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A B S T R A C T

This study aims to examine the impact of smart city construction on the ecological environment quality (EEQ) of 
China. Due to the problems arising from urbanisation, local governments construct smart cities as inherent 
innovative advantages that can improve their level of science and technology, and efficiency in resource allo
cation, thereby reducing environmental pollution. Through this innovation-driven channel, shocks to the degree 
of city smartness can have a significant impact on the regional environment. In order to compute the sensitivity 
of urban pollution to the degree of city smartness in China both conceptually and empirically, we modify a 
theoretical model of classic land allocation decisions to demonstrate how local officials’ responsibilities to 
protect the ecological environment and promote economic growth can lead to the long-run spatial expansion of 
smart cities, resulting in the improvement of EEQ. Using a difference-in-differences (DID) analysis, we find that 
from 2005 to 2017 period, smart city initiatives in China reduced industrial exhaust gas and industrial waste
water by approximately 20.7% and 12.2%, respectively, such that most of the reduction may be attributed to the 
technology effect and allocation effect of urban innovation.   

1. Introduction

China has experienced a significant increase in its rural–urban
migration with an expansion of cities and towns, influence of the drivers 
for dramatic growth and structural changes in its economy over a period 
of three decades (Yigitcanlar and Kamruzzaman, 2018). However, ur
banisation has put significant stress on the environment (Lee and Lee, 
2014). For example, many cities in central and eastern China are 
plagued by smog and haze, endangering the health of residents and 
causing a negative impact on the economic efficiency. According to the 
China Meteorological Administration, the average number of smog days 
in 2013 was 35.9, which was the highest since 1961 with some cities 
experiencing over 100 haze days. However, observations from the China 
Government Work Report of 2018 show that over the past 5 years, there 
has been a sign of gradual improvement in the ecological environment. 
The discharge of major pollutants has continued to decline, and the 
number of days of heavy pollution experienced in major cities has been 
reduced by half. Some reports have even suggested that China has 
entered ‘the era of green development’. 

Recently, a growing number of studies have been investigating the 
factors affecting ecological environment quality (Li et al., 2019; Munir 

and Ameer, 2018; Sun et al., 2019). For instance, Shapiro and Walker 
(2018) find that increasingly stringent environmental regulations and 
implicit pollution taxes that manufacturers must pay account for a major 
part of the reduction in emissions. Sapkota and Bastola (2017) argue 
that an increase in foreign direct investment (FDI) attracts clean and 
energy-efficient industries that could improve the ecological environ
ment while enhancing the regional economy. In terms of empirical 
analysis, Yu and Zhang (2021) identify the causal effect of low-carbon 
city pilot policy on carbon emission efficiency, documenting that the 
policy has mitigated the average carbon dioxide emissions by approxi
mately 8.37 million tons with 1% increase in the carbon emission effi
ciency. Existing studies have found that an increase in per capita gross 
domestic product (GDP) leads the rich to pay more attention to the 
environment; this acts as a driver for the structural change of an econ
omy, leading to a reduction in ecological environmental degradation 
(Brajer et al., 2011; Xie et al., 2019). Yu et al. (2018) assert that China is 
experiencing a related dramatic change in its industrial structure; this is 
because economic development is more likely to have an influence on 
knowledge-intensive and service-based industries rather than 
energy-based and emissions-intensive-based manufacturing. Certain 
studies have demonstrated that urbanisation crossing the turning point 
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may lead to a corresponding agglomeration effect as a result of the 
enlargement of urban scale characterised by their population and eco
nomic activities; this is conducive to a reduction in the emission in
tensity of industrial pollutants (Lin and Zhu, 2018; Wang et al., 2018). 
Although these factors are partly accountable for an the improvement in 
China’s environmental quality, they cannot explain the overall change. 
We observe that only a limited number of studies have investigated the 
‘black box’ regarding the environmental rationale behind urbanisation; 
however, most of these studies have demonstrated superficial environ
mental changes arising from economic transitions. One aspect of China’s 
modernisation that could be the impetus to such changing norms is the 
development of smart city construction (SCC). In a smart city, previously 
intractable challenges in urban areas, such as social exclusion and 
environmental deterioration, are solved through the adoption and use of 
information and communication technologies (ICTs) (March and 
Ribera-Fumaz, 2016). Although China has historically adhered to 
factor-driven modes of economic development, its smart urban infra
structure has developed rapidly over the last 15 years. As of 2015, the 
urban smartness index (USI) is growing at an average annual rate of 
50%, which could be a non-negligible factor affecting the ecological 
environment in a variety of ways (Gren et al., 2019). 

Currently, smart city policies are being adopted globally. However, 
not only is there hardly any evidence that credibly estimates the causal 
effect of these policies on urban environmental quality, but also the 
mechanism behind them is unclear. The closest paper in this regard is 
Yu and Zhang (2019), which documents the importance of smart city 
policy for energy efficiency based on aggregated city-level data in China. 
Based on their seminal work, we further extend the research on the 
environmental effects of smart city policies by introducing a brand-new 
theoretical framework, expanding the scope of the analysis, and making 
substantial methodological improvements that allow for precise mea
surement. Smart city positively affects innovation. In agglomeration 
theory, these cities facilitate the production, diffusion, and accumula
tion of knowledge, naturally serving as knowledge hub (Camagni et al., 
2016; Caragliu et al., 2016). Additionally, advanced face-to-face 
communication technology lowers the transaction costs in processing 
knowledge. In this regard, Angelidou (2017) shows that ICT is a positive 
factor for urban innovation. Taking advantage of city agglomeration and 
technologies, urban innovation can be enhanced by efficient smart city 
policies. Moreover, innovation processes can be upgraded through a 
general improvement in the local knowledge of production functions 
(Caragliu and Del Bo, 2018). Further, smart city boosts a city’s stock of 
knowledge, stimulating its overall innovation in high technology, 
especially in the case of ICT and Internet of Things (loT) that act as the 
main drivers for green growth (Caragliu and Del Bo, 2019; Taylor Buck 
and While, 2017). Innovation, in turn, benefits the environment through 
the following channels: First, green technology is expected to be a key 
factor in supporting environmental management (Arenhardt et al., 
2016; Chen et al., 2012; Yang et al., 2016). Empirical evidences have 
shown that SCC can mitigate the environmental degradation caused by 
unprecedented rapid urbanisation through an innovation-driven strat
egy (Cao et al., 2019; Contreras and Platania, 2019). Moreover, due to 
the comparative advantage experienced by smart cities in innovation 
(Shang et al. 2018), an increasing number of new green technologies are 
being merged into manufacturing chains, leading to an increase in 
productivity and decrease in environmental costs. Second, city admin
istration can move forward to a new stage with the aid of the next 
generation of ICT. In terms of resource allocation, innovation enables 
smart cities to optimise industrial structure and scale efficiency in the 
operation of urban economies. Several studies have demonstrated that 
allocation in the context of innovation is an essential factor for smart city 
to achieve organisational efficiency, sustainable commuting patterns, 
and industrial upgradation (Schiavone et al., 2019; Yigitcanlar and 
Kamruzzaman, 2019). This is expected to transform both the traditional 
modes of pollution control and historically preconceived notions 
regarding urban development. Consequently, smart city policies may 

exert significant positive effects on environmental quality through the 
more effective promotion of technology, especially green technology, 
and efficient allocation of resources. 

The following questions may arise in this context. Is SCC a new di
rection for urban initiatives, which is conducive to liveability, sustain
ability, and economic growth? How does it affect China’s EEQ? 
However, until recently, such questions had not been broadly discussed 
in the literature of urban studies; there exists a controversy and lack in 
the quantitative analysis of the effects of urban smartness (US) on 
reduction of pollution. Hence, to fill this gap in existing literature, this 
paper conceptually and empirically examines the extent to which urban 
innovation enhanced by SCC has changed urban ecological environment 
in China. We begin with a brief introduction to the smart city initiatives 
in China and how it boosts technology and allocation effect of urban 
innovation to change the value of traditional land use. Then, we present 
a brand-new theoretical model of local officials’ decisions on urban land 
allocation taking into account both environmental regulation and eco
nomic incentives. In other words, we model a substitution between 
traditional urban land and smart urban land driven by urban innovation. 
The model shows mandate for improved economic return from the 
central government and willingness to pay for better ecological envi
ronment from local residents incentivize local officials for converting 
the traditional city to smart city construction. The city conversion, in 
turn, reduces urban pollution and promotes economic performance. 
Furthermore, we test these conjectures using a panel data set of 287 
prefecture-level cities in China for the period 2005 to 2017. We start by 
presenting OLS estimates. However, these may be biased due to omitted 
variables or reverse causality, so we also estimate difference-in- 
differences (and fixed effects) regressions to control for unobserved 
heterogeneity that affects smart city selection and pollution. We also 
discuss selection concerns, validating the identifying assumption that 
the trends are parallel for the smart city pilots’ group and the control 
group which consist of cities absent the smart city initiative. Consistent 
with the theoretical analyses, the empirical results show, enhanced by 
smart city initiatives, that the dramatic changes in scientific and tech
nological level and resource allocation efficiency exert a positive effect 
on EEQ and GDP in the city. Heterogeneity analysis shows that SSC has a 
stronger positive impact on EEQ in areas with a higher urban scale than 
lower urban scale. Additionally, urban EEQ has a U-shaped relationship 
with its urbanization rate. A variety of robustness checks also confirm 
our main findings. In summary, we find that smart city initiatives 
improve eco-environmental quality in Chinese cities. We perform a va
riety of robustness checks which confirm our main findings. 

