandoning cause (Cartwright, 1979). A rather similar situation has arisen around

he question of what is life: many philosophers challenge the fundamental basis for

he question, whilst others (closer to the practice of science) have defended it as an
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perational concept (Bich and Green, 2017).

.3.1 Efficient cause, incorporating formal and material cause

et us here adopt a physicalist view, which claims that in the physical (material) world,

hat we observe as efficient causation is always the action of a physical force (usually,

ut not necessarily on matter). More precisely, the physical mechanism behind cause is a

ransfer of a conserved quantity (energy, momentum or something more exotic like charge

r spin) in a material system according to the transference theory of Salmon (1984) and

owe (2000) which posits that there must be a spatio-temporally continuous connection

etween one thing X and another Y involving the transfer of energy, momentum (or

ther conserved quantity) for X to cause Y (the connection is via a force field). Physical

orces all either cause movement or its prevention and all have an orientation (direction)

n space. The realised movement (or prevention of it) is the vector sum of all the physical

orces acting on a particle at one time. In the absence of constraints the vector sum of

orces acting on each member of an assembly of particles is random and accordingly has

o (ensemble) effect, other than pressure (Fig. 1 A).
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A B C

D

phospholipid layer ligand gated ion channel

Ion dependent protein 
conformation

messenger molecule

igure 1: The informational building blocks of final cause. A) random forces are B)
onstrained by form (in this case a crystalline lattice). C) more information rich form,
s in these bio-molecules can result in e.g. ligand-receptor binding as the shapes and
lectrostatic fields match (mutual information maximising) and a network of these may
ct as the components of a detection-signalling pathway (D), which has function in the
ontext of e.g. homeostasis for the whole cell, implying a final cause ((C) can be regarded
s a magnified view of the messenger molecule attaching to the ion channel’s receptor
ite).

Constraints acting on forces reduce the range of directions in which forces can act

mong an assembly of particles. Forces can only be constrained by the relative position

f the particles from which they emanate; indeed it is these positions that determine

he directions in which forces act. As stated earlier, the positioning of the constituent

arts of a system is embodied information which here is termed form. When particles

re positioned in a form that is not random (i.e.the information necessary to describe
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t is mathematically compressible), then the form has a coherent spatial structure: its

patial autocorrelation is non-zero and more generally the form has non-zero spatial

utual information (which is what is being termed ‘coherence’ here) (Fig. 1 B). This is

he basis for effective information (Szostak, 2003). It is effective because it constrains

orces in a way that gives them its coherence: specifically the directions of the forces are

orrelated by the mutual information of the form. The result is that forces, no longer

andom and merely producing pressure, act with coherence so that they are available

o perform work and hence functions (e.g. the cylinder and piston of a steam engine

s a form which constrains the kinetic force of steam molecules to act in a coherent

irection producing a functional motion). This coherent action is nothing other than

hat Aristotle termed efficient cause: the action that brings about a transformation (or

esists it). Hence efficient cause can be interpreted as the constraint of physical forces

y form: force acting under formative constraint gives efficient cause. An important

xample of this basic unit of efficient cause in practice is the physical configuration of

toms in biologically relevant molecules that, as form, constrains intermolecular forces

o act in coherent ways (coherent because there is non-zero mutual information) with

ffects such as binding and its consequences such as conformational changes (Fig. 1 C).

raditional material cause, deriving from the composition of substances either acting

r being acted upon by efficient cause can be seen in modern terms as a ‘micro-formal’

ause, since it is formal cause at the atomic scale. When high level (inter-molecular)

orm connects several material forms together, it can become an effective subsystem of

iological metabolism, or perception and/or action, such as the ligand-gated channel

ystem (Fig. 1 D). It is then clear that efficient cause is the product of material cause

micro-form) and information (I) , which must be embodied as form in a structure that

s not transformed by the process (e.g. a catalyst). More formally put as a mapping,
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osen (1989) suggested

f : A× I → B

(a, i) 7→ b = f(a, i)

(2)

to explicitly incorporate information into efficient cause, where it plays the role of

ormal cause, with reference to his relational diagram for an (M,R)-system (Fig. 2 a),

n which A → B is the set of material transformations from A to B. Hofmeyr (2007)

ecognised that since I is a contribution to efficient cause along with f , it should be

ssociated with f , not A, (so rewrote this as (his Eq. 4):

(f, i) : A→ B

a 7→ b = (f, i)(a),

(3)

which recognises information as the formal cause in the generation of efficient cause

note, (f, i) is an element of f × I, the combination denoting i informs f). This re-

ormulation of mappings was developed much further by Hofmeyr (2018), where formal

nd efficient cause were resolved from the single entity (informed efficient cause) to sepa-

ate entities (efficient,formal) cause where the formal is identified as a “choice mapping”

hich selects the particular f from a set of possible. In biological systems this infor-

ation is increasingly being identified as a code in the sense used by Barbieri (2015): a

et of arbitrary rules establishing a mapping between two independent systems, which

n biological systems has the effect of “translating an organic sign into its biological

eaning” Barbieri (2015) quoted in Hofmeyr (2018).

