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a b s t r a c t

This paper proposes a new multi-objective dynamic differential evolution algorithm with parameter
self-adaptive strategies, named SA-MODDE. All components of the algorithm are synergically designed
to reach its full potential, containing parental selection, mutation strategy, parameter setting, sur-
vival selection, constraint handling, and termination criteria. The improvement measures emphasize
exploiting Pareto dominance information more efficiently. Particularly, parameter adaptation schemes
are introduced based on both prior knowledges of current individual and feedback information on
previous promising solutions, and their effectiveness is validated by comparison with three fixed-
parameter combinations. Extensive numerical tests are conducted on multiple test suites with five
state-of-the-art peer competitors. The statistical results demonstrated that the SA-MODDE exhibits
good proximity and diversity in dealing with benchmark functions with various characteristics. Three
industrial (bio)chemical processes, including two optimal control and one reformulated constrained
tri-objective, are investigated to show the feasibility and robustness of the SA-MODDE.

© 2021 Published by Elsevier B.V.
1. Introduction

Engineering problems always require the simultaneous op-
imization of several competing objectives of interests. So far,
ulti-objective optimization (MOO) has been an active research

ield in process systems engineering [1,2]. Particularly, various
ulti-objective evolutionary algorithms (MOEAs), such as NSGA-

I, GDE3, and MOPSO, have been widely used to solve both aca-
emic and industrial MOO problems [3–5]. Usually, MOEAs have
wo main advantages: (1) As many diverse non-dominated solu-
ions as possible can be found in a single run; (2) Various types of
OO problems can be handled without assumptions on objective

unctions and their mathematical characteristics [6].
The algorithm structure and search operator jointly affect the

erformance of MOEAs. The algorithm structure can be classified
nto two main categories: Pareto-based [3,7] and decomposition-
ased [8,9]. The former provides detailed Pareto dominance infor-
ation of the population to facilitate individual comparison. The

atter decomposes MOO problems into a set of scalar aggregation
ubproblems, each of which is optimized using the current in-
ormation from neighboring subproblems. The two methods have
heir own advantages on different types of problems and are con-
idered to be evenly matched [10]. In terms of search operator,

∗ Corresponding author.
E-mail address: jssun2006@vip.163.com (J. Sun).
https://doi.org/10.1016/j.asoc.2021.107317
1568-4946/© 2021 Published by Elsevier B.V.
differential evolution (DE) is simple to implement with only a few
control parameters, i.e., scale factor (F ) and crossover rate (CR).
Except for multi-objective DE (MODE) algorithms, many classic
MOEAs also replaced the original evolutionary operators with DE
and their performance was significantly enhanced, such as NSGA-
II-DE, SPEA2-DE, IBEA-DE, and MOEA/D-DE [11,12]. Through up-
dates by dynamic population rather than generation to gen-
eration, Qing [13] presented the dynamic DE (DDE) operator,
superior in efficiency, robustness, and storage requirements to
the conventional DE. That is, each new individual that performs
better than or similar to the corresponding old counterpart will
immediately participate in the current population to provide
information for subsequent evolution. This makes DDE more re-
sponsive to changes in population status. Despite of researches
on multi-objective DDE (MODDE) algorithms [14,15], it is still
very inadequate compared to MODE. Herein, we propose several
improvement measures on the MODDE under Pareto-based struc-
ture. For convenience, the background of MOO problems and DDE
operators are given in Supplementary Materials.

Maintaining a good balance between the proximity and di-
versity of obtained non-dominated solutions is not a trivial task
for MOEAs [16]. Most existing MODEs conquer this challenge
by improving a particular component. Lin et al. [17] embed-
ded three mutation schemes with different features and corre-
sponding adaptive scheme selection strategy in their algorithm,

which is better than variants with a single mutation scheme.
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Nomenclature

Abbreviations

A A kind of catalyst
CE Crowding entropy
CSTC Chi-squared-test based termination crite-

rion
CVP Control vector parameterization
DDE Dynamic differential evolution
DE differential evolution
DTLZ Deb–Thiele–Laumanns–Zitzler
GRA Gray relational analysis
HSS Hybrid selection strategy
IQR Interquartile range
MFE Maximum number of function evaluation
MODDE Multi-objective DDE
MODE Multi-objective DE
MOEAs Multi-objective evolutionary algorithms
MOO Multi-objective optimization
PM Performance metric
SA-MODDE Self-adaptive MODDE
SSDTC Steady-state detection termination criterion
ZDT Zitzler–Deb–Thiele

Symbols

χ2-test Chi-squared-test
x Median
GDm Modified generational distance
P0 Initialized population
P0P1P2 Points
P1 Sorted population
PF∗ True Pareto front
Xp Parents vector
em The mth extreme solutions
δPM User-defined tolerance value
δr Standard deviation of rankings
µr Average ranking
CR Crossover rate
D Decision variables
E Distribution entropy
F Scale factor
IGD Inverted Generational Distance
M Number of objective functions
NP Population size
PF Obtained Pareto front
PS Pareto optimal set
R Rank set
Ratio_CR Score level of Xi

S Substances
SP Spread
SS Solution set
U Trial vector
V Mutation vector
X Target vector
d Euclidian distance
f Objective function
2

n Number of solutions or problems
nadir_point Point consisting of maximum
γ Number of generations
λ + µ Original+offspring population

Subscripts

b Base vector
best Best value
i, q Individual or solution index
init Initial value
j Objective function index
m Modify
p Parents
r Ranking
s Starting vector
t Terminal vector

Superscripts

max maximum value
min minimum value

Xu et al. [18] partitioned the entire population into several sub-
populations and constructed a hybrid selection strategy (HSS),
and each subpopulation was assigned a survival selection sce-
nario. Scalability experiment studies indicated that HSS was able
to deal with high-dimension MOO problems. Lin et al. [19] ad-
justed the values of F and CR according to the success rate of
offspring in each generation, and confirmed the validity of their
work by comparing with two fixed parameter settings. In our
work, considering the synergistic effect, several components are
carefully devised based on the original MODDE framework. They
contain parental selection, mutation strategy, parameter setting,
survival selection, constraint handling, and termination criteria.
Notably, through simultaneously exploiting prior and posteriori
information during the evolutionary process, the new parameter
self-adaptive (SA) strategies are devised to customize F and CR for
each individual, respectively. Therefore, the proposed algorithm
is named as SA-MODDE. Moreover, the external elitist archive
typically used for diversity preservation is not required here.

