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A B S T R A C T   

The Bike Repositioning Problem (BRP) has raised many researchers’ attention in recent years to 
improve the service quality of Bike Sharing Systems (BSSs). It is mainly about designing the routes 
and loading instructions for the vehicles to transfer bikes among stations in order to achieve a 
desirable state. This study tackles a static green BRP that aims to minimize the CO2 emissions of 
the repositioning vehicle besides achieving the target inventory level at stations as much as 
possible within the time budget. Two types of bikes are considered, including usable and broken 
bikes. The Enhanced Artificial Bee Colony (EABC) algorithm is adopted to generate the vehicle 
route. Two methods, namely heuristic and exact methods, are proposed and incorporated into the 
EABC algorithm to compute the loading/unloading quantities at each stop. Computational ex
periments were conducted on the real-world instances having 10–300 stations. The results indi
cate that the proposed solution methodology that relies on the heuristic loading method can 
provide optimal solutions for small instances. For large-scale instances, it can produce better 
feasible solutions than two benchmark methodologies in the literature.   

1. Introduction 

In Bike Sharing Systems (BSSs), people can rent shared bikes to satisfy the needs for short-distance travel, such as the connection 
between home and a subway station, or just a leisure trip. However, due to the existence of asymmetric bike flows, some stations may 
be filled-in with returned bikes while some others are empty. For example, during the morning peak, the bike stations in residential 
areas might be empty, whereas those in the business area might be full. In a hilly area, the stations at the bottom can be full whereas 
those at the top can be empty because downhill trips are usually more than uphill trips. Therefore, the bikes need to be redistributed 
among all the stations after a certain period, so that a desirable inventory level can be maintained at each station to satisfy upcoming 
users’ demand. This operational problem is referred to as the Bike Repositioning Problem (BRP). 

The repositioning operation is mainly about using a dedicated fleet of trucks or trailers to transport bikes among stations in order to 
reach the expected inventory level at each station (Raviv et al., 2013). There are generally two types of repositioning: static and 
dynamic. For the static repositioning that most of the current studies focus on (e.g., Cruz et al., 2017; Ho and Szeto, 2017; Liu et al., 
2018; Szeto and Shui, 2018), the bike inventory and demand levels at each station are assumed to be relatively stable over time. The 
dynamic repositioning considers the variations of bike inventory and demand levels over time within a day (see Ghosh et al., 2017; 
Zhang et al., 2017; Shui and Szeto, 2018; Brinkmann et al., 2019). These two types of repositioning consider different application 
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scenarios. 
In most BRP studies, the objectives mainly focused on two aspects: user-related factors such as the unmet demand or user 

dissatisfaction, and operator-related factors such as the operating costs or travel distances. It has been pointed out that many cities 
started to use optimization software to decrease fuel consumption when planning bike repositioning activities (Erdoğan et al., 2015). 
Therefore, besides satisfying the customer demand, operators of BSSs, especially those government-owned ones, may also want to 
minimize the emissions or fuel consumption caused by repositioning. Wang and Szeto (2018) and Shui and Szeto (2018) captured this 
in static and dynamic repositioning problems, respectively. Other than the emission-minimization objective function, Wang and Szeto 
(2018) also considered broken bikes that are required to be transported back to the depot in addition to repositioning usable bikes 
among stations. However, their proposed mathematical model cannot be efficiently solved by commercial solvers. Therefore, a 
heuristic method is required for tackling this type of problem. 

In this paper, we propose a heuristic method to solve the static green bike repositioning problem (GBRP) with broken bikes 
introduced by Wang and Szeto (2018), but consider a single vehicle only, time budget, and a modified objective function. The problem 
aims to design the route and loading instructions for the repositioning vehicle such that the weighted sum of the absolute deviation 
from the target inventory level, the penalty caused by broken bikes at stations, and the CO2 emissions of the repositioning vehicle are 
minimized. The vehicle starts from the depot, transfers bikes among bike stations to bring the inventory level close to the target value, 
and collects broken bikes before ending at the depot within the time budget. All the stations and the depot can be visited multiple 
times. The depot is assumed to have infinite capacity and supply of bikes. The challenge lies in determining the loading/unloading 
quantities of two types of bikes at a station and the depot in each visit so that the weighted sum of absolute deviations, penalty, and 
emissions can be minimized. In this study, we adopted the Enhanced Artificial Bee Colony (EABC) algorithm proposed by Szeto et al. 
(2011) as the backbone of the proposed method to solve large instances with up to 300 stations. An adaptive local search was 
incorporated to improve solution quality. The loading/unloading quantities were determined by either solving a linear programming 
model or a heuristic method. To demonstrate the accuracy and efficiency of the proposed method, we compared the results with those 
from CPLEX on the instances with up to 30 stations. Computational experiments were also conducted using the canonical genetic 
algorithm and the methodology proposed by Alvarez-Valdes et al. (2016). The results show that the EABC algorithm outperforms the 
other two algorithms for this type of problem. 

The contributions of this paper are as follows:  

(1) We propose a first model for the bike repositioning problem considering the emissions of the repositioning vehicle, broken 
bikes, and the time budget simultaneously.  

(2) We develop an EABC algorithm incorporating an adaptive local search procedure to solve the green BRP with broken bikes.  
(3) We provide two methods to determine the loading/unloading quantities of two types of bikes at a station and the depot in each 

visit. 

The remainder of the paper is organized as follows. Section 2 reviews the objective functions, types of bikes, and existing methods 
in the BRPs. Section 3 presents the problem formulation. Section 4 provides the algorithmic structure of the EABC algorithm. In Section 
5, the performance of the proposed method to solve real-world instances is demonstrated. Finally, Section 6 concludes this paper and 
puts forward future works. 

2. Literature review 

In this section, we first review the factors considered in the objective functions in BRPs. Then we look into the studies that 
considered broken bikes or multiple types of bikes. After that, we discuss the existing methodologies for solving BRPs. 

As aforementioned, most of the current studies on BRPs considered either the user-related factors or/and the operator-related 
factors in the objective functions. The user-related factors mainly care about the users’ demand. For example, the expected number 
of unsatisfied future demand (Brinkmann et al., 2019), the penalty cost of not satisfying bike or locker demand (Ho and Szeto, 2017), 
the expected user dissatisfaction (Zhang et al., 2017), and the deviation from the target inventory level (Kloimüllner et al., 2014; Di 
Gaspero et al., 2016). The operator-related factors mainly capture the operating costs, such as total travel time (Angeloudis et al., 2014; 
Dell’Amico et al., 2016), route cost (Cruz et al., 2017), loading and unloading operations (Rainer-Harbach et al., 2015; Liu et al., 2018), 
and so on. In summary, the benefits/costs of bike users and system operators are always considered when planning the repositioning 
work. 

BRPs are closely related to vehicle routing problems as both require determining vehicle routes. In the vehicle routing problem, 
many studies considered the environmental issue in order to contribute to green logistics (see Lin et al. (2014) for more examples). For 
the BRP, besides the benefits/costs of bike users and system operators, the environmental impact of repositioning bikes also attracts 
our attention. Most of the static repositioning works are carried out by fossil-fueled trucks because of their larger capacity and longer 
cruising range compared to bike-trailers or other repositioning vehicles (Wang and Szeto, 2018). However, emitting pollutants and 
CO2 may go against the original intention of developing the BSSs. Modern technology has enabled the reduction of harmful substances 
in the tail-gases through improving the combustion efficiency or purifying the exhaust except for CO2 (Kopfer et al., 2014). Some of 
those pollutants, such as CO and CH, are burnt to CO2 after further oxidation. CO2 is the major component of greenhouse gases (about 
26%), leading to the greenhouse effect that affects the climate and ecosystem. There are only limited studies considering the envi
ronmental issue in the BRP. To the best of our knowledge, only Wang and Szeto (2018) and Shui and Szeto (2018) captured the 
emission cost of CO2 in the objective functions of BRPs. 
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To capture the emission cost of CO2 in the objective functions of BRPs, a CO2 emission model is required. Demir et al. (2011) looked 
into different CO2 emission models considering factors from three categories: vehicle-related factors such as vehicle type, payload, 
engine, and fuel; environment-related factors such as the road condition and weather; and traffic condition. The experimental results 
show that fuel consumption and consequently CO2 emissions are sensitive to the change in vehicle speed, load, and road gradient. For 
the static repositioning problem, which usually happens in the night, the vehicle speed can be assumed constant. In addition, the road 
gradient can be integrated into the asymmetric distance matrix (Wang and Szeto, 2018). If ignoring the insignificant or un-measurable 
factors, the CO2 emissions can be expressed as a function of travel distance and vehicle load. Xiao et al. (2012) found a linear rela
tionship between the fuel consumption rate and the vehicle load. Based on this study, Zhang et al. (2014) extended it to a CO2 emission 
model as follows: 

e = CER ⋅
(

ρ0 +
ρ* - ρ0

Q
q
)

⋅ d (2.1)  

where e is the amount of CO2 emissions, CER is the CO2 emission rate, ρ0 and ρ* are the fuel consumption rates when the vehicle is 
empty and fully-loaded, respectively, Q is the vehicle capacity, d is the travel distance with a load q. This function differs from other 
travel cost functions in the BRP because it relates to not only travel distance but also the product of vehicle load and travel distance. 
This property implies that the simple greedy loading heuristic (e.g., Rainer-Harbach et al., 2013) may not work, because loading too 
many bikes at a stop could aggravate the emissions. Wang and Szeto (2018) also showed that a shorter distance may not necessarily 
lead to lower emissions. In addition, for the multiple-visit case, the number of bikes loaded onto the vehicles at each stop may affect the 
emissions without changing the travel distance. Therefore, the strategy to deal with the loading instructions at visited stations under an 
emission-minimization objective should be different from that under the distance minimization counterpart. 