This description was shown in Hofmeyr (2018) to be compatible with Von Neu-

ann’s constructor theory of self-reproduction (Von Neumann and Burks, 1966), which

epresents reproduction as (P + Q + R) + φ(X) where P is a ‘fabricator’, φ(X) is the

blueprint’ (information content) of machine X, Q is a ‘blueprint copier’, R a controller

nd for self-reproduction, X will be (P + Q + R). That is, there needs to be a fabri-

ator and information about what to fabricate and both have to be duplicated for self
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eproduction. Living systems conform to this arrangement by embodying I = φ(X) in

he form of (P + Q + R). The necessity for information to be embodied and the real-

sation that efficient cause is the combination of constraint by form on configurations

f matter make it certain that living things are necessarily material objects embodying

rganisational information.
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igure 2: a) Rosen’s (M,R)-System drawn as an autocatalytic network (taken from
árdenas et al. (2010), Fig 1.C., in turn from Goudsmit (2007)). Solid arrows represent
aterial causation (e.g. chemical transformations) and dashed arrows show efficient

ausation (e.g. catalysis). We can interpret material causation as the configuration of
atter plus the matter itself and efficient causation as the information embodied in form

lus the electrical (chemical) forces that this information constrains to enact the ma-
erial transformations. An alternative biochemical representation of this was developed
y Hofmeyr (2017), summarised in his Fig. 7, which is reproduced below as Fig. 3. b)
nother interpretation of the (M,R)-System which emphasises the cyclic character and

eparate, but connected efficient and material causes (hierarchical cycle) - redrawn from
ouie and Poli (2011), is just fig. (a), unravelled. c) This simplified sketch of Hofmeyr’s
iochemical representation, based on his Fig. 9. in Hofmeyr (2007) shows how closely

t matches the (M,R)-System, though different in derivation. Again, solid arrows de-
ict material transformations and dashed represent catalysis. Hofmeyr emphasised that
rotein folding and self-assembly of supramolecular structures are an essential part of

iving autopoiesis, often neglected in more abstract representations. Metabolic enzymes
re efficient cause for constructing the biochemical building blocks of the cell, including
f themselves and ribosomes. Ribosomes, tRNA, mRNA and associated proteins (the
ranslation system) are efficient cause for transforming the building blocks into functional
omponents, including themselves. DNA and transcription have deliberately been left
ut in this reproduction- they complicate the model without adding anything relevant
o the current discussion.
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.3.2 Final cause - the taboo we cannot escape

hat leaves only final cause, which pre-supposes a ‘purpose’ and that is necessarily sub-

ective since purpose can only be in the view of the agent under study: purpose cannot

e defined without reference to the agency to which it belongs. The implied subjectivity

ight be thought enough to rule it out of science, but in the case of organisms (uniquely)

t is possible to say “objectivity is achieved through recognising this inherent subjectiv-

ty” (Bueno-Guerra, 2018), through the application of von Uexkül’s Umwelt concept,

ecause organisms at the very least create the appearance of autonomous agency. This

ppearance is shown to be substantial, not an illusion, when organisms are revealed as

ystems of ‘self-entailment’ (Rosen, 1985; Kineman, 2011), meaning that they exist by

irtue of closing their loop of efficient causation.

In all cases other than for organisms, explaining actions by referring to the ‘vew-

oint’ of the system is unscientific anthropomorphism, but uniquely in the case of living

rganisms, explanations are at best incomplete without such reference. Biology requires

richer causal language solely because of the peculiar attribute of organisms appar-

ntly being causal agents (Bich and Damiano, 2012; Friston, 2013; Froese et al., 2007;

auffman and Clayton, 2006; Varela, 1979; Vernon et al., 2015). This causal agency

rises whenever a system embodies autonomous functional information, in particular a

omeostatic set-point (Farnsworth, 2018, 2017) (since functional information is causal

nformation where the effect is a contribution to the process performed at the organisa-

ional level of the system that embodies it (Farnsworth et al., 2017a)). The autonomy

f the functional information depends on there being circularity of causation in the con-

truction of the system in which it is embodied: without the circularity, the functional

nformation would be causally linked to (an effect of) the system’s environment. In-

eed, it is only with circular causation that internal can be distinguished from external

nd only with that distinction can information be autonomously embodied by a system

Bertschinger et al., 2008; Bich and Damiano, 2012; Froese et al., 2007; Kirchhoff et al.,
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018; Vernon et al., 2015).

Agency is only superficially accommodated by the ‘machine metaphor’ (Marques and

rito, 2014) in which actions are mechanistically determined by complicated sequences of

olecular interactions which occur within, and are part of, the organism (e.g. Hawkins,

984; Capra and Laub, 2012). In that sense, agency is a proximal cause, though it rests

n underlying physical processes. For those who reject the idea of organism agency

i.e. organisms as the initiating cause), evolution is evoked to explain the successful

unctioning of the perception-action ‘machine’: every part of a machine performs a

articular role within it and is therefore functional with the implication that it must

hereby have a purpose. Natural selection has evolved the parts whose functions are

o more than the ‘appearance of suitability’, selected by competitive replication, so

he ‘ultimate explanation’ for action (behaviour) is evolution according to these critics

Fiore et al., 2015). This is a thin argument: as Rosen (1985) pointed out, evolution is

phenomenon of life, not the other way around. Even though organisms are evolved

o perform fitness enhancing actions based on their perceptions, we cannot escape the

oint that it is the organisms performing these actions, not evolution, nor the underlying

hysics (Farnsworth, 2018). In short, living organisms are unique in having agency and

hey need causal closure to achieve it Moreno and Mossio (2015); Mossio et al. (2009,

013).

