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a b s t r a c t

Mathematical models are useful in epidemiology to understand COVID-19 contagion dynamics. We aim
to demonstrate the effectiveness of parameter regression methods to calibrate an established epidemio-
logical model describing infection rates subject to active, varying non-pharmaceutical interventions
(NPIs). We assess the potential of established chemical engineering modelling principles and practice
applied to epidemiological systems. We exploit the sophisticated parameter regression functionality of
a commercial chemical engineering simulator with piecewise continuous integration, event and discon-
tinuity management. We develop a strategy for calibrating and validating a model. Our results using his-
toric data from 4 countries provide insights into on-going disease suppression measures, while
visualisation of reported data provides up-to-date condition monitoring of the pandemic status. The
effective reproduction number response to NPIs is non-linear with variable response rate, magnitude
and direction. Our purpose is developing a methodology without presenting a fully optimised model,
or attempting to predict future course of the COVID-19 pandemic.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction is particularly important as countries begin to relax NPIs after suc-
COVID-19 is currently a global pandemic affecting around 213
countries around the world. As of 31 August 2020, 25.6 million
cases, with 17.9 million recovered patients and 859,550 deaths
have been reported (Worldometer, 2020). To control the pandemic,
most governments have issued recommendations such as intensi-
fied hand hygiene and have taken measures such as closing bor-
ders, enforcing lockdowns, etc. These NPIs reduce infection rates,
keeping the number of severe cases below hospital capacity limit,
a strategy popularly referred to as ‘flattening the curve’. A signifi-
cant challenge is to identify and efficiently evaluate the effect that
active and varying NPIs have on the disease transmission rate. This
cessfully flattening the curve of active cases.

1.1. The effective reproduction number

Key parameters used to quantify contagion are the basic and
effective reproduction numbers. These dimensionless numbers
describe the average number of expected secondary infections gen-
erated by each infected person in the absence and presence of con-
trolled interventions. Current opinion suggests that the COVID-19
has a basic reproduction number ~2–3. Although a recent review
(Liu et al., 2020) compared twelve studies published from the 1st
of January to the 7th of February 2020 which reported a range of
values for the COVID-19 basic reproduction number between 1.5
and 6.68. This apparent disparity arises because the reported
number depends on country, culture, the stage of the outbreak
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1 The simulator used for this study is BatchCAD 7.1. The software was originally
developed by Bramfitt VJ, Wright AR and Wright AW from 1986 to 1999, and was
eventually acquired by Aspen Technology Inc.
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and calculation method used. NPIs aim to slow the spread of the
virus and reduce the effective reproduction number to a sustained
value less than one so that the pandemic will eventually die out.
Scientists and governments in many countries around the world
use the effective reproduction number as an illustrative metric to
explain and justify the introduction and relaxation of NPIs (Fauci
et al., 2020).

1.2. Mathematical modelling

Most reported effective reproduction numbers are estimates
obtained from mathematical models. These include mechanistic
transmission models (The MRC Centre for Global Infectious
Disease Analysis, 2020), statistical models, (U. of G. Institute of
Global Health, 2020; U. of T. COVID-19 modeling consortium,
2020) deterministic epidemiological models (Analytics, 2020;
Luo, 2020) and a statistical dynamical growth model (Luo, 2020).
Estimated values of the effective reproduction number are highly
dependent on the choice of the model, the initial conditions used
to parameterise the model as well as underlying model
assumptions.

A widely used compartmental model in epidemiology is the
susceptible – infected – removed SIRð Þ model, (Kermack and
McKendrick, 1927, 1932, 1933). An extension of this model sepa-
rates the removed group into recovered and dead SIRDð Þ. These
models differentiate between the classes of individuals, modelling
transition rates between the classes using rate laws defined in
accordance with the law of mass action kinetics. As noted in De
Jong et al. (1995), modelling rates of infection through analogy to
chemical kinetics is the standard approach in mathematical epi-
demiology, and logically extends to an analogy with batch reactors
as noted in Manenti et al. (2020). Indeed, the purpose of mathe-
matical modelling of epidemiology is mostly concerned with the
kinetics of the spread of a contagion, which is clearly an important
issue when epidemics occur. The SIRð Þ and SIRDð Þmodels are deter-
ministic, autocatalytic kinetic models of the whole population (Dan
Corlan and Ross, 2015).