To the best of our knowledge, no existing BRP studies proposed a strategy to deal with the loading instructions at visited stations 
considering an emission-minimization objective, except for the study of Shui and Szeto (2018). But our study differs from theirs in the 
following aspects: First, our study considers two types of bikes, whereas Shui and Szeto (2018) only considered usable bikes; second, 
our study allows for multiple visits to both the depot and stations in a single planning horizon, but Szeto and Shui (2018) required that 
the vehicle visited each node at most once in each period. Therefore, a method is required for handling loading and unloading 
quantities at visited stations under an emission-minimization objective. 

Besides the aforementioned emission-minimization objective function, we also considered the broken bikes in the BSSs. Broken 
bikes are almost unavoidable in the BSSs, and imply user dissatisfaction because they cannot be used to satisfy bike demand and 
additionally occupy the lockers against parking (Kaspi et al., 2017). Therefore, broken bikes need to be collected and transported away 
for repairs. A report on Seattle’s bike share showed that in Quarter 3 of 2019, the percentage of bikes not in good working order 
reached 18.4% (Seattle Department of Transportation, 2019). This percentage is not small and cannot be ignored. It is therefore 
important to capture broken bikes in BRPs. 

Few studies have proposed methodologies to consider broken bikes in BRPs. Alvarez-Valdes et al. (2016) considered both usable 
and broken bikes in their study. They first solved a minimum cost flow problem and used the insertion algorithm for handling usable 
bikes. After that, the broken bikes were inserted back to the route. However, the impact of arc flows on the objective function was not 
taken into account. Chang et al. (2018) considered a faulty bike-sharing recycling problem in their study, but they did not consider the 
repositioning of usable bikes simultaneously. Zhang et al. (2018) solved an integer linear programming model for their BRP problem 
with both usable and broken bikes using a hybrid discrete particle swarm optimization algorithm. The loading/unloading quantity was 
predetermined as the demand/supply of stations. Wang and Szeto (2018) proposed an MILP to formulate a BRP in which both an 
emission cost objective function, usable bikes, and broken bikes were considered, but the exact method cannot tackle large instances 
without incorporating heuristic methods. Therefore, solving the BRP with broken bikes is still under exploration. 

Except for broken bikes, other types of bikes have also been considered in the BRPs. Li et al. (2016) studied a situation where 
multiple types of bikes are available. Those bikes may have different substitution and occupancy strategies. For example, the one-seat 
bikes can occupy the compartment for two-seat bikes, but cannot satisfy the needs for two-seat bikes. On the contrary, the two-seat 
bikes can satisfy the needs for one-seat bikes, but cannot use the compartment for one-seat bikes. The difference between their 
study and ours is that both one-seat and two-seat bikes are usable. A greedy heuristic can be used in their study to compute the loading/ 
unloading quantities because the objective function is not related to the vehicle load. This method, however, cannot be applied to our 
problem. 

To solve the BRPs, exact methods can provide optimal solutions to small-sized BSSs in a reasonable time. Examples include the 
Dantzig-Wolfe decomposition and the Benders decomposition method (Contardo et al., 2012) and the branch and cut algorithm 
(Dell’Amico et al., 2014; Erdoğan et al., 2014). Erdoğan et al. (2015) also presented an exact method utilizing the combinatorial 
Benders’ cut. Nevertheless, the exact method is limited by the problem size. The best formulation by Dell’Amico et al. (2014) can only 
be efficiently solved instances with up to 50 stations. Erdoğan et al. (2015) only solved instances with up to 60 stations. When the 
number of stations increases, the computational time increases exponentially. As a result, the heuristic method is essential when 
solving large instances. 

Various heuristic methods have been developed to solve the BRPs, such as large neighborhood search (Vogel et al., 2014; Di 
Gaspero et al., 2016), variable neighborhood search (Rainer-Harbach et al., 2013), tabu search (Ho and Szeto, 2014), artificial bee 
colony algorithm (Szeto and Shui, 2018), hybrid genetic algorithm (Li et al., 2016), and chemical reaction optimization (Liu et al., 
2018). They can provide satisfactory results within a short computational time. Some of the optimization methods are summarized in 
Table 2-1. 

Y. Wang and W.Y. Szeto                                                                                                                                                                                             



Transportation Research Part C 125 (2021) 102895

4

The Artificial Bee Colony (ABC) algorithm, which also belongs to the heuristic method, was first proposed by Karaboga (2005) for 
solving the unimodal and multi-modal numerical optimization problems. It has been used for solving various optimization problems, 
including the capacitated vehicle routing problem (e.g., Szeto et al., 2011), the flexible job shop scheduling problem (e.g., Li et al., 
2011), the load dispatch problem (e.g., Hemamalini and Simon, 2010), the traveling salesman problem (e.g., Karaboga and Gorkemli, 
2011), and so on. The interested reader is referred to the paper by Karaboga et al. (2014). The wide application of the ABC algorithm 
can be due to several reasons. First, the mechanism of the ABC algorithm is simple, thus straightforward to be applied to various 
optimization problems. Second, it has a good balance between the diversification and intensification procedures through different 
types of bees. Third, it has the flexibility to hybridize with other methods. Therefore, the ABC algorithm has already been applied to the 
BRPs to generate vehicle routes (see Szeto and Shui (2018) for example) and was also adopted in our study. 

In summary, the environmental impact of bike repositioning lacks sufficient attention among the literature of BRPs, the majority of 
which only considered the benefits/costs of bike users and system operators. The existence of broken bikes also brings up our attention. 
However, existing exact methods are not adequate to solve the BRP considering those properties. Given that the ABC algorithm has 
achieved great success in many other optimization problems, we see the potentials of improving it in solving the described problem. 
Therefore, in the next section, we explain the algorithmic structure of our improved version of the ABC algorithm in detail. 

3. Problem formulation 

In this study, we considered a BSS with one depot and multiple bike stations. A green BRP is formulated from the perspective of 
public repositioning operator to rebalance the BSS as much as possible, and reduce the CO2 emissions produced during the reposi
tioning at the same time. Denote S as the set of stations and S0 as the set of nodes including the stations and the depot. The depot is 
assumed to have infinite capacity and supply of bikes. It is assumed that we have perfect information about each station i ∈ S, including 
its capacity ci, the initial inventory level of usable bikes pi and broken bikes bi, and the target inventory level of usable bikes qi. The 
travel distances dij and travel times tij between all pairs of nodes i, j ∈ S0 are known. A bike station is defined as a pickup station if 
pi > qi, a drop-off station if pi < qi, or a balanced station if pi = qi. A repositioning vehicle with limited capacity Q starts from the depot 
(i = 0), collects bikes from pickup stations, deliver bikes to drop-off stations, collects the broken bikes at any stations, and ends at the 
depot. The total repositioning time, including the travel time of the vehicle and handling time of bikes, should not exceed the time 
budget T. The loading/unloading time of a bike is denoted by L. The vehicle is allowed to have an initial load when it departs from the 
depot, or/and return to the depot with redundant usable bikes. The redundant usable bikes and broken bikes are unloaded from the 
vehicle to the depot. The depot and stations can be visited multiple times during the repositioning work. It is assumed that the vehicle 
turns off the engine during idling at stations and hence emissions are only produced during traveling and no emissions are produced 
during idling. The green BRP aims to design the route and loading instructions for the repositioning vehicle such that the weighted sum 
of the absolute deviation from the target inventory level, the penalty induced by broken bikes, and the CO2 emissions of the vehicle are 
minimized. 

Table 2-1 
Summary of optimization methods for BRPs.  

Optimization methods  References 

Exact method Dantzig-Wolfe and Benders decomposition Contardo et al. (2012)  
Branch-and-cut Dell’Amico et al. (2014), Erdoğan et al. (2014)  

Approximation method 9.5 approximation algorithm Benchimol et al. (2011)  

Heuristic method   
Single-solution based Tabu search Chemla et al. (2013), Ho and Szeto (2014)  

Variable neighborhood search Raidl et al. (2013), Rainer-Harbach et al. (2013), Kloimüllner et al. (2014),  
Rainer-Harbach et al. (2015)  

GRASP Kloimüllner et al. (2014), Rainer-Harbach et al. (2015)  
Iterated local search Cruz et al. (2017)  
Large neighborhood search Vogel et al. (2014), Di Gaspero et al. (2016), Ho and Szeto (2017)  

Population-based Hybrid genetic algorithm Li et al. (2016) 
Memetic algorithm Ting and Liao (2013) 
Ant colony optimization Di Gaspero et al. (2013)  
Chemical reaction optimization Szeto et al. (2016), Liu et al. (2018)  
Artificial bee colony algorithm Shui and Szeto (2018), Szeto and Shui (2018)  

Hybridization of heuristics GRASP + Path Relinking Papazek et al. (2014), Ho and Szeto (2016)  
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The parameters in the mathematical model include the following: 

The decision variables include the following:  
xia  

=

{
1, if node i is the ath stop of the vehicle
0, otherwise  

yB
ia  It indicates the number of broken bikes loaded onto or unloaded from the vehicle at node i at its ath stop. If yB

ia > 0, yB
ia broken bikes are loaded onto the 

vehicle; otherwise, − yB
ia broken bikes are unloaded from the vehicle.  

yG
ia  It indicates the number of usable bikes loaded onto or unloaded from the vehicle at node i at its ath stop. If yG

ia > 0, yG
ia usable bikes are loaded onto the 

vehicle; otherwise, − yG
ia usable bikes are unloaded from the vehicle.   