An exhaustive overview of the application of MOEAs to pro-
cess systems engineering was given by Rangaiah and Petric. [6],
covering the areas of petrochemicals, biofuels, environment, and
thermodynamics. In addition, Babu and Gujarathi [20] addressed
a three-stage supply chain problem involving a network of sup-
pliers, plants and customer areas, and considered three cases of
objective functions using MODE. For the industrial manufactur-
ing process, two styrene reactor configurations [21] consider-
ing productivity, selectivity and yield and the oxidation of pure
terephthalic acid [22] were optimized using an improved MODE,
respectively. The results show that MODE can cover a wider
range and a better spread compared to NSGA-II. Additionally, two
MODE algorithms were implemented in the problem of maximiz-
ing ethylene and propylene yield in naphtha crack unit [23]. In
particular, dynamic optimization problems, i.e., problems mod-
eled by a set of non-linear differential and algebraic equations
(DAE), are quite challenging. Gujarathi et al. [24] demonstrated
the usability of MODE in solid state fermentation processes, with
the model formulated as DAE. Also, control vector parameter-
ization (CVP) has been shown to be an effective and efficient
method to solve such DAE problems by discretizing the control
variables [25]. This work combines CVP to optimize chemical and
biochemical processes related to either space or time. Further-
more, a constrained complex bi-objective problem including only
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teady-state variables is reformulated as a tri-objective problem
o develop more realistic solutions.

Overall, the main contributions of the proposed SA-MODDE
an be summarized as follows:

(1) Each component has been well-designed to reach its full
potential. Pareto information is fully utilized in the parental
selection, parameter setting and survival selection, even
in constraint handling. Also, self-adaptive strategies of F
and CR are presented based on both prior knowledges of
current individual and feedback information of previous
promising solutions. The effectiveness of the strategy is
evaluated by comparing it with three fixed parameter com-
binations. Thus, only generic control parameters such as
the population size (NP) and termination criterion are re-
quired. Besides, a performance-based termination criterion
is incorporated into the SA-MODDE as an alternative to
an arbitrary specified maximum number of generation or
function evaluation.

(2) The performance is firstly investigated through the widely-
used ZDT, DTLZ test suites and six constrained test in-
stances [26–28]. Credible and thorough comparisons are
conducted with 5 state-of-the-art peer competitor algo-
rithms on two performance metrics (PMs). Then, two opti-
mal control problems and a constrained steady-state (bio)
chemical problem are employed to test the ability to track
complex practical problems. The results show that SA-
MODDE performs well on various types of MOO prob-
lems in terms of proximity and diversity and provides
informative trade-off solutions for decision-makers.

The remainder of the paper is organized as follows. Section 2
expounds on each component of the proposed SA-MODDE in de-
tail. Section 3 carries out extensive numerical experiments using
two PMs. In Section 4, the use of the proposed SA-MODDE on
three chemical and biochemical processes are discussed. Finally,
conclusions are drawn in Section 5.

2. The proposed SA-MODDE algorithm

Algorithm S2 gives the main procedure of the proposed SA-
MODDE algorithm. Firstly, the Pareto information of the initial
population is provided by fast non-dominated sorting and crowd-
ing entropy assignment before the evolutionary iteration pre-
cedes. Then, during the mutation operation, the parents, i.e., the
vectors participating in the mutation operator, are ranked and se-
lected according to their dominance relationship. Besides,
‘‘rand/1’’ and ‘‘rand/2’’ are selected as mutation strategies with
equal probability. Next, the binomial crossover operation is ex-
ecuted and the trial individual is generated. The values of F
nd CR of each individual are allocated by proposed parameter
daptation schemes. In the selection operation, which is crucial to
aintain population diversity, substitution and truncation mech-
nisms are applied in combination. Finally, a simple dominance
iltering operation is performed and the final solution set is
btained. The following subsections elaborate on each component
f SA-MODDE.

.1. Fast non-dominated sorting and crowding entropy assignment

Fast non-dominated sorting approach was proposed by Deb
t al. [3], with two entities need to be calculated for each solu-
ion: (1) the number of solutions that dominate the ith solution,
enoted as ni; and (2) the set of solutions that dominated by the
th solution, named SSi. Firstly, the solutions with ni = 0 forms
he first non-dominated front. Then, for the ith solution of the
irst front, each member q in SS is visited and the corresponding
i

3

nq value is reduced by one. Solution q will be collected in the
second non-dominated front when nq = 0. Next, for each member
of the second front, the above procedure is repeated to make up
the third front. The process loop continues until all fronts are
identified.

The order of solutions in the same non-dominated front is
usually determined through crowding degree assignment. The
crowding distance is the universal crowding degree estimation
measure [3]. It calculates the sum of the average distances be-
tween two solutions adjacent to the ith solution along with
each objective, reflecting the solution density around the specific
solution. On its basis, Wang et al. [14] introduced the crowding
entropy (CE) concept by considering the distribution of the solu-
tion. The solutions in the same non-dominated front are firstly
sorted in ascending or descending order by the function values
of any objective. Then, the boundary solutions, namely, solutions
with the largest or the smallest function values in any dimension,
are set to an infinite CE value. Next, the calculation formulas of
ith intermediate solution are defined as follows.

