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A B S T R A C T

Thermodynamics has a clear arrow of time, characterized by the irreversible approach to equilibrium. This
stands in contrast to the laws of microscopic theories, which are invariant under time-reversal. Foundational
discussions of this “problem of irreversibility” often focus on historical considerations, and do therefore not take
results of modern physical research on this topic into account. In this article, I will close this gap by studying
the implications of dynamical density functional theory (DDFT), a central method of modern nonequilibrium
statistical mechanics not previously considered in philosophy of physics, for this debate. For this purpose,
the philosophical discussion of irreversibility is structured into five problems, concerned with the source of
irreversibility in thermodynamics, the definition of equilibrium and entropy, the justification of coarse-graining,
the approach to equilibrium and the arrow of time. For each of these problems, it is shown that DDFT provides
novel insights that are of importance for both physicists and philosophers of physics.
. Introduction

The temporal asymmetry of thermodynamics is one of the central
roblems in philosophy of physics. If a cup of hot coffee stands in a
oom, it will cool down until it has room temperature, but it will not
pontaneously heat up by extracting heat from its environment. This is
ommonly seen as a consequence of the second law of thermodynamics,
hich assigns to each of these systems a quantity known as “entropy”

hat increases in these processes and that, most importantly, cannot
ecrease. Often, this is considered one of the most fundamental laws
f physics (Callender, 2001, p. 540).

However, as is also well-known, there is a conflict with the mi-
roscopic laws governing the motion of the individual particles that a
acroscopic system consists of. These laws are invariant under time-

eversal,1 which means that if a process can occur in one direction
f time, it can also occur in the other direction. Thus, a cup of coffee
t room temperature that spontaneously heats up would be in perfect
greement with the microscopic laws of physics, which makes it very
ifficult to explain why such a behavior is never observed.

An intense discussion on this problem has emerged in philosophy
f physics. It has evolved into a variety of sub-debates concerned with
ifferent explananda that, in this article will be classified into five prob-
ems. Often, foundational discussions of statistical mechanics focus on

∗ Correspondence to: Institut für Theoretische Physik, Center for Soft Nanoscience, Busso-Peus-Straße 10, 48149 Münster, Germany.
E-mail address: michael.tevrugt@uni-muenster.de.

1 When it comes to the most fundamental laws, this is not strictly true. The standard model of particle physics is invariant under CPT, which is a combination
f charge-conjugation, mirror reflection and time-reversal. However, this effect is too small to account for the temporal asymmetry of thermodynamics (Wallace,
013, p. 270).

historical aspects. Moreover, there has been a growth of interest in for-
mal approaches to coarse-graining based on the projection operator for-
malism (Mori, 1965; Zwanzig, 1960). There is, however, a lack of work
that considers the implications of modern research on nonequilibrium
statistical mechanics for foundational problems (Wallace, 2015).

In this work, I will close this gap by providing the first philosophical
discussion of dynamical density functional theory (DDFT) (Evans, 1979;
Marini Bettolo Marconi & Tarazona, 1999; te Vrugt et al., 2020b),
which is one of the cornerstones of modern statistical physics. DDFT
has originally been developed for modeling simple and complex fluids.
It is now a central method of theoretical soft matter physics and has,
moreover, found applications in other fields such as biology (Angioletti-
Uberti et al., 2018), chemistry (Liu & Liu, 2020), epidemiology (te
Vrugt et al., 2020a), or plasma physics (Diaw & Murillo, 2015). More-
over, it is intimately connected to the projection operator formal-
ism (Español & Löwen, 2009; Wittkowski et al., 2012), such that it
provides a natural link between foundational debates in philosophy of
physics and practical work in condensed matter physics. For each of
the five sub-problems discussed in this work, it is shown that DDFT
can make interesting contributions to the debate in philosophy.

This article is structured as follows: In Section 2, I explain how
“the” problem of irreversibility arises, and structure it into five different
sub-problems. An introduction to DDFT can be found in Section 3. In
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Sections 4 to 8, I explain in detail each problem and the contribution
that DDFT can make to its solution. I conclude in Section 9.

2. The five problems of irreversibility

In this section, I will briefly recapitulate what is commonly referred
to as “the problem of irreversibility”. This is a long withstanding debate
in the foundations of statistical mechanics, which has evolved into a
variety of sub-debates that are dealing with different aspects. A careful
distinction of the different explananda is required both to ensure a
conceptually precise treatment and to appreciate that studying DDFT is
important for a variety of foundational debates. For this purpose, I will
introduce here a scheme of “problems of irreversibility”, which is used
to provide structure both for the overview over the general debate and
for the discussion of DDFT in the subsequent chapters. These will also
present the five problems in more detail. Given that DDFT is a classical
theory (although it can be connected to quantum-mechanical methods,
see te Vrugt et al. (2020b) for a discussion), I will restrict myself to
classical statistical mechanics here.

The first theory that is relevant is thermodynamics, which is a
phenomenological theory that describes macroscopic systems2 A cen-
ral observation in thermodynamics is that isolated systems tend to
pproach a state of thermodynamic equilibrium, in which its macroscopic
roperties are approximately constant. This will, in practice, be the case
nly on certain observational timescales (Callender, 2001, p. 545). For
xample, a cup of hot coffee that stands in a cold room will cool down
ntil it has room temperature (equilibrium state).

This is associated with a quantity known as entropy, which according
to (a common interpretation of) the second law of thermodynamics can
never decrease in an isolated system. For example, it is not possible
that the coffee spontaneously heats up by absorbing heat from the
cold room, since in this case entropy would decrease. The tendency
to approach equilibrium is often associated with the second law of
thermodynamics, although Brown and Uffink (2001) have argued that
it has a more fundamental status and should be viewed as a minus first
law. This leads us to the first problem (Section 4), which is concerned
with how the observation that macroscopic systems exhibit irreversible
behavior is built into the axioms of thermodynamics.

The second theory we require is classical mechanics, which de-
scribes the microscopic dynamics of the individual particles. These are
described by Hamilton’s equations, which are the fundamental laws of
lassical mechanics and have the important property of being time-

reversal invariant : If we record a movie of a process allowed by classical
mechanics and play the movie backwards, then what we see will also be
a process allowed by classical mechanics. The microscopic laws know
no preferred direction of time. The microstate of a system is a point in
the so-called phase space, which is the central playground of classical
mechanics.

Thus, there seems to be a contradiction between the microscopic
laws of classical mechanics and the macroscopic laws of thermody-
namics. In thermodynamics, systems are expected to evolve towards
an equilibrium state, accompanied by an increase of entropy. This
process is irreversible, since its time-reversal would involve a decrease
of entropy and is therefore forbidden by the second law. The laws
governing the microscopic constituents of the system, however, are
time-reversal invariant and would therefore allow for such a process.

The connection between the behavior of the individual particles
and the dynamics of the macroscopic system it consists of is studied in
statistical mechanics. It can be constructed in two frameworks, which are
referred to as the Boltzmann approach and the Gibbs approach. I present

2 By a macroscopic system, I mean a system that contains about 1023 parti-
cles. Strictly speaking, the thermodynamic limit requires that a macroscopic
systems has infinitely many particles (Thiele et al., 2019). This idealization,
however, leads to additional philosophical problems (Menon & Callender,
2013) that are not relevant here.
137
them here following Frigg (2008). In the Boltzmann approach, a system
is, on the macroscopic level, characterized by a small number of vari-
ables (such as temperature and volume), which define the macrostate
of the system. Its microstate, on the other hand, is characterized by
the phase-space coordinates of all particles the system consists of. The
microstate uniquely determines the macrostate, while the converse is
not true. The entropy of a macrostate is then introduced as a measure for
the volume of the phase-space region corresponding to this macrostate.
One can then introduce the equilibrium state as the state with maximal
Boltzmann entropy.