The auxiliary variables include the following: 

Then the mathematical model of the described problem can be formulated as follows: 

Minimize
∑

i∈S
[|pi −

∑A

a=1
yG

ia − qi

⃒
⃒
⃒
⃒
⃒
+ θ ⋅

(

bi −
∑A

a=1
yB

ia

)]

+w ⋅
∑A

a=2
za (3.1)  

Subject to: 
∑

i∈S0

xia = 1, ∀a = 1,⋯,A, (3.2)  

x01 = 1, (3.3)  

x0A = 1, (3.4)  

− Q ⋅ xia ≤ yG
ia ≤ Q ⋅ xia, ∀i ∈ S0, a = 1,⋯,A, (3.5)  

0 ≤ yB
ia ≤ bi ⋅ xia, ∀i ∈ S, a = 1,⋯,A, (3.6)  

− Q ⋅ x0a ≤ yB
0a ≤ 0, ∀a = 1,⋯,A, (3.7)  

(pi − qi) ⋅ yG
ia ≥ 0, ∀i ∈ S, a = 1,⋯,A, (3.8)  

pi −
∑A

a=1
yG

ia ≥ 0, ∀i ∈ S, (3.9) 

A  The maximum number of stops of the vehicle 
CER  The CO2 emission rate (kg/liter) 
M  A very large number 
Q  The capacity of the vehicle 
L  The time for loading or unloading a bike 
T  The time budget for completing the repositioning work 
bi  The number of broken bikes at station i ∈ S  
dij  Travel distance from node i ∈ S0 to node j ∈ S0  

tij  Travel time from node i ∈ S0 to node j ∈ S0  

pi  The initial inventory level of usable bikes at station i ∈ S  
qi  The target inventory level of usable bikes at station i ∈ S  
ci  The capacity of station i ∈ S  

ρ*  The full-load fuel consumption rate of the vehicle (liters/km) 

ρ0  The empty-load fuel consumption rate of the vehicle (liters/km) 
θ  The penalty (a weighting factor) for a remaining broken bike at bike stations 
w  The weighting factor of the vehicle’s total CO2 emissions   

fB
a  The number of broken bikes on the vehicle when leaving its ath stop (a non-negative variable)  

fG
a  The number of usable bikes on the vehicle when leaving its ath stop (a non-negative variable)  

ha  The time of the vehicle leaving the ath stop  
za  The emissions produced when the vehicle travels from the (a − 1)th stop to the ath stop   
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bi −
∑A

a=1
yB

ia ≥ 0, ∀i ∈ S, (3.10)  

pi −
∑A’

a=1
yG

ia + bi −
∑A’

a=1
yB

ia ≤ ci, ∀i ∈ S,A’ = 1,⋯,A, (3.11)  

f G
a = f G

a− 1 +
∑

i∈S0

yG
ia, ∀a = 2,⋯,A, (3.12)  

f B
a = f B

a− 1 +
∑

i∈S0

yB
ia, ∀a = 2,⋯,A, (3.13)  

f G
1 = yG

01, (3.14)  

f B
1 = yB

01, (3.15)  

f G
A = 0, (3.16)  

f B
A = 0, (3.17)  

f G
a + f B

a ≤ Q, ∀a = 1,⋯,A, (3.18)  

ha − ha− 1 ≥
∑

i∈S0

tijxi,a− 1 + L(|
∑

i∈S0

yG
ia| + |

∑

i∈S0

yB
ia|) − M

(
1 − xja

)
, ∀j ∈ S0, a = 2,⋯,A, (3.19)  

h1 = LyG
01, (3.20)  

hA ≤ T, (3.21)  

za ≥ CER ⋅
[

ρ0 +
ρ* − ρ0

Q
⋅
(
f G
a− 1 + f B

a− 1

)
]

⋅ dij − M ⋅
[
2 −

(
xi,a− 1 + xja

)]
, ∀i, j ∈ S0, a = 2,⋯,A, (3.22)  

xia ∈ {0, 1}, ∀i ∈ S0, a = 1,⋯,A, (3.23)  

yG
ia, integers, ∀i ∈ S0, a = 1,⋯,A, (3.24)  

yB
ia, integers, ∀i ∈ S0, a = 1,⋯,A, (3.25)  

f G
a ≥ 0, ∀a = 1,⋯,A, (3.26)  

f B
a ≥ 0, ∀a = 1,⋯,A, (3.27)  

ha ≥ 0, ∀a = 1,⋯,A, (3.28)  

za ≥ 0, ∀a = 2,⋯,A. (3.29) 

The objective (3.1) is to minimize the weighted sum of the absolute deviation from the target inventory level, the penalty induced 
by broken bikes, and the CO2 emissions generated by the vehicle during the repositioning. Constraints (3.2) limit that the vehicle can 
only visit one station at each stop. Constraints (3.3) and (3.4) ensure that the vehicle starts from and ends at the depot. Constraints 
(3.5)–(3.7) ensure that no loading/unloading actions happen at those unvisited nodes. In addition, broken bikes can only be collected 
at stations and delivered to the depot. Constraints (3.8) are monotonicity constraints, i.e., we only load bikes from pickup stations, and 
unload bikes to drop-off stations. Constraints (3.9)–(3.11) indicate that the final inventory level of each type of bike at each station 
must be no less than zero, and the inventory level at each station does not exceed the station’s capacity at each visit. Constraints (3.12)– 
(3.17) define the vehicle load after leaving each stop. Constraints (3.18) are vehicle capacity constraints. Constraints (3.19) define the 
minimum additional time required to serve the next stop. This additional time includes the travel time between the (a-1)th stop and the 
ath stop, and the handling time for the bikes loaded/unloaded at the ath stop. Constraint (3.20) defines the handling time required at the 
first stop, which is the depot. Constraint (3.21) implies that the vehicle must finish its work within the time budget. Constraints (3.22) 
define the CO2 emissions produced when the vehicle travels from the (a-1)th stop to the ath stop. Constraints (3.23)–(3.29) are domain 
constraints. 

The absolute deviation from the target level at station i ∈ S in the objective function can be linearized by replacing it with an 
auxiliary variable δi and introducing additional constraints (3.30)–(3.32): 

δi ≥ pi −
∑A

a=1
yG

ia − qi, ∀i ∈ S, (3.30) 
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δi ≥ qi − pi +
∑A

a=1
yG

ia, ∀i ∈ S, (3.31)  

δi ≥ 0, ∀i ∈ S. (3.32) 

The following valid inequalities can be added to reduce the search space and speed up the running time of this formulation (Raviv 
et al., 2013): 

x0a + x0,a+1 − x0,a+2 ≤ 1, ∀a = 1,⋯,A − 2, (3.33)  

xia + xi,a+1 ≤ 1, ∀i ∈ S, a = 2,⋯,A − 1, (3.34)  

ha − ha− 1 ≥ L

(⃒
⃒
⃒
⃒
⃒

∑

i∈S0

yG
ia

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒

∑

i∈S0

yB
ia

⃒
⃒
⃒
⃒
⃒

)

+
∑

j∈S0

T̃ jxja, ∀a = 2,⋯,A, (3.35)  

ha − ha− 1 ≥ L

(⃒
⃒
⃒
⃒
⃒

∑

i∈S0

yG
ia

⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒

∑

i∈S0

yB
ia

⃒
⃒
⃒
⃒
⃒

)

+
∑

i∈S0

T̂ ixi,a− 1, ∀a = 2,⋯,A, (3.36)  

where T̃j = mini∈S0 :i∕=jtij, and T̂ i = minj∈S0 :i∕=jtij. 
Constraints (3.33) imply that if the vehicle visits the depot at two consecutive stops, it remains there afterward. Constraints (3.34) 

guarantee that the vehicle does not visit the same station at two consecutive stops. Constraints (3.35) state that the minimum addi
tional time for serving the ath stop is the sum of the handling time for loading/unloading bikes at this stop and the minimum travel time 
from any other node to the ath stop. Constraints (3.36) replace the latter term in the previous constraints using the minimum travel time 
from the (a-1)th stop to any other node. 

Constraints (3.19), (3.35), and (3.36) can be linearized by replacing them with the following constraints (3.37)–(3.48): 

ha − ha− 1 ≥
∑

i∈S0

tijxi,a− 1 + L

(
∑

i∈S0

yG
ia +

∑

i∈S0

yB
ia

)

− M
(
1 − xja

)
, ∀j ∈ S0, a = 2,⋯,A, (3.37)  

ha − ha− 1 ≥
∑

i∈S0

tijxi,a− 1 + L

(

−
∑

i∈S0

yG
ia +

∑

i∈S0

yB
ia

)

− M
(
1 − xja

)
, ∀j ∈ S0, a = 2,⋯,A, (3.38)  

ha − ha− 1 ≥
∑

i∈S0

tijxi,a− 1 + L

(
∑

i∈S0

yG
ia −

∑

i∈S0

yB
ia

)

− M
(
1 − xja

)
, ∀j ∈ S0, a = 2,⋯,A, (3.39)  

ha − ha− 1 ≥
∑

i∈S0

tijxi,a− 1 + L

(

−
∑

i∈S0

yG
ia −

∑

i∈S0

yB
ia

)

− M
(
1 − xja

)
, ∀j ∈ S0, a = 2,⋯,A, (3.40)  

ha − ha− 1 ≥ L

(
∑

i∈S0

yG
ia +

∑

i∈S0

yB
ia

)

+
∑

j∈S0

T̃ jxja, ∀a = 2,⋯,A, (3.41)  

ha − ha− 1 ≥ L

(

−
∑

i∈S0

yG
ia +

∑

i∈S0

yB
ia

)