This study makes several important contributions. First, advancing 
the literature on the importance of smart city for different goals of 
sustainable urban development (Martin et al., 2018), we explore an 
equally vital outcome, namely urban ecological environment. In doing 
so, we focus our attention on the multi-dimensionality of influential 
mechanisms instead of treating it as separate. Second, we complement 
recent findings on urban innovation effect of smart city initiatives from 
the perspective of the agglomeration economies. Within the smart city 
paradigm, innovation processes are expected to be enhanced, mainly 
through a general improvement of local knowledge production func
tions (Caragliu and Del Bo, 2019), Furthermore, we demonstrate that 
urban innovation can be defined as a process that contributes to creating 
new production and technologies and augmenting resource efficiency 
with the aim of reducing environmental risks (Castellacci and Lie, 
2017), thus adding to recent research on the interplay between urban 
innovation including green innovation and ecological environment 
based on the theory of Schumpi innovation. Finally, from an empirical 
standpoint, we pay special attention to a less-researched context (i.e. 
China) that provides a promising ground for examining the pollution 
reduction effects of smart city initiatives at work in less-developed and 
emerging economies. 

To address these topics, this paper proceeds as follows. In Section 2, 
we build a theoretical framework. Section 3 presents a design of the 
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variables and description of the data used in this study. Section 4 offers 
an empirical analysis of the data. Section 5 provides the concluding 
remarks. 

2. Theoretical framework

2.1. Brief description of the smart cities in China 

The concept of smart city was first proposed by International Busi
ness Machines Corporation (IBM) in 2008 as a solution to the ’smart 
earth’ strategy. Smart city is an application of the IoT system that con
nects public resources, such as power grids, highways, and water supply 
systems via various types of embedded smart sensors. This system 
dynamically retrieves the key information from the sensors, thus, the 
analysis and integration of the data resources generated in city opera
tions might be performed to achieve refined resources and efficient 
configuration, which would facilitate intelligent governance and the 
operation of production activities leading to a sustainable development 
of the city. The concept of smart city is prevalent worldwide. Globally, 
more than 1,000 smart cities are under construction, and the number of 
smart cities is expected to increase at the rate of 20%. In this context, 
Europe is focusing on the aspects of transportation, energy, public ser
vices and infrastructure. The United Kingdom, Ireland and Germany 
have launched the ‘Digital Britain’ plan, ‘T-CITY’ experiment and ‘Smart 
Bay’ project, respectively. In Asia, Korea initiated the ‘U-Korea’ project, 
striving to build a smart city with environmental protection, digital
isation, and seamless mobile connectivity. Singapore started the ‘smart 
country 2015’ plan, which intends to integrate government, enterprises, 
individuals and infrastructure. Japan launched the ‘I-Japan’ strategy, 
concentrating on the operation of e-government, healthcare, and edu
cation. In North America, the United States established its first smart city 
in Dubuque with assistance from IBM, using the IoT system to connect 
various public resources which can be intelligently responsible to the 
residents. 

China was never an outsider in the aspect of SCC. Since 2010, the 
Chinese central government has been continuously introducing relevant 
policies to guide and encourage the construction of smart cities, 
considering all the relevant aspects from advanced designs to specific 
applications. In 2012, 90 cities from the prefecture to township levels 
were selected as pilot national smart cites by the Chinese Ministry of 
Housing and Urban-Rural Development among which 37 cities belonged 
to the prefecture-level, 50 cities were at the district or county level, and 
3 cities were at the township level. In 2015, ‘Guiding Opinions on the 
Construction and Application of Smart City Standard System and Eval
uation Index System’ was implemented to accelerate the development of 
relevant standards; smart city standardisation was officially put on the 
national agenda, and government work report was presented in terms of 
the development of SCC. More than 85% of cities in China were un
dertaking smart city construction, and a total number of 290 smart city 
pilots (SCP) have been launched by the end of 2015. In 2017, the 
Nineteenth National Congress of the Communist Party of China reported 
that the investment in smart cities would exceed 500 billion yuan, while 
100 more cities would be organised for its promotion. According to the 
report, China would enter the era of smart city 2.0 by 2021. It can be 
predicted that the construction of smart cities will have a significant and 
far-reaching impact on all the aspects of China’s economic development. 

In the early stages of urbanisation, urban development is primarily 
based on an extensive mode that places GDP under its foremost 
consideration. Through the requisition of a selected amount of land, 
local government officials convert the use of agricultural lands to that of 
traditional urban practices. This mode of development has the following 
distinct characteristics. Since the level of science and technology is 
relatively low and urban infrastructure is backward, this system de
creases the probability of building a smart city. However, the central 
government assesses local governments in the context of GDP and taxes 
that act as the indicators of total economic development but lack strong 

environmental regulations. In addition, the public’s awareness of envi
ronmental protection is weak. In this case, local governments sell urban 
lands at low prices to attract traditional investment, leading to ineffi
cient land uses and substantial environmental damage. Hence, we can 
assume that, a local government’s economic incentives from the con
struction of traditional cities, represented by R1(m1), is increasing and 
strictly concave in the amount of land leasedand, that is, m1; however, 
P1(m1), representing the waste disposal costs incurred by the a local 

government from the construction of traditional cities, is increasing and 
strictly convex in the amount of land leased, namely, that is, m1. 
Therefore, R′

1(m1) > 0, R′′
1(m1) < 0, P′

1 (m1) > 0, P′′
1(m1) > 0. 

A smart city is a new and urban form of traditional cities. Local 
government officials choose the amount of land to convert their use from 
traditional urbans to smart urban practices by renovating traditional 
urban land. To better link the rather generic literature on smart cities 
and the impact we expect from the smart city initiatives on urban 
ecological environment, these underlying micro foundations are further 
dug deeper as follow. First, smart city projects play an important role in 
fostering urban innovation. Because of a more concentrated and denser 
structure of consumption and production, urban areas lower transaction 
costs in production and consumption, thus potentially attracting loca
tions for producers and consumers. However, the externality described 
by classical economics has changed, at least in advanced economies. 
Because of a more standardized traditional traded goods for decades 
now, manufacturing activities have been relocating in peripheral loca
tions with lower rents (O’Donoghue, 2014). However, contrary to 
Marshallian framework, city size keeps expanding. A possible explana
tion can be identified in the nature of cities as knowledge hubs (i.e., the 
increasing importance of urban areas as innovation cradles) (Caragliu 
et al., 2016). In this case, smart city initiatives can facilitate these ef
fects, and innovation processes are expected to be enhanced, mainly 
through a general improvement of local knowledge production func
tions. Second, urban innovation, especially green innovation, can direct 
organizations and communities towards achieving sustainable compet
itive advantages (Hur et al., 2013). According to the theory of Schumpi 
innovation, urban innovation can be defined as a process that contrib
utes to creating the new technologies and production to meet the de
mands of customers in terms of environment protection (Guerlek and 
Tuna, 2018). More specifically, urban innovation can be divided into 
process innovation and service/product innovation. The ultimate goal of 
service/product innovation is to promote the functioning of services and 
products for clients and customers. The innovation process has resulted 
in diminishing pollution rates (Amore and Bennedsen, 2016), giving a 
lift to recycling (Aid et al., 2017), saving energy (Corrocher and Solito, 
2017), designing and producing eco-friendly products or services (green 
product design) (Arenhardt et al., 2016), as well as creating new op
portunities for environmentally friendly practices (Amore and Benned
sen, 2016). Within this framework, urban innovation efficiency in the 
operation of smart cities can be improved by continuously increasing 
scientific research on information technologies such as the cloud 
computing, Internet of Things (IoT), and big data. An increasing number 
of companies have accelerated the optimisation and upgradation of their 
production systems, resulting in the development of new technologies 
and products; this has directly helped in improving the scientific and 
technological level in cities through technology innovation. Addition
ally, the change of enterprise management pattern to smart governance, 
and the transform of industry structure to smart production have indi
rectly improved the efficiency of resource allocation at the enterprise 
and industry levels in cities through allocation innovation. Hence, we 
assume that R2(m2), is a local government’s economic incentives from 
SCC, which is increasing and strictly convex in the amount of land 
renewedand, that is, m2; P2( m2 ), representing the waste disposal costs 
incurred by the local government from SCC, is increasing and strictly 
concave in the amount of land leased, namely, that is, m2 . Hence 
R′

