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A B S T R A C T

Hydrocephalus is defined as the increase in Cerebro Spinal Fluid (CSF) volume, which is usually accompanied by
high Intracranial Pressure (ICP). The most common treatment for hydrocephalus is ventriculoperitoneal shunt
insertion. Shunt is a tube which drains CSF from the ventricular system to peritoneal cavity. Then, the CSF is
absorbed from peritoneum. Infection is considered as one of the most complications of shunt systems, which can
cause improper prognosis in patients, especially in children’s neuro development. Hence, identifying shunt
infection predictive factors could improve the practice in preventing this event. This study used a dataset con-
taining the features of 68 patients with a history of shunt infection and 80 patients without any history of shunt
infection (control group) in Children’s Medical Center hospital of Tehran (Iran). The state-of-art techniques were
applied to select the most informative predicting factors (features). The probability (accuracy) of shunt infection
was determined with different intelligent and statistical classifiers. The results indicated that history of prema-
turity and intraventricular hemorrhage, age of the first shunt procedure, number of shunt revisions, brain tumor
induced hydrocephalus, birth weight, and coinfection are the best descriptive features. In addition, the best
classification results by different techniques varied in the accuracy range of 68%–81% in the dataset.
1. Introduction

Cerebro Spinal Fluid (CSF) is continuously made by Central Nervous
System (CNS), which carries nutrients, washes away impurities, and acts
as a cushion for CNS. After production, it flows through ventricles and
sub-arachnoid space and is finally absorbed by brain venous blood
stream. A precise balance between the production and absorption of CSF
is necessary to maintain normal Intra-Cranial Pressure (ICP). There is an
excessive amount of CSF in hydrocephalus intradural space, which could
be related to an obstruction in CSF flow or a defect in absorption to brain
blood flow [1].

In general, it occurs in 1–2 per 100 live births in children and adults.
Several different situations such as tumors, infections, trauma, develop-
mental abnormalities, and other factors can cause hydrocephalus. Hy-
drocephalus, as a neurosurgical emergency, increases head circumstance,
decreases vision, less of consciousness and some other neuro-
developmental deficits. Ventricular shunt placement is considered as the
most common treatment for symptomatic hydrocephalus. Shunt is an
internal tube which drains CSF from ventricles to other places in the body
in order to absorb the extra fluid and preserve normal ICP [2,3].
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Shunt has several complications despite its numerous benefits, the
most common complication of which is its infection, which has many
morbidities, especially in the neurodevelopmental growth of the affected
children and enormous economic costs for healthcare systems. The rate
of shunt infection varies from 10% to 22%, and approximately 90% of the
infections usually occur one month after surgery. There are some po-
tential predisposing factors for shunt infection such as the patient’s age,
etiology of hydrocephalus, hospitalization period, number of shunt re-
visions, surgeon’s experience, operation duration, surgical technique,
manipulation of the indwelling device during surgery, and health in-
surance [4].

Neurosurgeons use some customized protocols to reduce the shunt
infection rate. However, shunt infection is still the most important
complication of hydrocephalus treatment. Hence, the identification of its
predictive factors can improve current practices in preventing this cata-
strophic event. Some medical informatics such as Logistic Regression
(LR) and Artificial Neural Networks (ANNs) have recently been applied
to develop models for the prediction task. Habibi et al. [5] studied 68
patients with shunt infection and 80 controls which fulfilled a set of
meticulous inclusion/exclusion criteria. They performed univariate
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analysis for a long list of risk factors, and those with p-value< 0.2 were
used to create ANN and LR models. Five variables including birth weight,
age of the first shunting procedure, shunt revision, prematurity history,
andmyelomeningocele were significantly associated with shunt infection
via univariate analysis, and two other variables (intraventricular hem-
orrhage & coincided infections) had a p-values of less than 0.2. The re-
sults showed that ANN and LR models could predict shunt infection with
an accuracy of 83.1% and 55.7%, respectively. Based on the findings,
ANN could predict shunt infection with a fairly high level of accuracy in
children with shunted hydrocephalus.