+
∑

j∈S0

T̃ jxja, ∀a = 2,⋯,A, (3.42)  

ha − ha− 1 ≥ L

(
∑

i∈S0

yG
ia −

∑

i∈S0

yB
ia

)

+
∑

j∈S0

T̃ jxja, ∀a = 2,⋯,A, (3.43)  

ha − ha− 1 ≥ L

(

−
∑

i∈S0

yG
ia −

∑

i∈S0

yB
ia

)

+
∑

j∈S0

T̃ jxja, ∀a = 2,⋯,A, (3.44)  

ha − ha− 1 ≥ L

(
∑

i∈S0

yG
ia +

∑

i∈S0

yB
ia

)

+
∑

i∈S0

T̂ ixi,a− 1, ∀a = 2,⋯,A, (3.45)  

ha − ha− 1 ≥ L

(

−
∑

i∈S0

yG
ia +

∑

i∈S0

yB
ia

)

+
∑

i∈S0

T̂ ixi,a− 1, ∀a = 2,⋯,A, (3.46)  

Y. Wang and W.Y. Szeto                                                                                                                                                                                             



Transportation Research Part C 125 (2021) 102895

8

ha − ha− 1 ≥ L

(
∑

i∈S0

yG
ia −

∑

i∈S0

yB
ia

)

+
∑

i∈S0

T̂ ixi,a− 1, ∀a = 2,⋯,A, (3.47)  

ha − ha− 1 ≥ L

(

−
∑

i∈S0

yG
ia −

∑

i∈S0

yB
ia

)

+
∑

i∈S0

T̂ ixi,a− 1, ∀a = 2,⋯,A. (3.48)  

4. Methodology 

In this section, we first introduce how the EABC algorithm was modified from the original ABC algorithm. Next, we explain the 
solution representation and how the initial routes were generated. After that, we describe the computation of loading/unloading 
quantity at which stop, after which the absolute deviation from the target inventory level at stations, the remaining broken bikes at 
stations, and the vehicle load can be derived accordingly and then the objective value can be calculated. Finally, we describe the 
neighborhood search in this algorithm. 

The ABC algorithm is a meta-heuristic that mimics the behavior of bees when searching for food sources. It is a process of exploiting 
the neighborhood of a food source and exchanging information among bees. A food source usually represents a solution with a fitness 
value indicating its relative attractiveness over other food sources. The fitness value can be determined based on the objective function 
of the optimization problem (function (3.1)). For a minimization problem, the fitness function can be the reciprocal of the objective 
function. 

The initial population is a set of randomly generated food sources (solutions) at the beginning of the search. One employed bee is 
assigned to each food source. Each of the employed bees searches for a new food source (neighbor solution) around the assigned one. 
The latter is replaced if the former has better quality (fitness value). Then the employed bees share the information about food quality 
with other bees after returning to the hive. The onlooker bees in the hive decide which food source to continue exploiting according to 
the information they received. In the onlooker bee phase, a food source with better quality attracts more bees going there, hence 
having more opportunities to be exploited. When a food source is exhausted (no better food can be found near it in limit (a fixed 
number) successive iterations, this food source is abandoned and replaced with a new one found by a scout bee. Three types of bees 
work successively and repeatedly until the termination criterion is satisfied (e.g., the maximum number of iterations is reached). The 
best solution memorized so far is the final result. 

Based on the original ABC algorithm, Szeto et al. (2011) proposed an enhanced version of it, in which two steps were modified. 
First, in the onlooker bee phase, a new and better food source replaces the one with the most failed trials for the improvement of its 
quality among all the existing food sources, rather than the old one. Second, in the scout bee phase, the exhausted food source is 
replaced with a new one found in its neighborhood, instead of a randomly generated one. The main steps of the EABC algorithm are 
summarized in Algorithm 1.  

Algorithm 1. The enhanced artificial bee colony algorithm 

1: Generate a set of initial solutions F = {x1,x2,…,xm}, where m is the number of solutions 
2: Evaluate all the solutions and derive fitness values f(xi), i = 1,⋯,m as the reciprocal of the objective value  
3: Initialize the number of failed trials for finding a better neighbor solution around solution i, i.e., set li = 0, i = 1,⋯,m  
4: while Termination condition is not met do 
5: //Employed bee phase: 
6: for each solution xi do  
7: Randomly select x̃ ∈ N(xi), where N( ⋅ ) is the set of neighbor solutions  
8: if f(x̃) > f(xi) then  
9: xi ← x̃, li ← 0  
10: else 
11: li ← li + 1  
12: end if 
13: //Onlooker bee phase: 
14: Associate each solution xi with a set Gi = ∅  
15: for each onlooker bee do 
16: Select xi ∈ F with the probability p(xi) = f(xi)/

∑m
j=1f

(
xj
)

17: Randomly select x̃ ∈ N(xi),Gi ← Gi ∪ {x̃}
18: for each solution xi do  
19: if Gi ∕= ∅ then  
20: Set x̂ = argmaxσ∈Gi f(σ)
21: if f(x̂) > f(xi) then  
22: Select x̃j ∈ F with j = argmaxk=1,⋯,mlk  

23: if f(x̂) > f
(

x̃j

)

then  

24: x̃j ← x̂, lj ← 0  
25: end if 
26: else 
27: li ← li + 1  

(continued on next page) 
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(continued ) 

28: end if 
29: end if 
30: //Scout bee phase: 
31: for each solution xi  

32: if li ≥ limit then  
33: Randomly select x̃ ∈ N(xi)

34: xi ← x̃, li = 0  
35: end if 
36: end while  

4.1. Solution representation and route initialization 

A solution to the BRP consists of both a visiting sequence (also referred to as a route) and a loading instruction sequence that 
indicates the loading instructions at each stop. For easy understanding and handling, each route was encoded directly using the station 
index and the depot index (i.e., 0). The start and end of a route are the depot (i.e., 0), and there can be other stops at the depot in the 
route. An example of the encoding method for the route of a single vehicle is demonstrated in Fig. 4-1. The number beside the arc shows 
the traversing order. Two visits to Station 2 are encoded using the same index “2”. After the first visit, the vehicle travels to station 4, 
but after the second visit, the vehicle goes back to the depot. The vehicle stops over at the depot between two visits to Station 5. 
Conversely, the encoded sequence can be decoded to the route of the vehicle. 

Each loading instruction has two parts: one for usable bikes and the other for broken bikes. For each type of bike, the instruction 
defines the action (loading, unloading, or no action) to be taken and the quantity involved. A loading action is denoted using a positive 
integer that equals the number of bikes collected at the corresponding stop. An unloading action is denoted using a negative integer, 
with the absolute value equal to the number of bikes unloaded at that stop. No action is denoted using a zero. 

In the initialization phase, a set of initial routes were first generated. A route was first initialized using the depot as the start. For the 
current (incomplete) route, we define a set of reachable stations for the last stop of this route as the set of stations that allow the vehicle 
to reach those stations from the last stop, perform at least one loading/unloading action there, and return to the depot within the time 
budget. We define the gain as the penalty reduction if a specific station is visited, and define the cost as the time increase including the 
travel time and loading/unloading time. Then for each reachable station, we have a function g( ⋅ ) = gain

cost to evaluate the contribution of 
appending this station to the end of the current route. All those reachable stations were sorted according to the value of g(⋅) in 
descending order. Then the restricted candidate list (RCL) consists of top, say 40%, of the stations in the set of reachable stations, and 
also the depot. The node to be appended was randomly selected from the RCL. This process was repeated until no station was reachable 
within the time budget. Then the final depot was appended to the end of the route. Other routes were generated in the same manner. 
The loading instructions for the initial routes were generated by the methods described in Section 4.2. 

4.2. Computation of the loading instructions 

For the routes generated either in the initialization phase or in the intermediate steps of the algorithm, the loading instructions need 
to be determined before calculating the objective value of this solution. Section 4.2.1 introduces a network flow model based on the 
linear programming approach proposed by Rainer-Harbach et al. (2013) (i.e., the exact method). The differences of this model from 
theirs mainly are as follows: the vehicle can have a load of bikes when it starts from or/and ends at the depot; the depot can be visited 
multiple times and act as both supply and demand nodes; two types of bikes with different loading/unloading requirements are 
considered; the time limit is a hard constraint. Section 4.2.2 presents a heuristic method as an alternative to compute the loading/ 
unloading quantities. Three components of this method are described in detail, namely the initial assignment, repair, and quantity 
adjustment. 

Fig. 4–1. The encoding and decoding for a route of a single vehicle with multiple visits to both stations and the depot.  
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4.2.1. The network flow model for computing the loading/unloading quantities 
We define a directed graph G = (VG,AG) for a given node visiting sequence. The node set VG = Vs ∪ V0∪ {σ,τ}, where Vs consists of 

all stops at stations and V0 includes all stops at the depot. Each stop is represented using copies ij with j indicating the order of visits to 
node i. For example, 32 means the 2nd visit to node 3. σ and τ are the source and sink respectively. The arc set AG = Aσ ∪ Aτ ∪ Av ∪ As, 
where (1) Aσ consists of all arcs between the source σ and the first visit to each node i (i.e., i1) in the visiting sequence, with the capacity 
pi for usable bikes and bi for broken bikes, (2) Aτ consists of all arcs between the last visit to each station i (denoted by ilast) in the visiting 
sequence to the sink τ with capacity ci, (3) Av is the set of the arcs between two consecutive stops in the visiting sequence with capacity 
Q, and (4) As is the set of the arcs between two consecutive visits to the same node i with capacity ci. The flow on an arc belonging to Aσ 
describes the initial inventory level at each node and the flow on an arc belonging to Aτ correspondingly describes the final inventory 
level. The flow on an arc belonging to Av indicates the vehicle load when traversing the corresponding link. The flow on an arc 
belonging to As means the inventory level of bikes at each node between two consecutive visits to it. 

