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Highlights 
 

 Roughly 20-40% of human mitochondrial proteins remain functionally orphan 
to date.  

 Over 15% of the mitochondrial proteome shows cell-type-specific differences. 

 Systems-wide research approaches catalyze the identification and functional 
characterization of human mitochondrial proteins.     

 Systematic data integration can overcome the limited specificity and coverage 
of available experimental and computational tools.   

 

 

Abstract 

Human mitochondria are complex and highly dynamic biological systems, comprised of over 

a thousand parts and evolved to fully integrate into the specialized intracellular signaling 

networks and metabolic requirements of each cell and organ. Over the last two decades, 

several complementary, top-down computational and experimental approaches have been 

developed to identify, characterize and modulate the human mitochondrial system, 

demonstrating the power of integrating classical reductionist and discovery-driven analyses 

in order to de-orphanize hitherto unknown molecular components of mitochondrial 

machineries and pathways. To this goal, systematic, multiomics-based surveys of proteome 

composition, protein networks, and phenotype-to-pathway associations at the tissue, cell 

and organellar level have been largely exploited to predict the full complement of 

mitochondrial proteins and their functional interactions, therefore catalyzing data-driven 

hypotheses. Collectively, these multidisciplinary and integrative research approaches hold 

the potential to propel our understanding of mitochondrial biology and provide a systems-

level framework to unraveling mitochondria-mediated and disease-spanning 

pathomechanisms.  

 

Abbreviations 

mt-DNA, mitochondrial DNA; MTSs, mitochondrial targeting sequences; IMM, mitochondrial 

inner membrane; OMM, mitochondrial outer membrane; IMS, mitochondrial intermembrane 
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space; PPI, protein-protein interactions; MCUC, mitochondrial calcium uniporter channel; 

MAMs, mitochondria-associated membranes 

 

 

1. Introduction 

Mitochondria are essential organelles for cellular and organismal life in virtually all 

eukaryotes (Figure 1). Present-day human mitochondria originated from the integration of 

an endosymbiotic α-proteobacterium into a host cell, therefore exchanging their 

independence for a semi-autonomous life [1,2]. By the late 1990s, comparative genomics 

analyses of α-proteobacteria genomes and quantitative two-dimensional gels of highly 

purified mitochondria suggested that the mammalian mitochondrial proteome consists of 

~1,000–1,500 distinct proteins [3,4]. The majority of those proteins derive from the 

eukaryotic genome, whereas the prokaryotic genome was significantly reduced during the 

transition from endosymbiotic bacterium to organelle [2] (Figure 2A). To date, only a handful 

of protein-coding genes – thirteen in mammals – are still retained in the mitochondrial DNA 

(mt-DNA) of almost all eukaryotes. Therefore, most of the mitochondrial proteome is 

encoded from the nuclear genome, translated in the cytosol, and then targeted and imported 

into the organelle.  

Strikingly, only 1% of mammalian mitochondrial proteins are allocated to ATP synthesis, 

highlighting that the organelle’s functions reach far beyond energy production (Figure 1). 

Indeed, mitochondria are at the core of multiple cellular pathways, including the biosynthesis 

of precursors for cholesterol, estrogen, testosterone and hemoglobin; the regulation of redox 

and ion homeostasis; the activation of antiviral responses and cell death. Adding an 

additional layer of complexity, mitochondrial functions are tied to the specialized tasks and 

physiology of different cell types, tissues, and organisms [5]. For instance, only between 40-

70% of the human mitochondrial proteome is conserved in commonly used model systems 

such as unicellular eukaryotes (e.g. S. cerevisiae) and invertebrates (e.g. C. elegans, D. 

melanogaster) (Figure 2B). Furthermore, over 15% of the mitochondrial system shows 
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tissue-specificity [6] and profound differences even among cell types of the same tissue 

[6,7]. 

As a consequence of their dual genetic origin and pleiotropic roles, mitochondria need to 

tune their biogenesis and activity to the metabolic requirements of each cell. To fulfil this 

task, the organelle engages in bi-directional signaling with other subcellular compartments 

by remodeling shape, size, motility, metabolism, protein composition – and more – 

throughout cell development, differentiation, and proliferation [8,9]. In neurons, for example, 

mitochondria travel along the axon from the cell body to the synapses and backwards. 

Transport, positioning, and docking of the organelle at specific locations represent important 

mechanisms to provide local ATP supply and to buffer cytosolic calcium (Ca2+) for proper 

axonal branching, local protein translation, neuronal polarization, and synaptic transmission 

[10]. Furthermore, mitochondria can directly and promptly engage in physical and functional 

inter-organelle cross-talk, mediating the biosynthesis and exchange of metabolites and the 

homeostasis of several ions [11]. In light of all evidence, a crucial question arises: How can 

we tackle such a complex system? Understanding mitochondrial function and dysfunction 

becomes extremely challenging when taking a one-component-at-a-time approach. 

Advances in ‘omics’ technologies such as whole-genome editing, functional genomics, 

proteomics, and bioinformatics have recently allowed assessing mitochondrial function by 

holistic and systems-wide research strategies that integrate more than one technique, model 

system and discipline (Figure 3). Several reviews have delved into specific applications of 

mitochondria systems biology for compiling mitochondrial parts lists, characterizing their 

tissue heterogeneity and evolutionary origins, and for identifying disease genes and 

pathomechanisms [5,12–19]. Here, we attempt to provide a comprehensive overview of the 

current state-of-the-art experimental and computational tools for studying human 

mitochondria. 

 

2. De novo identification of mitochondrial proteins 
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An essential first step towards understanding mitochondrial functions is to achieve a 

complete knowledge of the mitochondrial proteome parts list, which is referred to as the 

subset of the whole-cell proteome localizing specifically to the organelle. To that end, top-

down systems-level approaches have been instrumental for large-scale and unbiased 

prediction of mitochondrial proteins from different organs and organisms. Below, we present 

several key computational and experimental strategies that have catalyzed the identification 

of mitochondria-localized proteins.  