CEi =

M∑
j=1

(cij · Eij)/(f max
j − f min

j ) (1)

Eij = −
[
plij log2(plij) + puij log2(puij)

]
(2)

plij =
dlij
cij

(3)

puij =
duij

cij
(4)

cij = dlij + duij (5)

where Eij is the distribution entropy of the ith solution along with
the jth objective function, and the parameters f max

j and f min
j are

he maximum and minimum values of the jth objective function;
is the number of objective functions; dlij and duij are the

Euclidean distances of the ith solution to its lower and upper
adjacent solution along the jth objective function, respectively. If
a point locates in the middle of its two neighbors, then plij =

puij = 0.5 and Eij = 1, and it is regarded as the best distribution
point.

In Algorithm S2, the initial population P0 is first arranged in
ascending order of the non-dominated front, and individuals in
the same front are then sorted in descending order according to
the CE values to obtain the new population P1.

2.2. Parental selection and mutation strategies

The individuals acting as parents, denoted as Xp, are usually
randomly selected from the whole population. This way is con-
ducive to global search but affects the convergence rate. Abbass
et al. [29] selected parents only from among non-dominated solu-
tions based on the recognition that good parents always generate
good offspring. However, this approach may in turn undermine
global search capability. Chen et al. [30] calculated selection
probability for each individual and found that the individual with
high selection probability was more likely to be a parent. Al-
though the method accelerated convergence while keeping global
exploratory, it required a high computational complexity. Our
work puts forward a simpler strategy: Several distinct individuals
are randomly picked from the entire population to form parents,
and then their own ranking is allocated according to their index
in P1. And the smaller the index value, the higher the ranking.
The parent with the highest ranking is chosen as the base vector
Xpb, and the parent with the lowest ranking is chosen as the
terminal vector Xpt . Taking a two-dimensional problem as an

example, the generation processes of mutation vector Vi with and
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Fig. 1. The generation process of mutation vector Vi: (a) with parents ranking; (b) without parents ranking.
ithout parents ranking are illustrated in Fig. 1. As can be seen,
nder the guidance of the good base vector and the favorable
irection of the difference vector (Xps − Xpt ), there are more op-
ortunities to produce fine offspring. Switching Xpb and Xpt while
olding individuals positions constant results in Vi is far from

the Pareto optimal set (PS). Thus, the proposed parent ranking
strategy not only facilitates the propagation of good information
to the offspring without extra computational cost but also ensures
powerful global exploration capabilities due to that there is no
over-mine around specific vectors.

Multi mutation strategies have been recommended to solve
MOO problems since no single strategy outperforms all others
in the evolutionary process [18]. Several DE mutation strategies
exhibit their own unique search characteristics and have differ-
ent performance on diverse problems. Of these, ‘‘rand/1’’ and
‘‘rand/2’’ are the two most frequently used strategies, as appeared
in Algorithm S2. Compared to ‘‘rand/1’’, ‘‘rand/2’’ adds a differ-
ence vector. This results in a better perturbation and provides
more search directions, but may degrade search efficiency. In
this work, the two strategies complement each other to exert
different advantages and are employed by each individual with
equal probability.

2.3. Survival selection

After generating the ith trial vector Ui, survival selection is
xecuted to update the population. The survival schemes can be
lassified into three categories as summarized by Cheng et al. [31].
he first category conducts one-to-one selection. The replace-
ent is performed when one solution dominates the other. When

wo solutions are non-dominated, one solution is randomly cho-
en or the one with less crowding degree is preferred. The second
ategory implements a (λ+µ) design. In other words, the original
opulation and the offspring population are merged, and then the
ombined population is truncated into the desired size. The third
ategory considers the above two schemes synthetically, and its
erformance is better due to the hybridization effect. That is,
he one-to-one strategy will be applied when two solutions are
omparable, or the (λ + µ) procedure will be executed on the
ontrary.
The hybrid selection scheme is adopted in SA-MODDE, as

hown in Algorithm S3, which includes three steps:

1. If Ui dominates target vector Xi, Ui will replace Xi. Then,
the new population is reordered after Ui joins. At this
time, it is unnecessary to recalculate the Pareto dominance
relationships among all individuals, thanks to the original
population that was sorted well in advance. In the worst
4

case, Ui will be compared with all other individuals to
obtain new non-dominated front classification, and then
crowding entropy assignment will be recalculated only for
the fronts where individuals’ situations have changed.

2. If Xi dominates Ui, Ui is discarded. The original population
has no change.

3. Otherwise, Ui is added to the population. The united pop-
ulation has (NP + 1) individuals and is reordered after Ui
joins, which is similar to step 1. Then, it is truncated at the
last individual to keep size to be NP .

It is also noted that the Fi and CRi values are collected into the
set F_pool and CR_pool when Xi cannot dominate Ui, respectively,
as listed in line 4 and 13 in Algorithm S3. The medians of
the two sets are considered to be the best control parameter of
the current evolution process, named Fbest and CRbest , which can
provide feedback information for parameter adaptation.

2.4. Parameter adaptation

The performances of DE-based algorithms are sensitive to
the setting of F and CR. F changes the search step size and
CR determines how much information Ui will inherit from Xi.
Therefore, they affect the convergence speed and population di-
versity significantly [19]. In SA-MODDE, the parameters of each
individual are dynamically adjusted by taking into account both
prior and posteriori information during the evolutionary process.
The parameter adaptation schemes are given in Algorithm S4 and
include the following three aspects.