2(m2) > 0, R′′
2(m2) > 0 , P′

2(m2) > 0, and P′′
2(m2) < 0. 
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2.2. Model of local officials’ land allocation decisions 

Considering the decentralisation of government and fiscal system 
reforms the mid-1990s in China, the following conceptual model for
malises environmental regulations and economic incentives simulta
neously, which puts local Chinese officials in the position of land 
developers. In addition, SCC can be simplified as the smart trans
formation of traditional cities depends on governments’ land allocation, 
based on the urban renewal theory. We adopt a dynamic model of 
aggregate land use based on Hartwick et al. (2001) and Turnbull (2004); 
the model is essentially the same as that proposed by Lichtenberg and 
Ding (2009) and Wang and Tang (2019), which is used to study tran
sition dynamics under urban growth boundaries. Moreover, it is modi
fied to investigate the extent to which the spatial expansion of smart 
cities has been shaping China’s EEQ. 

For simplicity, we consider a region based on two sectors, that is, the 
agricultural and urban sectors. Extension to the case of multiple urban 
patterns in the urban sector is complicated but facilitates the analysis by 
adding insights into the impact of SCC on EEQ. We divide the total area 
of land in the region according to their agricultural, traditional urban 
and smart urban uses. For simplicity, we normalise the total area of land 
to 1. Let E1(t), E2(t) and E3(t) denote the share of land in the region 
devoted to traditional urban uses, SCC, and agricultural uses, respec
tively, during period t.The changes in the stock of traditional urban land 
and smart urban land at any time t are separately 

Ė1(t) = m1(t) − m2(t), Ė2(t) = m2(t), (2.1)  

where m1(t) is the amount of land converted from agricultural to 
traditional urban uses during period t, and m2(t) is the amount of land 
converted from traditional urban to smart urban uses during period t. 
The negative values of m1(t) and m2(t) denote a conversion from urban 
to agricultural uses and from smart urban to traditional urban uses, 
respectively. 

In general, the social benefit and social cost arising from various 
externalities remain unprized in the private market. However, similar to 
land developers, local officials not only consider the central govern
ment’s provision of economic incentives and implementation of envi
ronmental regulations but also consider residents’ willingness to pay for 
the sustenance of ecological environment. Thus, they choose land con
versions m1(t) and m2(t) at each point in time to maximise the present 
value of ecological bonus and net economic returns.  

where r1 = R′

1, r2 = R′

2, π1 = P′

1, π2 = P′

2, and τq = Q′ . Let q denote 
the unit regional EEQ for agricultural land use, and τ represent the unit 
value for regional EEQ. A fall in the willingness to pay for the 
improvement of ecological environment suggests that the unit ecological 
environmental value is decreasing in the stock of agricultural land, that 
is, τ′

< 0. Here, ρ represents the discount rate of time preference for 
obtaining results from local officials’ activities. Moreover, we assume 
that ρ+1

ρ [r2(0) − π2(0) − τ(1)q(1)]〉0, ρ+1
ρ [r2(1) − π2(1) − τ(0)q(0)] < 0, 

and r′

2 − π′

2 + τ′q < 0 to ensure that there remains a certain amount of 
land in the region that can be allocated for both agricultural and urban 
uses in the long-run. 

Let λ1(t) and λ2(t), respectively, denote the shadow prices of tradi
tional urban and smart urban lands at time t separately. Here, we drop 

the time argument to simplify the exposition. The necessary conditions 
for maximisation are as follows. 

r1(E1 +m1 − m2) − π1(E1 +m1 − m2) − τ(E3 − m1)q(E3 − m1) + λ1 = 0,
(2.3)  

r2(E2 +m2) − π2(E2 +m2) − τ(E3 − m1)q(E3 − m1) + λ2 = 0, (2.4)  

ρλ1 − r1(E1 +m1 − m2) + π1(E1 +m1 − m2) + τ(E3 − m1)q(E3 − m1) = λ̇1,

(2.5)  

ρλ2 − r2(E2 +m2) + π2(E2 +m2) + τ(E3 − m1)q(E3 − m1) = λ̇2. (2.6) 

Further, we can obtain an insight into the nature of the long-run 
value of the stock of urban land for Chinese local government officials 
from an explicit representation of the shadow price of urban land, 
derived by integrating the costate Eq. (2.5) and Eq. (2.6). 

λ1=

∫ ∞

t
[r1(E1+m1 − m2)− π1(E1+m1 − m2)− τ(E3 − m1)q(E3 − m1)]e− ρ(y− t)dy,

(2.7)  

λ2 =

∫ ∞

t
[r2(E2 +m2) − π2(E2 +m2) − τ(E3 − m1)q(E3 − m1)]e− ρ(y− t)dy.

(2.8) 

The shadow price of the stock of urban land at any point in time has 
two components: (a) its contribution to achieving future economic in
centives r1(E1 + m1 − m2) and r2(E2 + m2); and (b) its repression to 
alleviating future environmental pressure π1(E1 + m1 − m2)+ τ(E3 −

m1)q(E3 − m1) and π2(E2 + m2)+ τ(E3 − m1)q(E3 − m1). Therefore, 
Eqs. (2.7) and (2.8) indicate that local officials’ land conversion de
cisions are determined by both economic incentives as well as ecological 
environmental pressure. 

Combining Eqs. (2.3), (2.4), (2.7), and (2.8), we obtain a single 
equation that defines optimal land conversion conditional on the stock 
of urban land at any point in time. Differentiating the resulting equation 
(see the Appendix A for a formal derivation) yields the following pre
dictions about the factors influencing environmental quality. 

Result 1. Dramatic changes in the scientific and technological level 
and resource allocation 
efficiency resulting from smart urban innovation exert a positive 
effect on EEQ. Therefore, 

EEQ is higher in areas where the US is higher. 
Result 2. Smart urban construction has a stronger positive impact on 
EEQ in areas with a 
higher urban scale than lower urban scale. 
Result 3. Urban EEQ has a U-shaped relationship with its urbanisa
tion rate. 
In the following section, we empirically examine whether the 
changes in urban EEQ are consistent with these results. 

Although there has been a tremendous leap in China’s urban devel
opment, the initial stock of traditional urban land is less likely to be 
higher than the long-run equilibrium amount, or that of the smart urban 
land, that is, E20≪E10 (Au and Henderson, 2006). Urban land conver
sions are constrained by ecological environmental pressure. Hence, SCC 
based on the new generation of information technology will greatly 

max
{m1 ,m2}

W =

∫ ∞

0

{∫ E1(t)+m1(t)− m2(t)

0
r1(x) − π1(x)dx +

∫ E2(t)+m2(t)

0
r2(x) − π2(x)dx +

∫ 1− E1(t)− E2(t)− m1(t)

0
τ(x)q(x)dx

}

e− ρtdt

s.t. Ė1(t) = m1(t) − m2(t), Ė2(t) = m2(t); E1(0) = E10, E2(0) = E20,

(2.2)   
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improve science, technology, and resource allocation efficiency, allevi
ating the ecological environmental pressure on traditional urban con
struction to a certain extent. Thus, traditional urban lands would be 
gradually replaced by smart urban lands until they reach a steady state, 
that is, E∗

1 = 0 and E∗
2 ∕= 0. In the long-run equilibrium, when Ė1(t) = m1 

− m2 = 0 and λ̇1 = λ̇2 = E1 = 0, the shadow price of smart urban land 
will be given by 

λ∗2 =
r2(E2) − π2(E2) − τ(1 − E2)q(1 − E2)

ρ , (2.9)  

and the amount of land in urban use is defined by 

F(E2) ≡
ρ + 1

ρ [r2(E2) − π2(E2) − τ(1 − E2)q(1 − E2)] = 0. (2.10)  

F(E2) is monotonically decreasing in E2 (F′

(E2) = (ρ + 1)(r′

2 − π′

2 + τ′q)
/ρ < 0); thus, if F2(0) > 0 and F2(1) < 0, as per our assumption, there 
exists a unique long-run equilibrium stock of smart urban E∗

2, which is 
stable (see Appendix). 