In general, infection management is a highly complex issue. For
example, life-threatening conditions such as sepsis require immediate
diagnostic and treatment while the causative pathogen is often unknown.
Luz et al. [6] investigated different applications of Machine Learning
(ML) for clinical decision support in infectious diseases to support diag-
nosis, predict severity, and choose appropriate antimicrobial treatments.
The results indicated that early identification of septic patients through
ML-derived prediction models could improve and facilitate patient care
in situations where time is life.

Data collection plays an important role in the diagnosis and treatment
of patients. Physicians should cope with a large number of subject-
dependent factors and review the patient’s whole history. Data are
mainly collected to find out the relevant patterns in the investigated
disease. During the past two decades, various data mining schemes have
become highly important in diagnosing and treating different diseases [7,
8]. Raghavendra et al. [9] presented a review of research on automated
diagnosis of five neurological disorders using ML techniques on the eli-
cited features from physiological signals and images. They investigated
some diseases such as epilepsy, Parkinson, Alzheimer, Multiple Sclerosis
(MS), and ischemic brain stroke. In addition, they reviewed recent
research articles by focusing on their feature extraction methods,
dimensionality reduction techniques, feature selection schemes, and
classification techniques. They concluded that the integration of ML
techniques in an automated fashion could assist neurologists, neurosur-
geons, radiologists, and other medical providers to make better clinical
decisions.

Azimi et al. [10,11] developed an ANN model to predict Endoscopic
Third Ventriculostomy (ETV) success at 6 months and compared the
findings to those obtained by traditional predictive measures in child-
hood hydrocephalus. They examined the data collected from 168 patients
(80 males & 88 females; mean age: 1.4 � 2.6 years) and applied ANN,
ETV Success Score, CURE children’s hospital of Uganda ETV success
score, and LR models for the prediction task. Further, they considered
various features such as hydrocephalus causes, age, sex, Choroid Plexus
Cauterization (CPC), previous shunt surgery, hydrocephalus type, and
body weight. The results showed that etiology, age, CPC status, hydro-
cephalus type, and previous shunt placement are the most important
features. Furthermore, ANN models could produce better results with an
accuracy rate of 95.1% and an area under the curve of 0.87 in comparison
with the other models.

Neurosurgeons have applied many standardized protocols to lower
the occurrence of shunt infection for many years. However, shunt
infection is still the most significant and prevalent complication associ-
ated with hydrocephalus treatment causing serious problems for the
affected children, their family, and the healthcare system. Identifying
children with higher risks of shunt infection can significantly improve the
management of this situation. Previous studies indicated that many
different risk factors are related to either patients or surgical aspects.
However, clinical predictors of shunt infection among children are still
controversial. The present study aimed to investigate the performance of
the state-of-the-art ML techniques to predict shunt infection in hydro-
cephalus children.

2. Materials

As mentioned earlier, hydrocephalus is defined as the increased
2

amount of CSF in the CNS, which usually happens as a result of
obstruction in CSF pathway or decrease in CSF absorption. Fig. 1 shows a
hydrocephalus brain in comparison with a normal brain. Shunt infection
is known as the identification of a bacterial pathogen in CSF or shunt
hardware culture. In children with negative CSF culture and clinical
evidence of CNS infection, shunt infection is considered when the CSF
analysis parameters are abnormal, as well as during the exposure of shunt
device or presence of infected pseudocyst in abdomen. Abnormal CSF
parameters include positive smear, low glucose level (<40 mg/dL), and
high white blood cell count (>10 cells/mm3) with polymorphonucleosis.