1. Data normalization. Each objective function value in the
obtained solution set is mapped to the range of 0 ∼ 1.

2. The self-adaptive strategy of F . F controls the scaling de-
gree of the disturbance of the difference vector (Xps − Xpt )
to the base vector Xpb. When Xps and Xpt are close in the
search space, the generated difference vector value is small,
and F should take a larger value at this time, otherwise
the disturbance is too small to play the role of mutation,
as the generation process of Vi1 shown in Fig. 2(a). On the
contrary, when Xps and Xpt are farther apart, the generated
difference vector value is large, and F should take a small
value to limit the amount of disturbance, otherwise, the
mutation vector may cross the boundaries of the feasi-
ble region, as the generation process of Vi2 reflected in
Fig. 2(a). The concept has been successfully applied in a
single-objective DE algorithm by evaluating the difference
between fitness values of different individuals to roughly
reflect their closeness in the search space [32]. Despite
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that this mapping method is not always accurate, its com-
putational cost is lower, especially for high-dimensional
problems. Therefore, the setting of F first gets inspiration
from the proximity of f

(
Xps

)
and f

(
Xpt

)
in the solution

space. The distance reference point is composed of the
normalized maximum value on each objective function,
called nadir_point . Then, the initial value of Fi is obtained
through a linear relationship, denoted as Finit . Next, Finit
approaches the most suitable control parameter Fbest in the
current population by a certain step and the final value of
Fi is obtained. Furthermore, Fbest is also used directly as Fi
with the same probability. The upper and lower limit of Fi
are 0.05 and 0.55, respectively.

3. The self-adaptive strategy of CR. The better Xi performs,
the more its structure should be inherited, i.e., the smaller
CRi should be. The performance score of each Xi is ob-
tained by summing its corresponding normalized objective
function values. For minimization optimization problems,
the Xi with the smallest score is considered to perform
best. The score level of the ith individual in the score set
is calculated in line 20, denoted as Ratio_CR. As shown
in Fig. 2(b), CRinit is assigned within (0, 0.9) according to
Ratio_CR. When Ratio_CR is below the average, the value
of CRinit is small so that more individual information can
be retained. In turn, when Ratio_CR is above the average,
the value of CRinit increases rapidly, accelerating the elim-
ination of poor individual structure. Then, CRinit will either
learn experience from CRbest in a certain step, or be directly
replaced by CRbest .

In addition, considering that Fbest and CRbest have different
anges along with search stages, F_pool and CR_pool are emp-
ied after each iteration, as shown in line 5 of Algorithm S2.
hus, more appropriate and accurate values of the best control
arameters can be obtained.

.5. Constraint handling

Many real-world application problems are constrained besides
ounds on decision variables. Three main categories of constraint
andling approaches have been summarized [33]: (a) Penalty
unction method. This approach can be conveniently used in
he formulations of various problems by adding penalty terms
nto the objective functions [34]. Thus, it is the most popular
echnique for constraint handling. However, its difficulty lies in
hoosing the suitable penalty factor. (b) Separation of objectives
5

nd constraints. A representative method is the feasibility ap-
roach proposed by Deb et al. [3]. It selects a feasible solution
prior over an infeasible solution based on the extent of con-

traint violation. (c) Repair algorithms. This approach converts the
nfeasible solution into a feasible or less feasible solution [35]. Re-
ently, Chih [36,37] proposed two self-adaptive check and repair
perators motivated by the fact that alternative pseudo-utility
atios must vary the approach directions in repairing infeasible
olutions. They had been demonstrated to perform well on the
ultidimensional knapsack problem.
The feasibility approach is adopted in this work, as it can be

eamlessly integrated with the proposed algorithm. The entire
opulation is divided into a feasible group and an infeasible group
ased on whether or not individuals violate the constraints. The
ormer is sorted according to the principle of non-dominance and
rowding entropy, while the latter is first sorted according to
he fewer number of constraint violations and then fewer total
onstraints violation. Four possible scenarios with corresponding
andling methods are as follow.

1. If Ui and Xi are both feasible, the survival selection scheme
introduced in Section 2.3 are applicable. The difference
is that when they are non-dominated, Ui is accepted in
the feasible group and the last individual of the infeasible
group is discarded.

2. If Ui is feasible while Xi is infeasible, then Ui is added to the
suitable position in the feasible group and Xi is abandoned
from the infeasible group.

3. If Ui is infeasible while Xi is feasible, then Ui is refused.
4. If Ui and Xi are both infeasible, then Ui enters the infeasible

group and the last individual of the reordered infeasible
group is discarded.

2.6. Computational complexity

The proposed SA-MODDE algorithm is developed by integrat-
ing the above ingredients. The complexity of fast non-dominated
sorting is O(M · NP2), while the crowding entropy assignment
needs O(M · NP · log2 NP). In the survival selection step, the
complexity is O(M · NP) when conducting dominant relation-
ship comparison between Ui and Xi, and under the worst scene,
reordering population requires O(M · NP2). In the parameter
adaptation step, the main computational complexity lies in data
normalization and distance calculation of two solutions, which
are O(NP2) and O(M2), respectively. Besides, parental selection
and constraint handling do not introduce additional complexity.
Therefore, the overall complexity of SA-MODDE is O(M · NP2) at
each iteration, which is the same as NSGA-II.
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. Numerical experiments

In the section, the performance of SA-MODDE is assessed
hrough numerical experimental studies. Firstly, test problems
nd performance metrics are stated. Secondly, the proposed al-
orithm is compared with 5 state-of-the-art MOEAs. Thirdly, the
ffectiveness of parameter adaptation strategies is verified by
omparing it with three fixed parameter settings. Finally, a ter-
ination criterion based on evolution performance is applied. See
upplementary Materials for relevant tables and figures.