The results are in accordance with the intuition that the land allo
cations are influenced by land values in a manner similar to those 
characterising the long-run equilibrium in markets with completely 
private land ownership, even when primary land allocation remains in 
the hands of government officials nominally subjected to bureaucratic 
constraints on decision-making. A major difference lies in the role of 
greenspace externality. Local officials value land for its cost of pollution 
control and opportunity cost to lose greenspace externality in the long- 
run. In contrast, for private developers, an unassessed greenspace ex
ternality increases their estimate of returns to land conversion rather 
than decreasing them. Thus, greenspace externality plays a key role in 
the expansion of smart urban land and urban growth controls. The result 
is neither novel nor surprising; however, we explain it in this paper to 
establish the benchmarks required to derive the aforementioned pre
dictions on urban spatial expansion influencing EEQ in the short run. 

3. Data and variables

In this section, we describe the data sample and present descriptive
graphs on pollutant growth and GDP growth in line with the empirical 
estimations presented in the next section. With reference to empirical 
studies that have explored the effect of SCC on EEQ, we sort the data for 
twelve variables, including two outcome variables, one core explanatory 
variable, four mediating variables, and five control variables. Consid
ering the consistency in the collection and availability of data, we 

restrict the sample for period of 2005 to 2017 to reflect on the rapidly 
developing stage of China’s SCC since it was first proposed by the gov
ernment in 2009. Additionally, a small portion of missing data was 
supplemented by using the average growth rate method. We finally 
obtain a panel data set of 287 prefecture-level cities in China, which 
were extracted from the China Urban Statistics Yearbook (2006-2018), 
China Regional Economic Statistics Yearbook (2006-2018), and EPS 
database. 

3.1. Outcome variables 

The outcome variable, EEQ, can be measured through the forward 
processing of urban pollution level by including three industrial wastes. 
In the absence of data on solid waste discharge in certain cities, we 
consider two independent measures from different sources, that is, the 
amount of sulphur dioxide (SO2) emission in air pollution per unit land 
(ASO; unit: kg/km2) and the amount of chemical oxygen demand 
discharge in water pollution per unit land (ACOD; unit: 105 kg/km2), 
such that the latter can be used to check the robustness of basic results. 

3.2. Explanatory variables 

At present, there is no consensus on the development of an evalua
tion index system for smart cities or the existence of complete historical 
statistical data for relevant indicators because this concept is newly 
emerging. Accordingly, we consider an appropriate proxy indicator for 
SCC, the core explanatory variable, in our quantitative research process. 
In 2012, the Chinese Ministry of Housing and Urban-Rural Development 
(MOHURD) announced the project of SCP, a list including 90 cities as 
the pioneers of SCC. Additionally, 163 cities were selected for the project 
in the following years. In this study, we use the SCP project as a quasi- 
natural experiment; therefore, a DID method is used to evaluate the 
environmental performance of SCC. Due to data availability, the 
following constraints are applied to refine the sample. First, since our 
study lies between the period of 2005 and 2017, we exclude the cities 
from our dataset that were not mentioned in the pioneers list announced 
in 2012 in order to construct a five-year experiment period for a better 
DID analysis. Second, since it is difficult to collect effective data at the 
county and town levels, this study focuses on the pilot cities at the 
prefecture-level. Our final sample includes 34 cities included in the SCP 
project and 122 cities that were not included in it. Therefore, we 
consider SCC to be a dummy variable that takes the value of one if a city 
was included in the SCP project in 2012, and zero otherwise. Fig. 1 also 
differentiates our data sample by groups, that is, in accordance to cities 

Fig. 1. Geographical distribution of the data sample.  
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that were included in or excluded from the SCP project. 

3.3. Control variables 

We account for possible confounding factors with the help of control 
variables. First, urbanisation ratio (Urbar; unit: %), that is the share of 
urban built-up area, measures the process of transforming agricultural 
activities into non-agricultural ones from the perspective of land use (Yu 
and Li, 2014)1. Guided by prior studies, the influence of urbanisation 
level on EEQ may be positive or negative. We include the population 
density (Densi; unit: 104 individuals/km2), as measured by the ratio of 
total population to land area at the end of the year, because areas that 
are more agglomerative may result in damaging the environment. 
Moreover, we control for the industrial structure (Instr; unit: %), the 
proportion of added value of the secondary industry in GDP, because of 
the varying industry advantages across cities and years. As Sapkota and 
Bastola (2017) pointed out, the increasing FDI attracts clean and 
energy-efficient industries that could improve ecological environment 
while enhancing the regional economy. Opening-up level (Openl; unit: 

%), the proportion of total export-import volume in GDP, is also 
included. In addition, we include the natural logarithm of real per capita 
GDP (Lpgdp; unit: CNY) to reveal how economic development affects 
EEQ based on the environmental Kuznets curve. 

Fig. 2A and B illustrate the trends of the prefecture-level compre
hensive innovation index (CII)2 and GDP. The main implication suggests 
that both groups had started with very low levels of CII and GDP. 
Although the SCP group grew faster, it took a certain amount of time for 
the difference in the levels of CII and GDP to become significant. Fig. 2C 
and D plot ACOD and ASO since 2005. The SCP group did not decrease 
faster than the control group before it was included under the SCP 
project. However, divergence sets in after the establishment of SCP in 
2012. Thus, we empirically explore whether there is a connection be
tween them in Section 4. 

4. Empirical analysis

In this section, we analyse the impact of SCC on environmental
quality. Our aim is to provide an estimate of the effect of a reduction in 

Fig. 2. Comparison of ACOD and ASO over time.  

1 In the absence of statistical data distinguishing agricultural and urban 
population in China, the urbanisation ratio cannot be measured by the share of 
urban population from the perspective of population distribution. 

2 This indicator can comprehensively reflect all aspects of urban innovation, 
which has been derived from the industrial development center of Fudan 
University, China’s urban and industrial innovation report. 
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pollution in a smart city, that is the extent of growth difference in SCP in 
terms of EEQ at the city level, and the reason of its occurrence. 

4.1. Model specification 

Since cities with better EEQ are more likely to attach importance to 
green development, the degree of USI can reflect such behaviour. In 
addition, there may be an existence of USI measurement errors and 
unobserved confounding factors that do not change over time, causing 
serious endogeneity problems. To avoid biased results in the estimation 
of the effects of a reduction in pollution following smart city initiatives, 
we adopt a standard DID strategy to improve the robustness of the re
sults. The model specification is given by 

UPLit = β0 + β1SCPit +
∑n

j=2
βjXit + μi + λt + εit, (4.1)  

where UPLit represents the urban pollution level measured by ASO in 
city i and at year t. We focus on the effects of SCPit , whether a city 
implemented the smart city initiative in 2012, and we hypothesise that 
β1 is lower than zero. We denote SCPit as treatedi × periodt , where 
treatedi indicates the city’s smart city (SC) status. Specifically, treatedi =

1 if city i is a SCP, and 0 otherwise. Here, periodt is a post-treatment 
indicator, taking a value of 1 if t ≥ 2012 and 0 otherwise. Vector Xit 
denotes control variables, that is, the urbanisation ratio, level of science 
and technology, industrial structure, opening-up level, and natural 
logarithm of real per capita GDP. The remaining empirical analyses are 
based on the fixed effects log-linear model. The error term, εit, is clus
tered at the city–year level. μi and γt denote city and year fixed effects. 

Urban scale is a vital factor affecting EEQ. Studies have found that 
urban scale plays a critical role in explaining how to strengthen or 
weaken SCC. Thus, this study explores the mechanism of the potential 
impact of SCC on EEQ by introducing the interactions between SCP and 
urban scale. The following model is employed to analyse this mecha
nism: 

UPLit = γ0 + γ1SCPit + γ2SCPit × dum Scaleit +
∑n

j=3
γjXit + μi + λt + εit,

(4.2)  

where we include dum Scaleit as a dummy variable that is equal to one if 
a city belongs to the category of a high level of population.3 We repre
sent the interactions between USI and urban scale by USIit ×

dum Scaleit , which is our variable of interest. We hypothesise that γ2 is 
greater than zero. Vector Xit d includes the control variables. 

Although most studies have reached a consensus that urban EEQ has 
a U-shaped relationship with urbanisation rate, there are different ex
planations for this phenomenon. The urbanisation process can be seen as 
a staggered combination of both SCC and traditional urban construction, 
such that the structural changes would likely result in to the potential 
nonlinear impact of urbanisation rate on EEQ. From this perspective, 
this study provides new evidence on this debate by introducing the 
square term of urbanisation rate. The model is constructed as follows: 

UPLit = γ0 + γ1SCPit + γ2Urbarit + γ3Urbar2
it +

∑n

j=4
γjXit + μi + λt + εit,

(4.3)  

where Urbarit is a threshold variable explaining the effect of urbanisa
tion rate on pollution, and Urbar2

it represents the square term associated 
with urbanisation rate. In this model, the variable of interest is the 
squared term; we hypothesise that γ3 is lower than zero. Vec
tor Xit denotes the control variables. 