1.3. Capturing essential system dynamics

Any mathematical model must capture essential system
dynamics for calibration, predictive modelling and simulation
studies to be meaningful. For COVID-19 and the application of
NPIs, these are an initial exponential growth in active cases, slow-
ing as the NPIs influence disease transmission. After a peak in the
number of new cases, there will typically be a slow decline in
active cases, provided the NPIs are not excessively relaxed.

While the SIR model and its extensions provide the fundamen-
tal backbone to represent these dynamics, there is no accepted
means to alter the disease transmission rate in order to ‘flatten
the curve’. For example, recent studies used a deterministic
model with a constant reproduction number to model the out-
break dynamics in Europe (Linka et al., 2020) and in China
(Peirlinck et al., 2020) by using a reduction in the total population
as a model calibration parameter that indirectly quantifies the
application of NPIs. Whereas Linka (2020) use a hyperbolic tan-
gent function to capture time variation in the effective reproduc-
tion number and Manenti et al. (2020) adjust model rate
constants assuming a sigmoidal profile with respect to time.
Our recent work (Willis et al., 2020) demonstrates that the SIR
model augmented with a differential equation to model decline
in the disease transmission rate could accurately model reported
case data, and hence determine the effective reproduction num-
ber. However, in Willis et al. (2020) the effective reduction in dis-
ease transmission rate was characterised because of the
application of all NPIs. Moreover, model calibration and validation
2

did not utilise the most recently available case data as NPIs have
begun to be relaxed. In this paper, we extend previous work to
model variations in the effective reproduction number using a
philosophy centred on discrete event modelling and management
in order to calibrate the SIRD model to reported case data with
active and varying NPIs.

1.4. Exploiting the functionality of commercial dynamic modelling
with kinetic fitting tools

The SIRD epidemiological model is structurally equivalent to
the model equations for a set of chemical reactions occurring in
a well-mixed batch reactor in which the stoichiometry of the con-
tagion reaction varies. Due to the structural equivalence of the
chemical and epidemiological models, we can exploit the sophis-
ticated functionality of a commercial chemical engineering simu-
lator that combines a dynamic modelling framework with kinetic
regression tools.1 The software platform provides an environment
for rapid development of piecewise continuous models containing
a series of discrete operational events. We adapt existing function-
ality for sequencing of discrete events to represent NPIs and char-
acterise the efficacy of NPIs on reducing and maintaining the
effective reproduction number to acceptable levels. This allows us
to calibrate the characteristic rates of infection and removal of indi-
viduals and estimate the effective reproduction number throughout
the epidemic. Further, a successfully calibrated model allows
dynamic simulation studies to quantify the effect of the relaxation
of the NPIs.

2. Methods

Up-to-date daily information regarding the number of active,
recovered and fatal cases for most countries around the world is
available from Worldometer (2020). Retrieving this information
allows daily model calibration, on a country-by-country basis,
incorporating information about the timing and nature of their
NPIs as well as the monitoring of the status of the pandemic.

2.1. Kinetic modelling applied to an epidemiological system

Defining S as a susceptible individual, I as an infected individual,
R as a recovered individual and D as a deceased individual, the sto-
ichiometric scheme describing the transition of individuals
between the four compartments of an SIRD model is

Re � Sþ I !rI ðRe þ 1Þ � I

I !rR R

I !rD D

In this scheme, rI people day�1
� �

is the infection rate,

rR people day�1
� �

is the recovery rate, rD people day�1
� �

is the

death rate and Re is the (dimensionless) effective reproduction
number. We observe that it is analogous to a stoichiometric coeffi-
cient in a chemical reaction scheme. The significant difference is
that in chemical schemes, stoichiometric coefficients are constant
whereas the effective reproduction number, Re can vary through-
out the course of an epidemic as NPIs are applied.