We set the initial inventory level of usable bikes at the depot p0 to be a large value and the capacity c0 is assumed to be infinite. The 
initial inventory level of broken bikes at the depot b0 is set to be 0. 

An example of the directed graph for the visiting sequence 0-1-3-2-3-0-4-5-2-0 is presented in Fig. 4-2. 
Then we can formulate a linear programming model for the defined network. The decision variables are the arc flows fG

u,v and fB
u,v, 

∀(u, v) ∈ AG for usable bikes and broken bikes, respectively. The auxiliary variables δG
i and δB

i are used to derive the absolute deviation 
from the target inventory level of usable and broken bikes, respectively. For clear presentation, we define two constants β1 = CER ⋅ ρ0, 

and β2 = CER ⋅ ρ* − ρ0
Q . Then the linear programming model can be formulated as follows: 

Minimize
∑

i∈S

(
δG

i + θδB
i

)
+w

[

β1

∑

(u,v)∈Av

du,v + β2

∑

(u,v)∈Av

du,v

(
f G
u,v + f B

u,v

)
]

(4.1)  

Subject to: 
∑

(u,ij)∈Av

f G
u,ij +

∑

(u,ij)∈Aσ∪As

f G
u,ij =

∑

(ij ,v)∈Av

f G
ij ,v +

∑

(ij ,v)∈Aτ∪As

f G
ij ,v, ∀ij ∈ Vs ∪ V0, (4.2)  

∑

(u,ij)∈Av

f B
u,ij +

∑

(u,ij)∈Aσ∪As

f B
u,ij =

∑

(ij ,v)∈Av

f B
ij ,v +

∑

(ij ,v)∈Aτ∪As

f B
ij ,v, ∀ij ∈ Vs ∪ V0, (4.3)  

f G
σ,i1 = pi, ∀i ∈ S0 :

(
σ, i1) ∈ Aσ , (4.4)  

f B
σ,i1 = bi, ∀i ∈ S0 :

(
σ, i1) ∈ Aσ , (4.5)  

f G
ilast ,τ − qi ≤ δG

i , ∀i ∈ S :
(
ilast, τ

)
∈ Aτ, (4.6)  

qi − f G
ilast ,τ ≤ δG

i , ∀i ∈ S :
(
ilast, τ

)
∈ Aτ, (4.7)  

δB
i = f B

ilast ,τ, ∀i ∈ S :
(
ilast, τ

)
∈ Aτ, (4.8)  

f G
ilast ,τ ≤ ci, ∀i ∈ S :

(
ilast, τ

)
∈ Aτ, (4.9)  

f B
ilast ,τ ≤ bi, ∀i ∈ S :

(
ilast, τ

)
∈ Aτ, (4.10)  

f G
ilast ,τ + f B

ilast ,τ ≤ ci, ∀i ∈ S :
(
ilast, τ

)
∈ Aτ, (4.11)  

f G
uj’ ,ij

≤ Q, ∀
(
uj’ , ij) ∈ Av, (4.12) 

Fig. 4–2. Example of the graph for the visiting sequence 0-1-3-2-3-0-4-5-2-0.  
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f B
uj’ ,ij ≤ Q, ∀

(
uj’ , ij) ∈ Av, (4.13)  

f G
uj’ ,ij

+ f B
uj’ ,ij ≤ Q, ∀

(
uj’ , ij) ∈ Av, (4.14)  

f G
ij’ ,ij

≤ ci, ∀i ∈ S,
(
ij’ , ij) ∈ As, (4.15)  

f B
ij’ ,ij ≤ bi, ∀i ∈ S,

(
ij’ , ij) ∈ As, (4.16)  

f G
ij’ ,ij

+ f B
ij’ ,ij ≤ ci, ∀i ∈ S,

(
ij’ , ij) ∈ As, (4.17)  

(pi − qi)
(

f G
ij ,v − f G

u,ij

)
≥ 0, ∀ij ∈ Vs,

(
u, ij) ∈ Av,

(
ij, v
)
∈ Av, (4.18)  

f B
ij ,v − f B

u,ij ≥ 0, ∀ij ∈ Vs,
(
u, ij) ∈ Av,

(
ij, v
)
∈ Av, (4.19)  

f B
0j’ ,ij = 0, ∀

(
0j’ , ij) ∈ Av, (4.20)  

L
∑

ij∈Vs∪V0

⎛

⎜
⎝

⃒
⃒
⃒
⃒
⃒
⃒

∑

(u,ij)∈Av

f G
u,ij −

∑

(ij ,v)∈Av

f G
ij ,v

⃒
⃒
⃒
⃒
⃒
⃒
+

⃒
⃒
⃒
⃒
⃒
⃒

∑

(u,ij)∈Av

f B
u,ij −

∑

(ij ,v)∈Av

f B
ij ,v

⃒
⃒
⃒
⃒
⃒
⃒

⎞

⎟
⎠+

∑

(u,v)∈Av

tu,v ≤ T, (4.21)  

δG
i ≥ 0, ∀i ∈ S, (4.22)  

f G
u,v ≥ 0, ∀(u, v) ∈ AG, (4.23)  

f B
u,v ≥ 0, ∀(u, v) ∈ AG. (4.24) 

The objective function (4.1) comes from function (3.1) except that the routing variables are given here. Constraints (4.2) and (4.3) 
are flow conservation constraints on the node set Vs. The flows on arcs (σ, ij) ∈ Aσ are set to the initial inventories of two types of bikes 
as stated in constraints (4.4) and (4.5). Constraints (4.6)–(4.8) define the absolute deviation of the inventory level of each type of bike 
from the target level. Constraints (4.9)–(4.17) are link capacity constraints. Constraints (4.18) and (4.19) are the monotonicity con
straints on the inventory level of two types of bikes at stations. Constraints (4.20) limit that the vehicle should not carry broken bikes 
when departing from the depot. Constraint (4.21) is the time limit constraint. Constraints (4.22)–(4.24) are domain constraints. It is 
noted that δB

i is not a decision variable and can be substituted with fB
ilast ,τ (equation (4.8)). 

Constraints (4.21) can be linearized by introducing auxiliary variables yG,+
ij , yG,−

ij , yB,+
ij , yB,−

ij , ∀ij ∈ Vs ∪ V0. Then constraints (4.21) 
can be replaced with constraints (4.25)–(4.31): 

L
∑

ij∈Vs∪V0

(
yG,+

ij + yG,−
ij + yB,+

ij + yB,−
ij

)
+
∑

(u,v)∈Av

tu,v ≤ T, (4.25)  

⎛

⎜
⎝
∑

(u,ij)∈Av

f G
u,ij −

∑

(ij ,v)∈Av

f G
ij ,v

⎞

⎟
⎠+ yG,+

ij − yG,−
ij = 0, ∀ij ∈ Vs ∪ V0, (4.26)  

⎛

⎜
⎝
∑

(u,ij)∈Av

f B
u,ij −

∑

(ij ,v)∈Av

f B
ij ,v

⎞

⎟
⎠+ yB,+

ij − yB,−
ij = 0, ∀ij ∈ Vs ∪ V0, (4.27)  

0 ≤ yG,+
ij ≤ Q, ∀ij ∈ Vs ∪ V0, (4.28)  

0 ≤ yG,−
ij ≤ Q, ∀ij ∈ Vs ∪ V0, (4.29)  

0 ≤ yB,+
ij ≤ Q, ∀ij ∈ Vs ∪ V0, (4.30)  

0 ≤ yB,−
ij ≤ Q, ∀ij ∈ Vs ∪ V0. (4.31)  
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4.2.2. A heuristic method for the loading/unloading quantity determination 
The heuristic method intends to give feasible loading instructions of a route quickly. Given a newly generated route, the loading/ 

unloading quantities at existing stops were first determined using the initial assignment step described in Section 4.2.2.1. If there were 
unbalanced stations after this assignment and the time budget allowed, those stations were appended to the end of the current route 
one by one, and the loading/unloading quantity was determined immediately after appending each of them. This step is called route 
extension and described in Section 4.2.2.2. Section 4.2.2.3 introduces a tailored step for the emission component of the objective 
function to reduce the vehicle load without affecting the penalty component. 

4.2.2.1. Initial assignment. The first component of the objective function is the absolute deviation between the final and the target 
inventory levels at stations, and also the penalty caused by the broken bikes remained at stations. Therefore, this step aims to compute 
the maximum quantity that the vehicle can handle at each stop to satisfy the requirement at each station as much as possible. 

The nodes are tackled in the order that they are visited. We first consider the stops at stations (i.e., not the depot). For the a-th stop 
of a route at station i, we have the remaining vehicle capacity rca, the vehicle load of usable bikes lga, the remaining time Ta for 
handling the bikes (already excluding the travel time for returning to the depot), and the remaining supply/demand at this station – rgi 
for usable bikes and rbi for broken bikes. 