In this study, 148 hydrocephalus patients were selected based on a set
of objective inclusion/exclusion criteria among more than 800 ven-
triculoperitoneal shunt procedures performed by the senior author [5] in
Children’s Medical Center Hospital of Tehran (Iran) on hydrocephalus
patients under the age of 12. A total of 68 patients with shunt infection
were consecutively enrolled while 80 patients without shunt infection
with the same protocol& inclusion/exclusion criteria were considered as
controls. The patients were included only if they had undergone ven-
triculoperitoneal shunting in an elective setting with a standard protocol
and completed a follow-up period of at least 6 months. The method and
time of surgery, prophylactic antibiotic, operation theater settings, and
the number of staff inside the theater were equal in all cases. Those with
ventriculo-atrial shunting, operation in an emergent setting, first pro-
cedure in other centers, deviation from the protocol, incomplete or
inaccessible medical data, and incomplete or missing follow-up were
excluded from the study. For each patient, demographic and medical
information including sex, parents’ consanguinity, gestational age at
birth, delivery type, birth weight, prematurity, head circumference at
birth, neonatal icterus, myelomeningocele (MMC) history, meningitis
history, intraventricular hemorrhage (IVH) history, head trauma, brain
tumor, age of surgery time, surgery duration, type of inserted shunt,
other-site active infection within 30 days prior to shunt insertion, CSF
leak after shunting, and the number of previous shunt revisions were
recorded. Table 1 shows the recorded features in this study.

3. Methods

The present study aimed to implement the model applying ML tech-
niques based on 11 variables. Fig. 2 shows the simple flowchart of this
study, and the techniques used are described in the following sub-
sections. As displayed in Fig. 2, we tried to learn from shunt infection
observations in the training phase. Then, the proposed approach predicts
the risk of shunt infection in new hydrocephalus patients (never-seen
before patients). Since feature selection by human mind is just feasible
when we face with a few features, an automatic feature selection tech-
nique is seriously needed to select important factors in the case of
encountering with a large number of features.

3.1. Feature selection

Feature selection was used for reducing dimensionality, and the
relevant features were selected while irrelevant and redundant ones were
discarded [13]. A reduction in feature dimensionality can improve the
prediction performance since it decreases the model complexity and in-
creases its generalization capacity. Different medical applications have
been studied by using various types of ML approaches [7,8]. However, to
the best of our knowledge, no study has focused on analyzing the effec-
tiveness of feature selection to predict the shunt infection among children
with hydrocephalus. Hence, various feature dimensionality reduction
methods, as well as the feature weighting technique, were applied in this
study. The most commonly used feature selection strategies are
Sequential Feature Selection (SFS) [14] L-Plus R-Minus [15], Least Ab-
solute Shrinkage and Selection Operator (LASSO) [16], evolutionary
methods (e.g., genetic algorithm) [17], Greedy Overall Relevancy (GOR)
[18], and well-known dimensionality reduction methods such as Prin-
cipal Component Analysis (PCA) and Linear Discriminant Analysis (LDA)



Fig. 1. The hydrocephalic brain (left) & the normal brain (right) [12].

Table 1
The available features from 148 children with hydrocephalus.

Risk factors With shunt infection Without shunt infection Total

Birth weight
� 2000 14 5 19
2000-2500 4 6 10
2500-3000 28 23 51
3000-3500 13 37 50
� 3500 9 9 18

Prematurity
Yes 25 14 39
No 43 66 109

Trauma
Yes 0 2 2
No 68 78 146

History of meningitis
Yes 3 3 6
No 65 77 142

Tumor
Yes 3 5 8
No 65 75 140

History of IVH
Yes 13 10 23
No 55 70 125

Icter
Yes 9 4 13
No 59 76 135

coinfection
Yes 6 3 9
No 62 77 139

History of MMC
Yes 9 24 33
No 59 56 115

Age at first surgery
< 2 weeks 12 1 13
> 2 weeks 56 79 135

Number of shunt revisions
� 4 64 80 144
> 4 4 0 4

Fig. 2. The simple flowchart of prediction task.
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[19]. The motivation behind all the aforementioned algorithms is to
automatically select an informative subset of features which is most
relevant to the prediction task.

3.1.1. Sequential Feature Selection
SFS algorithm is a greedy search algorithm used to project an initial

feature space (d-dimensional) to the secondary feature space (k-dimen-
3

sional) where k < d. In SFS, the classifier accuracy can be selected as the
fitness value providing a feedback to the SFS algorithm for selecting the
most relevant feature at each epoch. This process continues until the
predefined number of features is selected (here, k is set to 7 through the
cross validation). Fig. 3 presents the whole procedure of SFS algorithm.