3.1. Benchmark problems and performance metrics

12 unconstrained test instances, including 5 bi-objective MOPs
from the ZDT test suite and 7 tri-objective MOPs from the DTLZ
test suite, and 6 constrained benchmark functions are covered in
experimental studies. They have a variety of characteristics, such
as multi-local optimal fronts, non-uniform, and discontinuity,
making the numerical testing comprehensive and reliable. The
parentheses in the first column of Table S1 list the number of
he objective function (M) and decision variables (D) for each un-
onstrained test instance, and the parentheses in the first column
f Table S3 list M , D, and the number of constraints for each
onstrained problem.
Two quantitative assessment metrics, Inverted Generational

istance (IGD) and Spread (SP), are employed to reflect the per-
formance of different algorithms. Assume that PF is a set of
achieved non-dominated solutions and PF∗ is a set of uniformly
distributed solutions along the true Pareto front. IGD metric mir-
rors both the convergence and diversity of PF and a lower value
mean a better approximation [12]. SP metric measures the so-
lution distribution of PF and a lower value means a more even
distribution [3]. Each objective in PF and PF∗ is firstly normalized
and the calculation formulas are defined as follows.

IGD =

√∑
i∈PF∗ d2 (i, PF)

|PF∗|
(6)

where d (i, PF) is the minimum Euclidian distance between ith
solution in PF∗ and solutions in PF and |PF∗

| is the number of
olutions in PF∗.

SP =

∑M
m=1 d(em, PF ) +

∑
|PF |

i=1 |di − d|∑M
m=1 d(em, PF ) + |PF | · d

(7)

where (e1, e2, . . . , eM ) are m extreme solutions of PF∗; d(em, PF )
is the Euclidian distance between the extreme solution of mth
objective in PF∗ and its nearest solution in PF ; di is the Euclidian
distance between ith solution in PF and its nearest solution in
the same set; d is the average of di; and |PF | is the number of
olutions in PF .

.2. Peer algorithms and experimental settings

Four of the recent MOEAs with different structural features,
ncluding two DE variants, are chosen as peer competitors on
nconstrained test problems. They outperformed several classical
lgorithms, such as GDE3, MOEA/D-DE, and MOPSO. A represen-
ative algorithm, NSGA-II, is chosen as a rival on constrained
roblems. A brief introduction of these five algorithms is given
elow.

1. MODE-RMO [30]: Multi-objective differential algorithm
evolution with ranking-based mutation operator. The base
and terminal vector in the mutation operator had a large
probability to be selected from better vectors instead of
random assignment.
6

2. MODE-PMSMO [38]: Multi-objective differential evolution
with performance-metric-based self-adaptive mutation op-
erator. The highlight of the algorithm was the automatic
selection of a suitable mutation operator in different evo-
lution stages.

3. NS-GWO [39]: Non-Dominated Sorting Gray Wolf Opti-
mizer algorithm. The algorithm was proposed based on the
natural hunting process of gray wolves, including search-
ing, encircling, and attacking, and a leader selection mech-
anism was established.

4. INM-TLBO [10]: Multi-objective Individualized-Instruction
Teaching Learning Based Optimization Algorithm. The al-
gorithm assigned a specific teacher or interactive object
for each individual and emphasized the guiding role of the
non-dominated solution.

5. NSGA-II [3]: Non-dominated Sorting Genetic Algorithm II.
The algorithm proposed a series of innovative concepts
along with low computational complexity and has been
successfully applied in many real-world constrained opti-
mization problems [40].

Each algorithm performs 25,000 function evaluations and 30
independent runs for each test problem. NP is set to 100 for
algorithms except for INM-TLBO, which is set to 20 due to its
optimization mechanism. Other control parameters adopt rec-
ommended values in their original publications and all algo-
rithms are implemented in the MATLAB platform. Additionally,
the Wilcoxon rank sum test at a 0.05 significance level is ap-
plied to determine whether the experimental results of different
algorithms are statistically significantly different. In Table S1-6,
he symbols ‘‘+ ’’, ‘‘−’’, and ‘‘≈’’ denote that other algorithms
erform better than, worse than, and similar to SA-MODDE, re-
pectively, and the best results are bolded. At last, the average
anking method is used to give a comprehensive ranking of each
lgorithm, and the calculation formulas are as follows [41].

r =

∑n
i=1 Ri

n
(8)

δr =

√∑n
i=1 (Ri − µr)

2

n
(9)

where R = {R1, R2, . . . , Rn} is a rank set of one algorithm and n
is the number of test problems. µr is the average ranking and δr
is the standard deviation of the rankings.

3.3. Experimental results and discussions

The Median (x) and interquartile range (IQR) of IGD metric
on ZDT and DTLZ test suites of all algorithms are recorded in
Table S1. SA-MODDE wins the first place in most problems,
except for losing to INM-TLBO on ZDT6 and DTLZ7. The results
of ZDT6, DTLZ1, and DTLZ7 are no statistically different from
those of NS-GWO, MODE-PMSMO and MODE-RMO, and MODE-
PMSMO, respectively. Moreover, the results of DTLZ3, DTLZ5, and
DTLZ6 are several orders of magnitude lower than those of other
competitors. In particular, regarding DTLZ3, which has many local
optima, only the results of SA-MODDE are acceptable, while the
data median and dispersion of other algorithms are not satis-
factory, especially NS-GWO. To visually display the evolutionary
behaviors of different algorithms, the curses of the median IGD
value of 30 runs versus the number of function evaluations on
each test instance are illustrated in Fig. S1 (a–l). It can be ob-
served that (1) INM-TLBO exhibits convergence speed advantage
on the ZDT test suite, while SA-MODDE has fast declines on the
DTLZ test suite except for DTLZ6 and DTLZ7. (2) SA-MODDE can
quickly reach a stable lowest platform area on most problems
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ithin 25,000 function evaluations. (3) The DE-based algorithms
ffer advantages in descending speed and solution quality on
TLZ1, DTLZ4, and DTLZ5, while exposing the weaknesses on
hese two aspects on ZDT6 and DTLZ7.