SCC greatly promotes urban innovation (Fig. 1). In the past ten years, 
CII has been increasing at an annual rate of approximately 30%. 

Therefore, Smart city policies may exert significant positive impacts on 
environment quality through the more effective improvement of tech
nology, especially the green technology, and more efficient resources 
allocation. As outlined in the theoretical framework, these underlying 
micro foundations are mainly divided into two stages. First, smart city 
projects are of importance to fostering urban innovation. Second, urban 
innovation, especially green innovation, can direct organizations and 
communities towards achieving sustainable competitive advantages.We 
use the mediation channel variable method to address this concern 
(Baron and Kenny, 1986). The mechanism model can be set as follows, 

First stage: channels through which SCC promotes urban innovation 

CIIit = θ0 + θ1SCPit +
∑n

j=2
θjXit + μi + λt + εit, (4.4)  

Channk
it(Sciteit,Allocit) = α0 + αk

1SCPit +
∑n

j=2
αjXit + μi + λt + εit, (4.5)

Channk
it(Sciteit,Allocit) = φ0 + φ1SCPit + φk

2CII +
∑n

j=3
φjXit + μi + λt + εit,

(4.6)  

Second stage: channels through which SCC improves EEQ 

Channk
it(Sciteit,Allocit) = α0 + αk

1SCPit +
∑n

j=2
αjXit + μi + λt + εit, (4.7)

UPLit = β0 + β1SCPit +
∑n

j=2
βjXit + μi + λt + εit, (4.8)  

UPLit = γ0 + γ1SCPit + γk
2Channk

it(Sciteit,Allocit) +
∑n

j=3
γjXit + μi + λt + εit.

(4.9) 

We also examine the credibility and explanatory power of the 
aforementioned two mechanisms in a manner similar to Gelbach (2014): 

UPLit = δ0 + δ1SCPit +
∑2

k=1
δk

2Channk
it +

∑n

j=3
δjXit + νi + ηt + θit,

(4.10)  

β̂1 = δ̂1 +
∑2

k=1
α̂k

1 γ̂k
2, (4.11)  

ψk = α̂k
1 γ̂k

2

/

β̂1, (4.12)  

where our mediating variable of interest is Channk
it ,

including Sciteit and Allocit , representing the scientific and technolog
ical level and efficiency of resource allocation respectively. Here, 
ψk represents the proportion of the kth mediating effect in the total ef
fect., We include the level of science and technology (Scite; unit: item/ 
104 individuals), as measured by the number of patents per capita, 
because areas that are more creative may offer more treatment plans for 
protecting the environment. Due to data availability, it is challenging to 
measure resource allocation efficiency at the prefecture city level (Ren 
et al., 2019). To measure comprehensively how efficient the resources 
allocation are in smart city, this paper adopts two measurement strate
gies. First, following Xu et al. (2018), we use the total factor productivity 
(Alloc1) as a proxy variable for resource allocation efficiency. Since TFP 
is a comprehensive Solow residual value, it includes both the effect of 
resource allocation and the technological progress. After controlling for 
the number of patent applications in our mechanism model, the tech
nological progress effects of TFP is eliminated so as to better analyze the 
remaining resource allocation effects of smart city construction. Second, 
draw on the method of Shi et al. (2018), industrial structure (Alloc2) is 
used as a proxy variable of resource allocation efficiency to test the 
impact of smart city construction on the ecological environment. 

4.2. Main results 

SCC affects urban pollution level (UPL). In this context, we present 
3 In the main results as shown in Table 3, we define dum Scaleit = 1 if a city’s 

population level is above 50 percentile among all the cities in the sample. 
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the ordinary least squares (OLS) and DID specifications in Table 1. The 
estimated coefficients of the SCC indicator in the DID method are 
negative and statistically significant at the 1% level. We expect the OLS 
coefficient on SCC to be biased upward if the SCP group has a better 
policy support than cities in the control group. A DID strategy employing 
city and year fixed effects reduces the SCC effect on ASO from 0.579 to 
-2.993, which is equivalent to a 617% reduction in the SCC effect. Such a 
huge fluctuation in the coefficient implies that there may be a potential 
bias caused by the extreme values of ASO and their differences before 
policy implementation. Consequently, the corresponding estimates 
using their logarithms as the dependent variables under a DID strategy 

are presented in the following tables. 
From column (8) we observe that SCC significantly reduces the ASO 

in China. In the case of SCP, a coefficient of -0.207 can be interpreted as 
a difference in the SO2 emission per unit land of the SCP group relative 
to the control group, indicating that the ASO of the SCP group reduced 
by 20.7% in response to the establishment of SCP. Column (6) excludes 
all control variables, and column (7) further employs a DID strategy by 
including province and year fixed effects. The coefficient and signifi
cance of SCC almost remain unchanged in this case. Therefore, these 
analyses support Result 1, that is, SCC significantly increased China’s 
EEQ. The growth of SCC has been a contributing factor in the 

Table 1 
Impact of SCC on urban pollution.   

OLS DID  
ASO Log(ASO) ASO Log(ASO)  
(1) (2) (3) (4) (5) (6) (7) (8) 

SCP 0.579 0.106 -3.213*** -2.569*** -2.993*** -0.220*** -0.224*** -0.207***  
(0.708) (0.094) (0.447) (0.511) (0.477) (0.054) (0.045) (0.042) 

Urbar 1.766*** 0.203***  -1.290*** -1.200***  -0.069** -0.056**  
(0.242) (0.025)  (0.362) (0.387)  (0.032) (0.026) 

Densi 7.257*** 3.740***  0.699 0.327  -0.031 -0.057  
(1.711) (0.270)  (1.750) (1.620)  (0.230) (0.248) 

Instr 0.209*** 0.056***  0.069*** 0.039***  0.013*** 0.008***  
(0.015) (0.002)  (0.015) (0.013)  (0.003) (0.003) 

Openl -0.005** 0.77e-4  -0.005*** -0.005***  -0.001*** -0.001***  
(0.002) (0.000)  (0.002) (0.001)  (0.000) (0.000) 

Lpgdp -0.652** -0.059  0.433 0.359  0.109** 0.102**  
(0.257) (0.048)  (0.286) (0.319)  (0.045) (0.045) 

Constant -0.384 -1.760*** 7.718*** 0.148 3.548 1.125*** -0.494 -0.203  
(2.455) (0.442) (0.293) (2.845) (2.909) (0.040) (0.443) (0.429) 

Year fixed effect No No Yes Yes Yes Yes Yes Yes 
Province-year fixed effect No No No Yes No No Yes No 
City fixed effect No No Yes Yes Yes Yes Yes Yes 
Observations 2028 2028 2028 2028 2028 2028 2028 2028 
R2 0.304 0.431 0.267 0.467 0.306 0.367 0.599 0.382 

Note: The values represent the regression coefficients of explanatory variables; t-statistics are in parentheses; standard errors (in parentheses) are clustered at the 
city–year level; *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 

Table 2 
Robustness checks.   

Log(ASO) Log(ACOD)     
lag PSM-DID    

(1) (2) (3) (4) (5) (6) (7) 

SCP  -0.204*** -0.207*** -0.172*** -0.183***  -0.122***   
(0.055) (0.054) (0.0417) (0.0684)  (0.038) 

dum_Y2013   -1.104***        
(0.098)     

Four or more periods before 0.091     -0.043   
(0.097)     (0.081)  

Three periods before -0.045     -0.0332   
(0.119)     (0.099)  

Two periods before -0.052     -0.054   
(0.097)     (0.081)  

Initiative period -0.056     -0.173*   
(0.118)     (0.099)  

One period after -0.110     -0.178*   
(0.118)     (0.099)  

Two periods after -0.140     -0.191*   
(0.118)     (0.099)  

Three periods after -0.235**     -0.221**   
(0.119)     (0.099)  

Four or more periods after -0.338***     -0.081   
(0.097)     (0.081)  

Control variables Yes Yes Yes Yes Yes Yes Yes 
Year fixed effect Yes Yes Yes Yes Yes Yes Yes 
City fixed effect Yes Yes Yes Yes Yes Yes Yes 
Observations 2028 2028 2028 1872 1720 2028 2028 
R2 0.386 0.389 0.382 0.425 0.335 0.243 0.241 

Note: Columns (3) and (6) introduce a series of ‘environmental regulation’ policies implemented nationwide since 2013 on the basis of Eq. (4.1). The values represent 
the regression coefficients of explanatory variables; t-statistics are in parentheses; standard errors (in parentheses) are clustered at the city–year level; *, **, and *** 
denote significance at the 10%, 5%, and 1% levels, respectively. 
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improvement of EEQ in China. In addition, the regression results for the 
control variables conform to the economic intuition: the industrial 
structure and natural logarithm of real per capita GDP decrease China’s 
EEQ. The urbanisation ratio, population density, and opening-up level 
exert a significant positive impact on China’s EEQ, such that their effects 
tend to be statistically significant. 