We can develop a set of model equations for this epidemiolog-
ical scheme by treating it in the same way as a chemical scheme
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and applying the law of mass action.2,3 Defining nS ðpeopleÞ as the
number of susceptible, nI ðpeopleÞ the number of infected,
nR ðpeopleÞ the number of recovered, nD ðpeopleÞ the number of
deceased, the rate of change of the number of people in the various
compartments of the model are

dnS

dt
¼ �Re � rI ð1Þ

dnI

dt
¼ Re � rI � rR � rD ð2Þ

dnR

dt
¼ rR ð3Þ

dnD

dt
¼ rD ð4Þ

The rate terms ri;ði¼I;R;DÞðpeople � day�1Þ are,
rI ¼ k � nI � nSN rR ¼ cR � nI rD ¼ cD � nI ð5Þ

In equations (5), k day�1
� �

is the infection rate constant,
cR day�1
� �

is the removal rate constant of recovered infectious indi-
viduals, cD day�1

� �
is the removal rate constant of deceased individ-

uals, NðpeopleÞ is the total population. Substituting these rate
terms into (1)–(4) gives,

dnS

dt
¼ �Re � k � nI � nS

N
ð6Þ

dnI

dt
¼ Re � k � nI � nS

N
� cR � nI � cD � nI ð7Þ

dnR

dt
¼ cR � nI ð8Þ

dnD

dt
¼ cD � nI ð9Þ
2.2. Modelling the variation in the effective reproduction number

In equations (6)–(9) we assume that k is constant and refer to
this as the specific transmission probability per exposure time, a
constant that is characteristic of the COVID-19 infection. It is
assumed that the effective reproduction number Re varies as an
exponential function, and that the variation of Re is due to mea-
sures taken as NPIs are changed during the epidemic. We use an
Arrhenius equation to represent the exponential variation,

Re � k ¼ A � exp �E
T

� �
ð10Þ
2 Model equations for chemical systems are more commonly expressed in terms of
concentration. Epidemiological models are expressed in terms of population fraction.
The basis of the model equations for chemical schemes can be transformed from
concentration to mole fraction by considering molecular weight and density. It can be
shown that by assuming all molecular weights and densities have equal value, the
numerical values of mole fraction and concentration are identical, and the model
equations are equivalent.

3 The SIRD model equation for the net infection rate is usually written by
epidemiologists on a basis of population fractions xI ; xS . Conventionally, b is the
infection rate (incorporating the effective reproduction number), cR and cD are the
removal rates for recovered and dead people � day�1

� �
: The rate of change of the

infected population fraction is dxI
dt ¼ b � xI � xS � cR � xI � cD � xI , which may be written in

as d
dt

nI
N

� � ¼ b � nI
N � nS

N � cR � nI
N � cD � nI

N . Multiplying through by N; we obtain
dnI
dt ¼ b � nI � nS

N � cR � nI � cD � nI . In our treatment we partition b into k � Re which yields
the rate terms used in (5).

3

In equation (10), A and E are constants determined by model
calibration at the same time as the other unknown parameters in
equations (6)–(9). In order to use this equation to capture variation
in Re we use temperature as a placeholder variable to represent the
efficacy of NPIs. This allows us to exploit the discrete event based
operational modelling capability in a commercial chemical engi-
neering simulator and to introduce a sequence of temperature
changes to emulate the effect of NPIs.
2.3. Using a commercial simulation package to construct the model

In this study, we exploit the features of an existing simulator
designed for regression of chemical kinetic rate constants and pre-
dictive modelling of chemical systems. We use this simulator as a
demonstrator to model an epidemiological system and calculate of
variation in the effective reproduction number in response to NPIs.
We enter the SIRD reaction scheme including the reaction rate
terms (5) directly into the software. The software automatically
constructs the associated set of ODEs (6)–(9). Next, we specify
operational information such as the initial SIRD numbers. All mod-
els are constructed as batch operation, although we note that the
simulator’s capability for fed batch operation would allow mod-
elling of influx of infected cases to the population.

The model also includes a sequence of temperature steps and
ramps, which we use to represent the NPIs. This sequence is shown
conceptually in Fig. 1.