The statistical numerical results of SP metric on ZDT and DTLZ
est suites are presented in Table S2. All competitors are inferior
o SA-MODDE in the final average ranking. INM-TLBO provides
he best results on ZDT6, DTLZ2, and DTLZ7, and obtains the
unner-up again, while other competitors only have better or sim-
lar performance on DTLZ7. Fig. S2 (a–l) depicts the evolutionary
urses of the median SP value of 30 runs versus the number of
unction evaluations. Compared with IGD curves, the SP curves
scillate significantly, especially the tri-objective problems. This
s due to the characteristic that SP value is affected by the dis-
ribution uniformity of the currently obtained solutions. Besides,
he SP curves of SA-MODDE drop rapidly within a certain abscissa
nterval on most problems, and the decline is larger than other
lgorithms, such as the interval [3,000–7,000] of ZDT1. In order
o intuitively reflect the approximation and distribution of the so-
ution set, the typical fronts obtained by each algorithm on ZDT6
nd DTLZ3 after 25,000 function evaluations are exemplified in
ig. S3 (a–b).
Table S3 shows the comparison results of NSGA-II and SA-

MODDE in six constrained test problems. The first five are bi-
objective problems with 2 or 6 constraints, and the last one is
a five-objective problem with 7 constraints. In terms of statistical
numerical results, SA-MODDE outperforms NSGA-II except for the
IGD performance of OSY. Fig. S1 (m–r) and Fig. S2 (m–r) show the
evolutionary behaviors corresponding to IGD and SP , respectively.
SA-MODDE performs well on the first three problems, while the
evolving speed on the fourth problem is slow along with a slight
advantage in solution quality. For the fifth problem, which has
five separated regions, SA-MODDE is prone to stagnation. For the
sixth problem with 5 objectives, IGD curve of NSGA-II increases
first and then stays steady. To explain the phenomena, Fig. S3
(c–d) plot the projections of the typical fronts realized by NSGA-
II after 100 function evaluations, NSGA-II after 25,000 function
evaluations, and SA-MODDE after 25,000 function evaluations
on the space of objective 1 (f1) and objective 2 (f2), as well as
objective 3 (f3) and objective 4 (f4), respectively. In the early stage
of evolution, the solutions of NSGA-II in the feasible region (coved
by blue dots) are relatively uniform distributed, while in the later
stage of evolution, all solutions are concentrated on a certain
boundary. This leads to an increase in the IGD curve instead of a
decrease, indicating that NSGA-II deteriorates population diver-
sity during the evolution process. On the contrary, SA-MODDE
evenly covers the entire projection region including boundary
points, which proves its ability to simultaneously maintain good
proximity and diversity when dealing with constrained complex
problems.

3.4. Effectiveness testing of parameter adaptation

To verify the effectiveness of proposed parameter adapta-
tion strategies in SA-MODDE, three fixed control parameters are
adopted for performance comparison, i.e., (1) Case1: F = 0.3,
CR = 0.1; (2) Case2: F = 0.5, CR = 0.5; (3) Case3: F = 0.7,
CR = 0.9, and other settings remain the same.

Table S4 gives the compared results in terms of IGD. Case
1 has 6 problems worse than, 12 problems similar to, and no
problems better than SA-MODDE, respectively. Case 2 has a slight
advantage over ZDT3 and CONSTR, is on the downside on 3
problems, and obtains comparable results on 13 problems. Case
3 scores higher on SRN and CONSTR, ties on 3 problems and
loses on 13 problems. Finally, SA-MODDE prevails in the final
average ranking. Notably, SA-MODDE obtains a IGD result with
7

an accuracy level of 10−4/(10−6) and 10−4/(10−5) for ZDT4 and
DTLZ3 respectively, while the best accuracy level of the results
for three cases are 10−3/(10−2) and 10−3 / (10−4). These two
problems include many local Pareto fronts, and are suitable for
testing the ability of algorithms to handle multimodality prob-
lems. Conversely, on the test problems that SA-MODDE lost, its
results are in the same order of magnitude as those obtained by
the first-place. These demonstrate the critical role of parameter
adaptation. In addition, the performance of three cases and SA-
MODDE on DTLZ6 and BNH are statistically equivalent, indicating
that these two problems are not sensitive to control parameters.

Table S5 gives the compared results in terms of SP . Among
the 18 test problems, the performances of case 1 are weaker
than SA-MODDE in 7 problems, and are equivalent in the others.
Case 2 outperforms SA-MODDE on ZDT series (except ZDT4) and
CONSTR, and achieves the same ranking on 9 problems and poor
ranking on 4 problems. Case 3 yields better results on ZDT1 and 4
constrained test problems, comparable results on 7 problems, and
worse results on 6 problems. Finally, despite the µr value of case
2 is the same as SA-MODDE, the latter is ranked first by virtue of
the lower δr value.

There is no doubt that a certain of test problems perform
well under some specific parameter combinations. However, SA-
MODDE enables the selection of control parameters less depen-
dent on the type of optimization problems, and consistently
yields reliable and high-quality results in terms of convergence
and diversity.

3.5. Performance-based termination criterion

As shown in Fig. S1 and S2, before the evolution processes
reach the maximum number of function evaluation (MFE), IGD
values of SA-MODDE no longer decrease significantly on most
problems, and SP values fluctuate in a narrow range. This suggests
that the current stopping condition overuse computational re-
sources. Therefore, it is necessary to adopt a more reliable and ef-
ficient termination criterion. Recently, performance-based termi-
nation criteria have been growing studied, which can stop search
progress in time by monitoring the improvement of PMs. Sharma
and Rangaiah [42] screened out two suitable PMs, namely, mod-
ified generational distance (GDm) and modified spread (SPm), and
proposed the chi-squared-test based termination criterion (CSTC).
Wong et al. [43] successfully applied a steady-state detection
termination criterion (SSDTC) in heat exchangers design prob-
lems. Rangaiah et al. [44] evaluated the performance of these
two criteria through several chemical processes and found that
CSTC was more reliable and time-saving over SSDTC. Concerning
the outstanding performance of CSTC, it is adopted in the work,
with the difference that modified IGD and SP , i.e., IGDm and SPm,
are chosen as PMs. Firstly, PMs are calculated using the non-
dominated solution set in the previous and current generations.
Then, a statistical verification of PM variations over the latest γ

generations is required. The related calculation formulas are as
follows.