4.3. Robustness checks 

To verify the robustness of the relationship between SCC and UPL, 
we conduct a series of robustness tests (Table 2). First, although quasi- 
natural experimental methods can effectively make up for a shortage 
in the relatively small sample size and difficulty in capturing long-term 
effects with the help of a randomised controlled experimental trial, we 
need to discuss selection concerns and our strategies to deal with them. 
To validate the identifying assumption that the trends are parallel in the 
case of the SCP group, while the control group does not consider the 
smart city initiative, we employ a strategy similar to the event study as 
follows: 

UPLi,t = α0 +
∑

k∈K
βkDi,k +

∑n

j=1
γjXi,t + μi + λt + εi,t (4.13)  

where Di,k is a set of eight dummy variables that take the value of one 
if k periods have passed since the implement of i, such that K = { − 4, −
3, − 2, 0, 1, 2, 3, 4}, and the values -4,-3,-2,-1,0,1,2,3, and 4 refer 
to t ∈ {2005, 2006, 2007}, t ∈ {2008, 2009}, t ∈ {2010, 2011}, 
t ∈ {2012}, t ∈ {2013}, t ∈ {2014}, t ∈ {2015}, and t ∈ {2016, 2017}, 
respectively. One period before the smart city initiatives is left as the 
comparison group. If the coefficients β− 4, β− 3 and β− 2 are not signifi
cantly different from zero, the assumption of parallel trends is likely to 
hold. 

The results are presented in Table 2. Columns (1) and (4) show the 
results with different proxy indicators for the dependent variable, which 
are also shown in Fig. 3. It can be observed that the growth rates of the 
two groups did not differ before the smart city initiatives were under
taken; the divergence took place after their implementation. It takes 
time for the effect to become significant. Another key issue in the 
comparison lies in the identification of the process of assigning SCP. If 
these pilots were randomly assigned, it would be easy to compare their 
development paths. However, this might not be true since there were 

indeed strategic considerations in choosing SCP. To alleviate the po
tential estimation bias caused by the non-random selection of the 
experimental and control groups, we adopt the following general 
framework by introducing the interactions between urban inherent 
characteristics and time linear trend on the basis of Eq. (4.1). The in
teractions in year t are denoted by Zi,t × trendt, where Zi,t represents the 
urban inherent characteristics, such as whether the city was a pilot city 
for ‘two control areas’ in 1998, it is a special economic zone, it is a 
provincial capital city, or it is a northern city. Here, trendt represents 
time linear trend. Column (2) shows that the results remain robust after 
considering the potential impact of inherent inter-regional differences. 
These results alleviate our concerns of potential endogeneity problems. 
Second, a series of ‘environmental regulation’ policies implemented 
nationwide since 2013, resulted in an increase in environmental 
awareness. Hence, some individuals and enterprises reduced pollution 
emissions to avoid punishment from the government. However, one 
concern is that this might generate data that confounds the hypothesised 
relationship, which overestimates SCC’s effect of reducing pollution. To 
account for this concern, we examine the policy effects by 
adding dum Y2013it as a dummy variable that takes the value of one 
during the period of 2013 to 2015. Column (3) reveals that the estimated 
coefficient of the policy dummy variable is negative and statistically 
significant at the 1% level, which indicates that the environmental 
protection policy implemented by the new government is effective. 
Hence, cities with environmental protection policies reduce on an 
average of 110.4% more on the ASO than cities without them. Since the 
coefficient and significance of SCP after controlling a policy variable 
remain qualitatively unchanged, we further conclude that the suspected 
overestimates in the SCP results should not lead to the problem of biased 
results. 

Third, different measures of UPL are available; thus, ACOD can be 
adopted as a second outcome variable in Column (7) of Table 2. Again, 
SCP is significantly negative regardless of whether the control variables 
are introduced or not. This indicates that implementing the SCP from 
2012 exerts a positive effect on the level of EEQ. More specifically, the 
SCP has significantly reduced the ACOD by approximately 10.6% 
without control variables and nearly 12.2% with all control variables. 
Taking advantage of both DID and PSM, PSM-DID solves the endoge
neity problem and sample selection bias effectively. In our study, we can 
estimate the impact of smart city policy on eco-environment quality 
more reliably through PSM-DID. We further use lags in control variables 

Fig. 3. Dynamics of the urban pollution level before and after the smart city initiatives were undertaken. Note: The horizontal axis measures periods since the 
SCP initiative was undertaken. The average length of one period is approximately two years. The points connected by the solid line indicate changes in urban 
pollution of the SCP group (relative to the control group) compared to one period before the initiatives were undertaken, which is displayed as an effect of zero to aid 
the visual analysis. See columns (1) and (4) in Table 2 for the numbers of these point estimates. The bounds are given by the 90% confidence intervals. 
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for one year, which alleviates potential simultaneity between smart city 
policies and urban pollution. The estimated coefficients for PSM-DID 
and lag term are reported in Columns (4) and (5) respectively, and 
each of them remains significantly negative. In summary, these 
robustness checks further support the basic conclusions. 

4.4. Heterogeneous responses: urban scale and urbanization rate 

Columns (1), (3), and (5) in Table 3 further introduce the in
teractions between SCP and the dummy for urban scale above the me
dian. Here, we can observe that the impact of SCP on ASO is negative 
and marginally significant, but the interaction between SCP and large- 
scale dummy exerts significant negative impact (at the 5% level) on 
the ASO. Column (3) provides robustness checks by removing all control 
variables, such that the results are qualitatively similar. The regression 
results suggest that SCC has a stronger positive impact on environmental 
quality in areas with a large urban scale. Urban size disparities are 
attributed to different policies and capital endowment, including human 
capital and physical capital. First, large-scale cities more easily achieve 
favourable economic policies during SCC. For example, economic zones 
with a larger scale provide investors with preferential tax treatments and 
can be selected as the first pilot projects for smart cities and 5G cities by 
the government. Second, the agglomeration of abundant economic 

factors provides stronger support for the realisation of a reduction in the 
pollution of smart cities, just as the human body requires the coordi
nated operation of various organs. We examine the effect of SCC using 
different urban scales to provide new evidences for this debate, which 
implies that an appropriate expansion of urban scale within reasonable 
urban boundaries positively affects environmental quality by promoting 
SCC. 

Columns (2), (4), and (6) introduce the urbanisation rate that is used 
as a threshold variable affecting pollution. We observe that a single 
threshold effect is significant, such that the effect of urbanisation rate on 
ASO changes slightly. This finding implies that the urbanisation rate 
exerts a nonlinear impact on EEQ. Furthermore, considering the 
regression on primary and quadratic terms of urbanisation rate with 
respect to ASO, the estimated coefficients in columns (2), (4), and (6) are 
significant at the 1% significance level, which indicates a stable inverted 
U-shaped relationship between the urbanisation rate and urban pollu
tion. From the first-order condition of the urbanisation rate, we observe 
that the turning point of urbanisation rate is 5.25%, while the actual 
average urbanisation rate was 2.13% in 2017. Thus, the existing ur
banisation rate is on the left side of the inverted U-shaped curve. Hence 
an increase in urbanisation rate increases urban pollution. This result 
occurs because the scientific and technological level and resource allo
cation efficiency that are influenced by SCC do not reach the threshold 
for improving EEQ for most cities; the high effect of emission of tradi
tional urban construction remains the primary factor. Therefore, an in
crease in urbanisation rate helps to increase the speed of smart urban 
construction, promoting new urbanisation. Subsequently, the urbani
sation rate will cross the inflection point of the inverted U-shaped curve, 
increasing the roles of the scientific and technological level and resource 
allocation efficiency, thereby reducing urban pollution. 

4.5. A balance between the sustainable development goals: innovation 
driven channels 

There has been a growing importance for sustainable development; 
however, in the developing countries it implies a serious conflict of in
terest considering the sustainable development goals (SDGs)4. In the 
case of SCC, it is a challenge to manage the trade-off between environ
mental protection and economic development. In this section, we pre
sent some suggestive evidences on the channels for the long-run impact. 

Table 3 
Heterogeneous responses.   