.4 Closure and its consequences for life

etabolic closure (Letelier et al., 2006, 2011) is the closing of a chain of efficient cau-

ation that leads to the maintenance of a living system through biochemical processes.

ecalling that efficient causation requires both information-based constraint of forces

nd material (the source of those forces), it therefore means closure of informational

onstraints (Montévil and Mossio, 2015) and the processing of material (hence the bio-

hemistry). More practically, this means that all the catalysts necessary for the life of
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system (organism) are produced and/or maintained internally by the system (using

aw materials from its environment). The catalysts are produced by the action of one

nother, through the construction of their forms by assembling molecular embodiments

f information that has already been embodied within the system (Fig. 3).

nutrient
transporters

metabolic
enzymes

transcription
enzymes

ribosomes

chaperones

electrolyte
transporters

DNA

mRNA

tRNA

poly-
peptides

electrolytes

nutrients

aminoacyl-
tRNA

amino acids

intracellular
milieu

rRNA

igure 3: A biochemical overview of the life of the cell, reproduced from Fig. 7 in
ofmeyr (2017). Dotted arrows add to the solid (material cause) and dashed (efficient

ause) to indicate formal cause by sequence information (functional code). Hofmeyr
2017) emphasises the catalytic role of the intracellular milieu (especially including
haperone molecules) as providing an environment in which peptide folding (tertiary
tructure) leads to functional forms of proteins, especially enzymes and transporters
grey box). This biochemical overview demonstrates the property of closure to efficient
ausation in more detail than that of Fig. 2b.

This is initiated by pattern matching through genetic transcription and translation,

ut also includes purely biochemical chains of (spontaneous) anabolic reactions. We can

ee how DNA and RNA provide a template (pattern) which is matched in proteins that
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n turn function in the fabrication of other necessary proteins - and also the compo-

ents from which they themselves are made. Some of these proteins are the material

orms needed to maintain and replicate the DNA and RNA templates. That is the ba-

is of the closed loop. Hofmeyr (2017) emphasises the causal separation between the

abrication of unfolded, unassembled biopolymers (covalent chemistry) and their forma-

ion into functional components by supramolecular chemical processes, this enabled by

he highly specific chemical environment, including chaperone molecules, proteasomes,

plicesomes as well as small molecules; collectively the intracellular milieu. The milieu is

tself maintained by molecular transporters (transmembrane selective channels), which

hemselves are assembled and made functional by the same processes. In the catalytic

ransformation of nutrients into biopolymers we see a 7→ b = (f, i)(a), where i selects the

unctional catalyst necessary for each and is materially embodied in the molecules of the

ntracellular milieu. Life is necessarily physical and material, as well as informational.

dentifying life should therefore include requirements for the selection of material build-

ng blocks from the environment (nutrients), their processing into functional proteins

nd the organisation and regulation of these processes into a closed causal loop which

esults in reproduction (the copying of the material form, together with the organisa-

ional information, including its information template - the nucleic acid ‘blueprint’). Let

s now see to what extent known viruses match such a description.

What is a virus?

ur knowledge of viruses has progressed tremendously in the past twenty years, leading

any to consider revision of what we mean by the term ‘virus’. In reply to Raoult

nd Forterre (2008), Wolkowicz and Schaechter (2008) claimed that the defining char-

cteristic of a virus is that it undergoes disintegration and reconstruction as entirely

eparate stages of its replication cycle. Still, the standard definition provided by Raoult
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nd Forterre (2008) stands: it is “a capsid-encoding organism that is composed of pro-

eins and nucleic acids, self-assembles in a nucleocapsid and uses a ribosome-encoding

rganism for the completion of its life cycle”, even though that excludes viroids and

ndogenised genetic material (inserted into host genomes). Claverie and Ogata (2009)

mphasised the diversity of what they considered organisms having a range of replica-

ion cycles, deeply rooted in the ‘tree of life’ - specifically not the virions for which the

erm ‘virus’ was first created and not mere ‘gene robbers’: whatever we call them, many

ave uniquely virus genes. The many giant viruses now discovered are remarkable in

reating an elaborate “viral factory that resembles a eukaryotic nucleus” (Suzan-Monti

t al., 2007) (cited in Said Mougari et al. (2019)) with which they deploy an impressive

ange of functional proteins (Brandes and Linial, 2019). Of key interest among these are

RNAs, ribosomal proteins and other translation and transcription proteins, all coded

ithin the virus genome (Schulz et al., 2017). None have been found with the full set

equired for independent reproduction, but the argument that viruses are incapable of

eproduction without the host’s translational machinery has taken a few steps of retreat.

ome giant viruses have been found with enough of their own transcription proteins to

erhaps transcribe independently within the virus factory and also have some metabolic

athway genes (see e.g. Schulz et al. (2017)), leading several virologists to say that

hey are equipped with “most functions traditionally attributed to cellular organisms,

ncluding: Protein translation, RNA maturation, DNA maintenance, proteostasis and

etabolism” (Brandes and Linial, 2019). For those virologists viewing viruses as ‘life’,

hey are united by having capsids but no ribosomes, while other domains of life have

ibosomes, but no capsids (Raoult and Forterre, 2008). This seems to imply an equiv-

lence (hence substitutability) between capsid and ribosome, presumably unintended.

ccording to the definition of life based on the theory of autopoiesis (Luisi, 2003; Varela

t al., 1974), both an enclosing physical boundary and a self-creating synthesis system

re needed - not one or the other. Within the organisational approach, the “relational
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irology” of Louie (2013) precisely interprets the virus as an ‘entailment network’ (the

nterconnection of causal necessities) coupled to the entailment network of a host cell,

trictly via genetic interaction - the replacement of genetic information in the cell. [ Im-

ortant conclusions: the virus contributes no material cause and its entailment network

s not cyclic ].