1. Initialize the feature subset with an empty set Yk ¼ ∅, k ¼ 1.
2.Select the next best feature as follows

xþ ¼ argmax JðYk þ xÞ

where xþ is the feature is associated with the best classifier performance
if it is added to the feature subset Yk.

3. Add an additional feature xþ to the feature subset Xk,

Ykþ1 ¼ Yk [ xþ

4. Repeat this procedure until k features are selected.

3.1.2. Least Absolute Shrinkage and Selection Operator
The Least Absolute Shrinkage and Selection Operator (LASSO) [20]

aims to improve the prediction accuracy and interpretability of the
regression models by altering the model fitting process to select a rele-
vant subset of features. LASSO penalizes the absolute norm of the
regression coefficients based on the value of a regularization parameter λ.



Fig. 3. The overall description of SFS algorithm.

Fig. 5. The overall description of LDA feature selection.
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LASSO can be especially useful in selecting variables when there are
several possible predictors, most of which show zero or little influence on
a target variable.

3.1.3. Principal Component Analysis
PCA [21] is a dimensionality reduction technique which converts

initial features by multiplying them into a linear matrix in order to
achieve a reduced number of informative features in a shunt infection
dataset with minimum loss of information. PCA is performed by selecting
eigen-vectors of covariance matrix of the data corresponding to the
largest eigen-values, followed by multiplying samples to these selected
vectors. Fig. 4 describes the PCA algorithm in details.

1. Standardize the dataset X with subtracting the mean value of samples
from X

μ¼ 1
N

XN
i¼1

xi~X ¼ X � μ

2. Compute the covariance matrix as

Σ¼ 1
N
~X
T ~X

3.Calculate the eigenvectors and eigenvalues of Σ
4. Pick d

0
eigenvectors corresponding to the largest eigen values and put

them in the column of A ¼ ½v1;…;vd0 �
5. X

0 ¼ ATX

3.1.4. Linear Discriminant Analysis
LDA [22] is closely related to PCA since both of them look for linear

combinations of input features into a secondary space with lower di-
mensions. LDA linearly projects input features into a hyperplane, on
which the Fisher criterion is maximized, which results in maximizing the
between class scatter matrix while simultaneously minimizing the within
class scatter matrix. Fig. 5 shows the overall description of LDA feature
selection.

1. Suppose two classes have mean values of μ1 and μ2 and covariances of
Σ1 and Σ2

Estimate the between-groups scatter matrix SB as
SB ¼ ðμ1 �μ2Þðμ1 � μ2ÞT Estimate the within-groups scatter matrix SW
as
SW ¼ S1 þ S2 S1 ¼ P

xiεC1

ðxi �μ1Þðxi � μ1ÞT S2 ¼ P
xiεC2

ðxi � μ2Þðxi � μ2ÞT
Fig. 4. The overall description of PCA.
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Consider A is the eigenvector corresponding to the largest eigenvalue
of S�1

W SB X
0 ¼ ATX

3.1.5. Genetic algorithm
Genetic Algorithm (GA) [23] is a stochastic search algorithm which

imitates the mechanics of natural selection and natural genetics (natural
competition between individuals for limited natural sources). The pop-
ulation obtains more natural resources by selecting and reproducing
superior individuals. GA can simulate this process and calculate proper
weights of risk factors in shunt infection dataset.

The overall description of GA is presented in Fig. 6. The coding of the
individuals must first be defined. Then, an initial population of in-
dividuals is randomly created. Next, a set of operators is applied to
generate successive populations, which hopefully evolve and improve
through the time. The main GA operators are reproduction, crossover,
and mutation. Reproduction is a process based on fitness function which
identifies how good an individual is. Thus, individuals with higher fitness
values have higher probability of contributing to the next generation.
Crossover is a genetic operator used to combine the genetic information
of two selected parents for generating new offsprings. Combining ele-
ments from two parents hopefully improves fitness values. Mutation is
the random alteration of the elements of new offsprings with a small
probability. In fact, mutation is a process of random walk through the
search space to ensure that the important information contained within
individuals may not be lost prematurely.

1. Generate the initial population randomly.
2. Repeat
- Evaluate each individual by fitness function.
- Select parents based on their fitness.
- Generate children from the selected parents by crossover operator.
- Mutate the new children by mutation operator.
- Replace the new generation with the old generation.