In the framework of Gibbs, one studies many-particle systems using
ensembles. These are hypothetical sets of infinitely many copies of the
system which evolve according to the same laws, but with different
initial conditions. One then introduces a probability density that for
each point in phase space, i.e., for each microscopic state, gives the
probability that a system that is randomly chosen from the ensemble is
in this state (see Frigg (2008) and Frigg and Werndl (2021, p. 107)).
It is helpful to think of this probability density as a fluid. In this
framework, the entropy can then be given a microscopic definition as
a function of the density — intuitively, it measures the volume of the
fluid. The problem is now that one can easily prove using Hamilton’s
equations that the volume of this “fluid” is constant, a result known
as Liouville’s theorem. This implies, of course, that the entropy is also
constant — in conflict with thermodynamics, which demands that it
increases during the approach to equilibrium. In the equilibrium state,
one has a stationary phase-space distribution that maximizes the Gibbs
entropy.

In physics, this problem has not gone unnoticed, and is routinely
solved through a procedure known as coarse-graining, which has orig-
inally been suggested by Gibbs (1902) (see also Robertson (2020, pp.
550 - 551)). The starting point – in usual treatments – is that we are
trying to describe macroscopic observations. Such observations do not
allow to distinguish between certain microstates — if we shift a certain
fluid molecule by a few nanometers, this will change the microstate
of a bucket of full of water, but it will not make an observable dif-
ference. Therefore, we can simply group together the macroscopically
indistinguishable microstates and average over them. Notably, this was
done with an epistemic – and not ontological – justification. For the
coarse-grained distribution, Liouville’s theorem does not hold. Hence,
we can define, from the coarse-grained distribution, a coarse-grained
entropy which measures its volume. This entropy is then allowed
to increase. The coarse-graining can be mathematically implemented
in various ways. I will denote by coarse-graining any procedure that
involves replacing the microscopic (fine-grained) distribution function
of the system by an averaged one.

Procedures of this form are routinely and successfully used in
physics to derive irreversible macroscopic transport equations from
the underlying Hamiltonian dynamics. Nevertheless, they are discussed
very controversially in philosophy. The objection is (roughly) that we
have, through the coarse-graining, artificially introduced an asymmetry
that has not been there originally. This has been justified by an appeal
to our limited capability of observation, but the increase of entropy is
a physical effect that should not depend on how good our microscopes
are (Robertson, 2020, pp. 563 - 565). In fact, this discussion is – as
we will see below – concerned with two different problems. On the
one hand, we can ask whether the fine-grained or the coarse-grained
definition of entropy and equilibrium is the “correct” one (Section 5),
on the other hand, we can ask how the coarse-graining procedure can
be justified (Section 6).

Finally, we need to find a way to derive – with or without coarse-
graining – the irreversible macroscopic dynamics from the reversible
microscopic dynamics. In statistical mechanics, there are
well-established procedures for this purpose, which are often based on
the argument that, for a nonequilibrium initial condition, it is far more
likely to move to equilibrium than away from it, since the equilibrium

state is the one with the largest phase-space volume (North, 2011,
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pp. 321–323). The problem is that such arguments can – because of
the time-reversal invariance of the underlying laws – also be applied
to the past (Callender, 1999, p. 363). This is a problem because our
records of the past tell us that entropy used to be lower. A solution
that is very popular in philosophy is the past hypothesis. The idea is that,
ince the asymmetry between past and future cannot be a consequence
f the dynamical laws of the universe, it has to be a consequence of
he boundary conditions. In particular, if we assume that the entropy
f the early universe was very low, we could have an explanation for
hy it increases afterwards (Callender, 2021).

It is an interesting observation that, despite the fact that the entropy
f the early universe plays such a prominent role in foundational dis-
ussions of statistical mechanics, it is typically of no importance in the
veryday life of a statistical physicist who derives irreversible transport
quations. The reason is that we are, once again, dealing with different
uestions. On the one hand, we can ask ourselves why systems, given an
nitial nonequilibrium state, tend to approach equilibrium irreversibly
Section 7). On the other hand, we should ask ourselves why the
xplanation we have found for this effect does not apply to the past
Section 8). Distinctions of this form have been expressed by Boltzmann
see Brown and Uffink (2001, p. 530)), Penrose (1994, p. 218) and Price
1996, pp. 47–48).

In summary, the five problems are:

• What is the source of irreversibility in thermodynamics? (Q1)
This question asks for the source of irreversibility within thermo-
dynamics, i.e., purely on the level of the macroscopic theory. It
is controversial which of the laws of thermodynamics is actually
responsible here.

• How should “equilibrium” and “entropy” be defined? (Q2)
Here, we look for a definition of the explanandum. The questions
“Why do systems approach equilibrium?” and “Why does entropy
increase?” are answered differently by persons who have different
ideas on what equilibrium and entropy are, which is a common
source of confusion.

• (How) Can coarse-graining be justified? (Q3)
Since coarse-graining, which is frequently used in explanations
of the approach to equilibrium, is a controversial procedure, it
needs to be clarified whether and how it can be justified. This is
a separate problem, since coarse-graining is also used in situations
without a relation to thermodynamic irreversibility.

• Why do systems approach equilibrium? (Q4)
This question asks why systems, given an initial nonequilibrium
state, (irreversibly) approach equilibrium.

• Why does the arrow of time have the direction it has? (Q5)
Here, we look for an explanation for why our answer to Q4 does
not apply to the past, i.e., we wish to find out why the entropy
always increases from past to future.

A popular framework for discussing the microscopic origin of irre-
ersible dynamics is the projection operator method. In this work, I
ill refer to this approach as Mori–Zwanzig formalism, as is common

n physics3 (te Vrugt & Wittkowski, 2019). The general idea is to
ntroduce a projection operator to project the full dynamics onto the
art that only depends on the “relevant” degrees of freedom of the
ystem. One then derives a formally exact transport equation that
ontains a term depending on the irrelevant degrees of freedom at

3 Approaches based on projection operators are known by a vari-
ty of names. In addition to “Mori–Zwanzig formalism”, one also finds,
.g., “Zwanzig-Zeh-Wallace framework” (Robertson, 2020) - referring to
he conceptual discussions of this formalism by Wallace (2015) and Zeh
2007) – “Kawasaki–Gunton operator method” (Yoshimori, 2005) – referring
o Kawasaki and Gunton (1973) - or “Mori–Zwanzig–Forster technique” (Wit-
kowski et al., 2012, 2013) - referring also to Forster (1974). While these
ames sometimes refer to slightly different forms, the general idea is always
he same.
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the initial time 𝑡0 and a term depending on the state of the system
t previous times. To obtain a closed memoryless transport equation
that is irreversible! – it is then assumed that the irrelevant part of

he density vanishes at 𝑡0 and that memory effects can be ignored
Markovian approximation) (Robertson, 2020, pp. 553–556). The orig-
nal formalism was developed by Nakajima (1958), Zwanzig (1960),
nd Mori (1965), and has subsequently been extended to incorporate,
or example, the dynamics of fluctuations (Grabert, 1978) and time-
ependent Hamiltonians (Meyer et al., 2019; te Vrugt & Wittkowski,
019). An introduction to this method can be found in te Vrugt and
ittkowski (2020a), a general overview in Grabert (1982).