Viruses should not be considered exclusively parasitic as some provide considerable

dvantages for their hosts, in particular those phages that equip their prokaryotic hosts

ith defences against their eukaryotic host, increasing the virulence of the prokaryote.

or example the phage Sp4 gives a superoxide dismutase to E. coli helping them survive

xidative stress, whilst phage lambda gives both an adhesin to promote adhesion to

uccal epithelial cells and a new outer membrane protein that confers resistance to serum

omplement killing (many different host virulence enhancements are reviewed in Boyd

nd Brüssow (2002)). This leads some to think of the virus-host system as a composite

olobiont, but if it were truly integrated as a whole, then we would more reasonably

onsider the virus not as a life form in its own right, but rather as a part of the chimera

hich includes an extra-cellular phase. In the extreme, the virus is incorporated as part

f the host genome, entirely loosing its extracellular existence (e.g. as a transposon).

he idea that viruses could be life because they have to be considered in combination

ith their host does not seem to be a logical defence in any of these cases because

he virus loses its independent identity: it becomes a part of the host as much as any

ther genetic element (more generally Lopez-Garcia (2012) called this argument “alien

o logic”). The concept of partial autonomy in genome replication, used in this context

y Koonin and Starokadomskyy (2016), certainly accounts for the distinct identity of

he replicating unit, but this is no more than a local peak or plateau in the mutual

nformation of the genome of the host. The incorporation of viral genes into a host

enome is most evident and advanced among those transposons having a viral origin, for

hich the term ‘autonomy’ has the narrow technical meaning of possessing a transposase
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ene.

Many viruses with eukaryotic hosts will cause intracellular compartments to be made,

ithin which viral replication and assembly takes place, shielded from host defences. A

road range of compartment types, from relatively indistinct viroplasm formations to

he most organised viral factories have been identified (reviewed by den Boon et al.

2010) and Novoa et al. (2005)). In the few cases of giant viruses so far know, the viral

actory can be a place where translational molecules of viral origin are highly expressed

Rodrigues et al., 2020), but so far, perhaps crucially, no viral ribosomes or functionally

quivalent components have ever been detected (in their closing paragraph, Rodrigues

t al. (2020) speculated that it was just a matter of time before they are). Also, the

eproductive activities taking place within the viral factory require an energy supply

nd this is not provided by the virus: several with eukaryotic hosts have been observed

o recruit host-cell mitochondria to the site (Novoa et al., 2005) or manipulate host

etabolism to obtain energy (Chuang et al., 2017; Nagy and Lin, 2020), as they also

anipulate host metabolism to produce e.g. viral lipids Rosenwasser et al. (2016). This

eaves us where we started: a virus is a biomolecular system having many of the basic

omponents of an organism, but lacking its own ribosomal machinery or any equivalent,

t depends on a ribosome encoding organism to complete its replication cycle, (Raoult

nd Forterre, 2008) as well as needing its host to supply energy and precursor molecules

or reproduction.

Do any virus-like systems achieve closure to efficient cau-

sation?

.1 Evidence in the virus replication cycle

o attempt an answer, the first thing we must do is interpret the replication cycle of

he virus as a causal network. The general replication cycle of a virus consists of at-

23

Jo
ur

na
l P

re
-p

ro
of



t489

a490

w491

s492

c493

e494

v495

h496

g497

T498

a499

i500

t501

i502

d503

s504

t505

H506

I507

s508

c509

R510

i511

w512

m513

(514

t515

Journal Pre-proof
achment, penetration, replication, assembly and release phases. For both attachment

nd entry, recognition of the host molecules is achieved by molecular pattern matching:

hen mutual information reaches a chemically determined threshold, the penetration

tage is triggered. There are several kinds: entry may result from a conformational

hange in the capsid (in pore-mediated penetration); receptor mediated endocytosis,

.g. clathrin mediated, which recruits adaptor proteins from the host to help form a

esicle that carries the virus into the host cell; or the virus membrane may fuse with the

ost cell membrane (as in coronavirus). This stage may also involve signalling, but is

enerally thermodynamically spontaneous, even in the more complicated case of e.g. the

4 phage with its quite elaborate mechano-chemical system (having the appearance of

cleverly designed mechanism). Thus the first two stages are brought about by mutual

nformation between the form of the virus and that of its host, presumably created by

he evolution of the virus (perhaps co-evolution with the host). The virus DNA or RNA

s then released into the host cytoplasm (via spontaneous chemical mechanisms that also

iffer among virus types). mRNA is needed for replication and in the case of positive

trand RNA viruses (Baltimore class IV), this is directly available from the virus. By

he current definition (see above), no virus has, or can autonomously create, ribosomes.

ence the viral mRNA relies on host ribosomes for translation. Picornaviridae (Class

V) are among those using an internal ribosome entry site (IRES) to enable host ribo-

omes to translate their RNA into a giant polypeptide, which in the first clear case of

ircularity, self-cleaves by internal proteases into functional proteins, one of which is the

NA-dependent RNA polymerase. Another product of the polypeptide auto-cleavage

s itself a protease which goes on to create the other functional proteins - a protease

hich acts upon itself. In terms of causal links, this amounts to viral formative infor-

ation acting upon itself and being acted upon by part of the host’s formal information

from the ribosome). This causal arrangement is true for all known viruses, reverse

ranscription and the contribution of translation machinery by giant viruses included.
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peculatively, translation might be achieved by some (giant) viruses using entirely viral

RNAs, chaperones and associated enzymes (Abrahão and et al., 2018), but a source of

TP is required and in all known cases supplied by the host (Raoult and Forterre, 2008;

agy and Lin, 2020). Finally, virion release is achieved through one of lysis, exocytosis

r budding. In each case, material is recruited from the host to perform the release. Ly-

is usually involves the late translation of lytic genes using host material to construct the

ytic agents; budding modifies and commandeers the host cell membrane and exocytosis

a normal cell process) is hijacked by some viruses (e.g. the α-herpesvirus pseudorabies),

sing cellular material and information.
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igure 4: Three main stages of the generalised virus replication cycle showing causal
inks. In attachment / penetration, virus (V)and host (H) forms combine as mutual
nformation (MI) leading directly to viral genes entering the host. Viral genes consti-
ute information which acts as formal cause in conjunction with the host ribosome (the
fficient cause) to transform materials supplied, along with the necessary energy, by the
ost (material cause), leading to the replication and assembly of new virions (template
eplication being repeated formation of MI). Viral genes, as formal cause, act on ma-
erials supplied by the host to either make lysis molecules that transform the host into
lysed cell, or form the structures needed for budding or exocytosis (which is a host

unction).