 

2.1 In silico strategies 

Several freely available and user-friendly databases can be queried for supporting evidence 

of a protein’s mitochondrial localization (Table 1). The Mitochondria Protein Atlas [20], for 

example, provides manually curated and updated inventories of experimentally validated 

human mitochondrial proteins, including information on their sub-mitochondrial localization, 

function, structure, interactions, and involvement in human diseases. Besides repositories of 

known mitochondria-localized proteins, numerous in silico approaches have been developed 

to identify novel mitochondrial proteins based on the prediction of specific targeting signals 

for sorting proteins into the organelle, as well as a variety of complementary clues on protein 

primary and secondary structures, physicochemical properties, sequence motifs, and 

homology to proteins with a known mitochondrial localization in other species. Indeed, all 

nuclear-encoded mitochondrial proteins are directed to and imported into sub-mitochondrial 

compartments based on the recognition of mitochondrial targeting signals (MTSs) by specific 

translocator complexes [21,22]. As an example, soluble matrix and inner membrane (IMM) 

proteins often contain within the first one hundred residues a presequence that is cleaved by 

mitochondrial peptidases for retention into the organelle or for membrane insertion. Many 

attempts have been made to predict mitochondrial protein localization by analyzing the 

biochemical properties of N-terminal MTSs that usually exhibit biased amino acid 

composition, internal protease recognition sites, and show positively charged amphiphilicity. 

In a study by Vaca Jacome et al. [23], 356 proteins were found with a cleavable N-terminal 
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 6 

presequence by systematic trimethoxyphenyl phosphonium (TMPP)-based labelling of U937 

human monocytic mitochondria coupled to liquid chromatography with tandem mass 

spectrometry (LC-MS/MS). In a subsequent survey, Calvo et al. [24] identified cleaved N-

terminal presequences out of 327 mouse kidney and liver mitochondrial proteins through a 

subtiligase-based protein biotinylation approach. Although those N-proteome analyses of 

isolated mitochondrial fractions also included false positives due to, for example, co-

purification of other organelles, they highlighted that at least 30% of the mammalian 

proteome might be targeted to mitochondria via cleavable N-terminal presequences. 

Besides, other mitochondrial import mechanisms also exist that involve the recognition of C-

terminal or, rarely, internally located MTSs, especially for outer membrane (OMM) or 

intermembrane space (IMS) proteins [21]. Thus, several computational approaches aiming 

at systematically identifying MTSs over whole organism proteomes have been developed for 

the automated discovery of mitochondrial proteins (Table 1). The vast majority of available 

in silico tools employ supervised machine learning algorithms. The latter are trained to 

discriminate between mitochondrial and non-mitochondrial proteins using reference sets of 

true positive (proteins unambiguously localized to mitochondria) and true negative (proteins 

convincingly annotated to other subcellular compartments) for benchmarking. Most common 

models predict mitochondrial protein localization using as input either known biochemical 

features of MTSs or directly the overall protein amino acid sequence. Among those, 

PSORTII [25], TargetP 2.0 [26], Predotar [27], MitoFates [28], and TPpred3 [29] focus on the 

identification of cleavable N-terminal presequences. Given that the biochemical properties of 

mitochondrial N-terminal presequences are well known, those models can reach a high 

sensitivity (true positive rate) but their predictive power remains limited, considering that not 

all mitochondrial proteins contain a MTS. Among overall sequence-based approaches (e.g., 

ngLOC [30],  DeepLoc [31], LocTree3 [32], and CELLO II [33]), SubMitoPred [34] and 

DeepMito [35] also allow predicting the specific localization of a protein into sub-

mitochondrial compartments (OMM, IMS, IMM, and matrix). Altogether, prediction accuracy 

greatly varies across different in silico tools, depending on machine learning algorithms, 
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training and testing datasets, and biological features input for learning, making it advisable to 

compare results from different queries.  

 

2.2 Experimental strategies 

Major advances in the sensitivity and throughput of mass spectrometry (MS) and imaging 

technologies coupled to genome editing have made possible to survey to systematically 

identifying novel mitochondrial proteins. One such endeavor is the Cell Atlas database, 

which is part of the Human Protein Atlas (HPA, www.proteinatlas.org) [36], an open-access 

resource including the annotation of expression and subcellular localization for 12,390 

proteins across a panel of 26 human cell lines. By using fluorescence microscopy of native 

proteins with an immunologically detectable epitope, 1,098 proteins could be annotated as 

mitochondria-localized at high-resolution, of which 46% were independently validated by 

additional experimental strategies (e.g., gene silencing, fluorescent protein-tagging, different 

antibodies) or by evidence from external databases. Overall, immunofluorescence (IF)-

based approaches offer the advantage to analyze subcellular and spatio-temporal protein 

distribution in situ and in single cells, thus also enabling the identification of cell-to-cell 

protein variability and multi-organelle localization. However, due to the lack of available 

antibodies for all human proteins, the number of truly localized mitochondrial proteins might 

be currently underestimated. As a complementary approach, organellar proteomics, using 

mitochondria-enriched fractions as input material for state-of-the-art MS-based analyses, 

have proved instrumental to nearly double the number of known yeast [12,37], mouse [6,38], 

and human mitochondrial proteins [39–41]. Several protocols are available to obtain highly 

pure mitochondrial preparations [42], which mainly differ in the methods used for selective 

disruption of the plasma membrane (e.g., sonication, mechanical homogenization, nitrogen 

cavitation) and organelle enrichment (e.g., differential centrifugation, high-affinity magnetic 

immunocapture followed by ultracentrifugation on a density gradient). In 2008, using Percoll 

density gradient purified mitochondria, Pagliarini et al. [6] performed a systematic and 

comprehensive survey of mitochondrial protein expression across 14 mouse tissues by 
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reversed-phase LC-MS/MS. Altogether, over 3,800 proteins were identified, with an average 

of 1,500 expressed in mitochondrial fractions from each tissue. Unexpectedly, at least 15% 

of the organelle parts list showed tissue specific expression, suggesting that while a core set 

of mitochondrial proteins perform ubiquitous tasks, the rest must fulfil the specific functional 

and metabolic requirements of each organ. Afterwards, studies from Fecher et al. [7] and 

Bayraktar et al. [43] demonstrated that such diversity across tissues does not simply derive 

from global changes in bulk mitochondrial proteomes but reflects cell type-specific 

heterogeneity in mitochondrial protein sets from the same organ. By engineering a reporter 

mouse line, named MitoTag, that expresses an OMM-targeted green fluorescent protein 