. Dynamical density functional theory

After having presented and analyzed the discussion of thermody-
amic irreversibility in philosophy of physics, we can now turn to an
xample of an irreversible theory used in modern physics, namely dy-
amical density functional theory (DDFT). Here, I give a brief overview.
detailed review can be found in te Vrugt et al. (2020b).
DDFT is a theory for the nonequilibrium dynamics of classical many-

ody systems. It is an extension of classical density functional theory
DFT), which is a highly successful and formally exact theory (based
n the quantum-mechanical DFT by Hohenberg and Kohn (1964)) that
llows to find the equilibrium state of a many-particle system. This is
one by minimizing a free energy functional that depends on the one-
ody density 𝜌(𝑟) (which gives the probability of finding a particle at
osition 𝑟). In DDFT (which is an approximate theory), this is extended
o the out-of-equilibrium case by assuming that the nonequilibrium
ystem is driven towards the state in which the free energy functional

is minimized. This leads to the governing equation of deterministic
DFT, given by

𝜕
𝜕𝑡
𝜌(𝑟, 𝑡) = 𝛤 ∇⃗ ⋅

(

𝜌(𝑟, 𝑡)∇⃗
𝛿𝐹 [𝜌]
𝛿𝜌(𝑟, 𝑡)

)

(1)

with time 𝑡 and mobility 𝛤 . Here, 𝛿 denotes a functional derivative and
∇⃗ is the del operator.

The DDFT equation (1) was originally proposed by Evans (1979)
based on phenomenological arguments, and later derived from micro-
scopic dynamics by Marini Bettolo Marconi and Tarazona (1999, 2000)
and Archer and Evans (2004). DDFT also exists in the stochastic form

𝜕
𝜕𝑡
𝜌(𝑟, 𝑡) = 𝛤 ∇⃗ ⋅

(

𝜌(𝑟, 𝑡)∇⃗
𝛿𝐹 [𝜌]
𝛿𝜌(𝑟, 𝑡)

)

+ ∇⃗ ⋅
(
√

2𝛤𝑘𝐵𝑇 𝜌(𝑟, 𝑡)𝜂(𝑟, 𝑡)
)

, (2)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, and 𝜂(𝑟, 𝑡)
is a multiplicative noise. Stochastic DDFT was, in various forms, devel-
oped by Dean (1996), Fraaije (1993), Kawasaki (1994) and Munakata
(1989). (The relation between stochastic and deterministic DDFT is
discussed in Sections 5 and 6.) Today, DDFT is among the most widely
used methods in nonequilibrium statistical mechanics, with applica-
tions including biological swimmers (Menzel et al., 2016), disease
spreading (te Vrugt et al., 2020a), ions in capacitors (Babel et al.,
2018), plasmas (Diaw & Murillo, 2016), thin films (Robbins et al.,
2011), tumor growth (Al-Saedi et al., 2018), and much more. Moreover,
a variety of extensions have been developed that allow to model,
e.g., flow fields (Rauscher et al., 2007), hydrodynamic interactions (Rex
& Löwen, 2008), nonspherical and active particles (Wittkowski &
Löwen, 2011), nonisothermal systems (Wittkowski et al., 2012), or
systems with strict particle order (Wittmann et al., 2021).

Among the main fields of application of DDFT are colloidal and
atomic fluids. Colloidal fluids consist of large particles (colloids) that
are immersed in a fluid consisting of many small particles (solvent).
Due to the presence of the solvent, the motion of the particles is
overdamped (i.e., momentum degrees of freedom can be neglected),
and subject to noise. The motion of the colloids is described by the
Langevin equations

d𝑟𝑖(𝑡) = 𝛤𝐹 (𝑡) + 𝜒 (𝑡), (3)

d𝑡 𝑖 𝑖
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where 𝑟𝑖 is the position of the 𝑖th particle, 𝐹𝑖 the force acting on it, and
𝜒𝑖(𝑡) an additive white noise term with zero mean. As shown by Marini

ettolo Marconi and Tarazona (1999), the DDFT equation (1) can be
erived from the Langevin equations (3) based on the assumption that
he pair correlation of the nonequilibrium system is identical to that
f an equilibrium system with the same one-body density (adiabatic
pproximation). Atomic fluids, on the other hand, consist of atoms,
.e., of only one type of particle. Their microscopic dynamics is given
y Hamilton’s equations, which are undamped, rather than by the
verdamped Langevin equations. Deriving a DDFT for one-component
luids therefore requires an elimination of the momentum degrees of
reedom, which is possible by assuming that the momentum relaxes
uch faster than the density (Kawasaki, 1994, p. 47).

The Mori–Zwanzig formalism (projection operator method) is an
mportant tool in DDFT, as it allows for a systematic derivation of
he DDFT equations (1) and (2) from the microscopic dynamics of
he individual particles. (This is discussed in detail in te Vrugt et al.
2020b).) Consequently, the projection operator method allows to re-
ate the physical research on DDFT to the discussion of irreversibility
n philosophy of physics. Microscopic derivations of DDFT from the
eversible Hamiltonian dynamics were presented by Español and Löwen
2009) and Yoshimori (2005). Moreover, one can obtain DDFT from
stochastic underlying dynamics through additional projections (Es-

añol & Vázquez, 2002; Kawasaki, 1994). An important application of
rojection operators is the derivation of generalizations of DDFT that
ncorporate additional order parameter fields. For example, the energy
ensity is used as a relevant variable in addition to the number density
n “extended dynamical density functional theory” (EDDFT), which was
erived using the projection operator formalism by Wittkowski et al.
2012, 2013).

. First problem: The source of irreversibility in thermodynamics

As discussed in Section 2, entropy and irreversibility are studied in
wo fields of physics: Thermodynamics, which is a phenomenological
heory of macroscopic states, and statistical mechanics, which describes
acroscopic systems by developing a statistical description of their
icroscopic constituents. One of the aims of statistical mechanics –

hough by no means the only one – is to provide a microscopic jus-
ification for the principles that are introduced as axioms on the level
f thermodynamics. Here, we are interested in a particular property
f thermodynamics, namely the existence of irreversible processes. If
e wish to figure out where in the transition from microscopic to
acroscopic physics these come into play, a good way to start is

herefore to first figure out in which of the axioms of thermodynamics
rreversibility can be found, and then to have a look at the microscopic
oundations of that particular axiom.

Uffink (2001, pp. 313-315) attributes the difficulty of locating the
emporal asymmetry in thermodynamics to the absence of equations
f motion. A typical understanding of time-reversal symmetry is that a
heory has this symmetry if, when we time-reverse a temporal evolution
hat is allowed by the theory, the resulting (backwards) evolution
ould also be allowed by the theory. It is not immediately clear how

o apply this definition to a theory that is not primarily concerned with
ime evolutions.

Thermodynamics is based on four axioms (“Hauptsätze”), namely
he zeroth law (transitivity of thermal equilibrium), the first law (con-
ervation of energy), the second law (entropy cannot decrease) and
he third law (a system cannot reach zero temperature). In physics
extbooks, the second law typically gets credit for irreversibility. This
aw was stated in Section 2 as “Entropy cannot decrease in a closed
ystem”. Although this is a very common understanding, it is very
ifficult to state the content of the second law in a precise way since
t exists in many different forms that are not fully equivalent and have
iffering connections to the arrow of time. Uffink (2001, p. 306), who
as analyzed this point in detail, has compared the interpretation of the
econd law to the interpretation of a work from Shakespeare.
139
The relation of the second law to irreversibility depends, as shown
by Uffink (2001) in a detailed historical analysis, on its precise formu-
lation. In an influential article, Brown and Uffink (2001) have argued
that the temporal asymmetry of thermodynamics is more fundamental
than and logically prior to the second law. Therefore, they propose a
“minus first law” that should be added to the standard set of laws.
It states that for each isolated system there exists a unique state of
equilibrium that it will spontaneously enter. The time-asymmetry of
thermodynamics (in contrast to statistical mechanics) then arises from
the notion of equilibrium states, since these are spontaneously reached
but not left without external intervention.