What we see in this generalised virus replication cycle, is that each stage is a mech-

nistic link of a linear causal chain that depends on both the virus and its host (fig. 4).

n particular, the virus contributes functional information (embodied by its genome),

ut lacks both the necessary material and energy (for entropy reduction) to complete

he physical replication cycle. The virus therefore influences efficient causation at each

tage of its replication cycle, but without the material and energy supply it is not an
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ndependent source of causation at any stage. This lack of independence in generating

auses precludes it from achieving closure to efficient causation for the simple reason

hat it is not a sufficient source of cause. The virus, taken alone, lacks both Kauffman’s

hermodynamic criterion (Kauffman, 2000) and Rosen’s ‘closure to efficient causation’

riterion (Rosen, 1991) for defining life. In partnership with its host organism, the virus-

ost complex meets these criteria, but Lopez-Garcia (2012) was surely right to call that

otion illogical and invalid when considering the living status, specifically, of the virus.

The virus cannot control the environment needed for reproduction (it relies on the

omeostasis of the host cell), nor can it select the necessary materials from its environ-

ent (it relies on the host cell to provide these). The fact that it lacks the genes for

ibosomes is not of critical importance, even though it is part of the current definition

f virus. That is because even with ribosome coding, it would remain an information

arasite since none of its information would be effective (causative) without appropriate

aterial to constrain. For the same reason we do not accept as living any so-called au-

onomous robot which depends on another system (people) to make its constituent parts

this being true even if the robot were one that assembles its own parts, since it would

ely on people to extract and process the raw materials -a point made by Hofmeyr’s

2007) factory analogy).

.2 Ribosomes and origin hypotheses: lack of closure is an efficient

parasitic strategy

he lack of any coding for ribosomes raises an interesting question, because in principle

here is no impediment to the required genes being acquired and incorporated. Depend-

ng on which of several hypotheses about the origin of viruses is true, ribosome genes

ay have been jettisoned (according to the ‘regression hypothesis’), or never present,

ollowing either the ‘escaped genes’ hypothesis or the ‘early virus’ hypothesis in which

iruses may have preceded cellular life in the evolution of early replicators - see (Farias
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t al., 2014, Fig 1). Given this, it is possible to speculate that proto-life (e.g. the RNA

orld) took two different courses: one developing via primitive ribosomes into cellular

ife and the other, lacking any translational machinery of its own, rapidly developing

longside as an RNA-based information parasite. In this scenario, leaving translation to

he host may be the virus solution to Eigen’s paradox: no efficient enzymes are possi-

le without accurate information templates, but no accurate information templates are

ossible without efficient enzymes (described with historical detail in Cornish-Bowden

nd Cárdenas (2020)). It is now understood that ribosomes evolved by a series of ad-

itions to the translational core containing the peptidyl transferase centre (Fox, 2010;

etrov et al., 2014), which is considered to be the oldest translational system (Petrov

t al., 2015), hence the bridge between a proto-biotic RNA world and the biotic ribonu-

leoprotein world (Farias et al., 2017), thus preceding genetic sequence-based template

eproduction (Farias et al., 2014). Coding the ribosome has perhaps never been part of

he virus strategy because it is more efficient to rely on the host to go to the expense

f maintaining such error intolerant and relatively large structures (requiring more than

he error catastrophe limit of circa 200 base-pairs (Maynard Smith and Szathmáry, 1995,

p 44-49)). Even if primordial replicators were the origin of viruses, what is left of them

n modern viruses does not posses closed causation, since a host organism is always

ecessary to complete the replication cycle. Under the other two popular virus-origin

ypotheses: if viruses are stripped down former organisms, the same holds and if they

re escaped genetic replicators, again they have never been closed to efficient causation.

.3 Can closure to efficient causation be quantitatively detected?

he only way to detect and perhaps quantify cause is through intervention (Pearl, 2009;

oodward, 2003, 2016). So far the methods offered have almost exclusively concentrated

n linear chains of causality, or systems that can be represented by directed acyclic

raphs.
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.3.1 Markov blankets

riston (2013) proposed a Bayesian statistical approach (used for time-series data) to

dentify the characteristic organisational structure of life with a Markov blanket. It relies

n partitioning causal subsystems which describe causal graphs of system states (hence

ot easily extended to ontological causal problems). The Markov blanket approach was

nitially proposed in the context of Bayesian networks of statistical relationships by Pearl

1988) and has been applied to the study of self-organisation in neural networks, (e.g.

irchhoff et al., 2018). Specifically, a Markov blanket is a set of vertices in a directed

robabilistic graph, which separates two other sets by conditional independence (one set

s independent of the other, given the blanket). It can therefore be used to imply the

xistence of internal states, distinct from external states, such that internal states are

ot causally dependent on external ones. This is a tempting prospect because the causal

oundary identified by a Markov blanket could coincide with the necessary internalisa-

ion of causality of autopoiesis and autonomy and entailed in cyclic causality (Palacios

t al., 2020). Unfortunately, Bayesian networks are meaningful only for directed acyclic

raphs, so although Friston (2013) used them to show how a Markov blanket emerges

rom a control system that seeks to minimise free energy by active (and embodied) in-

erence (Conant and Ashby, 1970), his paper did not show that the Markov blanket

ndicates closure to efficient causation; indeed his analysis referred to the self-regulation

f a system connected to a variable environment, not the self-making of that system.

espite that, we can usefully interpret the cell-virus system via a cyclic graph model