(GFP) in a Cre recombinase-dependent manner, Fecher et al. systematically dissected 

mitochondrial proteome variability among three different cell types of the cerebellum. Here, 

the GFP-OMM epitope was used as a handle for immunocapturing tagged mitochondria 

directly from major inhibitory (PC, Purkinje cells) and excitatory (GC, granule cells) neurons, 

and astrocytes within their tissue context. Strikingly, comparative LC-MS/MS analysis of cell 

type-specific mitochondrial fractions showed that only about 85% of the identified proteins 

were shared among PC, GC and astrocytes. The rest reflected differentially regulated 

mitochondrial pathways and functions, providing a set of markers for monitoring cell type-

specific mitochondrial changes in healthy and diseased mouse and human brains. Using a 

similar experimental strategy, Bayraktar et al. profiled both proteome and metabolome of 

hepatocyte mitochondria within liver tissue. A reporter mouse model (also called MITO-Tag) 

that expressed an OMM-targeted HA epitope tag under the control of the Albumin promoter 

was exploited to specifically and rapidly immunocapture mitochondria (10 min after tissue 

homogenization). A total of 511 proteins and a variety of hepatocyte metabolites were found 

to be highly enriched in mitochondria compared to whole-liver proteome and metabolome. 

Altogether, results from both studies highlighted the utility of Mito-Tag mouse models as 

tools for characterizing the mitochondrial system in vivo and upon physiological and 

pathological perturbations. Furthermore, Mito-Tag mice can be employed to isolate 

mitochondria from virtually any cell type, without the need for cell sorting and lengthy 
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purification protocols. However, they require the lysis of tissue and mitochondrial samples, 

which inevitably results in substantial distortion of the in vivo mitochondrial physiological 

state, compared for example to microscopy-based analyses. Nevertheless, both approaches 

are unable to survey dynamic changes in protein composition and distribution in situ and 

simultaneously for all mitochondrial proteins, at either tissue or cell type-specific levels. To 

this goal, synthetic biology strategies have recently opened the way for spatially and 

temporally resolved snapshots of mitochondrial proteomes within living cells by combining 

the strengths of microscopy and MS technologies [44]. A series of studies from the Ting 

group profiled the composition of individual mitochondrial sub-compartments by targeting the 

ascorbate peroxidase APEX to either the matrix [45], IMS [46] or OMM [47] of human 

embryonic kidney (HEK) cells. In presence of biotin-phenol and H2O2, APEX catalizes within 

1 min the generation of phenoxyl radicals that can covalently react to electron-rich amino 

acids while the cell is still intact. Those radicals are short-lived, highly reactive, membrane-

impermeant, and have a small labeling radius, leading to high spatial resolution. Biotin-

labelled proteins are then recovered by streptavidin-based enrichment on cell extracts and 

identified by tandem MS-based proteomics. This approach was especially instrumental for 

mapping the IMS proteome, which cannot be otherwise characterized by traditional 

biochemical approaches based on density centrifugation. As a result, the Ting group 

identified a total of 495, 127, and 137 matrix, IMS, and OMM proteins, respectively, of which 

roughly half had previously unknown sub-mitochondrial localization, providing a rich 

resource of orphan proteins and proteins without a previous functional link to mitochondria. 

However, the approach has been only validated in cells and organs ex vivo [48,49], 

questioning its utility for in vivo tagging of mitochondrial proteomes.  

 

2.3 Integrative biology strategies 

The aforementioned genome and proteome-scale approaches in biochemistry, genetics, 

imaging and bioinformatics have undoubtedly led to the identification of novel human 

mitochondrial proteins. However, their predictive power was hampered by limited specificity 
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and coverage, as each method suffered from intrinsic methodological limitations and was 

biased towards different subsets of mitochondrial proteins. As an example, nowadays MS-

based proteomics can quantify over 6000 proteins from nanograms of a whole-cell extract 

[50,51]. If on the one side the ever-increasing resolution and detection limits of mass 

spectrometers make deep organellar proteome analysis an extremely powerful discovery 

tool, on the other discriminating between true mitochondria-resident and contaminant 

proteins that either co-sediment or are physically interacting with the organelle remains 

challenging. Unfortunately, minimizing contamination by maximizing the purity of 

mitochondrial preparations can only offer a partial solution at the risk of compromising 

organelle’s integrity. On the contrary, computational searches for cleavable, N-terminal 

targeting signals yield highly specific lists of mitochondrial proteins but show limited 

sensitivity, given that not all mitochondria-resident proteins contain a pre-sequence. 

Furthermore, experimental and in silico-derived catalogs of mitochondrial proteins have 

shown modest overlap [13,17]. Therefore, it is plausible that the systematic integration of all 

data types could compensate for the shortcomings of each individual approach and increase 

true positive rate. The latter hypothesis was tested in the years 2004 [37] and 2006 [52] by 

the Steinmetz group to predict mitochondrial proteins in S. cerevisiae. In two consecutive 

studies, the authors performed machine-learning based integration of over twenty 

computational and experimental genome-wide datasets, interrogating different biological 

properties of the mitochondrial system, from evolutionary conservation and gene regulation, 

to protein abundance and physical protein-protein interactions (PPI). The model was trained 

to discriminate between a positive reference set of known yeast mitochondrial proteins and 

the remaining yeast proteome in order to rank all datasets according to their power in 

identifying true mitochondria-localized proteins. Among all, IF-based analyses of sub-cellular 

localization by protein-tagging, MS on isolated mitochondria, and orthology mapping to 

known mitochondrial proteins in other species showed the highest sensitivity and specificity, 

in contrast to transcriptome analysis. As expected, data integration outperformed the 

predictive power of each individual dataset and yielded a comprehensive and accurate 
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inventory of the yeast mitochondrial proteome, including 91% of the reference set and an 

additional 346 candidates, of which nearly half were still uncharacterized [52]. Later on, the 

same approaches have been applied to predict new mitochondrial proteins in mammals. For 

example, Pagliarini et al. [6] used a naïve Bayes algorithm to combine six genome-scale 

datasets of mitochondrial localization with MS-based analyses of mitochondria isolated from 

14 mouse tissues and large-scale IF experiments of GFP-tagged proteins tagging to 

compute a likelihood score of mitochondrial localization for each mouse protein. At a cut-off 

of 10% false discovery rate (FDR), the resulting inventory of 1098 mouse proteins, termed 