For a pickup station, the loading quantity of broken bikes at Stop a is first determined by 

bra = min
{

rca,
⌊

Ta

/
2L
⌋
, rbi

}
(4.32) 

Then the loading quantity of usable bikes is determined by 

pda = min
{

rca − bri,
⌊(

Ta − 2L ⋅ bra

)/
2L
⌋
, rgi

}
(4.33) 

Note that 2L is used here because we need to consider the unloading time of a bike before collecting it. 
The resources left for the next stop (i.e., Stop a + 1) at Station j are updated as follows: 

rca+1 = rca − bra − pda, (4.34)  

lga+1 = lga + pda, and (4.35)  

Ta+1 = Ta − 2L ⋅ (bra + pda) − tij. (4.36) 

Then the demand/supply of Station i is updated as follows: 

rgi → rgi − pda, (4.37)  

rbi → rbi − bra. (4.38) 

For a drop-off station, we unloading usable bikes first to make room for collecting broken bikes. The unloading quantity is 
determined as 

pda = min{lga, rgi} (4.39) 

We do not consider the unloading time here because it has been included when collecting those bikes, see equation (4.36). 
The remaining vehicle capacity at this stop is updated by 

rca → rca + pda. (4.40) 

If the quantity is bounded by the vehicle load lga, we can check whether the vehicle can collect more or drop fewer usable bikes 
when it departs from the last depot. We assume that the original loading instruction at the last depot is fd (fd > 0 for loading fd bikes, 
and fd < 0 for unloading − fd bikes), and the minimum remaining vehicle capacity from the last depot to the current stop is vc. Then the 
increased loading amount or reduced unloading amount is determined by 

ep = min
{

vc, rgi − pda,
⌊

Ta

/
2L
⌋
− min{fd, 0}

}
(4.41) 

If fd + ep > 0, i.e., the final action at the last depot is loading, then the remaining time budget for the stops after Stop a should be 
updated by 

Ta = Ta − 2L ⋅ (min{fd, 0} + ep). (4.42) 

Then the loading quantity of broken bikes is determined using equation (4.32). The resources left for the next stop (i.e., Stop a + 1) 
at Station j can be updated as follows: 

rca+1 = rca − bra, (4.43)  

lga+1 = lga − pda, and (4.44) 
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Ta+1 = Ta − 2L ⋅ bra − tij. (4.45) 

The information of Station i is updated as 

rgi → rgi + pda + ep and (4.46)  

rbi → rbi − bra. (4.47) 

For a balanced station with neither demand or supply of usable bikes, the loading quantity of broken bikes can be determined using 
equation (4.32), and other information can be updated using equations (4.34)–(4.38) with pda = 0. 

For those intermediate stops at the depot, all the bikes (i.e., both usable and broken bikes) on the vehicle are unloaded. Then for the 
next stop after the depot (i.e., Stop a + 1) at Station j, the remaining vehicle capacity rca+1 is updated as the full vehicle capacity, the 
load of usable bikes lga+1 is updated as zero, and the remaining time Ta+1 is updated as Ta − tij. 

If no station is reachable from the current stop within the time budget, then a depot is appended to the end of the current route and 
the initial assignment stops. Appending this depot is always feasible because, for every previously appended station, the time for 
returning to the depot and unloading all the bikes on the vehicle has been considered in advance. 

4.2.2.2. Route extension. For a newly generated route (e.g., in the neighborhood search introduced in Section 4.3), it may happen that 
after computing the loading instructions for existing stops in the route, the remaining time still allows the vehicle to visit additional 
stops. In this case, the route can be extended by appending unbalanced stations. Candidate stations are considered in descending order 
of the additional time caused by appending them (visiting this station and returning to the depot). The computation of loading/ 
unloading quantities follows the same rule as in Section 4.2.2.1. 

We define the “current inventory level” as the present inventory level at a station after any step is performed. After the initial 
assignment and/or the route extension, the existing route has the following characteristics:  

(1) The pickup stations have the current inventory level no less than the target inventory level (i.e., a non-negative deviation),  
(2) The drop-off stations have the current inventory level no larger than the target inventory level (i.e., a non-positive deviation), 

and a negative deviation implies that the unloading quantity at this stop is bounded by the vehicle load (see equation (4.39), 
otherwise the deviation should be zero). 

These two characteristics will support the argument in the following section. 

4.2.2.3. Quantity adjustment. The emission function adopted in this study is related to both the travel distance and vehicle payload. 
For a given route, the travel distance is fixed and the initial assignment has assigned each stop an initial loading/unloading quantity. 
Then after previously described two steps, the quantity adjustment step here aims to reduce the vehicle load along the route without 
affecting the total absolute deviation reduction achieved in the previous steps. 

We look into pairs of Stops m and n (m < n, and both at stations). The principle is to reduce the vehicle load between these two stops 
by loading fewer bikes or unloading more bikes at the former stop (m) and correspondingly loading more bikes or unloading fewer 
bikes at the latter stop (n). After the quantity adjustments at these two stops, the inventory level at Stop m increases and that at Stop n 
decreases. 

We have the following two inferences based on the adjustment principle and the characteristics of the current inventory level of 
stations mentioned at the end of the last section:  

(1) Stop m should have its current inventory level no less than the target inventory level (a non-negative deviation)  
(a) If Stop m is a drop-off station and its current inventory level is less than the target inventory level (has a negative deviation), 

the inventory level at this station cannot increase because the unloading quantity at this stop is bounded by the vehicle load 
(the second characteristic mentioned at the end of the last section). Therefore, Stop m cannot be a drop-off station with a 
negative deviation.  

(b) If Stop m is a pickup station, according to the first characteristic mentioned at the end of the last section, i.e., a pickup station 
does not have a negative deviation, Stop m cannot be a pickup station with a negative deviation. 

We can conclude that Stop m cannot have a negative deviation.  

(2) If Stop n is at a different station from Stop m, then Stop n should have its current inventory level larger than the target inventory 
level (a positive deviation) 

If Stop n has a negative deviation or zero deviation, and its inventory level further decreases after the adjustment, then its absolute 
deviation increases. Since the inventory level at Stop m (a stop with a non-negative deviation) increases, its deviation also increases. 
Then the adjustments to the two stops lead to an increase in the total absolute deviation of all stations. Therefore, we can conclude that 
Stop n cannot have a non-positive deviation. 

Remark: if Stop n is at the same station as Stop m, then Stop n has the same requirement as Stop m (i.e., a non-negative deviation). 
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With these inferences, we summarized two types of adjustments for the two stops: 

Type I: Stop m and Stop n are two visits to different stations, and the station at Stop m has a non-negative deviation (i.e., the current 
inventory level at this station is not less than the target inventory level), whereas the station at Stop n has a positive deviation (i.e., 
the current inventory level is larger than the target inventory level), 
Type II: Stop m and Stop n are two visits to the same station having a non-negative deviation from the target inventory level. 

For Type I adjustment, we use Fig. 4-3 to show the changes in inventory levels at stops m and n at different stations. The absolute 
deviation is a piecewise linear function of the inventory level, which gives a zero deviation when the inventory level is equal to 
“Target”. The “Current” point corresponds to the current inventory level and the absolute deviation of the corresponding station before 
the adjustment. For Stop m, the current inventory level can be either equal to the target inventory level (shown in Fig. 4-3(a)), or larger 
than the target inventory level (shown in Fig. 4-3(b)). For Stop n, the current inventory level should be strictly larger than the target 
inventory level. The “Adjusted” point corresponds to the inventory level and the absolute deviation after the adjustment. The arrows 
on the solid line indicate the directions of the change in the inventory level and the absolute deviation. As mentioned earlier, the 
inventory level at Stop m increases and that at Stop n decreases, and the adjusted quantities at two stations are identical (denoted as 
ad). We can see from Fig. 4-3 that the increasing absolute deviation at Stop m can be offset by the decreasing absolute deviation at Stop 
n. 

The increasing/decreasing amount at two stops ad can be determined as follows. We denote that the minimum vehicle load of 
usable bikes between Stop m and Stop n before the adjustment is gmin, the original loading/unloading quantity is pdm at Stop m and pdn 
at Stop n, the remaining capacity of the station at the m-th stop is scm, the deviation at Stop n is Devn, and the remaining time budget is 
T̂. 

Since Stop m should have a non-negative deviation and Stop n should have a positive deviation, we can have the following two 
combinations of Stop m and Stop n:  

(a) Stop m is a pickup station and Stop n is another pickup station: the adjusted amount is ad = min{gmin,pdm,Devn}, i.e., the vehicle 
picks up ad fewer bikes at Stop m and picks up ad more bikes at Stop n.  

(b) Stop m is a drop-off station and Stop n is a pickup station: the adjusted amount is ad = min{gmin, scm,Devn,
⌊
T̂/2L

⌋
}, i.e., the 

vehicle drops off ad more bikes at Stop m and picks up ad more bikes at Stop n. The remaining time budget is updated as 
T̂ − 2L ⋅ ad. 

Note that case (b) could make a drop-off station with zero deviation have a positive deviation after this adjustment (recall that after 

Fig. 4–3. The changes in the inventory level at a pair of different stations in Type I quantity adjustment: (a) Stop m has a zero deviation and Stop n 
has a positive deviation, (b) both stops have positive deviations. 
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the initial assignment and/or the route extension, the drop-off stations only have non-positive deviations). That is to say, during the 
quantity adjustment step, pickup stations still have non-negative deviations, whereas drop-off stations do not have limits on their 
deviations. Therefore, two additional combinations are possible with Stop n in the previous two combinations being a drop-off station:  

(c) Stop m is a pickup station and Stop n is a drop-off station: the adjusted amount is ad = min{gmin,pdm,pdn,Devn}, i.e., the vehicle 
picks up ad fewer bikes at Stop m and drops off ad fewer bikes at Stop n. The remaining time budget is updated as T̂ + 2L ⋅ ad.  

(d) Stop m is a drop-off station and Stop n is another drop-off station: the adjusted amount is ad = min{gmin,scm,pdn,Devn}, i.e., the 
vehicle drops off ad more bikes at Stop m and drops off ad fewer bikes at Stop n. 