Fig. 5).
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Nutrients E

R

vRNA

P

R

AN

B

vE

Replication

with tRNA

E Enzymes

N Nucleic acids

A Amino acids

R RNA

P Polypeptides

B Ribosomes

(VR)

(VE)

igure 5: The host-virus system redrawn as a directed (cyclic) graph for causal analysis
full lines show material cause; dashed show efficient cause and virus contributions in
rey). Note the causal loop of the cell cycle { (N A) - R - B - P - E - (N A) }. The
pparent material loop { P - E - A } is not closed since B is also necessary for P. Similarly,
NA replication { RNA - RNA } is not closed since N is necessary for RNA synthesis.
utrients are necessary for the cell cycle as well as (not shown) energy; Nutrients are

abelled without a box to emphasise the system is materially (and thermodynamically)
pen. Virus can contribute viral enzymes vE (VE) as well as vRNA (VR), these too are
abelled without a box since the cell is open to these foreign contributions. Note, this
raph cannot be treated directly as a Bayesian network because it is cyclic and cannot
e treated directly as a Markov random field model because it is directed.

In principle, we could factorise the probability (p) of the graph, taking the directed

dges as conditionals, e.g. for B:

p(B) = p(P |{B ∧A}) . p(R|N), (4)
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but the cyclicity makes the full factorisation of {N,A,R,B, P,E} a tautology in

hich p = 1 ∀ nodes; i.e. cyclic Bayesian networks do not make sense. We can, instead,

reat the network as a Markov random field (MRF) by abandoning the directedness so

hat edges of the graph represent potential functions (hence for the following analysis we

hould ignore the arrows in the graph). Labelling the set {N,A,R,B, P,E} = S (and

or clarity relabelling the component parts N and A collectively as C and the nutrients

s n);

p(S) ∝ φ(C, n) φ(R,C) φ(B,R)) φ(B,P ) φ(P,B) φ(P,C) φ(E,P ) φ(C,E), (5)

in which each φ is a potential function relating variables in the factorisation. In

eneral, factorisation of an MRF (with α as a constant) has the form:

p(S) = α
∏

i∈Q
(G)φi(xi), (6)

here Q is the set of cliques, defined as a subset of all the nodes in the graph (G) for

hich every distinct node is adjacent, i.e. for every pair of nodes u and v in the clique

, u 6= v and the edge ūv ∈ E(G), the edge set of G, so all the nodes in Q must be

onnected by an edge in G. Identifying the cliques in the cell-cycle graph, reduces Eq. 5

o:

p(S) = α φ(C, n) φ(R,C) φ(B,R)) φ(B,P ) φ(C,P,E), (7)

and to include the virus, we just add its contributions:

p(SV) = α φ(C, n) φ(R,C) φ(B,R)) φ(R, VR)) φ(B,P ) φ(C,P,E) φ(E, VE)). (8)
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With this, we can identify the separating subsets between all pairs of subsets in G

hat make these subsets conditionally independent (conditional in the sense that only

y specifying the values of the separating subset do we make one member of the pair

ndependent of the other). In general, though, we can use the following local Markov

roperties of the MRF: i) all non-adjacent variables are conditionally independent given

ll other variables and ii) every variable is conditionally independent of all non-neighbour

ariables given its neighbours, which in turn defines a Markov blanket for every variable.

n other words, in the MRF, for any node, there is a Markov blanket consisting of all

he neighbours of that node (i.e. all the nodes it is directly connected to). That is of

onsiderable use in the design of artificial neural networks or the study of real neural

etworks when the values represented by nodes are measurable variables (as in Friston,

013; Kirchhoff et al., 2018; Palacios et al., 2020), but in the present application, we

re just borrowing the mathematical structure to identify dependencies in the cell-virus

ystem. All we need to know about the local Markov properties is that they tell us that

he presence and/or functioning of a focal node is entirely determined by specifying the

tate (presence or absence / functional or not) of its neighbouring nodes. Taking B, the

ibosomes, for example, we can see that they are not functional if either or both of P and

are not functional, irrespective of whether vRNA is functional - and we do not need

o enquire further into the presence of nutrients or functioning of metabolic enzymes.

ore significantly, we can see that no function of the system is dependent on any of the

iral contributions, other than viral replication, which in turn is strictly dependent upon

hem, e.g. viral reproduction strictly depends on the production of N (nucleic acids).

his is of course just a formal way of saying that the virus is strictly dependent on the

ellular host, but the host is strictly independent of the virus: we have not advanced

uch by using an MRF model.

To be fair to those pursuing the Markov blanket approach, the acyclic restriction can

e lifted by explicit use of a dynamic system model (clearly ẋ = f(x) is causally cyclic
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ut solvable). For example, Dynamic Causal Modelling (DCM) (Friston et al., 2003)

nables dynamic causal analysis of Bayesian networks. Equations of motion have to be

pecified and the dynamic system allowed to follow its trajectory in time to reach an

ttractor, which then describes the causal relations throughout the dynamic network (di-

ected cause-effect dependencies and conditional independencies) as a hypothesis which

s tested against time-series data collected from nodes in the system. DCM therefore

nvolves comparing rival plausible models of causal structure with observed time-series

f variables from within the system (an approach demanding tremendous detailed speci-

city). Friston (2013) used a more general (stochastic) dynamic causal model, given a

arkov blanket, to show the emergence of perception from an embodied control system

perating by free-energy minimisation in the context of a varying environment that sep-

rates out as a set of external states Ψ, leaving internal states λ ∈ Λ isolated by the

arkov blanket that itself is partitioned into sensory states (s ∈ S) and active states

a ∈ A). The internal states self-organise in conjunction with the active states (following

he free-energy minimisation of the sensory states) to become an embodied perception

f external states (Friston, 2013, Fig.1). To apply such a model to a cell-cycle seems a

aunting task and no result is presently available, but it can be noted that a virus is

ot obviously self-controlling, or seeking to minimise free-energy or any other potential

unction, nor is it obviously in possession of a Markov blanket.