3. Until termination criteria is met or a fixed number of generations
have been accomplished.

In this study, the continuous version of GA was used for the feature
selection task based on which each individual contained the weights
associated with the aforementioned factors (length of each individual ¼
11). Each individual was evaluated based on its ability for the shunt
infection prediction task. To determine the fitness value of each indi-
vidual, factors with low weights were ignored, and the remaining
weighted factors were entered to the classifier. The prediction accuracy
of the classifier identifies how good an individual is. Table 2 shows the
value of GA parameters.
Fig. 6. The overall description of GA algorithm.



Table 2
Value of the GA parameters.

Parameter Parameter

Population
size

50 Maximum
iterations

100

Selection Stochastic
Uniform

Crossover Constraint
dependent

Crossover rate 0.8 Mutation Constraint
dependent

Mutation rate 0.05
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3.2. Classification

It is expected that the risk factors selected by the schemes described in
the previous section have a good performance in comparison with all risk
factors. To test this, some widely-used classifiers such as k-Nearest
Neighbor (kNN), Support Vector Machine (SVM), random forest, Ada-
boost and Naive Bayes were chosen as candidate classifiers.

3.2.1. K-nearest neighbors
kNN [24] is a simple classifier which is very popular due to its

simplicity of interpretation and can be implemented by parallel pro-
cessing methods. A new sample is classified by a majority vote of its
neighbors, assigned to the most common class among its k nearest
neighbors.

3.2.2. Support Vector Machine
SVM [25] is naturally a binary classifier which performs classification

tasks by maximizing the margin between the classes simultaneously
while minimizing the empirical error simultaneously. Those training
samples lying within the margin are considered as support vectors and
determine the slope of the linear boundary with maximum margin in the
feature space. Fig. 7 shows how the SVM classifier classifies its input
samples.

1. Assume samples data (xi; i¼ 1;…;NÞ with labels yi¼ �1.
2. Transform the data from the initial space Rn by a non-linear trans-

formation (ø) to Rm space with more dimension as follows

xi ø ðxiÞ

3. Compute the optimal linear boundary (b and W values) with the
following conditions

W :Xþ b ¼ 0

subject to.
�
yiðwxi þ bÞ ¼ 1 If xi is not a support vector
yiðwxi þ bÞ > 1 If xi is a support vector where x is a

point on the decision boundary, W is an n-dimensional vector in
perpendicular to the decision boundary, and b/|| w || shows the source
distance to the decision boundary.

3.2.3. Random forest
Random forest [26] is an ensemble learning algorithm that builds

multiple Decision Trees (DTs) and considers them together to get a more
Fig. 7. The overall description of the SVM algorithm.
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accurate and stable prediction. The results of several DTs can be com-
bined by averaging or taking the majority vote. Each DT algorithm works
by choosing the finest feature (in a random subset of predictors) to divide
the data and expand the leaf nodes of the tree until the ending condition
is met. In this study, the number of DTs in the random forest is set to 10
through cross validation.

3.2.4. Adaboost
Adaboost [27] is a set of weak classifiers, which are structured in

parallel and learned sequentially. Each weak learner tries to learn a
distribution of the data biased to the misclassified samples of the former
learner. The idea of Adaboost is that the proper combination of weak
learners can make a strong learner, where each learner compensates for
the deficiency of the former by boosting the weights of the misclassified
samples. In this study, DT was chosen as the weak learner, and the
number of weak learners was set to 10 through cross validation. Fig. 8
shows the Adaboost algorithm.

1. Assume samples data (xi; i¼ 1;…;NÞ with labels yi¼ �1.
2. Initialize all weights are set equally. In each round, the weights of

incorrectly classified examples are increased so that the weak learner
is forced to focus on the hard examples in the training set.

3. Find a weak classifier ht : X → Y that minimizes the prediction error
εt . Then, αt , the weight (importance) of ht classifier, is updated as
follows

αt ¼ 1
2
ln
�
1� εt
εt

�

4. The final classifier is a weighted majority vote of the T weak
classifiers

HðxÞ¼ sign

 XT
t¼1

αthtðxÞ
!