For Type II adjustment, Stop m and Stop n are two visits to the same station. The minimum vehicle load of usable bikes between Stop 
m and Stop n before the adjustment is denoted as gmin. We have the following two scenarios:  

(a) If this station is a pickup station and the loading quantity at Stop m is pdm, then the adjusted amount is ad = min{gmin,pdm}, i.e., 
the vehicle picks up ad fewer bikes at Stop m and picks up ad more bikes at Stop n.  

(b) If this station is a drop-off station, the remaining station capacity after the m-th stop is scm, and the unloading quantity at Stop n 
is pdn, then the adjusted amount is ad = min{gmin,scm,pdn}. i.e., the vehicle drops off ad more bikes at Stop m and drops off ad 
fewer bikes at Stop n. 

We have the changes in the inventory levels as shown in Fig. 4-4. The increasing inventory level at Stop m can be offset by the 
decreasing inventory level at Stop n. Therefore, the inventory level of this station stays unchanged after the adjustment, but the vehicle 
load between Stop m and Stop n is reduced. 

After both Type I and Type II adjustments, the total absolute deviation of the system stays unchanged, but the vehicle load between 
Stop m and Stop n is reduced by ad. This process repeats until all combinations of two stops at stations are checked. 

In summary, the heuristic method for the computation of loading instructions consists of three steps: first, the quantity that can 
satisfy the requirement of existing stops the most is determined based on available resources, such as the vehicle capacity, carried 
usable bikes and so on; after that, the route can be extended if time allows; finally, the initial quantities are adjusted to reduce the 
vehicle load without changing the total absolute deviations of the system already achieved in the previous two steps. 

4.3. Neighborhood search 

The exploitation ability of the EABC algorithm is mainly driven by the employed bee phase and the onlooker bee phase. To enhance 
the search in the neighborhood, we used an adaptive local search in these two phases. This search involves using a set of different 
neighborhood operators to change the adjacency or/and the order of the stops in a route to generate a new route. Then, the loading 
instructions were determined using either method introduced in Section 4.2 and the objective value was calculated. These operators 
were applied in random order. Once an operator generated an improved solution, it repeated until no improvement was achieved. Note 
that for the scout bee phase in the EABC algorithm, instead of using a randomly generated solution, a neighbor solution of the old one 

Fig. 4–4. The changes in the inventory level at a pair of stops at the same station in Type II quantity adjustment: (a) the station has a zero deviation, 
(b) the station has a positive deviation. 
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was adopted to replace the solution without any improvement in the past few iterations. The scout bee used the same set of neigh
borhood operators as in the employed and onlooker bee phases. 

There are six neighborhood search operators, namely single node relocation, single node swap, the relocation of a subsequence, the 
swap of two subsequences, node removal, and node insertion. For more details of the first four operators, the reader is referred to the 
study of Szeto et al. (2011). 

5. Computational experiments 

In this section, we present the experiments using the benchmark instances created by Rainer-Harbach et al. (2015) based on 
Citybike Vienna. For each instance, 10% of the bikes were randomly selected as broken bikes. The name of each instance was formatted 
as [S][Number of stations]_[Index of the instance]. The proposed method was coded with C++ in Visual Studio 2010 and executed on 
the high-performance computer with two 10-core Intel Xeon E5-2600 v3 (Haswell) processors and 96 GB physical memory. The 
parameters in the emission function follow the settings in the study of Wang and Szeto (2018). The penalty for a remaining broken bike 
at bike stations θ was set as 2 and the weighting factor of emissions was set as 0.1. The capacity of the repositioning vehicle (Q) was 
assumed to be 20 and the loading/unloading time for one bike was assumed to be 30 s. To reduce the number of parameters, the 
number of employed bees was set to equal the number of onlooker bees. Our preliminary experiments found that the enhanced ABC 
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algorithm performed better than the original version. Therefore, we implemented the former one (the EABC algorithm) in the 
following experiments. For every instance in the experiments, the program was run 20 times. 

The remaining part of this section is organized as follows. Section 5.1 presents the results of parameter calibration. Section 5.2 
discusses the effectiveness of the heuristic method and the network flow approach introduced in Section 4.2.2. Section 5.3 shows the 
efficiency of the proposed method by comparing the solution quality and computational time with CPLEX. Finally, in Section 5.4, we 
compare the results obtained by the proposed method with those by the benchmark method in Alvarez-Valdes et al. (2016) and also the 
canonical genetic algorithm (GA). 

5.1. Parameter tuning 

In the proposed algorithm, there are mainly three parameters to be tuned, i.e., the maximum number of iterations for termination, 
the number of food sources (also equal to the number of employed bees and the number of onlooker bees), and the value of limit that 
triggers the scout bee phase. We took the instances with 300 stations to tune those parameters in the stated order. 

5.1.1. Termination condition 
After running the algorithm pretty long, we find that the algorithm can converge before 300,000 iterations. The converging process 

is shown in Fig. 5-1. The 300,000 iterations were normalized by the network size (i.e., 300 stations). Therefore, 1000 times of the 
network size was used as the maximum number of iterations for the following experiments. For smaller networks, using this number in 
this termination condition is also sufficient for the algorithm to converge. 

5.1.2. Number of food sources 
With the other parameters fixed, experiments were conducted on the cases in which the numbers of food sources were 5, 10, 20, 30, 

40, and 50. The trend of the objective value over the number of food sources is shown in Fig. 5-2. It can be seen that setting the number 
of food sources as 30 can generate the best objective value. Therefore, the number of food sources was set as 30 for the following 
experiments. 

5.1.3. The multiplier in the limit 
Following Simon (2013), we set the parameter limit based on the formula m*N*|S|, where N is the total number of employed and 

onlooker bees, and |S| is the network size. The parameter m is a multiplier, which was set as 0.5 by Simon (2013). We tuned the value of 
m. Different values were tried from 0.01 to 5 and the trend of objective value is presented in Fig. 5-3. It can be found that m = 0.5 gives 
the best objective value. Therefore, in the following experiments, the value of limit was set as 0.5 ⋅ (30+30) ⋅ |S| = 30|S|. 

In summary, the algorithm converges when the number of iterations reaches 1000|S|. The best numbers of employed bees and 
onlooker bees are both 30. If a food source has not been improved for 30|S| times, the scout bee phase should be triggered. 

5.2. The effectiveness of using the heuristic method for the loading instruction determination 

In Section 4.2 we introduced two approaches to obtain the loading/unloading quantities: solving a network flow model (the exact 
method) and a heuristic method. The objective of this experiment is to compare the results obtained from using either of them under 
the framework of the EABC algorithm to demonstrate the effectiveness of the latter. 
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The tested instances were grouped according to their network size |S|, which varied from 60 to 300. Each group had five different 
instances. The computational time was controlled the same for a specific group to run the EABC algorithm with these two different 
approaches. The time budget for the repositioning work was set as |T|=6h. We ran the program of the EABC algorithm 20 times with 
the two approaches, and recorded the average and best objective values of 20 runs for each instance. We calculated the improvement 
on the average objective value by using the heuristic method compared with that by using the exact method, and also carried out the t- 
test to ensure that the difference in the mean objective value is statistically significant. The results are presented in Table 5-1. It can be 
concluded that, within the same computational time, using the proposed heuristic method to obtain the loading/unloading quantities 
can generate statistically better solutions than solving a network flow model. 

5.3. Comparison of the results of CPLEX and the EABC algorithm 

To show the efficiency of the proposed EABC algorithm together with the heuristic method for the loading/unloading quantity 

Table 5-1 
The results from using the exact method and the heuristic method for the loading instruction determination.  

|S| CPU/s Instance Exact loading Heuristic loading Improvement of mean value p-value 

Mean Best Mean Best 

60 96 S60_1 117.25 113.26 97.50 96.02 16.84% 9.73E− 21   
S60_2 134.33 128.29 108.42 107.07 19.29% 1.25E− 23   
S60_3 115.88 113.16 99.06 96.97 14.51% 3.23E− 28   
S60_4 133.51 129.17 108.70 106.15 18.58% 1.48E− 21   
S60_5 129.26 123.95 109.45 107.04 15.33% 2.55E− 23  

120 200 S120_1 518.63 513.78 489.04 485.59 5.70% 3.29E− 24   
S120_2 583.35 576.18 555.50 550.94 4.77% 2.08E− 26   
S120_3 517.19 510.87 488.90 484.62 5.47% 1.18E− 23   
S120_4 616.52 610.65 588.17 584.32 4.60% 1.20E− 25   
S120_5 607.04 600.63 577.12 574.38 4.93% 2.17E− 22  

180 310 S180_1 1044.89 1037.93 1015.55 1009.65 2.81% 1.01E− 22   
S180_2 991.05 981.96 953.93 951.56 3.75% 2.51E− 22   
S180_3 1058.77 1051.87 1024.64 1019.60 3.22% 1.72E− 28   
S180_4 982.92 976.67 954.49 951.40 2.89% 3.51E− 21   
S180_5 1022.28 1008.82 987.87 982.41 3.37% 6.82E− 19  

240 425 S240_1 1578.52 1568.56 1543.94 1541.17 2.19% 6.44E− 25   
S240_2 1449.83 1443.87 1418.25 1414.64 2.18% 2.78E− 22   
S240_3 1470.81 1461.82 1433.81 1429.34 2.52% 5.49E− 25   
S240_4 1454.23 1446.95 1417.10 1413.5 2.55% 6.30E− 29   
S240_5 1467.56 1461.00 1435.55 1432.5 2.18% 6.86E− 22  

300 590 S300_1 1925.42 1916.07 1888.71 1885.65 1.91% 9.44E− 20   
S300_2 1983.46 1968.49 1958.40 1954.45 1.26% 6.52E− 16   
S300_3 2084.50 2069.71 2052.72 2049.39 1.52% 5.46E− 19   
S300_4 2040.64 2030.81 2006.53 2000.42 1.67% 5.86E− 26   
S300_5 2007.71 1999.71 1979.60 1974.42 1.40% 3.09E− 25  

Table 5-2 
Comparison of the results of CPLEX and the EABC algorithm.  