MitoCarta v1.0, was estimated to be 85% complete and containing nearly 300 genes without 

previous mitochondrial annotation in the Gene Ontology (GO) database. A human MitoCarta 

of 1013 proteins was then generated based on sequence homology and updated twice 

(MitoCarta v2.0 [53] and v3.0 [54]) to a final list of to 1136 human mitochondrial proteins by 

manual literature curation, including sub-mitochondrial compartment and pathways 

annotations. Using a different machine-learning method (support vector machines), Smith et 

al. [55] developed an integrated mitochondrial protein index (IMPI) from the integration of 56 

datasets from a variety of resources, including MitoCarta v2.0, MS of purified cell fractions, 

GFP-tagging and microscopy, and computational prediction of MTSs. The resulting 

database, named MitoMiner (IMPI version Q2 2018) [55], contains 1626 human genes that 

encode for mitochondrial proteins, 442 are novel candidates, and roughly two-third overlap 

with MitoCarta v2.0. Overall, both MitoCarta and MitoMiner provide the most specific and 

comprehensive catalogs of mammalian mitochondrial proteins to date and represent 

valuable platforms to investigate tissue-specific expression of mitochondrial proteins and 

their links to disease. 

Integrative biology approaches have also proved successful in unraveling the genetic 

identity of whole mitochondrial complexes, as exemplified by the discovery of the 

mitochondrial calcium uniporter components [56] (Figure 4A). Ca2+ handling by 

mitochondria was first described more than 50 years ago, when DeLuca & Engstrom [57] 

and Vasington & Murphy [58] independently reported that mitochondria isolated from rat 
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kidney could rapidly uptake millimolar amounts of Ca2+ from the extra-mitochondrial space 

by passive Ca2+ transport down its electrochemical gradient. Mitochondrial Ca2+ uptake was 

attributed to a Ca2+ uniporter located in the IMM, which was later shown to be a highly 

selective Ca2+ channel [59]. The mitochondrial calcium uniporter channel, here referred to as 

MCUC, was dependent on the pH gradient and the negative potential established by the 

respiratory chain across the inner mitochondrial membrane and inhibited by nanomolar 

concentrations of ruthenium red and its derivative Ru360 [60]. However, despite the 

biophysical properties of mitochondrial Ca2+ uptake have been characterized for decades, 

the genetic identity of MCUC has evaded traditional biochemical strategies that aimed at 

purifying it from animal tissues, as well as genome-wide RNA interference (RNAi)-based 

loss of function screens. Interestingly, besides rat kidney, MCUC-mediated Ca2+ uptake was 

measured in mitochondria from virtually all mammalian tissues and in several species from 

other kingdoms (e.g., protozoa and plants), yet, despite rigorous, repeated attempts, it was 

never observed in mitochondria from S. cerevisiae [61]. Those evidence were used by 

Perocchi et al. [62] to define a “physiological signature” of MCUC, being high capacity, 

located to the IMM, powered by the mitochondrial membrane potential, and inhibited by 

ruthenium red. The authors hypothesized that human genes encoding for MCUC should 

exhibit a “phylogenetic signature” matching the physiological profile across taxa, namely 

present in vertebrates and kinetoplastids, but absent in yeast. By integrating clues from 

comparative physiology, evolutionary genomics and MitoCarta, they predicted 18 human 

proteins fulfilling the above criteria. RNAi against these top MCUC candidates identified a 

previously uncharacterized gene, CBARA1, as the first uniporter component, which was 

renamed Mitochondrial Calcium Uptake 1 (MICU1). Silencing MICU1 abolished 

mitochondrial Ca2+ uptake in human cells and mouse liver and conserved calcium-binding, 

EF-hands domains were found to be essential for its activity, suggesting that the protein 

could act as a Ca2+ sensing regulatory subunit of MCUC and opening the way to the full 

molecular characterization of the uniporter channel. 
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3. From proteins to functions: deorphanizing the unknown  

Approximately 20-40% of predicted human mitochondrial proteins still remain functionally 

uncharacterized to date, namely, no information can be found in PubMed or in other 

manually curated data sources and no associations are available from experimental 

evidence in the gene ontology (GO) database [14,19,63]. Moreover, a number of true 

mitochondrial proteins may have been overlooked, due to the complex and dynamic nature 

of the mitochondrial proteome, with more than 200 dually-localized components and roughly 

one-third of the proteome distributed in a tissue-specific manner. To fill this gap, several 

computational and experimental approaches have been developed to predict protein-to-

protein and gene-to-phenotype associations based on the reconstruction of biological 

networks, whereby functional inference can be obtained for known and uncharacterized 

proteins that are closely linked.  

 

3.1 In silico strategies 

Clues about the function of an orphan protein are often inferred based on the “guilt-by-

association” principle: the underlying assumption is that a target protein is likely to play a 

functional role in the same biological process of its neighbors. Experimental, computational, 

or combined experimental/computational analyses have been employed to map functional 

associations, including direct physical links between proteins in a complex, interactions 

between enzymes in a pathway, or regulatory networks between transcription factors and 

their target genes. One of the most comprehensive and unbiased source of functional 

associations is the STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) 

database [64], which currently includes over 2000 million interactions between 24.6 million 

proteins across more than 5000 organisms. STRING enables predicting PPI through 

machine learning-based integration of complementary evidence types, such as correlated 

gene expression profiles (co-expression) across a large set of samples and conditions, 

shared patterns of presence and absence of homologs in different species (co-evolution), 

co-occurrence in automated text mining analyses, physical interactions in large-scale high 
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throughput affinity purification screens, and previous knowledge in manually curated 

databases. Functional links are further inferred through homology transfer across thousands 

of organisms. To this goal, S. cerevisiae has served as the model organism of choice for 

global mapping of protein networks, largely because of the abundance and quality of diverse 

high-throughput PPI datasets. Yeast two-hybrid screens, tandem affinity purifications, and 

protein-fragment complementation assays resulted in an en masse detection of binary PPI 

and stable physical protein complexes for over 70% of the yeast proteome and were used to 

generate the first global model of a mitochondrial protein network [52]. Here, the Steinmetz 

group employed STRING to place roughly 90% of yeast mitochondrial proteins in a 

functional context through the systematic retrieval of over 9000 linkages. Hierarchical 

average-linkage clustering based on confidence scoring of network associations yielded 164 

functionally distinct modules, containing known and orphans mitochondrial proteins, as well 

as extra-mitochondrial proteins not physically localized to the organelle but still critical to its 

function. This module map was shown to be more accurate and comprehensive than 

publically available annotation of protein complexes and metabolic pathways based on a 

single species and data type. Importantly, it provided the first clues to the function of over 