Nominally, we use an initial baseline temperature value of
100 �C to represent the system before any interventions are
applied. To represent the introduction of NPIs, we impose a nega-
tive temperature ramp that can vary in rate and duration. As NPIs
are changed the temperature can be further manipulated to reflect
the observed change in active cases. The magnitude, direction and
rate of the subsequent temperature changes in the model is repre-
sentative of the stringency and efficacy of the NPIs. Increasing
stringency of NPIs represented by decreasing temperature, relax-
ation of NPIs by increasing temperature. Interpreting temperature
as the efficacy of applied NPIs provides a quantitative measure of
their effect and insight into the dynamics of the disease.
2.4. Model calibration

The modelling software used in this study is designed for sim-
ulation studies of batch chemical systems. To calibrate our model,
we must calculate the kinetic constants and the values for the tem-
perature profile used as a placeholder for the NPIs.

The simulator has methods for regression of kinetic constants,
but does not have a capability for optimisation of a temperature
profile. Therefore, to perform model calibration we develop a
nested optimisation algorithm which enhances the existing kinetic
regression capability in the simulator with systematic manual
manipulation of the temperature sequence representing NPIs.
These manual interventions can be considered as a prototype
demonstrator of the top level hierarchy of algorithmic steps
required for modelling epidemiological systems which charac-
terise an epidemic beyond the initial unrestricted exponential
growth phase when varying NPIs are implemented.

The process kinetic constants are manipulated by an optimisa-
tion algorithm in the simulator to vary the pre-exponential term
and exponent for Re � k as well as the rate constants cR and cD. This
is performed with a data window over the duration of the first NPI.
The kinetic constants calculated in this initial phase are held con-
stant for the remaining model calibration phases. In subsequent
model calibration phases, when observation of the predicted
number of infected persons shows a divergence from the recorded
data after a period-of-time (corresponding to a change in the initial



Fig. 1. Schematic of a typical temperature profile used. Decreased temperature represents more stringent NPI, increased temperature represents relaxation of NPI.
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NPI) the data window is extended and the next section of the tem-
perature profile is determined by manual intervention, such that
the objective function for the data window is minimised and a
good fit to data for the whole of the data set in use is maintained.

We use (11) as an objective function to quantify the discrepancy
between model response and reported case data, which is the sum
of the squared error between the reported cumulative infected
individuals nI tð Þand the model prediction nI

� tð Þ as well as the
reported removed individuals, nR tð Þ and the model prediction
nR

� tð Þ and the reported dead nD tð Þ and the model prediction
nD

� tð Þ is calculated as,

F ¼
Xt2

t¼t1

nI tð Þ � nI
� tdIð Þð Þ2

rI
2 þ

Xt2

t¼t1

nR tð Þ � nR
� tdRð Þð Þ2

rR
2

þ
Xt2

t¼t1

nD tð Þ � nD
� tdDð Þð Þ

rD
2

2

ð11Þ

The sum is over the time-period t1 (the initial outbreak reaching
exponential growth) and t2 (current time). r2 is the variance in the
reported data for a given data set. The parameter td represents a
time delay associated with the reporting of recovered/deceased
individuals. This delay accounts for the time it takes for confirma-
tion of deaths, recoveries, or the validation of data from tests for
infection.

The optimisation algorithm used for model calibration was a
modified Simplex algorithm4 and numerical integration of the
ODEs is via an adaptive Runge-Kutta integrator. The integration
algorithm is piecewise continuous with event and discontinuity
management. This ensures accurate model response to interven-
tions, for example the sequence of NPIs as represented by the tem-
perature profile.

The temperature profile is specified manually for each country.
For all the models developed, the initial temperature is set to an
arbitrary initial value of 100 �C which represents the state of the
systemwith no active NPIs. We use known intervention times from
reports of actions taken by governments. The initial decrease in
temperature commences with the introduction of the first NPIs.
The time and temperature values for the end-point of an initial lin-
ear temperature ramp are adjusted manually such that the trajec-
4 The simplex algorithm is modified and uses intelligent jacketing which exploits
embedded knowledge of the characteristics of kinetic constants in chemical reaction
systems to improve robustness and aid convergence.