Instance CPLEX The EABC algorithm Improvement 

Best bound Best integer CPU/s Mean Best CPU/s 

S10_1 1.27 1.27 415 1.27 1.27 7 0 
S10_2 1.19 1.19 4134 1.19 1.19 7 0 
S10_3 1.20 1.20 66 1.20 1.20 8 0 
S10_4 1.22 1.22 219 1.22 1.22 8 0 
S10_5 1.05 1.05 430 1.05 1.05 8 0 
S20_1 0.07 2.30 7200 2.26 2.26 23 1.74% 
S20_2 0.07 2.41 7200 2.32 2.32 23 3.73% 
S20_3 0.07 2.51 7200 2.44 2.44 24 2.79% 
S20_4 1.07 3.51 7200 2.41 2.41 24 31.34% 
S20_5 0.08 2.40 7200 2.30 2.30 23 4.17% 
S30_1 0.06 3.85 7200 3.55 3.55 46 7.79% 
S30_2 0.07 3.94 7200 3.66 3.66 45 7.11% 
S30_3 0.08 4.20 7200 3.78 3.78 44 10.00% 
S30_4 0.07 3.30 7200 3.13 3.13 45 5.15% 
S30_5 0.07 4.06 7200 3.82 3.82 46 5.91%  
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Table 5-3 
Comparison of the results of the sequential method, GA, and the EABC algorithm.  

|S| CPU/s Instance Sequential method GA EABC algorithm EABC vs Sequential EABC vs GA 

Mean Best Mean Best Mean Best Improvement p-value Improvement p-value 

60 96 S60_1 188.72 184.50 104.82 98.21 97.50 96.02 48.33% 7.85E− 39 6.98% 7.01E− 09   
S60_2 204.87 197.43 118.01 111.04 108.42 107.07 47.08% 9.31E− 37 8.12% 2.45E− 08   
S60_3 202.39 198.53 103.67 100.94 99.06 96.97 51.05% 1.16E− 47 4.44% 1.59E− 09   
S60_4 214.43 210.21 116.56 112.08 108.70 106.15 49.31% 3.14E− 46 6.74% 1.48E− 11   
S60_5 202.10 198.47 116.49 111.86 109.45 107.04 45.84% 2.28E− 51 6.04% 2.90E− 09  

120 200 S120_1 635.14 626.75 503.50 490.57 489.04 485.59 23.00% 1.15E− 38 2.87% 5.98E− 09   
S120_2 689.50 683.80 571.76 564.01 555.50 550.94 19.43% 7.27E− 55 2.84% 8.50E− 13   
S120_3 645.08 638.86 503.82 497.70 488.90 484.62 24.21% 1.51E− 46 2.96% 7.81E− 16   
S120_4 723.77 715.39 600.94 593.56 588.17 584.32 18.74% 2.54E− 35 2.13% 3.59E− 13   
S120_5 715.18 703.27 594.38 581.51 577.12 574.38 19.30% 7.06E− 35 2.90% 3.00E− 11  

180 310 S180_1 1168.76 1160.89 1035.03 1024.84 1015.55 1009.65 13.11% 2.90E− 39 1.88% 7.00E− 13   
S180_2 1109.86 1095.7 978.28 967.88 953.93 951.56 14.05% 7.09E− 35 2.49% 4.12E− 13   
S180_3 1176.14 1166.47 1047.19 1037.97 1024.64 1019.60 12.88% 1.31E− 53 2.15% 2.02E− 15   
S180_4 1117.59 1109.62 969.54 953.50 954.49 951.40 14.59% 3.01E− 46 1.55% 6.99E− 10   
S180_5 1142.73 1130.55 1012.35 999.64 987.87 982.41 13.55% 8.37E− 36 2.42% 3.94E− 11  

240 425 S240_1 1710.88 1701.41 1570.87 1558.44 1543.94 1541.17 9.76% 3.39E− 40 1.71% 1.06E− 12   
S240_2 1574.90 1561.54 1441.84 1427.72 1418.25 1414.64 9.95% 1.52E− 35 1.64% 1.11E− 10   
S240_3 1596.50 1590.56 1466.23 1453.69 1433.81 1429.34 10.19% 3.16E− 55 2.21% 1.34E− 16   
S240_4 1574.84 1564.55 1444.55 1435.88 1417.10 1413.5 10.02% 2.16E− 42 1.90% 5.45E− 17   
S240_5 1593.04 1587.46 1460.87 1453.96 1435.55 1432.5 9.89% 6.60E− 53 1.73% 6.98E− 21  

300 590 S300_1 2037.20 2027.61 1917.17 1904.84 1888.71 1885.65 7.29% 4.67E− 37 1.48% 9.40E− 16   
S300_2 2132.52 2127.28 1980.17 1970.59 1958.40 1954.45 8.16% 4.32E− 55 1.10% 3.45E− 14   
S300_3 2212.97 2206.41 2082.63 2067.65 2052.72 2049.39 7.24% 3.97E− 56 1.44% 1.87E− 16   
S300_4 2171.41 2167.63 2035.75 2025.7 2006.53 2000.42 7.59% 2.59E− 57 1.44% 8.34E− 19   
S300_5 2134.36 2121.6 2002.03 1994.73 1979.60 1974.42 7.25% 4.11E− 34 1.12% 2.25E− 16  
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determination, we compared the results of this solution approach with those obtained by ILOG CPLEX 12.6 invoked by a C++ program. 
The results of CPLEX and the EABC algorithm are summarized in Table 5-2. 

We can find that for instances having 10 stations, CPLEX can converge to the optimal solution within the commonly used time limit 
of 7200 s. The EABC algorithm can also find the optimal solutions in all 20 runs for every instance using much shorter computational 
time. For instances having 20 and 30 stations, CPLEX cannot converge in a time limit of 7200 s and only feasible integer solutions are 
provided. However, the EABC algorithm can provide better feasible solutions within a much shorter time than CPLEX. 

5.4. Comparisons of the results of the EABC algorithm with benchmark methodologies 

This section presents the comparisons of the EABC algorithm (with the heuristic method presented in Section 4.2.2 for the loading 
instruction determination) with two benchmark methodologies to solve the proposed problem. The first method was developed by 
Alvarez-Valdes et al. (2016). It is a sequential approach (we call it the “sequential method” in the following context), where a minimum 
cost flow problem is first solved to pair the nodes in the network, i.e., the flows of bikes between two nodes, then a construction phase 
(an insertion algorithm) and an improvement phase are incorporated into a multi-start framework. The second method is the genetic 
algorithm (GA). GA is a meta-heuristic in the class of evolutionary computational algorithms, which mimics the evolution process of 
creatures in nature on the basis of the survival of the fittest. There are mainly two operators for creating the offspring, namely crossover 
and mutation. The crossover operator recombines parts of two selected solutions (parents) to create a new solution (offspring). The 
mutation operator changes some parts of a solution. For the GA, the simple ordered crossover (OX) (see Prins (2004) for instance) was 
used. The mutation step was designed to be the same as the scout bee phase in the EABC algorithm. The probability that a selected 
solution undergoes the OX was tuned as 0.7, and the probability that it undergoes mutation was tuned as 0.9. 

In this section, the performance of these two methods together with the proposed EABC algorithm are compared under the same 
computational time. We looked into 25 instances with the network size varying from 60 to 300. For each size, five different networks 
were selected. The time budget for the repositioning work was set as 6 h. Each algorithm was run 20 times for every instance and we 
recorded the average and best objective values in 20 runs for each instance. 

Table 5-3 shows the results of the sequential method, GA, and the EABC algorithm. We use the improvement of the average 
objective value produced by the EABC algorithm against the other two methods in percentage, and also the p-values of the t-test to 
show the performance of the proposed method. We can see that for all 25 instances, the EABC algorithm outperforms both the 
sequential method and the GA, and that all the p-values are far smaller than 0.01. We can, therefore, conclude that the improvement of 
the EABC algorithm on the objective value is statistically significant. 

6. Conclusions 

In this study, we used the enhanced artificial bee colony algorithm incorporated with an adaptive local search to solve the green 
bike repositioning problem with broken bikes. The objective is to minimize the weighted sum of the absolute deviation from the target 
inventory level, the penalty caused by broken bikes at stations, and the CO2 emissions of the repositioning vehicle are minimized. The 
EABC algorithm was used to generate the vehicle route and a local search using a set of neighborhood operators was incorporated to 
improve solution quality. Two methods were proposed to obtain the loading/unloading quantities of two types of bikes at each visited 
station along a route, including a linear programming approach and a heuristic method. 

To show the accuracy and efficiency of the proposed methodology, computational experiments were conducted on real-world 
instances with the size varying from 10 to 300 stations. The results show that the proposed method can produce optimal solutions 
for instances with 10 stations. For all the tested instances with 20 and 30 stations, the proposed method that relies on the heuristic 
loading method can provide better feasible solutions within a much shorter time than CPLEX. For larger instances with 60 to 300 
stations, the proposed method outperforms the methodology by Alvarez-Valdes et al. (2016) and the canonical genetic algorithm. 

Although the proposed method only focuses on the single vehicle case, it serves as the cornerstone for the multiple-vehicle case. 
One option to handle the multiple-vehicle case is to divide the stations into several groups and assign one vehicle to each. Another 
alternative is to design the routes of all the vehicles simultaneously. It may need more complicated techniques to alter the sequences 
and synchronize the inventory level of stations across multiple routes. This is left for future studies. 
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