IGDm =

√∑
i∈Ncurr

d2i,IGDm

Ncurr
(10)

here di,IGDm is the minimum Euclidian distance between ith
solution in the current generation and solutions in the previous
generation, and Ncurr is the number of non-dominated solutions
in the current generation.

SPm =

∑Ncurr
i=1 |di,SPm − dm|

(11)

Ncurr · dm
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Fig. 3. The schematic diagram and model equation of catalysts mixing process. Where x1 and x2 (state variables) are the concentrations of S1 and S2 , respectively.
u (control variable) is the fraction of catalyst A, and z denotes the spatial coordinate. k1, k2, k3 are the kinetic factors of reactions 1–3. The rates of reaction 1 and
2 are affected by catalyst A, while reaction 3 does not occur unless catalyst B is present.
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where di,SPm is the Euclidian distance between ith solution in the
current generation and its nearest solution in the same set; dm is
the average of di,SPm .

Chi(PM) =
Variance [PM1, PM2, . . . , PMλ] (γ − 1)

δ2PM
(12)

P(PM) = χ2 [Chi(PM), (λ − 1)] (13)

here δPM is the user-defined tolerance value for standard devi-
tion of PM , and P(PM) is the probability that χ2-test supports
he hypothesis that the variance of PM is lower than δ2PM . A value
f 10 is used for γ . The iterative search will stop if each P(PM)
xceeds 99% simultaneously at a certain generation. Moreover,
he stopping condition based on MFE is also used, which acts as
guarantee to avoid indefinite looping.
The setting of δIGDm and δSPm needs to consider a balance

etween solution quality and computational expense. The small
alues will produce better results but will consume a lot of time,
hile large values will reduce computational costs but may cause
remature stops. Here, δIGDm = 0.0002 and δSPm = 0.05 are
ecommended for bi-objective problems and these values are
.0008 and 0.02 for problems with higher objective numbers.
able S6 summarizes the comparison results applying CSTC and
FE on 18 test instances. As expected, the quality of the solutions
btained by the former is slightly inferior to the latter on most
roblems. Remarkably, there is no compromise for CSTC on the
GD values of 2 problems and the SP values of 6 problems. Besides,
he median number of function evaluations required by CSTC
re all located at the beginning of platform areas in Fig. S1.
his indicates that adopted δPM values are suitable to stop the
earch timely without premature or overripe. In short, CSTC is
ell incorporated into the SA-MODDE framework, avoiding the
aste of computing resources caused by arbitrarily specifying the
aximum number of generation or function evaluation.

. Chemical engineering processes optimization

Three process applications taken from literature, namely, cat-
lysts mixing policy, Lee–Ramirez bioreactor, and alkylation pro-
ess, are optimized by SA-MODDE to verify its performance in
 v

8

ractical engineering problems. The first two problems are un-
onstrained optimal control problems, and the third is a con-
trained steady-state optimization problem. The number of in-
ependent runs is setting to 30 for all problems. Process model
quations and optimization results are listed in Supplementary
aterials.

.1. Catalysts mixing policy

The problem studies optimal mixing policies of two catalysts
acked in a plug-flow reactor. These catalysts promote a series
f reactions including one reversible and one irreversible, that is,
1 ⇐⇒ S2 → S3. The optimization objectives are maximizing the
conversion of S3 and minimizing the consumption of expensive
catalyst A. The schematic diagram and model equation [45,46] are
depicted in Fig. 3.

In order to solve and optimize the problem, the spatial interval
is divided into 10 stages of equal length, and NP and MFE are
set to 100 and 10,000. The typical PFs obtained by SA-MODDE
under CSTC and MFE are plotted in Fig. S4 (a). It can be observed
that the non-dominated solutions under CSTC are close enough
to that under MFE, except for an extreme solution P0, while the
median of the number of function evaluations under CSTC is only
4850. In addition, the conflicting relationship between the two
objectives is clearly visible. In terms of maximum value of f1,
i.e., the abscissa value of P0 under MFE or P1 under CSTC, the
median value of 30 runs is 0.047928 and 0.047837, respectively.
Moreover, gray relational analysis (GRA), as a decision-making
approach without objectives weight or other user inputs [47],
is employed to select the appropriate solution. Fig. S6 (c–d)
illustrates the control trajectories of boundary points (P1 and P3)
nd the recommended point P2 under CSTC. The common thread
s that catalyst A should be loaded more at the reactor inlet.

.2. Lee–Ramirez bioreactor

Lee and Ramirez [48] presented a strong nonlinear optimal
ontrol problem for a fed-batch reactor using recombinant bac-
eria to induce foreign protein production, containing 7 state
ariables and 2 control variables. The objectives are maximizing



X. Zhang, L. Jin, C. Cui et al. Applied Soft Computing Journal 106 (2021) 107317

d
u
g

t
i
i

a
r
C

r
P
r
t
s

T

Fig. 4. The schematic diagram and model equation of Lee–Ramirez bioreactor. Where xi(t) (i = 1, 2, . . . , 7) are state variables, indicating the reactor volume, cell
ensity, nutrient concentration, foreign protein concentration, inducer concentration, the inducer shock and inducer recovery factors on cell growth rate, respectively.
1 and u2 are control variables, representing nutrient feeding rate and inducer feeding rate. Cnf and Cif are concentration of nutrient and inducer. µ is the specific
rowth rate, Rfp is the foreign protein production rate, and Y is the growth yield coefficient. k1, k2, k3 are the shock and recovery parameters, respectively.
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he yield of foreign protein and minimizing the consumption of
nducer. The schematic diagram and model equation are shown
n Fig. 4.