150 uncharacterized yeast mitochondrial components and allowed surveying properties of 

the mitochondrial system that would not be easily deduced from its parts list. As an example, 

by overlaying onto the module map genome-wide expression profiles and mutant growth 

phenotypes under fermentable and non-fermentable conditions, the authors could spotlight 

several module-to-phenotype correlations leading to the identification of novel functional 

groups involved in oxidative metabolism and cell viability. Importantly, most yeast 

mitochondrial modules were highly conserved to humans and five were enriched in disease 

genes, allowing investigating disease susceptibility of mitochondrial functional processes 

and prioritizing candidate genes for putative mitochondrial disorders [17]. A decade later, 

Yim et al. [65] extended similar integrative strategies to generate global mitochondrial 

interactomes for different species based on manual curation of annotated functional 

associations and PPI. As a result, the authors developed MitoXplorer, a gene expression 
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and mutant data mining platform that users can query to analyze how mitochondrial 

networks remodel in response to various experimental and disease conditions. Likely owing 

to the mosaic evolutionary origin of the mitochondrial proteome, prediction of functional 

associations based on comparative genomics has proved instrumental for the de novo 

genetic underpinning of several mitochondrial processes, the deorphanization of 

mitochondrial proteins, as well as the identification of novel components of mitochondrial 

protein complexes and pathways. The study from Gabaldon et al. [66] on the evolutionary 

history of the NADH:ubiquinone oxidoreductase (Complex I) represented one of the first 

examples of how evolutionary genomics and phylogenetic analyses could be exploited to 

predict previously unidentified subunits of mitochondrial protein complexes. By charting the 

distribution of mammalian Complex I subunit orthologs across 17 eukaryotic species from 

various phylogenetic groups, Gabaldón et al. identified NDUFAF2 as a previously unknown 

component of Complex I and disease gene in human progressive encephalopathy. Three 

years later, the Mootha group applied a similar approach to profile the phylogenetic 

distribution of all MitoCarta protein orthologs across 42 sequenced eukaryotes, leading to 

the prediction of novel candidates for Complex I assembly and inherited Complex I 

deficiency in humans [6]. In 2011, two studies provided a prime example of the power of 

combining comparative genomics with in silico predictions of functional associations to 

deorphanize mitochondrial proteins, leading to the discovery of the pore-forming, and Ca2+-

conducting subunit of MCUC [67,68]. Building up on the discovery of MICU1, Baughman et 

al. [67] searched for MICU1 co-evolving and co-expressed genes across 500 organisms and 

81 mouse cell types and tissues, respectively, whose proteins would be equally abundant in 

mitochondria of 14 mouse tissues. Independently, De Stefani et al. [68] looked for MitoCarta 

proteins with at least two predicted transmembrane domains, ubiquitously expressed in 

mammalia tissues, conserved in kinetoplastids and lacking orthologs in S. cerevisiae. Both 

studies spotlighted a poorly characterized protein, CCDC109A, which also co-

immunoprecipitated with MICU1 in human cells. Silencing of CCDC109A abrogated 

mitochondrial Ca2+ uptake, whereas its overexpression enhanced ruthenium red-sensitive 
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Ca2+ influx, reduced cytosolic Ca2+ transients, and sensitized cells to apoptotic challenges. In 

addition, highly conserved residues within the putative pore-forming domain linking the two 

transmembrane regions were found necessary for Ca2+ permeation and for conferring 

sensitivity to ruthenium red. Finally, its expression in planar lipid bilayers was sufficient to 

reconstitute ion channel activity in solutions containing only Ca2+ as the permeant ion, 

confirming the role of CCDC109A as the MCUC pore-forming component and thereof 

renamed MCU (Mitochondrial Calcium Uniporter).  

Currently, several computational tools are available for the systematic prediction of protein 

function based on phylogenetic profiling, likely owing to substantial progress in sequencing 

and annotation of whole genomes. One such a discovery tool, named ProtPhylo 

(www.protphylo.org), was generated by Cheng et al. [69] to identify protein-to-protein and 

phenotype-to-protein functional associations. Here, phylogenetic profiles were computed for 

over 9.7 million non-redundant protein sequences across 2048 organisms in all three 

domains of life (1678 bacteria, 115 archaea and 255 eukaryotes) by using multiple orthology 

inference algorithms. ProtPhylo then rank all proteins within the organism of interest based 

on the similarity of their phylogenetic profiles to the query protein and allows user to prioritize 

the number of testable hypotheses based on complementary evidence of PPI, subcellular 

localization, protein domains and membrane spanning regions. Considering the ever-

increasing amount of large-scale, unbiased datasets surveying the mitochondrial system, 

databases such as STRING and novel user-friendly computational platforms hold the 

promise to increase both accuracy and coverage of protein networks for the automated 

prediction of mitochondrial protein function. 

 

3.2 Experimental strategies 

Being able to confidently assign proteins to annotated complexes and biological processes 

can provide clues to their function. However, only 27% and 56% of the human mitochondrial 

proteome can be functionally linked in either macromolecular assemblies or molecular 

pathways based on automated data retrieval and manual curation of literature by CORUM 

Jo
ur

na
l P

re
-p

ro
of



 17 

3.0 (Comprehensive Resource of Mammalian Protein Complexes) [70] and KEGG (Kyoto 

Encyclopedia of Genes and Genomes) [71] databases, respectively. Therefore, it is of 

outmost importance to develop experimental strategies to generate high-coverage functional 

networks of predicted mitochondrial parts lists, e.g. by screening for physical PPI and 

genetic interactions. Most of the experimental analyses performed so far have defined stable 

and transient PPI between mitochondrial proteins of interest using purified mitochondrial 

samples as starting material for either blue native polyacrylamide gel electrophoresis (BN-

PAGE) or affinity purification in combination with western blotting and MS. Only a few 

studies, though, have applied those techniques for a systematic and unbiased reconstruction 

of mitochondrial interaction networks (Figure 4B). One such example is the complexome 

profiling performed by Heide et al. [72] on intact rat heart mitochondria. BN-PAGE was 

employed as a mild, nondestructive method to separate native, soluble and membrane-

bound complexes up to 30 MDa from enriched heart mitochondrial fractions based on 

charge, mass, and structure. A total of 464 proteins were identified by LC-MS/MS analysis of 