3.2.5. Naive Bayes
Naive Bayes is a statistical classification technique based on the Bayes

Theorem, which assumes that all features are mutually independent and
conditional on the category. Under this assumption, Naive Bayes classi-
fier consider a decision rule as follow

by¼ argmaxk2f1;2g pðCkÞ
Yn
i¼1

pðxijCkÞ (1)

1 Calculate the prior probability pðCkÞ for given class labels
2. Calculate the posterior probability based on Bayes theorem as

follows:

by¼ argmaxk2f1;2g pðCkÞ
Yn
i¼1

pðxijCkÞ

3. Select the class with a higher probability. Therefore, the given input is
assigned to the class with a higher probability.

Fig. 9The overall description of the Naive Bayes algorithm.
Fig. 8. The overall description of the Adaboost algorithm.



Fig. 9. Displays the Naive Bayes algorithm.

Table 3
The prediction rate of different features with different classifiers.

KNN
Mean
� Std

SVM
Mean
� Std

Randomforest
Mean � Std

Adaboost\
Mean � Std

Naive
Bayes
Mean �
Std

Birth weight 67.59
� 9.93

55.86
� 7.48

64.83 � 12.58 61.38 �
11.28

59.31 �
6.17

Prematurity 62.07
� 7.31

62.76
�
12.04

62.07 � 5.97 62.07 �
9.44

62.07 �
10.05

Trauma 40.69
� 6.63

55.17
�
14.83

51.03 � 8.93 53.79 �
10.23

48.28 �
3.45

Meningitis 42.76
� 3.93

54.48
� 7.86

42.76 � 13.92 52.41 �
7.48

48.97 �
10.74

Tumor 51.72
� 5.45

54.48
� 4.50

54.48 � 8.23 51.72 �
8.79

42.07 �
4.50

IVH 45.52
� 7.48

53.10
� 8.30

53.79 � 11.59 57.24 �
3.93

53.10 �
6.72

Icter 55.86
� 4.50

58.62
� 6.90

57.93 � 7.48 58.62 �
8.79

58.62 �
6.45

Coinfection 44.14
� 4.50

55.17
� 7.31

56.55 � 11.07 56.55 �
8.99

56.55 �
11.33

MMC 55.86
� 7.48

48.97
� 8.93

50.34 � 3.93 33.79 �
22.66

55.86 �
3.78

Age at first
shunt

64.83
� 7.86

43.45
�
10.23

64.14 � 11.59 63.45 �
9.32

42.76 �
10.52

No of Shunt
Revision

72.41
� 8.09

71.72
� 7.48

66.21 � 11.79 72.41 �
8.45

62.76 �
8.93

Table 4
The prediction accuracy of different classifiers with all features.

Classifier Specificity Mean
� Std

Sensitivity Mean
� Std

Prediction accuracy
Mean � Std

kNN 74.17 � 14.13 62.11 � 13.95 68.97 � 5.45
SVM 68.97 � 23.09 59.91 � 14.72 63.45 � 9.93
Random
forest

73.38 � 10.32 75.78 � 13.89 73.79 � 6.72

Adaboost 79.12 � 7.40 71.94 � 16.33 75.42 � 8.41
Naive Bayes 83.56 � 13.89 48.91 � 3.09 66.90 � 6.72

Table 5
The specificity of different classifiers with selected features.

SFS LASSO PCA LDA GA

kNN 72.18 �
9.01

71.83 �
15.16

68.88 �
3.99

100.00 �
00.00

78.36 �
8.22

SVM 83.12 �
10.24

81.73 �
18.02

80.57 �
12.15

81.23 �
31.79

65.28 �
25.54

Random
forest

71.96 �
8.98

69.70 �
10.98

80.46 �
8.73

68.88 �
6.80

82.22 �
12.25

Adaboost 74.96 �
16.66

72.69 �
5.72

74.07 �
13.79

80.33 �
12.52

79.53 �
13.70

Naive
Bayes

87.45 �
11.46

82.78 �
14.47

89.72 �
5.34

85.48 �
8.24

81.01 �
6.38
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4. Experimental results and discussion