The time interval is partitioned into 10 stages of equal length,
nd NP of 100 and MFE of 30,000 are set. A visual comparison
esult for non-dominated solutions obtained by SA-MODDE under
SCT and MFE are depicted in Fig. S5 (a). The results obtained

by CSTC in a lower computation cost are in good agreement
with those of MFE, except that some extreme solutions are not
covered. When only f1 is considered, the medians of maximum
values achieved by MFE and CSTC are 6.1191(P0) and 6.0859 (P1),
espectively. Also, there is a trade-off between two objectives and
2 is suggested to decision-makers by GRA. The control trajecto-
ies of P1, P2, and P3 are plotted in Fig. S5 (b–d), indicating that
he nutrient and inducer feeding rates at the onset of reactions
hould remain low.
In order to verify the feasibility and robustness of SA-MODDE,

able S7 and S8 present a comparison of the maximum of f with
1

9

arlier studies and four peer algorithms with respect to catalysts
ixing and Lee–Ramirez bioreactor problems, respectively. In

act, since there are differences in terms of optimization type,
he maximum number of function evaluation, even discretization
evel, earlier studies involving single-objective optimization are
egarded as references. Four multi-objective peer algorithms, as
ell as the current work, are compared fairly under the same
umber of function evaluations and 30 independent runs. For
atalyst mixing problem, the best conversion value of S3 obtained
by SA-MODDE is sufficiently close to the theoretical solution [49],
and the Wilcoxon rank sum test shows that NS-GWO has a
slight advantage in solution quality. For Lee–Ramirez bioreactor
problem, INM-TLBO wins the first place and SA-MODDE second
in terms of the yield of foreign protein. Remarkably, NS-GWO
and INM-TLBO were the worst performers on the Lee–Ramirez
bioreactor and catalyst mixing problems, respectively. Further-
more, as expected, the best values of multi-objective optimization
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Fig. 5. The schematic diagram and model equation of the alkylation process. Where xi(t) (i = 1, 2, . . . , 10) are the olefin feed rate (barrels/day), isobutane recycle
ate (barrels/day), acid addition rate (103

× pounds/day), alkylate production rate (barrels/day), isobutane feed rate (barrels/day), spent acid strength (wt%), octane
umber, isobutane to olefins ratio, acid dilution factor, and F-4 performance number, respectively.
re inferior to that of single-objective optimization, due to the
act that the former requires more effort to explore the entire
areto fronts, whereas the latter is exploited around the optimal
olution.

.3. Alkylation process

Light olefins react with isobutane under the catalysis of acid to
roduce alkylate products, before mixing with refinery products
o increase the octane number. The process consists of the reactor
nd fractionator modules as well as recycle streams. Sharma and
angaiah [42] discussed two different bi-objective problems for
he process. Here, in order to test SA-MODDE’s ability to deal
ith complex engineering problems, a tri-objective problem is
onsidered for the first time, i.e., maximum profit, maximum
ctane number, and minimum isobutane recycling. Moreover, the
esults obtained by SA-MODDE are compared with that of NSGA-
I. The schematic diagram and model equation are shown in Fig. 5,
ncluding 10 variables and 7 inequality constraints [42,50].

Fig. S6 (a–b) shows the front and side views of typical PFs
chieved by SA-MODDE and NSGA-II, with NP of 100 and MFE
f 50,000. Apparently, the solutions of NSGA-II account for only
10
a fraction of that of SA-MODDE. This once again proves SA-
MODDE’s strengths in upholding proximity and diversity. From
the projections on f1-f2 and f1-f3 planes (Fig. S6 (c–d)), the cor-
relation between profit and isobutane recycling can be approx-
imated by a linear relationship, while the correlation between
profit and octane number is irregular. However, profit and octane
number existed a strong linear correlation when isobutane recy-
cling was not considered [42]. This shows that more accurate and
realistic solutions can be obtained considering three objectives
at the same time. Fig. S7 illustrates the results of SA-MODDE
under different termination criteria. The results of CSTC are close
enough to that of MFE and consume less computational resources.
In addition, when the non-dominated solutions obtained by SA-
MODDE under MFE are regarded as the known Pareto-optimal
fronts, median IGD and SP values of 30 runs for NSGA-II are
0.0250 and 0.6400, and these values are 0.0069 and 0.4019 for
SA-MODDE under CSTC.

5. Conclusion

In this work, each component of SA-MODDE is designed in the
following the ways: (1) Crowding entropy rather than crowding
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istance is used to improve the uniformity and dispersion of non-
ominated solutions. (2) Parents selection scheme based on the
areto dominance relationship provides good guidance informa-
ion for offspring generation. (3) Multi mutation strategies cooper
ith each other to balance search capability and diversity main-
enance. (4) Parameter self-adaptive strategies of F and CR enable
he algorithm less sensitive to the types of optimization problems
nd their effectiveness is experimentally quantified. (5) A hy-
rid survival selection is implemented to update the population,
voiding the need for an external elitist archive. (6) The feasibil-
ty approach for constraint handling is fine-tuned to accelerate
he phase-out of infeasible individuals. (7) A performance-based
ermination criterion greatly improves computing efficiency with
lightly compromise solution quality. Furthermore, low computa-
ional complexity enhances the availability and efficiency of the
A-MODDE algorithm.
18 benchmark functions including various types of MOPs,

ake the numerical experimental results more comprehensive
nd convincing. Judging from the overall statistical performance
f 30 runs and the average evolutionary behavior of a single
un, SA-MODDE exhibits stronger exploration and exploitation
apabilities with respect to five powerful competitors. Addition-
lly, the test results also revealed that no algorithms can com-
letely conquer others due to the unique advantages of different
rameworks on specific problems. Two optimal control problems
nd a constrained steady-state problem are studied to further
xamine the applicability of SA-MODDE in tracking chemical en-
ineering problems. The results show that SA-MODDE is efficient
o locate and obtain a set of diversified trade-off solutions for
ecision-makers to refer to.
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