60 even gel slices, of which 85% were previously known to be mitochondria-localized. Based 

on the relative abundance and specific migration profile in different gel slices, all identified 

proteins were hierarchically clustered to define the molecular composition of several protein 

assemblies, including very large and abundant multiprotein complexes and assembly 

intermediates, such as those of the oxidative phosphorylation (OXPHOS) system. As a 

result, an orphan protein, TMEM126B, was identified as a novel subunit of the mitochondrial 

Complex I assembly factor complex, providing a proof-of-principle to the direct application of 

complexome profiling for protein function prediction. Interestingly, several proteins were 

detected in a number of different slices, likely representing transient intermediates of 

macromolecular complexes and reflecting the ability of such an approach to shed light not 

only on the protein composition of the final stable complex but also onto the dynamics of its 

assembly.  

A further step towards a comprehensive and accurate characterization of mitochondrial 

protein complexes was made possible by combining cross-linking mass spectrometry (XL-
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MS) with organelle-wide analyses. In XL-MS, small organic molecules containing two 

reactive groups at either end of a spacer arm (cross-linkers) are employed to chemically join 

functional groups of specific amino acids by a covalent bond. After cleavage by tryptic 

digestion and MS analysis, residue-to-residue cross-links are identified by peptide 

sequencing. Therefore, besides protein complex composition, XL-MS also enables locating 

native inter and intra-molecular contacts between proteins. Moreover, owing to the 

constraints introduced by the length of the spacer arm, architectures and conformations of 

protein complexes can also be probed, a task that is otherwise experimentally challenging 

given that roughly a third of the mitochondrial proteome is assembled into macromolecular 

membrane complexes. Recently, Liu et al. [73] applied XL-MS to intact mouse heart 

mitochondria, mapping over 3,000 unique connections between 359 mitochondrial proteins 

in MitoCarta v2.0. Notably, 60% of the detected cross-links were formed between distinct 

proteins, reflecting the high protein density environment of intact mitochondria. Overall, the 

interactome showed high sensitivity, covering 75% of annotated mitochondrial protein 

complexes in CORUM, and provided in situ evidence for the assembly of OXPHOS 

components in super complexes. Moreover, contrary to the analysis of mitochondrial 

complexosomes by BN-PAGE, XL-MS of intact mitochondria allowed to probe the spatial 

distribution of protein interactions in all sub-mitochondrial compartments, thanks to the use 

of membrane permeable cross-links. However, organelle-wide XL-MS approaches still 

suffers from limited depth, as the captured cross-links mostly involve highly abundant 

proteins. Other conceptually similar techniques based on the distance proximity of proteins 

in situ have recently provided deep coverage of mitochondrial interactomes within the 

cellular context. As an example, Antonicka et al. [74] used the proximity-dependent 

biotinylation assay, BioID [75], to map potential interactors of 100 mitochondrial protein baits 

in HEK-293 cells. Baits, including both known and poorly characterized mitochondrial 

components and spanning all mitochondrial sub-compartments, were fused to a mutant 

Escherichia coli biotin ligase BirAR118G (known as BioID), which biotinylates neighboring 

proteins (preys) within an estimated radius of 10 nm. MS-based detection of biotinylated 
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proteins from each bait and of background labeling by matrix and IMS-targeted BioIDs was 

then employed to identify high-confidence, specific proximity interactions. As a result, the 

authors defined a mitochondrial network of over 15,000 unique associations between 100 

baits and 1465 enriched preys. Notably, of those, only roughly 50% were annotated as 

mitochondria-localized by Mitocarta v2.0. Most of the non-mitochondrial preys were proximal 

to OMM-located baits facing the cytosolic environment, consisting of proteins annotated as 

having multiple localizations in the HPA database and likely involved in interoganelle contact 

sites. Next, clustering based on correlated patterns of connectivity across all baits predicted 

several distinct modules for the matrix, IMS/IMM and OMM sub-compartments, with clear 

functional annotations based on GO terms. Reassuringly, those included known 

mitochondrial protein complexes such as the small and large mitochondrial ribosomes and 

assembly intermediates of the OXPHOS system, as well as proteins involved in 

mitochondrial fusion and fission. Importantly, several proteins of unknown function were also 

included in the modules map, validating the potential of this resource for the functional 

characterization of orphan mitochondrial proteins. Furthermore, clustering of non-

mitochondrial preys across OMM baits showed that distinct subsets of mitochondrial proteins 

might mediate the specific cross-talk of mitochondria with other organelles, such as the ER 

and the peroxisome. Two studies have further explored proximity labeling to specifically map 

ER-mitochondria contact sites in HEK-293T cells using modified, “split” versions of either 

BioID or its derivative TurboID, which requires only 1 to 10 min of labeling time (compared to 

16 hours for BioID-based labeling). In both systems, named Contact-ID [76] and Split-

TurboID [77], the enzyme is split into two inactive fragments, each containing half of the 

FRB-FKBP dimerization system and facing the cytosol from either the ER or the OMM. 

When brought to proximity by a PPI or, as in the following examples, by organelle 

membrane-membrane apposition, and in presence of rapamycin, a functional biotin ligase is 

reconstituted that upon biotin addition catalyzes spatially restricted biotinylation. Altogether, 

Contact-ID and Split-TurboID-based proteomic profiling of ER-mitochondria contacts 

identified roughly one-hundred proteins, including annotated components of mitochondrial-
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associated membranes (MAMs), as well as proteins with known OMM or ER membrane 

localization. The candidate lists were enriched in biological processes that are consistent 

with previously reported regulatory roles of ER-mitochondria contacts in Ca2+ signaling, 

sterol metabolism, and mitochondrial fission. Among many novel ER and OMM-localized 

proteins and ER-mitochondria contact site candidates, several were also experimentally 

validated. Unexpectedly, although both Contact-ID and Split-TurboID-derived datasets 

showed high specificity when compared to lists of known MAMs and based on GO term 

enrichment analysis, they only shared 15% of the proteins. This modest overlap is likely 

arising from differences in construct design and labeling time, resulting in the biotinylation of 

proteins at closer or wider distance between the two organelles. Nevertheless, both 

approaches validated proximity labelling as a valuable tool for profiling not only functional 

relationships within an organelle but also with other cellular structures.  