In this study, 148 hydrocephalus patients including 68 with the his-
tory of shunt infection and 80 without any shunt infection (controls)
were analyzed. In the first stage, two patients with missing features were
removed from the dataset resulting in 146 samples (66 patients with
hydrocephalus and 80 control cases). Then, well-known classifiers were
applied to the dataset for the prediction task. The data set was divided
into test and validation set. Test set contain 29 samples and validation set
contain 117 samples. In the validation set, 5-fold cross validation is
executed. Through this cross validation, the best parameters for each
classifier are selected and finally the classifiers with the best parameters
are applied to the test set and the overall performance is determined by
taking an average over the final test samples. In the second stage, to
compare the discriminative information of different factors, the predic-
tion rate of each factor is reported in Table 3. As shown, the best results
are related to number of shun revisions, birth weight, prematurity, and
age of the first shunt procedure, respectively.

In the third stage, all factors were considered to compare the decision-
making performance for the prediction task. Table 4 indicates the mean
and Std of accuracy, sensitivity, and specificity of different classifiers. As
shown, the prediction accuracy ranges from 63% to 75%, and the Ada-
boost and Random forest have the best results in comparison with other
classifiers.

In the fourth stage, five state-of-art feature selection methods were
applied to determine the most discriminative features (risk factor) for
predicting shunt infection. Tables 5–7 shows the results of the afore-
mentioned algorithm for the prediction task, indicating that the feature
selection by SFS and GA enhances the performance of all classifiers.
Moreover, the standard deviation of the results decreases for the classi-
fiers. Thus, the robustness of the results increases while using feature
selection. The prediction accuracy is 64–75% and 62–81% in SFS and GA
approaches, respectively. The best feature selection results belong to GA
which selects prematurity history, intraventricular hemorrhage history,
age of the first shunt procedure, number of shunt revisions, brain tumor
induced hydrocephalus, birth weight, and coinfection. The results of the
present study are in line with Habibi et al. [5] which found that shunt
infection risk factors are shunt revision history, low birth weight, pre-
maturity history, the age of the first shunt procedure, intraventricular
hemorrhage history, myelomeningocele history, and coinfection.

Fig. 10 shows the weights related to the selected factors by GA. These
weights are assigned based on discriminative information included in
each risk factor (the higher weight leads to more discriminative factor).
As displayed in Fig. 10, prematurity and coinfection have the highest and
lowest weights, respectively. Now, the clinical importance of the features
which are selected by GA is explained. These factors are grouped into
significant factors and non-significant factors as follows:

1) Prematurity: Several studies demonstrated prematurity as an inde-
pendent risk factor for shunt infection [28–30]. Premature neonates
had undeveloped immune system and skin barrier along with more
pathogen bacterial flora of skin, which can lead to higher occurrence
of shunt infection in this group. The findings showed that GA gave the
highest weight to this factor. Therefore, it can be more appropriate for
the prediction task. Additionally, for more comparison, the difference
between the prematurity of the two groups was evaluated by using
t-test. The confidence level of p < 0.05 was considered as statistically
6

significant. Based on the results, a significant difference was observed
between the two groups in terms of prematurity (p < 0.05). Hence,
neurosurgeons should postpone shunt insertion as much as possible
for the patients.

2) Number of shunt revisions: More than 50% of the patients with a ven-
tricular shunt require at least one revision surgery [31]. Thus, each
surgery potentially produces an opportunity for new organisms to
infect the shunt device and the operation site. Several studies re-
ported an independent relationship between the number of shunt
revisions and shunt infection risk [32–34]. In the present study, this
factor was also selected based on the ability for the predication task.
The results demonstrated a significant difference between the two



Table 6
The sensitivity of different classifiers with selected features.