.3.2 Integrated Information Theory

ather more promising for the present purpose is the analysis of causal graphs using

ntegrated Information Theory (IIT) (Tononi, 2004, 2008; Oizumi et al., 2014; Marshall

t al., 2018; Hoel et al., 2016) (originally intended for understanding consciousness),

ecause it has already proved practical in the quantification of causal independence in

yclic causal architectures and the identification of the internalised information associ-

ted with them (Albantakis et al., 2014; Albantakis and Tononi, 2015; Marshall et al.,
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018, 2017; Juel et al., 2019). Using this, the hope is that the qualitative question of

hether viruses can be considered alive could be reframed as the quantitative question of

ow much of the virus replication cycle is causally independent of its host-environment -

nd how much it is a source of cause (as constraining information) in that environment.

IT determines the causal structure of a system by simulating its perturbation in every

ossible way (so is very computationally expensive). Its overall measure of integrated

nformation (Φ) gives the intrinsically irreducible causal power of the system as a whole,

n the sense that if any partition of the system into two parts makes no difference to

ts cause-effect structure, the whole is reducible to those parts (hence the term ‘inte-

rated’). One obvious test here is to partition a virocell (the intracellular form of the

irus including the its reproductive components - (Forterre, 2013) ) into its virus and

ost cell parts to determine the causal integration of the whole.

The network of Fig. 5 (without virus) was translated into a discrete Markov Boolean

ystem (Fig 6) in which 1 (ON) represents ‘exists’ and 0 (OFF) represents ‘does not

xist’. Nodes were all represented as AND mechanisms (using the language of IIT from

izumi et al. (2014)), since the existence of each depends on all its inputs being from

xisting (ON) nodes. We should take care to remember that network models of this kind

re designed to represent state dependencies among existing entities, rather than their

xistence or otherwise.
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E Enzymes

F Nutrients

C Components

R RNA

P Polypeptides

B Ribosomes

F
ON

C
AND

E
AND

P
AND

R
AND

RNA
AND

B
RAND

vE
ON

vRNA
ON

igure 6: A Boolean network model of the system (Fig 5) for IIT calculation, using
ogical AND as mechanisms for all dynamic nodes, represent the requirement for all
heir inputs to be ON for them to exist. Note nucleic acids and amino acids are lumped
ogether as components C. Nutrients (F for food here) and supplied RNA are considered
xternal (provisions) so fixed ON (indicated by shading). The unshaded nodes represent
nternal mechanisms of the cell. Viral RNA (vRNA) and enzymes (vE ) are external and
dentified by dotted causal links. vRNA and vE are fixed ON to represent a virocell
virus infected cell), otherwise the are fixed OFF.

Boolean networks follow inexorable dynamics from any initial condition (a starting

tate specified by the set of node values – e.g. for nodes R, C, E, P, B, we could start with

1 0 1 0 0} ) and converge onto at least one attractor: either a fixed point where no further

hanges to states occur, or complex, where dynamics follow cyclic or chaotic variations

Kauffman, 1969). The dynamics depends on the update algorithm; in the simplest case

his is synchronous (all nodes updated concurrently). Asynchronous models are usually

referred for biological network representations because typically each node has its own

haracteristic timescale, but in the present application which is rich in auto-reflexive

elationships (causal looping), synchronous seems reasonable (we will soon see why it is
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recisely correct). Various methods have been developed to reduce Boolean networks to

heir effective equivalent (Matache and Matache, 2016) by eliminating simple mediator

odes (single input, single output, e.g. node E (without virus)) and ‘stablized nodes’

hich reach a fixed point irrespective of timing and initial condition). Of most relevance

or the present (quite simple) networks are the (widely used) algorithms proposed by

aadatpour et al. (2013) for eliminating mediator nodes and stabilised nodes. The logic

f the network (Fig. 6) can be written as:

G = { R⇐ (C ∧ RNA); C ⇐ (E ∧ F ); E ⇐ P ⇐ (C ∧B); B ⇐ (R ∧ P ) }, (9)

where ⇐ denotes one sided logical equivalence (e.g R ⇐ C means R copies C). If

utrients and RNA are given, then RNA and F are fixed ON, so they do not affect the

tate of any AND gates, so can be eliminated. Further, we can see that E is indeed a

imple mediator and with RNA and F eliminated, R appears to be a simple mediator

lso, but because it depends on C, which in turn depends on P (via the eliminated E )

nd also determines P, the network is only reduced to:

G = { R⇐ C ⇐ P ⇐ (C ∧ (R ∧ P ) }, (10)

from which the auto-recursion becomes clear as we see P depends on P, C depends

n C and R depends on R in a single nest of loops containing loops (hence the reduced

raph has only one element). A Boolean transition table is easily made for the three

odes P, C, R, relating the states that follow every possible current state (from {0, 0, 0}

o {1, 1, 1}) and it shows that {1, 1, 1} is a fixed attractor and all other states lead to

he only other (also fixed) attractor {0, 0, 0}. Since the network dynamics have only

xed attractors, it is unaffected by the update algorithm timing, hence (as promised)

he synchronous update algorithm is appropriate (see Appendix for details).
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The IIT calculator (Mayner et al., 2018) was first given the complete network shown

n Fig. 6, with the initial state of nutrients (F ) permanently fixed ON; RNA fixed ON

nd all other (dynamic) nodes OFF. For the subsystem containing all but the nutri-

nts node (which is external), the overall IIT was non-zero (Φ = 0.028), indicating the

resence of intrinsic integrated information. Taking the subsystem of all internal nodes

R B P C E}, (excluding the RNA, assuming this to be an external, given from inheri-

ance), with all but RNA initially OFF produced the considerably larger Φ = 0.125 (more

etail is in the Appendix). Taking this subsystem with all nodes ON gave Φ = 0.3125.

his case represents the living cell alone. Crucially for the virus question, adding vRNA

nd vE to the system in either case did not change the values of Φ or any of the concept

values.