Besides PPI profiling, genome-wide loss-of-function screens upon genetic as well as 

environmental perturbations have also proved effective in characterizing the biological role 

of mitochondrial proteins (Figure 4C). As an example, given the dual genetic origin of the 

mitochondrial proteome, understanding the molecular basis of mitonuclear signaling 

pathways regulating mitochondrial processes (e.g., OXPHOS assembly) and how those 

remodel to buffer environmental changes remains an outstanding question of great 

translation value. To define an integrated mitochondrial stress footprint, Quirós et al. [78] 

applied a multiomics approach in HeLa cells challenged by  four different stressors, 

doxycycline, actinonin, FCCP, and MitoBlock-6, which impair mitochondrial translation, 

OXPHOS proteins stability, mitochondrial membrane potential, and protein import, 

respectively. Notably, they found that the mitochondrial unfolded protein response, one of 

the best-characterized retrograde stress responses in invertebrates, was not activated under 

the conditions used. Instead, all stressors induced a pronounced decrease of mitochondrial 

ribosomal proteins, OXPHOS components, and epigenetic regulators, that was substantially 

dependent from changes at proteome rather than the transcriptome level. At the same time, 

the expression of genes involved in the biosynthesis of amino acid, in particular of serine, 
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and carbon metabolism was up-regulated, suggesting the activation of alternative 

cataplerotic pathways to convert and replenish tricarboxylic acid cycle intermediates for the 

synthesis of glycolytic intermediates. These findings were consistent with stress-induced 

changes at the metabolome level, and altogether highlighted a compensatory response 

aimed at rewiring cellular metabolism and preventing oxidative damage through the 

synthesis of key metabolites and lipids. De novo motif analysis in the common upregulated 

gene sets showed that half of the co-regulated genes were targets of the transcription factor 

ATF4, a key component of the cellular integrated stress response (ISR), whose transcript 

and protein levels were also found to be upregulated upon stress induction. Based on these 

results, ATF4 was proposed to act as the main molecular effector of the mammalian 

mitonuclear response and mitochondrial stress signature, by inducing the expression of 

cytoprotective genes while attenuating global translation. However, the precise mitochondrial 

signaling pathway relaying mitochondrial stress and malfunction to the nucleus remained 

unaddressed. Further insights were gained by performing a genome-wide random 

mutagenesis screen on haploid HAP1 cells that expressed the C/EBP homologous protein 

CHOP as a fusion protein with mNeon and were challenged with three distinct mitochondrial 

stressors, tunicamycin, 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid (CDDO), or 

Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) [79]. CHOP is a transcription factor of 

the ISR, whose activation by ATF4 acts as a cellular checkpoint through the initiation of 

apoptotic and non-apoptotic cell death programs. By sequencing mutations in cell 

populations with either an enhanced or diminished CHOP expression in all conditions, 

Fessler et al. [79] identified a poorly characterized mitochondrial protein, DELE1, as a global 

positive regulator of CHOP induction, and thus of ISR. Follow-up experiments clearly 

validated DELE1 as a hit and demonstrated the existence of a proteolytic signaling axis, 

whereby mitochondrial stress would induce proteolysis of DELE1 by OMA1 with the 

consequent release of the processed form of DELE1 to the cytosol and interaction with 

components of the ISR pathway. 
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4. Perspectives 

The identification and functional characterization of the mitochondrial system represents an 

extraordinarily important milestone for mitochondrial biology and human diseases. Although 

major progress has been made in compiling accurate and exhaustive lists of mitochondria-

localized proteins, still after a century from the discovery of mitochondria, 20-40% of the 

system remains functionally orphan, even in well-studied model organisms such as budding 

yeast. Furthermore, mitochondrial protein networks mediating signal transduction in and out 

of the organelle are almost completely uncharted. This gap greatly hampers the 

understanding, diagnosis and treatment of mitochondria-related pathologies, given that 

mitochondrial dysfunction has been linked to an extremely wide spectrum of disease 

phenotypes, including the decreased activity of metabolic enzymes, impaired respiratory 

capacity, and increased oxidative damage. Corroborating this notion over 300 genes 

encoding for mitochondrial proteins have already been implicated in a wide range of human 

diseases (as in the Online Mendelian Inheritance in Man, OMIM, database), from metabolic 

syndrome-related disorders (e.g., diabetes and obesity) to neurodegenerative diseases 

(e.g., Parkinson‘s and Alzheimer‘s diseases). How can impairment on ubiquitous 

mitochondria-mediated processes result in such diverse disease outcomes? The answer lies 

in the tissue and cell type-specificity of mitochondrial proteomes, networks, and intracellular 

cross-talks. To this goal, all recently developed systems-wide approaches to investigate 

mitochondrial biology - and more yet to come – hold the promise to aid in the identification of 

potential candidates for mitochondrial-related diseases, the understanding of disease 

pathomechanisms and possible new pharmacological targets. 
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Figure 1. Complexity of the mitochondrial system. Mitochondria play a pleiotropic role in 

cell biology and physiology, which is reflected by the complexity and heterogeneity of their 

proteome, with over 1500 components that vary in both genetic and evolutionary origin and 

show tissue and cell type-specific expression. Mitochondrial diversity allows the system to 

meet the unique metabolic and physiological demands of each organ. Therefore, it is not 

surprising that more than 300 human proteins have been already linked to over 190 different 

disease phenotypes in the OMIM database, certainly an underestimation given that 20-40% 

of the mitochondrial proteome remain completely uncharacterized [14,19]. 

ROS, reactive oxygen species; NO, nitric oxide; CKD, chronic kidney disease; NFLD, Non-

Alcoholic Fatty Liver Disease.  
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Figure 2. Evolutionary origin and conservation of the human mitochondrial proteome. 

(A) Percentage of present-day human mitochondrial proteome with alpha-proteobacteria, 

prokaryotic, and eukaryotic origin. (B) Percentage of human mitochondrial proteins with 

orthologs in each species. The list of human mitochondrial proteins was obtained from Malty 
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et al. [19] and Ensembl Compara v101 (Blastp e-value of 0.01) was used for homology 

inference. 