SFS LASSO PCA LDA GA

kNN 75.25 �
16.65

70.52 �
15.30

59.89 �
16.92

00.00 �
00.00

85.91 �
5.18

SVM 67.66 �
15.41

61.42 �
15.67

56.47 �
11.02

21.73 �
29.14

58.19 �
9.81

Random
forest

69.44 �
19.42

67.22 �
13.10

63.07 �
12.60

56.19 �
10.49

75.08 �
8.23

Adaboost 78.49 �
12.66

69.31 �
14.18

79.24 �
5.73

51.52 �
17.78

75.54 �
15.79

Naive Bayes 37.33 �
12.78

43.91 �
16.38

42.57 �
16.33

27.41 �
16.50

55.14 �
13.85

Table 7
The accuracy of different classifiers with selected features.

SFS LASSO PCA LDA GA

kNN 72.41 �
4.88

71.03 �
8.99

64.83 �
7.48

54.48 �
5.67

81.38 �
5.23

SVM 75.86 �
10.90

72.41 �
8.09

69.66 �
6.63

53.10 �
9.63

62.07 �
13.58

Random
forest

70.34 �
9.32

68.97 �
11.17

70.34 �
5.23

62.76 �
2.89

77.93 �
8.30

Adaboost 75.86 �
9.44

70.34 �
9.93

76.55 �
8.93

68.28 �
3.78

76.55 �
4.50

Naive Bayes 64.14 �
5.23

65.52 �
10.05

67.59 �
9.63

59.31 �
8.23

70.34 �
3.08

Fig. 10. The weight of the selected risk factors by GA.
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groups in terms of the number of shunt revisions (p < 0.05). It seems
that further focus on optimized revision procedure can decrease shunt
infection risks.

3) Low birth weight: Based on the results of the previous studies, low birth
weight infants had higher rates of shunt infection [32,35,36] due to
their immature immune system. As shown in Fig. 10, GA ranks this
factor as the sixth. A significant difference was observed between the
two groups in terms of birth weights (p < 0.05). Therefore, any
possible delays in the shunt placement for increasing the neonatal
weight can lead to lower shunt infection occurrence.
Non-significant factors

4) Intra-Ventricular Hemorrhage (IVH): Neonates with post-hemorrhagic
hydrocephalus have a higher risk of shunt infection [30], but it is
7

controversial if it is an independent variable or due to other coexisting
factors like prematurity and low birth weight. As shown in Fig. 10,
this factor ranks the second after prematurity history. However, the
results indicated that there was no significant difference between the
two groups in terms of IVH (p > 0.05).

5) Age of the first shunt procedure: Several studies showed a considerable
higher risk of shunt infection in pediatric patients compared to adult
population [37–39] and a significant relationship between age (less
than 6 months) and occurrence of shunt infection [28,32,40]. As
Fig. 10 shows, this factor ranks the third after the history of prema-
turity and IVH, which may be related to the poorly developed im-
mune system of the neonates and immaturity of their skin barrier.
Nevertheless, there was no significant difference between the two
groups in terms of the age of the first shunt procedure (p > 0.05).

6) Brain tumor: Other neurosurgical operations can expose CSF with
bacterial pathogens and potentially increase shunt infection risk.
However, it was not considered as a strong risk factor for shunt
infection in the literature. In addition, neurosurgeons usually manage
tumoral induced hydrocephalus with other interventions except
shunt insertion. In this study, GA selected this factor based on the
predication rate of shunt infection for the two groups. However, the
results indicated no significant difference between the two groups in
terms of brain tumor (p > 0.05).

7) Coinfection: Blood borne infections such as appendicitis and bowel
perforation may play an important role in late shunt infections [38,
41]. However, they are not considered as a prevalent cause of shunt
infection in general. As displayed in Fig. 10, this factor has the lowest
weights among the selected factors. Furthermore, there was no sig-
nificant difference between the two groups in terms of coinfection (p
> 0.05).

5. Conclusion

To clarify the complexity of the infection management, this study
analyzed the classification techniques and feature selection/weighting
schemes to select or give a proper weight to the features for predicting
the surgical infection risk. Based on the results, three risk factors
including prematurity, number of shunt revisions, and low birth weight
constituted substantial parts of the predictive performance. Hence, neu-
rosurgeons should postpone shunt insertion as much as possible in pre-
mature and low birth weight patients. Further, given the number of shunt
revisions highlighted in the prediction task, it is suggested that neuro-
surgeons carefully perform shunt insertion based on standard protocols
for the patients.
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