The distinction between the second and the minus first law, and
the question where exactly irreversibility is to be located, is very
important for providing a microscopic foundation of irreversible pro-
cesses. Uffink (2001, p. 316) distinguishes between different meanings
of “irreversibility”, namely “time-reversal-noninvariance” (there is a
process allowed by a theory whose time-reversal is not allowed) and “ir-
recoverability” (a transition from a state 𝐴 to a state 𝐵 cannot be fully
ndone). This distinction has also been employed by Luczak (2017). He
laims that minus first and the second law are logically independent
tatements. The minus first law predicts that systems initially in a
onequilibrium state will irreversibly approach an equilibrium state,
here “irreversible” means “time-reversal-noninvariant”. The second

aw, on the other hand, is concerned with transitions between equi-
ibrium states, which can be irreversible in the sense of “making the
nitial state irrecoverable”. Statistical mechanics, he concludes, should
im at giving a microscopic underpinning to both the minus first and
he second law, which requires two different solutions given that we
ave two different problems.

Clarifying the location of irreversibility within thermodynamics is
hus important in order to decide what precisely we seek an explanation
or. Since in this work we are interested in what DDFT can offer,
e should therefore ask whether DDFT is related to the second or

o the minus first law. As shown by Munakata (1994, p. 2348), the
eterministic DDFT (1) possesses the H-theorem

d𝐹
d𝑡

= ∫ d3𝑟 𝛿𝐹
𝛿𝜌(𝑟, 𝑡)

𝜕
𝜕𝑡
𝜌(𝑟, 𝑡) = −∫ d3𝑟𝛤𝜌(𝑟, 𝑡)

(

∇⃗ 𝛿𝐹
𝛿𝜌(𝑟, 𝑡)

)2
≤ 0. (4)

In the last step, we have used Eq. (1) and integration by parts. A
minimum is reached for 𝛿𝐹∕𝛿𝜌 = 𝜇 (with chemical potential 𝜇), which
is the equilibrium state. Thus, DDFT predicts that nonequilibrium sys-
tems spontaneously and monotonously approach an equilibrium state.
Moreover, the (local and global) minimum is unique, although local
minima can arise in practical applications as a consequence of ap-
proximations (Marini Bettolo Marconi & Tarazona, 1999, p. 8036).
Consequently, DDFT provides a microscopic foundation for the minus
first law (for fluids).

5. Second Problem: The Definition of “Equilibrium” and “En-
tropy”

If we wish to explain something, it is, in general, important to
have a precise idea about what exactly the thing we need to explain
is. In the case of thermodynamics, explaining the increase of entropy
or the approach to equilibrium therefore requires that we have an
idea about what precisely entropy and equilibrium are. As it turns
out, this is not at all clear, which is problematic because different
opinions on what equilibrium is lead to different opinions on why and
whether equilibrium is approached. Here, I will consider two aspects
of the debate concerning thermodynamic equilibrium, which can both
be understood better when analyzing the example of DDFT. These
are the question whether “entropy” (and, consequently, “equilibrium”)
is an approximate notion, i.e., whether it should be understood in
a fine-grained or a coarse-grained way, and the question whether
it is a time-asymmetric notion, i.e., whether fluctuations away from
equilibrium are possible.
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For the first of these aspects, we consider the argument formulated
y Blatt (1959) and Ridderbos and Redhead (1998) against the coarse-
raining procedure, which is based on the famous spin echo experiment
erformed by Hahn (1950).4 Spins in a magnetic field are aligned
y a strong pulse. The magnetic field causes precession of the spins,
nd because of small inhomogeneities in the field, the spins precess
ith different frequencies and are oriented “randomly” after some

ime. Hence, they are in a state of coarse-grained equilibrium. Now, a
econd pulse is applied, which reverses the direction of precession. In
onsequence, the spins return, after some time, to their initial aligned
tate. Since the spins were isolated after the second pulse, we appear
o have a case of an isolated system spontaneously evolving away from
quilibrium, which could be interpreted as a violation of the second
aw. The explanation for why this happens and why this is not a
iolation of the second law, Ridderbos and Redhead (1998, p. 1251)
rgue, is that the system was not actually in fine-grained equilibrium. It
as only in coarse-grained equilibrium. But since the typical argument

or coarse-graining is that we cannot distinguish between fine-grained
nd coarse-grained equilibrium, and since we here have found a way in
hich we can, coarse-graining is not a reasonable way of explaining the
pproach to equilibrium. In particular, if we think of “equilibrium” as
coarse-grained equilibrium”, the second part of the spin-echo experi-
ent would constitute a violation of the second law of thermodynamics

which, of course, it is not).
I will get back to the justification of coarse-graining in Section 6.

hat is interesting here is that Ridderbos and Redhead defend a certain
haracterization of equilibrium as “fine-grained equilibrium”. They
ontrast their position with that of Sklar (1995, p. 253), who claims
hat the first part of the spin-echo experiment constitutes “normal”
hermodynamic behavior. Ridderbos and Redhead (1998, pp. 1254–
257), on the other hand, argue that thermodynamic behavior would
e an approach to “true” equilibrium, including the loss of correlations.
n this perspective, an isolated gas that spreads out in a container
ould not exhibit an approach to equilibrium, since its distribution
ould not turn into the uniform equilibrium distribution. This, they

onclude, requires external interventions.
But we do not necessarily need to use this definition of equilibrium.

aybe, we are perfectly happy with the weaker characterization of
equilibrium” as a state in which the values of certain macroscopic
uantities are approximately constant (Callender, 2001, p. 547). For
xample, we macroscopically observe that hot coffee cools down. When
e, starting from a microscopic theory, derive a prediction for how the
verage temperature of the coffee evolves in time, we get, after some
pproximations, just that: The temperature of the coffee will approach
oom temperature. These two definitions thus lead to very different
eanings of Q4 (“Why do systems approach equilibrium?”). If we use

ine-grained equilibrium as a definition, combined with the very strict
eading proposed by Ridderbos and Redhead, then the explanation for
hy gas expands in an isolated container, or why an isolated cup of

offee cools down, would not be a part of an answer to Q4. Using a
efinition based on constant macroscopic quantities, on the other hand,
e would seek for an explanation of precisely this behavior.

DDFT is an interesting example for the problem of the approximate
ature of thermodynamic equilibrium: As discussed in Section 3, static
FT allows to find equilibrium states of a many-particle system by min-

mizing its free energy functional. It is based on a theorem by Mermin
1965) stating that in equilibrium, the one-body density uniquely deter-
ines the phase-space distribution and thus the free energy. Thereby,
FT provides a significant computational advantage, since the one-
ody is only a function of the position and not of the phase-space
oordinates of all particles. This theorem does, however, no longer
olds out of equilibrium. An extension was proven by Runge and Gross

4 I explain it here in a simplified form, following Ridderbos and Redhead
1998, pp. 1242–1243).
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(1984) for quantum and by Chan and Finken (2005) for classical time-
dependent systems, which shows that in the nonequilibrium case, there
is also a functional dependence on the initial state of the system.
Consequently, the one-body density does not fully determine the fine-
grained free energy for a system that is initially out of equilibrium.
Therefore, DDFT describes – strictly speaking – only an approach to
coarse-grained equilibrium. If we are in a state that has the same one-
body distribution as the equilibrium state, but a different correlation
function – i.e., in a state that corresponds to coarse-grained, but not
fine-grained equilibrium – then DDFT will not predict that it relaxes,
since the right-hand side of Eq. (1) is zero in this case. Problems of this
form are relevant, e.g., for the glass transition (Heinrichs et al., 2004,
p. 1124).