ASO Log (ASO)  
(1) (2) (3) (4) (5) (6) 

SCP -2.187*** -3.363*** -0.108** -0.230*** -0.126** -0.229***  
(0.678) (0.477) (0.053) (0.043) (0.053) (0.043) 

SCP × dum_Scale -1.624**  -0.221***  -0.164***   
(0.816)  (0.058)  (0.060)  

Urbar -1.142*** 1.199**  0.075 -0.050* 0.084*  
(0.398) (0.473)  (0.050) (0.028) (0.050) 

Urbar × Urbar  -0.139***  -0.008***  -0.008***   
(0.020)  (0.002)  (0.002) 

Control variables Yes Yes No No Yes Yes 
Year fixed effect Yes Yes Yes Yes Yes Yes 
City fixed effect Yes Yes Yes Yes Yes Yes 
Observations 2028 2028 2028 2028 2028 2028 
R2 0.309 0.353 0.369 0.369 0.383 0.388 

Note: The values represent the regression coefficients of explanatory variables; t-statistics are in parentheses; standard errors (in parentheses) are clustered at the 
city–year level; *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 

Table 4 
Channels: first stage.   

CII Scite Alloc  
(1) (2) (3) (4) (5) 

SCP 6.305*** 15.28*** 9.267*** 1.46e- 
3*** 

6.26e-4*  

(0.890) (2.170) (2.178) (0.000) (0.000) 
CII   0.954***  1.93e- 

4***    
(0.191)  (0.000) 

Scite    8.45e- 
5*** 

5.97e- 
5***     

(0.000) (0.000) 
Control 

variables 
Yes Yes Yes Yes Yes 

Constant 0.543 48.64** 48.12** 0.106*** 0.107***  
(7.843) (20.31) (19.10) (0.005) (0.004) 

Year fixed effect Yes Yes Yes Yes Yes 
City fixed effect Yes Yes Yes Yes Yes 
Observations 1716 1716 1716 1716 1716 
R2 0.305 0.388 0.463 0.919 0.928 

Note: The values represent the regression coefficients of explanatory variables; t- 
statistics are in parentheses; standard errors (in parentheses) are clustered at the 
city–year level; *, **, and *** denote significance at the 10%, 5%, and 1% levels, 
respectively. 

4 SDGs stand for seventeen global development goals formulated by the 
United Nations, which aim to solve the development problems of social, eco
nomic and environmental dimensions comprehensively from 2015 to 2030, and 
turn to the path of sustainable development. In this study, it represents eco
nomic development and environmental protection. 
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Table 5 
Channels: second stage.  

Panel A: Dependent variable is Log (ASO)   
Technology effect Allocation effect Total effect  

(1) (2) (3) (4) (5) (6) 

SCP -0.143*** -0.114*** -0.109*** -0.138*** -0.099*** -0.114***  
(0.038) (0.038) (0.037) (0.039) (0.037) (0.038) 

Scite  -0.002***   -0.001* -0.002***   
(0.001)   (0.001) (0.001) 

Alloc1   -12.41***  -10.74**     
(4.750)  (4.954)  

Alloc2    -0.221***  -0.214**     
(0.084)  (0.084) 

Observations 1716 1716 1716 1672 1716 1672 
R2 0.065 0.049 0.121 0.092 0.116 0.077 
Panel B: Dependent variable is Log (ACOD)  

(7) (8) (9) (10) (11) (12) 
SCP -0.151*** -0.122*** -0.150*** -0.140*** -0.127*** -0.112***  

(0.040) (0.041) (0.041) (0.041) (0.042) (0.042) 
Scite  -0.002***   -0.002*** -0.002***   

(0.001)   (0.001) (0.001) 
Alloc1   -0.334  3.500     

(3.779)  (3.992)  
Alloc2    0.003  0.010     

(0.051)  (0.051) 
Control variables Yes Yes Yes Yes Yes Yes 
Year fixed effect Yes Yes Yes Yes Yes Yes 
City fixed effect Yes Yes Yes Yes Yes Yes 
Observations 1716 1716 1716 1672 1716 1672 
R2 0.227 0.168 0.166 0.204 0.333 0.141 

Note: The values represent the regression coefficients of explanatory variables; t-statistics are in parentheses; standard errors (in parentheses) are clustered at the 
city–year level; *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 

Table 6 
Explaining the long-run impact on GDP.  

Panel A: Log (Agriculture/Industry/ Commerce) Log(GDP) Log(Agriculture) Log(Industry) Log(Commerce)  
(1) (2) (3) (4) (5) 

SCP 0.077*** 0.057*** 0.069** 0.059** 0.042**  
(0.019) (0.020) (0.031) (0.027) (0.017) 

Observations 2028 2028 1976 1976 1976 
R2 0.871 0.887 0.772 0.774 0.918 
Panel B: Agriculture 

/ Industry/ Commerce 
GDP Agriculture Industry Commerce 

SCP 519.2*** 116.3*** -3.634** 71.67*** 50.61***  
(61.78) (31.79) (1.441) (17.32) (15.40) 

Control variables No Yes Yes Yes Yes 
Year fixed effect Yes Yes Yes Yes Yes 
City fixed effect Yes Yes Yes Yes Yes 
Observations 2028 2028 1989 1989 1989 
R2 0.349 0.811 0.663 0.730 0.834 

Notes: The values represent regression coefficients of explanatory variables; t-statistics are in parenthese. standard errors (in parentheses) are clustered at the city–year 
level; *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 

Table 7 
Cost-benefit analysis: environmental pollution and medical expenses.   

Panel A Panel B  
PM10 Log (PM10) Log (Pcs)  
(1) (2) (3) (4) (5) (6) 

ASO 1.148*** 1.242*** 0.376*** 0.004*** 0.003**   
(0.249) (0.227) (0.145) (0.001) (0.001)  

PM10 (10ug/m3)      0.00467***       
(0.001) 

Control variables No Yes Yes No Yes Yes 
Two-way fixed effects No No Yes Yes Yes Yes 
Observations 760 760 760 756 756 191964 
R2 0.057 0.214 0.436 0.506 0.516 0.626 

Note: Panel A shows the results from a 2005 to 2017 panel data set of 287 prefecture level cities in China. Panel B shows the results from medical insurance patient 
management data of different levels of hospitals in Shanghai (sampling ratio is 5%). The values represent the regression coefficients of explanatory variables; standard 
errors (in parentheses) are clustered at the city–year level; additionally, *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. 
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First, to understand the long-run impact on EEQ, we examine the tech
nology and allocation effects separately. Second, to explain its long run 
impact on GDP, we examine different sectors over time. 

In Table 4, columns (1) to (5) show that the gaining importance of 
SCC has significantly (at 1% significant level) promoted urban in
novations, namely, technology innovation and allocation innovation. 
Columns (2), (3), (8), and (9) of Table 5 examine the mediating effects of 
urban innovations. Compared with the results in columns (1) and (7), all 
the absolute values of the coefficients of the SCP become smaller or 
insignificant, which indicates that SCC significantly reduces urban 
pollution by strengthening technology innovation and allocation inno
vation through the effects of technology and allocation. 

These results have two explanations. First, the improvement in urban 
innovation has transformed the modes of urban development from an 
extensive to intensive development. Technology innovation has updated 
plant machinery and equipment and advanced the production process of 
enterprises. This has significantly increased productivity and decreased 
the cost of pollution control. Second, the information characteristics of 
allocation innovation increase the convenience of resource flow. In such 
a city, enterprises can predict market supply and demand on time, 
allocate resources to optimise production, capital flow, and information 
flow, such that they can be released from the limitations of traditional 
logistics to a certain extent. In addition, the upgradation of industrial 
structure driven by innovation accelerates the transformation of the 
economic structure into a high-quality development. This significantly 
promotes resource utilisation. In summary, urban innovation caused by 
SCC results in energy conservation that may ultimately lead to reduction 
in pollution. 

In columns (1) and (7), the coefficients of SCP are all negative and 
significant, but their absolute values differ in columns (5) and (11), 
indicating that the direct impact of SCP on air pollution is greater than 
its counterpart in the case of water pollution. In addition, the range of 
variation in the coefficients of SCP in columns (2), (3), (8), and (9) 
indicate that the mediating effects from allocation innovation are larger 
to some extent,that is, the technology effect accounts for 10.23%, and 
the allocation effect accounts for 10.97%. This finding suggests that the 
effects of the SCP on UPL are operating through the improvement in 
urban innovation. 