4

tories of the model predictions correspond with the reported data
for the early stage of the epidemic extending beyond the peak in
the number of infected cases. The rates of change and durations
of the subsequent changes in the temperature profile are adjusted
empirically as the model is calibrated such that a good fit to the
entire data set is achieved.
2.5. Calculating the effective reproduction number

The number of infected individuals passes through a maximum
at tImax , and at this point

dnI

dt
¼ 0

����
tImax

ð12Þ

It follows that

k�Re � nS

N
� nI ¼ cR � nI þ cD � nI

���
tImax

ð13Þ

If the effective reproduction number at this point is Re ¼ 1, then
the constant for specific transmission probability per exposure
time can be calculated as

k ¼ N � cR þ cDð Þ
nS

����
tImax

ð14Þ

The value of the placeholder variable TðtÞ is known by inspec-
tion of the temperature profile imposed on the model. This allows
the instantaneous effective reproduction number ReðtÞ to be calcu-
lated using (10).
3. Results

To demonstrate and discuss our modelling, we use reported
case data from Germany, Austria, Saudi Arabia and Italy. As with
any data-driven approach, it is only possible to have representative
and reliable results if the data is also reliable. The countries
selected have a reasonably well developed COVID-19 testing
capacity (test coverage is greater than 15 per thousand residents),
which would imply reasonably robust and reliable data. The time
period we consider is from around the 1st March to 31st August
2020.
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Given our model formulation, a change in temperature trans-
lates directly into changes in the effective reproduction number.
Imposing a linear decrease in temperature results in an exponen-
tial decrease in Re with time. A constant temperature input to
the model results in a constant output of Re: The dynamic response
to an NPI is represented by the rapidity of the temperature change,
and the variation in Re correlates with the variation in the temper-
ature placeholder variable.

Table 1 shows the calibrated model constants for the four coun-
tries that we consider. Our interpretation of the model constants as
well as the model predictions when compared to reported case
data are discussed in the following sections.
3.1. Germany

Fig. 2a shows SIRD model predictions (Rsquared ¼ 99:9%) plotted
with the reported values for numbers of active infected, recovered
and deceased individuals. The time shifts for reporting delays are
tdI ¼ 0; tdR ¼ 6 days; tdD ¼ 6 days:

The number of active cases peaked in mid-April and then
declined. Fig. 2b shows that the introduction of Germany’s lock-
down measures in late March is represented in our model by sig-
nificant downward ramp in temperature over a 2-month period
from the initial value of 100 �C to around 30 �C. This gives accurate
model calibration of the early epidemic cases beyond the peak in
infected cases up to 20 May when lock-down measures were
relaxed.
Table 1
Calibrated model constants for each of the countries considered.

A ðday�1Þ E ðKÞ

Germany 1:78x106 5:858x103

Austria 3:321x108 7:771x103

Saudi Arabia 4:982x101 2:016x103

Italy 1:019x1011 9:714x103

Fig. 2a. Model calibration results (Germany). This figure shows the number of active in
shown as solid lines and reported values as discrete points.

5

The number of infected cases continues to decrease at a reduced
rate until late June when a gradual increase commences. We cap-
ture this dynamic by extending the temperature profile progres-
sively to maintain accurate model predictions. The first increase
in temperature captures the reduced rate of decline in infected
cases from relaxation of NPIs on 20 May. Fig. 2b shows that the
measures result in a sharp increase in Re followed by a sustained
period where Re remains at this new level until mid-June 2020.
The second temperature increase corresponds to the slight increase
in infected cases reported from mid-June 2020. The final tempera-
ture increase on 23 July captures the increasing infection rate
through to late August. Some NPIs were reintroduced on 31 July
with further measures introduced on 23 August. This is captured
in our model by a downward temperature ramp on 25 August.

Using the calibrated model constants, presented in Table 1 we
calculate R0 ¼ 4:0 We observe an increase in the number of active
cases in mid-June 2020, and that and that our model predicts
Re > 1. In addition, there is a small downward trend in the number
of active cases at the end of June 2020. This is captured in our
model by a further decrease in temperature with a corresponding
fall in Re to a value less than one. In late July there is a growing
increase in the number of active cases which continues until 24
August during which time the model predicts an effective repro-
duction number of, Re ¼ 1:5. By the end of August the model pre-
dicts a decrease in Re to 1.05.