Given the approximate nature of DDFT, a significant amount of
research has been devoted to analyzing its shortcomings and potential
improvements in the past years. Forces that are not incorporated in
DDFT are known as superadiabatic forces.5 As shown by Fortini et al.
(2014), superadiabatic forces can have important effects in systems
of Brownian particles. A systematic extension of DDFT that allows to
describe them is power functional theory (PFT), which was developed
by Schmidt and Brader (2013). This exact formalism is based on a
variational principle for the power dissipation, where contributions that
go beyond DDFT are incorporated in an “excess power functional”.
An important superadiabatic effect is memory: The Mori–Zwanzig for-
malism shows that, when the full microscopic description of a system
is reduced to the subdynamics of the relevant degrees of freedom,
one obtains a dependence on the history of the system (Treffenstädt
& Schmidt, 2020, p. 1518). This dependence is usually neglected in
derivations of irreversible dynamical theories, this holds both for the
Mori–Zwanzig formalism and for DDFT.

The argument from interventionists outlined above is based on the
objection that the history dependence cannot be neglected, since it
is responsible for the motion reversal observed in the second part
of the spin-echo experiment. Similar effects have also been found in
PFT: Treffenstädt and Schmidt (2020) have recently studied a system
of Brownian particles under shear using PFT and Brownian dynamics
simulations. Starting from equilibrium, an inhomogeneous shear force
field is switched on, such that the system settles to a nonequilibrium
steady state. When the shear is switched off again, the system ex-
hibits a global current reversal before approaching equilibrium. This
is a consequence of the memory-induced superadiabatic forces, which
balance the external forces in steady state and become driving forces
after the external forces are switched off. This effect is reminiscent of
the spin-echo effect,6 which indicates that the large amount of work on
superadiabatic forces that has emerged in the past years is also relevant
for foundational research.

The comparison of fine-grained and coarse-grained equilibrium and
entropy leads us to the second aspect if we consider the connection to
thermodynamics (as discussed in Section 4): If we define “equilibrium”
as “the state with maximal fine-grained entropy”, then the minus first
law is, due to Liouville’s theorem stating that the fine-grained entropy
is constant, simply wrong (recall that the minus first law is a statement
about closed systems). For approaches based on coarse-graining, on
the other hand, the minus first law does not pose a problem. Brown
and Uffink (2001, p. 530) therefore distinguish in their discussion
two different notions of equilibrium: In thermodynamics, the concept

5 This name is motivated by the fact that DDFT is based on the adiabatic
pproximation, see Section 3.

6 I do not claim here that this is the same effect — there are important
ifferences, such as the fact that the spins are a closed quantum system, while
he Brownian particles are a dissipative classical system. Nevertheless, the
eneral effect (a system exhibits a motion reversal rather than the monotonous
pproach to equilibrium simpler models would predict) is similar, and given

that philosophers of physics tend to be more interested in closed quantum
systems, dissipative classical systems offer a lot of unexplored potential for
them.
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of equilibrium is introduced through the minus first law. Here, it is
a state that the system spontaneously enters and then remains in.
Therefore, equilibrium is by its nature a time-asymmetric notion. In
(Boltzmannian) statistical mechanics, on the other hand, equilibrium is
the macrostate with the largest entropy or phase-space volume, i.e., the
state that can be realized with the largest number of microscopic
configurations. This definition is time-symmetric, since deviations are,
in principle, possible in both directions of time.

Deterministic DDFT does, as shown in Section 4, predict a
monotonous approach to an equilibrium state, and thus provides a
microscopic basis for the minus first law (for soft matter systems). Once
the system has reached a minimum of the free energy, it will stay
there forever. This is not the case in the stochastic DDFT (2): Here,
due to the presence of the noise term, there will still be fluctuations
once an equilibrium state is reached. This is more reminiscent of the
time-symmetric idea from statistical mechanics, where deviations from
equilibrium are allowed. However, both stochastic and deterministic
DDFT are microscopic, statistical–mechanical theories. The question
whether noise terms should be included in DDFT has led to an intense
debate in statistical physics. An important argument against the pres-
ence of noise terms, presented by Marini Bettolo Marconi and Tarazona
(1999, p. 8034), is that the free energy functional of DFT already
includes all fluctuations such that one would overcount them if they
are added to the evolution equation.

An explanation was provided by Archer and Rauscher (2004), who
showed that the difference between Eqs. (1) and (2) arises because
the density 𝜌 has a different meaning in both theories. As an example,
let us compare the derivation of stochastic DDFT by Dean (1996) and
the derivation of deterministic DDFT by Marini Bettolo Marconi and
Tarazona (1999). Dean (1996) considered the microscopic density

�̂�(𝑟, 𝑡) =
𝑁
∑

𝑖=1
𝛿(𝑟 − 𝑟𝑖(𝑡)), (5)

where 𝛿(𝑟) is the Dirac delta distribution and 𝑁 is the number of
particles. (The density �̂� is often denoted “density operator”, and is

ritten with a hat to distinguish it from averaged densities.) He then
howed that, if the individual particles obey the Langevin equations
3), the density (5) satisfies the exact evolution equation

𝜕
𝜕𝑡
�̂�(𝑟, 𝑡) = 𝛤 ∇⃗ ⋅

(

�̂�(𝑟, 𝑡)∇⃗
𝛿𝐹 [�̂�]
𝛿�̂�(𝑟, 𝑡)

)

+ ∇⃗ ⋅
(
√

2𝛤𝑘𝐵𝑇 �̂�(𝑟, 𝑡)𝜂(𝑟, 𝑡)
)

, (6)

with the free energy

𝐹 [�̂�] = 1
2 ∫ d3𝑟∫ d3𝑟′�̂�(𝑟, 𝑡)𝑈2(𝑟 − 𝑟′)�̂�(𝑟′, 𝑡)

+ 𝑘𝐵𝑇 ∫ d3𝑟�̂�(𝑟, 𝑡)(ln(𝛬3�̂�(𝑟, 𝑡)) − 1), (7)

Here, 𝑈2(𝑟) is a two-body interaction potential and 𝛬 is the (irrelevant)
thermal de Broglie wavelength. Notably, the free energy (7) is not
the free energy of DFT, i.e., of equilibrium statistical mechanics. In
particular, the interaction term is very complicated and not known
in general in DFT, whereas it can be constructed straightforwardly
from the interaction potential in Eq. (7). Marini Bettolo Marconi and
Tarazona (1999), on the other hand, studied the ensemble-averaged
density

𝜌(𝑟, 𝑡) =
⟨ 𝑁
∑

𝑖=1
𝛿(𝑟 − 𝑟𝑖(𝑡))

⟩

, (8)

where ⟨⋅⟩ is an average over the microscopic noise. This density can
be shown to follow (after an adiabatic approximation, see Section 3)
the deterministic equation (1). (Another form of stochastic DDFT was
obtained by Kawasaki (1994), this will be discussed in Section 6.)

This distinction is of central importance for theoretical soft matter
physics, but it is also interesting for the discussion in philosophy of
physics: Here, it is (as shown above) a matter of debate to which extent
the monotonous approach to equilibrium predicted by thermodynamics
 d
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is a consequence of approximations, and whether systems will be found
to fluctuate out of equilibrium. Comparing the two forms of DDFT
discussed here shows that this depends, to a very large extent, on
the way we define our observables (here 𝜌) and our thermodynamic
functionals (here 𝐹 ), in particular on whether they are understood
as ensemble averages. This point deserves much more attention in
foundational discussions than it typically gets.