Jo
ur

na
l P

re
-p

ro
of



 40 

 

Jo
ur

na
l P

re
-p

ro
of



 41 

Figure 3. Systems-level approaches to study mitochondria.  Defining and functionally 

characterizing the mitochondrial parts list involve systematic and integrative strategies that 

combine large-scale computational and experimental approaches with traditional 

biochemical, genetic and physiological analyses of mitochondrial function in different model 

organisms.  

Jo
ur

na
l P

re
-p

ro
of



 42 

 

Jo
ur

na
l P

re
-p

ro
of



 43 

Figure 4. Integrative, multiomics approaches to identify and deorphanize human 

mitochondrial proteins. Examples of in silico and experimental approaches developed to 

(A) identify de novo mitochondrial proteins involved in Ca2+ uptake [62],  (B) chart intra and 

inter-organelle functional associations [74], (C) reconstruct signaling cascades regulating 

mitonuclear stress response pathways [79].  
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Table 1 

Table 1. Systematic in silico and experimental approaches for identifying 

mitochondrial proteins 

Tool Method Description 

Predicted 

human 

mitochondrial 

proteins 

Access location  Year Ref. 

COMPUTATIONAL 

PSORTII 
Machine 

learning 

Subcellular protein 

localization 

analysis. 

Prediction of mt-

proteins is based 

on the biochemical 

features of N-

terminal TS and 

presence of 

consensus CS 

1712 https://psort.hgc.jp/form2.html 1999  [25] 

ngLOC 
Machine 

learning 

Subcellular protein 

localization 

analysis. 

Prediction of mt-

proteins is based 

on amino acid 

sequence 

725 
http://genome.unmc.edu/ngLO

C/index.html 
2012  [30] 

LocTree3 
Machine 

learning 

Subcellular protein 

localization 

analysis. 

Prediction of mt-

proteins is based 

on amino acid 

sequence and 

homology 

1035 
https://rostlab.org/services/loct

ree3/  
2014  [32] 

Jo
ur

na
l P

re
-p

ro
of



 45 

DeepLoc 
Machine 

learning 

Subcellular protein 

localization 

analysis. 

Prediction of mt-

proteins is based 

on amino acid 

sequence 

1553 
http://www.cbs.dtu.dk/services

/DeepLoc/ 
2017  [31] 

SubMitoPred 
Machine 

learning 

Prediction of 

mitochondrial and 

sub-mitochondrial 

protein localization 

based on amino 

acid sequence 

and Pfam domains 

Search based 

on the user input 

data 

http://proteininformatics.org/m

kumar/submitopred/ 
2018  [34] 

DeepMito 
Machine 

learning 

Prediction 

mitochondrial and 

sub-mitochondrial 

protein localization 

based on amino 

acid sequence 

254 (IMM), 124 

(IMS), 499 

(Matrix), 172 

(OMM) 

http://busca.biocomp.unibo.it/d

eepmito/ 
2020  [35] 

MitoFates 
Machine 

learning 

Prediction of mt-

protein localization 

based on the 

biochemical 

features of N-

terminal TS and 

presence of 

consensus CS 

1847 
http://mitf.cbrc.jp/MitoFates/cgi

-bin/top.cgi 
2015  [28] 

TargetP 2.0 
Machine 

learning 

Subcellular protein 

localization 

analysis. 

Prediction of mt-

proteins is based 

on the biochemical 

features of N-

terminal TS 

648 
http://www.cbs.dtu.dk/services

/TargetP/ 
 2019  [26] Jo
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TPpred3 
Machine 

learning 

Subcellular protein 

localization 

analysis. 

Prediction of mt-

proteins is based 

on the biochemical 

features of N-

terminal TS and 

presence of 

consensus CS 

Search based 

on the user input 

data 

https://tppred3.biocomp.unibo.i

t/tppred3 
 2015  [29] 

Predotar 
Machine 

learning 

Subcellular protein 

localization 

analysis. 

Prediction of mt-

proteins is based 

on the biochemical 

features of N-

terminal TS 

1426 
https://urgi.versailles.inra.fr/pre

dotar/ 
2004  [27] 

CELLO II 
Machine 

learning 

Subcellular protein 

localization 

analysis; 

prediction of 

mitochondrial 

proteins is based 

on amino acid 

sequence and 

homology 

Search based 

on the user input 

data 

http://cello.life.nctu.edu.tw/ 2006  [33] 

Human 

MitoCarta 3.0 

Machine 

learning and 

manual 

curation 

Prediction of mt-

proteins based on 

systematic data 

integration  

1136 

https://www.broadinstitute.org/

mitocarta/mitocarta30-

inventory-mammalian-

mitochondrial-proteins-and-

pathways  

 2020  [54] 

Mitominer 4.0 
Machine 

learning 

Prediction of mt-

protein based on 

systematic data 

integration 

1626 

http://mitominer.mrc-

mbu.cam.ac.uk/release-

4.0/begin.do 

 2018  [55] 
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Mitochondrial 

Protein Atlas  

Manual 

curation 

Database of 

human mt-proteins 
911 

http://lifeserv.bgu.ac.il/wb/jeich

ler/MPA/ 
2017  [80] 

MitoProteome 
Manual 

curation 

Database of 

human mt-proteins 
3625 http://www.mitoproteome.org/ 2004  [81] 

HMPDb 

Automated 

data 

retrieval 

Database of 

human mt-proteins 
1465 

https://bioinfo.nist.gov/hmpd/S

earch.html  
 2016  [82] 

EXPERIMENTAL 

N-terminome Biochemical 

identification of 

human proteins 

with N-terminal, 

cleavable 

presequence 

356 Supplementary Table 7  2015  [23] 

Matrix and IMM Biochemical 
Proximity Labelling 

and MS 
495 Supplementary Table 1 2013  [45] 

 IMS Biochemical 

Ratiometric 

Proximity Labelling 

and MS 

127 Supplementary Table 2 2014  [46] 

OMM Biochemical 

Ratiometric 

Proximity Labelling 

and MS 

137 Supplementary File 1a 2017  [47] 

Human Protein 

Atlas 
Imaging 

Database of 

subcellular protein 

localization 

1098 
https://www.proteinatlas.org/h

umanproteome/cell/organelle 
 2015  [83] 

Abbreviations: mt, mitochondrial; TS, targeting sequence; CS, cleavage site; MS, mass-spectrometry; IMM, inner mitochondrial 

membrane; IMS, intermembrane space; OMM, outer mitochondrial membrane. 
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