Finally, assuming no additional NPIs and Re remains constant at
a value of 1.05 the model is used to simulate the increase in infec-
tion rate for a further 28 days. Under these conditions the model
k ðday�1Þ cR ðday�1Þ cD ðday�1Þ

6:648x10�2 6:290x10�2 3:250x10�3

6:072x10�2 5:826x10�2 2:557x10�3

7:02x10�2 6:941x10�2 8:598x10�4

3:358x10�2 2:799x10�2 5:486x10�3

fected, recovered and deceased cases as a function of time. Model predictions are



Fig. 2b. Model calibration results (Germany). The figure shows the temperature profile representing NPIs imposed to achieve the model predictions. We compare this to the
stringency index (plotted as 100 – Stringency Index). The estimate of the effective reproduction number is also shown.
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forecasts virtually no change in the level of infected cases through-
out September.

Interestingly, the final temperature profile shows a similar
trend to Oxford’s government stringency index (shown in Fig. 2b
as ‘100 – Stringency Index’), (Hale et al., 2020). The Stringency
Index is an aggregate measure of governments’ responses to the
COVID-19, which includes a variety of diverse measures for exam-
ple school closures, travel bans etc. We suggest that the disparity
between our temperature profile and the stringency index could
arise for a number of reasons. It may be due to the relative weight-
Fig. 3a. Model calibration results (Austria). This figure shows the number of active infect
as solid lines and reported values as discrete points.

6

ings used to aggregate terms in the stringency index, the relative
adherence of a population to introduced measures or the dynamics
of the disease transmission rate.

3.2. Austria

Fig. 3a shows SIRD model predictions (Rsquared ¼ 96:8%) plotted
with the reported values for cumulative numbers of active
infected, recovered and deceased individuals. The time shifts for
reporting delays are tdI ¼ 0; tdR ¼ 9 days; tdD ¼ 9 days:
ed, recovered and deceased cases as a function of time. Model predictions are shown
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The trajectories for the numbers of cases are similar to those
shown in the German data. Austria successfully ‘flattened the
curve’ of infected cases as early as the end of March, although
the numbers of cases are an order of magnitude smaller than those
reported by Germany. After successfully flattening the curve, NPIs
were gradually relaxed and the number of active cases initially
continued to decrease. In mid-June 2020, there was a gradual
increase in the number of cases. In early August, a much steeper
increase in the numbers of infected individuals occurs before the
curve is flattened.

In our model, we first imposed a deeper and steeper downward
temperature ramp taking the system temperature from 100 �C to
20 �C over a period of around 1 month (Fig. 3b).

Fig. 3a shows that the number of infected cases continues to
decrease at a reduced rate until mid-June when numbers start to
increase. We capture this dynamic by extending the temperature
profile progressively to maintain accurate model predictions
(Fig. 3b). The first increase in temperature captures the reduced
rate of decline in infected cases from relaxation of NPIs in May.
Re increases sharply, followed by a sustained period where Re

remains at this new level until mid-June 2020. The second temper-
ature increase corresponds to the slight increase in infected cases
reported from mid-June 2020 after which the temperature is
reduced to reflect the decrease in infected cases from 27th June
until 4th August. The number of cases started to increase rapidly
from this time. This is captured by a steep increase in temperature.
The increase in cases is brought under control after that date. This
is captured in our model by further decreases in temperature com-
mencing on 13 August. Again, the temperature profile used in our
model shows a similar trend to Oxford’s government Stringency
Index.