It also relates in an interesting way to the distinction between
the Gibbs and the Boltzmann approach explained in Section 2: As
discussed by Uffink (2007), these framework differ in their conceptions
of equilibrium: For Boltzmann, it is a property of a single system. A
system that is in equilibrium is not guaranteed to stay there forever. For
Gibbs, on the other hand, the idea of equilibrium applies to ensembles,
and an ensemble that is in equilibrium will remain there forever (since
equilibrium corresponds to a stationary distribution). In DDFT, one
has an equilibrium state which the density remains in forever if and
only one considers the ensemble-averaged density — this is the case of
deterministic DDFT, which is then analogous to the Gibbsian approach.
In stochastic DDFT, on the other hand, the system may always fluctuate
away from the state that minimizes the free energy, and the density is
not to be understood as an ensemble average.

6. Third problem: The justification of coarse-graining

The third problem is the question whether and how we can justify
coarse-graining. It is an important point here that “Can we use coarse-
graining to explain the approach to equilibrium?” and “How can we use
coarse-graining to explain the approach to equilibrium?” are two very
different questions. While the second one requires, of course, that the
first one has been answered with “yes”, it has a different content.

A first point we need to make here is that, to not get things
mixed up, it is important to distinguish “coarse-graining”, which is
a mathematical technique, from the position of “the coarse-grainers”,
which is the aim of criticism from interventionists. If, in the philosoph-
ical literature, someone criticizes “the coarse-grainers”, the criticism
is usually aimed at people who use a coarse-grained definition of
equilibrium, typically combined with an epistemic justification based
on finite measurement resolutions (Ridderbos & Redhead, 1998). This
criticism, however, is not directed at the procedure of coarse-graining
as such (at least it should not be), it is directed at a particular justifi-
cation of coarse-graining or at a particular definition of “equilibrium”.
The method of coarse-graining, in particular in the form of projection
operators, can also be used to formally describe the influence of exter-
nal interventions, and thus form a basis for interventionism (Robert-
son, 2020, p. 556). Since “the position of the coarse-grainers” is just
one possible justification of the mathematical procedure of coarse-
graining, and since this mathematical procedure is used very success-
fully throughout physics, one should be very careful with rejecting it
altogether, and if one does, this requires a very good justification.

To see why Q3 is a problem on its own, it is helpful to compare the
way coarse-graining is used and discussed in physics and in philosophy.
Philosophers of physics are interested in coarse-graining because of
the role it plays in the explanation of the approach to equilibrium.7
Physicists, on the other hand, also use it in situations where the
approach to equilibrium is of no interest or not even expected. DDFT is
an excellent case study for this point, which receives little attention
in the foundations of physics. It is a coarse-grained theory that, its
standard form, describes the irreversible approach to thermodynamic
equilibrium. However, modified forms of DDFT that are derived by

7 I do not claim here that philosophers always believe that coarse-graining
s only applicable to thermodynamic irreversibility, the relation of different
evels of description is also studied in a more general context (List, 2019).
evertheless, in the philosophy of statistical mechanics, coarse-graining is

ypically discussed as a possible origin of thermodynamic irreversibility, which
iffers from the way it is used, e.g., in active matter physics.
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similar coarse-graining procedures do not describe the approach to
thermodynamic equilibrium. Hence, interesting insights can be gained
by comparing these different forms of DDFT.

A field of application of DDFT where equilibration is not observed
is active matter. Active particles are particles which use energy in order
to create directed motion. A typical example would be a swimming
bacterium. Systems consisting of active particles are permanently out of
equilibrium, i.e., they do (as long as there is enough energy available)
never reach or approach a state of thermodynamic equilibrium. In the
description of active particles in statistical mechanics, coarse-graining
methods are frequently used to derive a macroscopic field theory
based on a microscopic theory of the individual active particles (see,
e.g., Bickmann and Wittkowski (2020a, 2020b) for such a derivation).
The theories derived in this way provide good descriptions for the
dynamics of active matter systems.

A DDFT for active particles can be constructed in various ways.
Wensink and Löwen (2008) described uniaxial8 active particles by
adding to a DDFT for passive (non-active) nonspherical particles a term
accounting for self-propulsion. This was generalized to particles with
arbitrary shape by Wittkowski and Löwen (2011). An alternative ap-
proach, considered, e.g., by Enculescu and Stark (2011) and Wittmann
and Brader (2016), is to construct a DDFT equation of the form

𝜕
𝜕𝑡
𝜌(𝑟, 𝑡) = 𝛤 ∇⃗ ⋅

(

𝜌(𝑟, 𝑡)∇⃗
𝛿𝐹eff [𝜌]
𝛿𝜌(𝑟, 𝑡)

)

. (9)

Although Eq. (9) looks exactly like Eq. (1), it uses an “effective” free en-
ergy 𝐹eff rather than the equilibrium free energy 𝐹 . In the construction
f 𝐹eff , the external potential acting on the system is modified by the
teady-state active force. Since active systems are not in equilibrium,
he DDFT (9) shows that a coarse-grained theory that describes the
pproach to a stationary state does not necessarily also describe the
pproach to thermodynamic equilibrium.

The justification of coarse-graining can then proceed in various
ays. One option is to justify the replacement of the fine-grained
y a coarse-grained density by our ignorance about microscopic de-
ails. Robertson (2020, pp. 565–570) justifies coarse-graining by its
bility to reveal autonomous dynamics on a higher level of description.
otably, both justifications do not require a connection between coarse-
raining and equilibrium and are thus applicable more generally. We
an also be indifferent about microscopic details of an active system,
nd active systems also show autonomous dynamics on higher levels of
escription.

Robertson (2020, p. 561) has suggested to split the project of
ustifying coarse-graining into two further sub-problems: We need to
ustify both why we coarse-grain at all and why we coarse-grain in a
articular way. The answers to these questions might be linked, but do
ot have to be identical. Up to now, we have been concerned with
he first sub-problem. We now turn to problem of why one should
oarse-grain in a particular way. Again, it is useful to study DDFT.

As discussed in Section 3, DDFT exists in stochastic and deter-
inistic forms. In Section 5, we have compared the deterministic
DFT by Marini Bettolo Marconi and Tarazona (1999) to the stochas-

ic DDFT by Dean (1996), and noted that the former describes the
nsemble-averaged density, while the latter is concerned with the
icroscopic density operator. Another form of stochastic DDFT was
erived by Kawasaki (1994). In this theory, the variable 𝜌(𝑟, 𝑡) denotes
density after spatial coarse-graining, which is done by dividing space

nto many small cells. As discussed by Archer and Rauscher (2004), the
ifferent definition of the density in Kawasaki’s theory is the reason
hy it is governed by a stochastic rather than a deterministic theory

since the average is taken over space and not over realizations of the
oise, the noise does not vanish after averaging). Since the presence
r absence of noise terms does, as emphasized in Section 5, make a

8 A particle is uniaxial if it has an axis of continuous rotational symmetry (te
rugt & Wittkowski, 2020b).
 d
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difference for the way equilibrium is approached and for the resulting
equilibrium state, the precise way in which coarse-graining is done
should be paid attention to when discussing irreversibility.