Using the (Saadatpour et al., 2013) reduction of the Boolean representation (Fig. 6)

liminated B and E to leave the closed looped system of Eq. 10 (see Appendix for

etails) which has only the ontological fixed attractors: {1, 1, 1} and {0, 0, 0} (either

verything exists or everything does not exist), as does the complete network, of course.

t is immediately clear that every part of the internal system is able to both affect and

e affected by every other part, since no part or partition of the system acts the same

ay if any other part is separated from it, hence the system is an integrated intrinsically

rreducible whole (Φ > 0). Significantly, adding the virus (vRNA and vE ) made no

ifference to any of the Φ or causal structure results. Considering their role within

he network, where vRNA is associated with node RNA and vE with node E, which

ould both be eliminated using the rules of Saadatpour et al. (2013), this should not

e surprising. The IIT result quantitatively confirms that the virocell has no more

ntegration of causal information than the host cell, i.e. the virus itself contributes

othing to the existence of the system, according to the model used here, though of

ourse a virocell cannot exist without a virus: it either exists if there is both virus and

unctioning cell, or it does not, which is a very simple causal structure. That leaves all
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he closed loop causality that makes life such a special phenomenon, firmly a property

f the host cell.

These results seem quite conclusive, but it should be recalled that IIT was not

ntended to be used for ontological (existence) causal questions like this. What can be

oncluded is that in the causal network models presented, the role of virus contributions

as always been ancillary to those of the host cell. These ancillary contributions make a

ombined biological entity - the virocell - by adding sometimes very considerable amounts

f information to the system. But although measures of total information content suggest

hat the largest virus genomes rival those of the simplest cellular organisms, we know

hat total information is not particularly informative - it is what the information does

hat counts. A good measure of this is the total effective information contributed by the

irus relative to that of the host: effective information being that which by constraining

orces, generates cause. From the IIT analysis and the preliminary logic analysis and

etwork reduction, it is quite clear that the Boolean representation of the host cell is rich

n cyclic causality and that the virus contributes nothing to that, other than existence

non existence of a virocell, depending on the presence of a virus.

Conclusion

t is now clear that viruses are a very varied group of systems, some with information

ichness that could rival simple cellular organisms (which lack many genes thought neces-

ary for prokaryotic life (Claverie and Ogata, 2009)) and all deploy nucleic acid templates

hat can evolve, especially in response to the changing environment presented by their

osts. They contribute, sometimes considerable amounts of, functional information for

he completion of their reproductive cycle at every stage, but never all that is needed

ther than for attachment and insertion stages. In particular they do not contribute

ufficient functional information to support closure to efficient causation. Specifically,
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hey lack the ability to independently organise the creation of the necessary set of cat-

lytic proteins (enabling formal cause to be enacted as efficient cause) and to create

nd maintain the necessary local environment - the intracellular mileu that enables vi-

al efficient causes to become functional through folding and self assembly. As a result

hey cannot achieve closure to efficient causation without considerable support from

heir host organisms (Fig. 7.A). In the abstract terms of a relational diagram, this was

nticipated by Louie (2013), though it might be concluded from Fig. 7.B that Louie’s

elational diagram of viral infection is insufficiently concrete in molecular terms to con-

ince most virologists. Finally, we can see where the virus infection interacts with the

ell at the more explicit level provided by Hofmeyr (2017) (Fig. 3 above) by comparing

ig. 3 with Fig. 7.A. Consistent with (Louie, 2013, Section 13.2), the link is found in

he replacement of mRNA with an ‘impostor’ (Louie actually calls it a rebel) which be-

omes formal cause for the replication of viral polypeptides, though many viruses begin

ith ‘impostor’ DNA and even include their own transcription enzymes among the viral

olypeptides, all of which can be accommodated by Fig. 7 in Hofmeyr (2017).
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igure 7: A. This is the same as Fig 3, but now with a virus incorporating itself into
he system (shown in grey shading), for which the efficient cause is viral attachment and
enetration (stage 1 of Fig 4, termed infection here). For simplicity, DNA transcription
emoved, a +ve. s.s. RNA virus is represented: its RNA acts directly as mRNA within
he host system (vRNA → mRNA). The host ribosome is then used as efficient cause
or viral proteins via folding and self-assembly. Critically, the material cause for these
s necessarily supplied by the host cell. B. For comparison, diagram 30, of (Louie, 2013,
h.11) redrawn to match the present symbol convention and with viral genes and their

ranslated proteins (marked with prime) explicit (the original did not include primed
abels, though the mapping stated with the diagram was given).

Showing that the virus is unable to independently achieve causal closure is much

ore than saying that they are obligate parasites because all organismal parasites are

losed to efficient causation, only lacking some external (environmental) resources which

hey obtain from their host. Viruses, being essentially a linear chain of causal relations,
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rovide no organisational demarcation between internal and external. In this respect

hey are no different from non-living things: they have no independence of agency, so

ack the very essence of what it is to be alive. Without causal closure there is no life

ccording to the organisational biology perspective within systems biology. In terms of

ausation, living things are definitively the efficient cause of themselves; efficient cause

s necessarily the combination of formal and material cause; viruses are formal cause of

hemselves, but not material cause, so are not efficient cause and therefore cannot be

iving things.
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