Using the calibrated model constants, Table 1, we calculate
R0 ¼ 5:37 followed by a fall in Re to a value Re < 1: We then
observe an increase in the number of active cases starting in mid
June and that our model predicts an effective reproduction number
of, Re ¼ 2:38 by the 9th August. This falls to Re ¼ 1:13 by the end of
August. If no additional NPIs were introduced and Re remained at
this value, our model forecasts a small increase in infected cases
by late September.
Fig. 3b. Model calibration results (Austria). The figure shows the temperature profile re
stringency index (plotted as 100 – Stringency Index). The estimate of the effective repro

7

3.3. Saudi Arabia

Fig. 4a shows SIRD model predictions (Rsquared ¼ 99:24%) plot-
ted with the reported values for cumulative numbers of active
infected, recovered and deceased individuals. The time shifts for
reporting delays are tdI ¼ 0; tdR ¼ 10 days; tdD ¼ 10 days:

Initially, the trend in cases is similar to Germany and Austria.
The number of infected cases is successfully curtailed by early
May. Fig. 4b shows that the initial temperature ramp reduces the
system temperature from 100 �C to 30 �C over a period of around
6 weeks. The model predicts a much slower response in Re to the
initial NPI when compared to Germany and Austria. This is
reflected in the calibrated values of the coefficients A and E in
equation (10).

To fit the reported data for the rapidly increasing numbers
infected cases it was necessary to impose a sharp temperature
increase on 18 May which raises Re to 1.5. This was followed by
a series of step changes in temperature which were introduced
to replicate the pattern manifest in the reported data. Using the
constants in Table 1, we calculate R0 ¼ 3:3 and an effective repro-
duction number of, Re ¼ 0:8 throughout August. Assuming these
conditions are maintained the model forecasts a continuing decline
in infected cases throughout September.
3.4. Italy

Fig. 5a shows SIRD model predictions (Rsquared ¼ 96:7%) plotted
with the reported values for cumulative numbers of active
infected, recovered and deceased individuals. The time shifts for
reporting delays are tdI ¼ 0; tdR ¼ 10 days; tdD ¼ 10 days:

The trend in cases is similar to the pattern in data from Ger-
many and Austria. Italy successfully ‘flattened the curve’ of
infected cases by the end of April, and infections and deaths
declined steadily. A temperature decrease is required after the
introduction of the most stringent of Italy’s lock-down measures
in late February (Fig. 5b). This takes the form of a downward ramp,
lasting over a 2-month period corresponding to a fall in the initial
temperature of 100 �C to a temperature of around 60 �C.
presenting NPIs imposed to achieve the model predictions. We compare this to the
duction number is also shown.



Fig. 4a. Model calibration results (Saudi Arabia). This figure shows the number of active infected, recovered and deceased cases as a function of time. Model predictions are
shown as solid lines and reported values as discrete points.

Fig. 4b. Model calibration results (Saudi Arabia). The figure shows the temperature profile representing NPIs imposed to achieve the model predictions. We compare this to
the stringency index (plotted as 100 – Stringency Index). The estimate of the effective reproduction number is also shown.
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Italy first began to relax NPIs around the beginning of May
2020, however in order to calibrate the model a further reduction
in temperature was required to a constant value of 30 �C. In mid
July the reported number of infected cases becomes constant and
remains so until mid August when it starts to increase. We cap-
ture these dynamics first by a sharp temperature increase which
raises Re to 1.0 and then by a second increase in temperature
which raises Re to 1.5. Using these conditions the model forecasts
that the number of infected cases will increase to 27,000 by late
September.
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The calibrated model for Italy is reasonably good, however
there is a significant model data mismatch for the number of the
dead. What is strikingly different about the model for Italy is the
prediction that R0 ¼ 15 and that the value of k is only about half
that of the other countries. We can offer no explanation for these
results other than to say that the modelling is based on a rigorous
mass balance of all model elements and is therefore affected by
errors in data. We note that on 4 August the international news
media reported that Italy announced that the actual number of
infections was estimated to be six times higher than the reported



Fig. 5a. Model calibration results (Italy). This figure shows the number of active infected, recovered and deceased cases as a function of time. Model predictions are shown as
solid lines and reported values as discrete points.

Fig. 5b. Model calibration results (Italy). The figure shows the temperature profile representing NPIs imposed to achieve the model predictions. We compare this to the
stringency index (plotted as 100 – Stringency Index). The estimate of the effective reproduction number is also shown.