More generally, the relation between stochastic and deterministic
approaches can also be understood from the Mori–Zwanzig formalism,
which, as mentioned in Section 3, allows to derive DDFT. The Mori–
Zwanzig formalism exists in various forms, which differ in the form of
the projection operator (Kawasaki, 2000, p. 6345): In a microcanonical
projection operator formalism, the values of the macroscopic variables
are specified exactly. When using a canonical projection operator, on
the other hand, one only specifies the average values of the relevant
variables. A canonical projection operator allows to derive determin-
istic DDFT, with the free energy 𝐹 being given by the equilibrium
free energy of DFT. With a microcanonical projection operator, one
can derive the stochastic form of DDFT. The resulting free energy is
not identical to the DFT free energy, a connection can be established
using a fluctuation renormalization (Kawasaki, 2006; te Vrugt et al.,
2020b). Philosophical discussions of the Mori–Zwanzig formalism do
usually not distinguish between different types of projection operators.
However, the example of DDFT shows that this is more than a technical
difference, since different projection operators lead to different forms
of the dynamic equations that, as shown in Section 5, describe the
approach to equilibrium in a different way.

7. Fourth problem: The (irreversible) approach to equilibrium

While the first three problems have been setting the stage, we now
dive more deeply into what is usually thought of as “the problem of
irreversibility”: We wish to explain why systems that are initially out
of equilibrium tend to move towards an equilibrium state.

In physics, derivations of irreversible equations from the reversible
microscopic physics have a long tradition, starting from Boltzmann’s
H-theorem (see Boltzmann (1872), Brown et al. (2009)). “H-theorem”
is, in fact, now a standard name for a proof that a certain theory leads to
a monotonous behavior of (for example) the entropy (Anero & Español,
2007; Español & Löwen, 2009). Here is a typical idea of how this can
work (North, 2011, pp. 321–323): As discussed above, the entropy is,
in statistical mechanics, introduced as a measure for the volume in
phase space. Equilibrium is the macrostate with the largest phase space
volume.9 In fact, the phase space volume of the equilibrium state is
overwhelmingly larger than that of other states. Hence, if we move
into some direction in phase space, it is far more likely that we are
going towards equilibrium than away from it (the latter result would
correspond to extremely special initial conditions). The approach to
equilibrium is therefore explained by statistical considerations. This
argument goes back to Boltzmann, and notably, it is a probabilistic
argument (Brown et al., 2009, pp. 185–187). In the Gibbsian frame-
work, it can be shown that the coarse-grained distribution function tends
towards a uniform distribution on phase space.

Today, a popular framework for the description of irreversible pro-
cesses is stochastic dynamics (Uffink, 2007, pp. 1038–1063). Here, the
laws governing the behavior of the constituents of a system are assumed
not to be deterministic, but stochastic. In particular, a specific type
of stochastic processes known as Markov processes is employed (Sober,
2020). A process is Markovian if it has no memory. This means that (the
probability of) what happens in the future does not depend on what has
happened in the past. For example, the probability for getting “heads”
in a fair coin toss is always 0.5, no matter how often the coin landed
on “heads” in previous coin tosses. The Markov processes employed in
stochastic dynamics have the attractive feature that they tend towards
an equilibrium distribution after a while, so if we describe a system in
statistical mechanics by Markovian dynamical equations, then chances
are good that we will obtain a description of the irreversible approach

9 I assume here, for the sake of the argument, that these are acceptable
efinitions of “entropy” and “equilibrium”.
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to equilibrium. (Mathematically, the description in terms of Markov
processes corresponds to using so-called “Master equations”, which can
be obtained as an approximation of the actual microscopic dynamics
within the Mori–Zwanzig formalism (Zeh, 2007, pp. 57–68).)

The question is, of course, why we should be justified to model a
system using stochastic Markov processes given that the actual dynam-
ics is governed by Hamilton’s equations, which are deterministic. Three
main viewpoints can be found in the literature (Uffink, 2007, pp. 1038–
1039). The first one is an appeal to coarse-graining (van Kampen,
2002): We ignore microscopic details of the system that we cannot
measure anyway and focus on macrostates. Then, we can find transi-
tion probabilities for the change from one macrostate to another one
and thus obtain a stochastic process. Another option is intervention-
ism (Blatt, 1959; Ridderbos & Redhead, 1998): The system we describe
is not actually closed, but subject to external influences. Since these are
not known, our description of the system is stochastic. Finally, some
authors have advocated being agnostic about the origin of stochastic-
ity and simply treating stochastic dynamics as fundamental (Streater,
2009).

Importantly, these approaches are not necessarily in contradiction:
Recall that on the interventionist’s definition, the facts that gas in an
isolated container spreads out, that a hot cup of coffee in an isolated
room acquires room temperature, or that the spins go out of phase in
the first part of the spin echo experiment do not constitute instances
of an approach to equilibrium. Nevertheless, they do not deny that
these things happen. Now let us have a look at how these effects are
explained in the physics literature, where coarse-graining is employed.
An illustration used by Donev et al. (2014, p. 14) is a system consisting
of many oscillators that, after some time, will go out of phase. Every
individual oscillator follows a time-reversible law, yet the average
amplitude will decay due to dephasing. This, remarkably, is exactly
the explanation that Ridderbos and Redhead (1998, p. 1242) use for
what happens in the first part of the spin-echo experiment — the spins
oscillate and go out of phase. Thus, there is no difference between
the physical mechanisms by which interventionists explain the spread
out of an isolated gas and the mechanisms by which a physicist using
coarse-graining would explain the same effect. The major difference is
that for an interventionist, “approach to equilibrium” means something
different, such that different mechanisms (namely external interven-
tions) are required to explain it. Therefore, interventionists can still
agree that the coarse-grained density of a closed system will tend to
a uniform distribution, they will just not classify this as an “approach
to equilibrium”.

Again, DDFT provides an instructive example. As discussed in Sec-
tion 3, one can distinguish between DDFT for colloidal fluids and for
atomic fluids. In the case of atomic fluids, the microscopic dynamics
is given by Hamilton’s equations, and is therefore reversible. Hence,
a derivation of the irreversible DDFT equation (1) requires a coarse-
graining procedure. A good example is the derivation of DDFT from the
Mori–Zwanzig formalism by Español and Löwen (2009): Starting from
the reversible Hamiltonian dynamics, one obtains an exact equation
of motion for the relevant variable (here the one-body density) that
involves a memory term. It is then assumed that the one-body density
is a slow variable (more precisely: that it changes in time much more
slowly than the current correlation function), such that memory effects
can be neglected. This leads to the irreversible DDFT equation10 (1).
Thus, it is a typical example for the type of derivation “coarse-grainers”
have in mind when discussing irreversibility: We start from a reversible
system, coarse-grain it, make the approximation that the relevant part
of the dynamics is Markovian, and arrive at an irreversible law.

10 Strictly speaking, it leads to a non-local generalization of Eq. (1), that
as to be made local by the additional assumption that the system is a dilute
uspension. This, however, is a technical problem that is not relevant for the
resent discussion.
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However, DDFT is also (in fact: more often) applied to colloidal flu-
ids. Here, the microscopic dynamics is given by the Langevin equations
(3). Since these are already asymmetric in time (Luczak, 2016, p. 405),
coarse-graining is not required to obtain irreversibility. Stochasticity
here comes into play through the noise term in Eq. (3). As shown
by Dean (1996), one can derive from Eq. (3) an exact irreversible DDFT
equation of the form (2), which describes an approach to equilibrium.
(The additional approximations employed by Marini Bettolo Marconi
and Tarazona (1999) are required to obtain a closed equation for the
ensemble-averaged one-body density.) This is a typical example of a
derivation that interventionists think of when discussing irreversibility:
The colloidal system approaches equilibrium because it is – due to
collisions of the colloids with the solvent particles, which act as a
heat bath and provide noise – not a closed system. Consequently,
both main approaches to stochastic dynamics – coarse-graining and
interventionism – are required to understand modern nonequilibrium
statistical mechanics, since both play a role in DDFT.

What is, moreover, interesting is that there is not necessarily a
disagreement between these two positions: The irreversible Langevin
equations (3) can be derived by coarse-graining the full (reversible)
microscopic equations of motion for the system consisting of both col-
loidal and solvent particles. What interventionists and coarse-grainers
would disagree on is whether an atomic fluid or a closed system
consisting of colloids and solvents can be said to approach equilibrium.
However, as shown above, this is merely a consequence of the way
“equilibrium” is defined in these two approaches.

8. Fifth problem: The arrow of time

We have now reached the final problem, which is concerned with
the arrow of time. Let us assume we have found some explanation for
why, if we go forwards in time, the systems are observed to approach
equilibrium, i.e., that we have answered question four. We now need to
find out why, despite the symmetry of the fundamental laws of physics,
this answer cannot be applied to the past.

The distinction between Q4 and Q5 allows us to understand why, as
mentioned in Section 2, philosophers and physicists concerned with the
origin of irreversibility are discussing it based on considerations about
the big bang and cosmology, while researchers working on nonequi-
librium statistical mechanics are successful without ever spending a
thought on these issues (Penrose, 1994). The methods employed in
statistical physics – coarse-graining and Markovian approximations –
allow for a solution of Q4. This is sufficient if one takes the temporal
asymmetry as given, which is why the early universe plays no role in
the everyday life of a statistical physicist. Philosophers (and physicists)
who are interested in the source of this asymmetry, on the other hand,
need to address Q5, which requires a different type of answer.

Recall how the standard solution discussed in Section 2 works:
We start from a reversible theory describing the dynamics of the
density and then perform a coarse-graining, in which we replace the
fine-grained by the coarse-grained density, allowing to define a coarse-
grained entropy. The dynamics of the coarse-grained density then
leads to an increase of the coarse-grained entropy. Unfortunately, the
original microdynamics we started with was time-reversal symmetric,
i.e., it does not know a difference between past and future. Hence,
we could have simply decided to perform the coarse-graining in the
other direction of time, which would have been mathematically just
as well justified as the original derivation. This “backwards coarse-
graining” would then lead to a theory in which the entropy decreases
in the future and increases in the past, in strong contradiction to every
observation (Wallace, 2011, p. 15).

Albert (2000, pp. 115-119) has explained this problem as a problem
of inference: Q4 is, as discussed in Section 7, frequently solved by argu-
ing that an evolution towards equilibrium is more likely on statistical
grounds. Albert approaches this from an epistemological perspective: In
principle, he argues, we have two ways of obtaining information. Pre-
diction means that we, from the known laws of physics and the present
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state of the world as an initial condition, infer what will happen in the
future. Doing the same for the past is called retrodiction. The alternative
is to use records, from which we obtain most of our knowledge about the
past. The question is now, Albert argues, why we should have sources
of information other than prediction or retrodiction given that we only
have direct reliable empirical information about the present state of
the world. Unfortunately, if we use classical mechanics combined with
statistical considerations about phase space to retrodict what happened
in the past based on our knowledge of the present, we will conclude
– by the line of argument employed in Section 7 – that the past had a
higher entropy than the present. Hence, most of our records would most
likely be wrong. Even worse, given that we only believe in the laws of
mechanics because of experiments that we have records of, we could
infer from classical mechanics that classical mechanics is, presumably,
also wrong. Thus, statistical mechanics has brought us into a position
of skepticism. To avoid this, he introduces an additional postulate, the
past hypothesis: The entropy of the initial state of the universe was very
low. If we then use, as a basis for our inference, not only the laws of
mechanics and the statistics of phase space, but in addition also the
past hypothesis, then we can believe that our records of the past are,
in general true. Thus, we have avoided Albert’s problem of skepticism.

Wallace (2011) has suggested an alternative formulation,11 the sim-
ple past hypothesis: He defends the position that coarse-graining is
justified if the density is forwards compatible, i.e., if it does not affect
the predictions for the macroscopic variables. This is satisfied if the
density is “simple”.12 Unfortunately, a simple distribution is also back-
wards compatible, i.e., we can perform a coarse-graining in the other
direction of time, predicting an (unphysical) increase of entropy in the
past. To avoid this, and therefore to answer Q5, we assume that the
initial state of the universe was simple. In this case, we cannot perform
a problematic backwards coarse-graining, since the initial state of the
universe has no past.

DDFT is an interesting example also for this problem. As mentioned
in Section 7, it is possible in the Mori–Zwanzig formalism to derive
the irreversible DDFT equation from the reversible laws of classical
mechanics, a theory where the entropy always increases. However, this
only answers Q4 — depending on the choice of initial conditions, it
is also possible in the Mori–Zwanzig formalism to derive a theory in
which entropy always decreases (Zeh, 2007, p. 67). This depends on the
choice of initial conditions: To obtain a closed equation of motion in
which the entropy increases, we have to assume that the irrelevant part
of the phase-space density vanishes at the initial time (Wallace, 2015,
p. 292). This assumption is therefore also required for derivations of
DDFT in the Mori–Zwanzig formalism. Unfortunately, this is not always
made clear in such derivations. An explicit discussion of this hypothesis
and its role in DDFT was given by Yoshimori (2005).

When setting up the initial condition in a different way, the ir-
reversible dynamics would apply backwards in time. This possibility
is, in the philosophy of statistical mechanics, usually dismissed as an
unphysical artifact that one has to get rid of. However, it is notable that
a “backwards coarse-grained theory” is sometimes actually employed
in statistical physics (Lutsko, 2019): In the theory of nucleation, where
particles in a fluid aggregate to a nucleus that then grows leading to so-
lidification, one is interested in calculating the “most likely path” along
which nucleation occurs. For nucleation, the system has to overcome
an energy barrier. The most likely path can be obtained by starting at
the top of the energy barrier, evolving the system forwards in time by
the (coarse-grained and irreversible) DDFT equation towards the final
state and backwards in time (!) towards the initial state which had a
lower free energy. Lutsko (2011, p. 2), who introduced this procedure,
emphasizes that it is only a mathematical trick. Nevertheless, it is
an interesting observation that this is mathematically possible and
occasionally useful, and it is an interesting question why this is only
a mathematical trick.

11 See Brown (2017) for a comparison of Albert’s and Wallace’s formulation.
12 See Wallace (2011) for a more mathematical discussion.
144
9. Conclusion

In summary, I have shown that the study of dynamical density
functional theory (DDFT) provides interesting and important insights
for the philosophy of statistical mechanics. This has been demonstrated
for each of the five “problems of irreversibility” discussed here: DDFT
provides a microscopic basis for the minus first law (Q1), it reveals the
importance of taking into account memory effects and of distinguishing
between various types of free energy (Q2), it illustrates the subtle
relation between irreversibility and coarse-graining as well as the fact
that different forms of coarse-graining lead to different types of irre-
versible theories (Q3), it shows that both a coarse-grained description
and external interventions are possible sources of irreversible behavior
(Q4), and it reveals that it can be useful to apply coarse-grained theories
backwards in time (Q5). Consequently, for philosophers of physics
who wish their positions to incorporate results of modern research on
nonequilibrium systems, DDFT is a useful starting point for connecting
foundational work based on the Mori–Zwanzig formalism to applied
research on soft condensed matter systems - a connection that can be
expected to be beneficial for both fields.
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