M.J. Willis, A. Wright, V. Bramfitt et al. Chemical Engineering Science 231 (2021) 116330
number which may be a factor in these questionable model
predictions.
4. Discussion and conclusions

The primary aim of this work is to demonstrate the effective-
ness of using parameter regression methods to calibrate an SIRD
model for COVID-19 where the effective reproduction number
response to NPIs is non-linear and variable in terms of response
rates, magnitude and direction. By using an existing commercial
chemical engineering package capable of parameter regression
9

with piecewise continuous integration with event and discontinu-
ity management we have been able to explore the efficacy of this
approach. We have highlighted the trend in the number of active
cases in Germany, Austria and Saudi Arabia and Italy.

Results indicate that our model where Re varies exponentially as
a function of NPIs can accurately capture the reported numbers of
disease progression in the sample of countries selected. We elected
to keep our mathematical model comparatively simple using the
established SIRD scheme. Our enhancements to this scheme are
that we treat Re as a variable stoichiometric coefficient and assume
that it varies exponentially. We have used temperature as a place-
holder to develop this exponential variation. This choice is expedi-
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ent as the modelling platform already had an Arrhenius equation
model with regression tools. A benefit of this approach is that a
non-linear response in Re to NPIs is transformed to a linear ramp.
This transformation made it easier to calibrate the model using a
systematic series of manual interventions. The experience gained
in using this approach for several data sets suggests that a strategy
for model calibration may be developed into an algorithm which
could be coded.

Understanding that in an SIRD model Re is a variable stochio-
metric coefficient in the infection step has enabled the determina-
tion of Re � k by model calibration together with their numerical
decoupling. This has resulted in identifying the characteristic time

k�1 to be in the range of 14 to 16 days with Italy being an outlier at
around 30 days (see Table 1).

Our model shows good agreement in all countries for infected,
recovered and dead to the end of June which is considerably
beyond the early growth phase of the epidemic.

In our results for Austria and Saudi Arabia, a model/data mis-
match occurs in the number of recovered cases after this time.
There are a number of possible explanations for this including
the imbalance in case numbers in the data sets released by each
country, or improved medical treatments such that recovery and
death rates change over time.

The modelling software used in this study is designed for sim-
ulation studies of batch chemical systems. The software has limita-
tions, not the least being the considerable expertise needed to
utilise it for this application which is significantly outside its
designed purpose, and we are not advocating its use. Rather we
are suggesting that the methodology embedded in the software
with some further development of regressive capability could be
developed into an effective software tool for epidemic study. This
work is merely a demonstrator of the algorithmic steps involved.

The temperature profiles used in the demonstrator comprise a
relatively small number of segments. A coded optimiser which
automated the algorithm would carry out many more iterations
to achieve better convergence, and it would be feasible to construct
a more refined and complex temperature profile using a greater
number of segments.

One aspect of the modelling software’s capability which was
not used in this study is simulation of thermal runaway – the beha-
viour of a reacting system which accelerates exponentially. Batch
chemical process development places strong emphasis on avoiding
a violent thermal runaway, which a significant number of pro-
cesses could potentially undergo unless properly designed. The
methods for studying and the design procedures to negate the pos-
sibility of a thermal runaway are well established. There are many
analogies in a thermal runaway scenario with the outbreak of an
epidemic. For example, the explicit inclusion of the effective repro-
duction number in the model equation for infection reveals the sta-
bility characteristics of the system. Another feature which could be
exploited is the modelling of reagent additions which is directly
analogous to an influx of infected cases to a population. Such sce-
narios will be simulated and reported in a future publication.

We have compared the general trend in temperature profile
used in our model with the Oxford Stringency Index (Hale et al.,
2020) which is itself a new and ongoing project, however we have
not attempted to develop a correlation. In our model, temperature
is used as an expedient placeholder and may be replaced with
another metric of NPI efficacy in a more specific modelling envi-
ronment for epidemiology. Clearly if the concept of modelling vari-
ation in Re as a function of NPIs is to have any practical utility,
further work would be required to compare the accuracy and pre-
diction performance of this model with existing epidemiology
models and pandemic prediction models.
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In conclusion, this study has attempted to assess the potential
of some established chemical engineering modelling principles
and practice for application to modelling of epidemiological sys-
tems. We have successfully developed a novel extension to the
analogy between chemical and epidemiological system models.
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