We propose two possible interpretations for these phenomena. First, 
the characteristic of a rapid diffusion of exhaust gas can form severe 
smog, causing a wide range of respiratory diseases under certain natural 
conditions; this has a more direct impact on the health of residents. 
However, the negative impact of wastewater can be alleviated by the 
supply of tap water to a certain extent. Regarding environmental 
governance, SCC focuses on eliminating exhaust gases in the short-run. 
Second, allocation innovation is a new innovative form of a deep inte
gration of the new generation of information technology and traditional 
industries, which can complete the economic transformation by opti
mising production factors, updating business systems, and reconstruct
ing business models. Although SCC can help in producing the latest 
scientific and technological achievements (technology innovation), it 
has a relatively slow effect when it is applied to production and society. 
In the context of millions of enterprises requiring transformation and 
upgrading, the wave of ‘Internet +’ has been launched in China. For 
example, the use of taxi-hailing software, online purchase of train and 
airline tickets, and travel navigation systems in the field of trans
portation have greatly improved individuals’ travel experiences, 
increased the utilisation rate of vehicles, and rapidly reduced urban 
pollution emissions. 

To explain the difference in economic activities that has led to the 
observed GDP, we run a similar regression as in Eq. (4.1) for different 
sectors. We focus on the outcomes of the three sectors: the primary 
sector (agriculture, forestry, and fishing), secondary sector (light in
dustry and heavy industry), and tertiary sector (commerce and service), 
and employ a fixed-effects model similar to the specification in Eq. (4.1). 
The results are presented in Table 6. Panel A shows the results for the 

logarithm of output for each sector, whereas Panel B shows the results 
for levels of output per. The main drivers for economic development 
advantage of the SCP group come from the light and heavy industry 
sectors. Since this sector has been transforming from a labour-intensive 
to technology-intensive one, it creates demand for urban innovation, 
this finding is also consistent with the previous finding on environ
mental protection through innovation driven channels in SCP. This 
finding also suggests that the results on economic opportunities diver
gence are due to a potential reallocation of industrial proportion be
tween the SCP and control groups. Overall, the development of smart 
cities promotes both economic growth and environmental protection, 
while playing a significant role in maintaining the balance of China’s 
economy. 

4.6. Potential cost savings or gains from smart city initiatives 

EEQ is obviously an important determinant of city life. Urban 
pollution causes severe health problems, most notably strokes, heart 
diseases, chronic obstructive pulmonary disease, and respiratory in
fections. According to the 2011 report of the Chinese Academy of 
Environmental Sciences, more than one fifth of the medical expenditure 
of Chinese residents is spent on the prevention and treatment of diseases 
caused by environmental pollution. Therefore, we further construct the 
following empirical model to estimate the potential cost savings or gains 
of smart city initiatives from the perspective of medical health. Using a 
two-way fixed effects model, the parameters of interest are identified 
solely based on a within-city time variation that differs from global time 
variation. The variable of interest is Pollutionit that is employed as the 
proxy of PM10, and; we hypothesise that φ1 is higher than zero. 

Pcsit = φ0 + φ1Pollutionit +
∑n

j=2
βjZit + μi + λt + εit, (4.14)  

where Pcsit represents the medical expenses in hospital iand at 
day t;. εit is the random disturbance term; and μi and γt denote hospital 
and day fixed effects. A series of control variables Zit are incorporated 
into Eq. (4.14) in order to accommodate the characteristics of local 
weather. 

As estimated in column (6) of Table 7 following Song et al. (2019), 
PM10 significantly increases the medical expenses. Its coefficient of 
0.00467 implies that every time it increases by 10 μg/m3, a 0.47% in
crease occurs in the medical expenses. Since information related to PM10 
is not available before 2013 to match the results of benchmark regres
sion, we focus on the relationship between PM10 and ASO and employ a 
fixed-effects model similar to the specification in Eq. (4.1). ASO affects 
PM10; the OLS and fixed effects specifications are presented in columns 
(1) to (5). All the estimated coefficients of the ASO indicator are positive 
and statistically significant at the 1% level. Hence, it can be exhib
itedthat the medical expenditure of Shanghai due to the construction of 
smart cities has decreased by approximately 8.69 million yuan5. By 
using the weighting of the number of medical beds in different regions, 
we can calculate that the medical expenditure from SCP would be 
reduced by approximately 2.676 billion yuan during the period of 2012 
to 2017. It is noted that the income estimated here only comes from the 
aspect of medical treatment, and does not take into account the income 
of other dimensions, such as the economic income resulting from an 
increase in labour productivity, and decrease of crime rate. Hence, it can 
be regarded as the lower boundary of the income. In conclusion, cities 
can realise more potential cost savings or gains through the imple
mentation of smart city initiatives compared with traditional 
construction. 

5 Combing the sample data from Panel B (the average total amount of med
ical expenses per day is 2.32 million yuan) and the estimated coefficient in 
Column (5) of Table 1 (-2.993 kg/km2), the medical expenditure of Shanghai is 
expressed as 2.993×0.376×0.000467×2320000×365/0.05=8687614. 
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5. Summary and conclusion

In order to understand the factors that have helped China experience
a continuous rise in EEQ in recent years, this study conceptually and 
empirically investigates how the spread of smart city initiatives affects 
the capacity to reduce pollution in China. We adopt a theoretical model 
of classic land allocation decisions to demonstrate how local officials’ 
responsibilities to protect the ecological environment and promote 
economic growth can lead to smart urban spatial expansion in the long- 
run, and respond to land values in a manner similar to that of competing 
land markets. These land conversion decisions improve the ecological 
environment in China from the perspective of innovation-driven ad
vantages. Our study of 287 prefecture- level cities in China finds that 
SCC significantly reduces the discharge of urban pollution in a manner 
that is consistent with our theoretical model. 

The main conclusions may be outlined as follows. First, the popu
larity of SCC is innovative, which helps to support ‘a society of infor
mation’. Technology innovation and allocation innovation decrease the 
cost of pollution control and improve the efficiency of resource uti
lisation, resulting in energy conservation that ultimately leads to a 
reduction in pollution in China. In addition, the development of smart 
city promotes both economic growth and environmental protection, 
while playing a significant role in maintaining the balance of China’s 
economy. Second, SCC has a stronger positive impact on environmental 
quality in areas with a large urban scale, suggesting that the expansion 
of urban size is likely to constitute effective supports, provided that the 
expansion is limited to a reasonable urban boundary by the individual 
making primary land allocation decisions. Third, our results demon
strate that urban EEQ has a U-shaped relationship with urbanisation rate 
during the period of a rapid construction of smart cities in China. This 
finding further indicates that the changes in urban structure introduced 
by SCC improve urbanisation quality and lead to a decrease in urban 
pollution. Finally, this study analyses the regional potential cost savings 
or gains from smart city programs, which is crucial for evaluating 
market-based policy and promoting national economic transformation 
and growth. 

There are several policy implications based on our findings. First, the 
SCC, a new direction for urban initiatives, could balance the quality of 

the ecological environment and economic development to promote a 
high-quality growth, especially for developing countries like China. 
Governments should consider the SCC in their economic development 
policies. Second, our findings suggest that the innovation-driven tech
nology advancement fuels the positive environmental effects of smart 
city. Therefore, the policy maker should promote the pro-innovation 
policies such as infrastructure construction project and university 
funding program so as to further exploit the potential of the urban 
innovation. Finally, the smart city policy enriches the theory of sus
tainable urban development. the smart city alleviates negative side ef
fects caused by urban expansion (e.g. pollution) while making it possible 
for cities to efficiently allocate resources. It would be wise for local 
government to take into account the smart city construction in their 
urban development plans. Further analysis of smart city on urban eco- 
environment that connects macro estimates offered by this paper to 
the underlying micro impact of smart city initiatives on corporate or 
resident behavior remains an exciting area for future research. 
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Appendix A. Short run comparative statics, long run equilibrium, and transition dynamics 

We derive Results (1)–(3) by integrating Eqs. (2.3), (2.4), (2.7) and (2.8) to obtain two equations defining optimal traditional urban land con
version traditional m2(t) and smart urban land conversion m2(t) at a given point in time. 

G ≡ r1(E1 + m1 − m2) − π1(E1 + m1 − m2) − τ(E3 − m1)q(E3 − m1)

+

∫ ∞

T
[r1(E1 + m1 − m2) − π1(E1 + m1 − m2) − τ(E3 − m1)q(E3 − m1)]e− ρ(y− t)dy = 0.

(A1)  

H ≡ r2(E2 + m2) − π2(E2 + m2) − τ(E3 − m1)q(E3 − m1)

+

∫ ∞

t
[r2(E2 + m2) − π2(E2 + m2) − τ(E3 − m1)q(E3 − m1)]e− ρ(y− t)dy = 0.

(A2) 

Differentiating the resulting equation yields Hm2 = r′

2 − π′

2 +

∫∞

t

(r′

2 − π′

2)e− ρ(y− t)dy and Hq = − τ+
∫∞

t

− τe− ρ(y− t)dy = − τ − τ
ρ, So if r′2 > 0, π′

2 < 0, 

as assumed above; then, 

∂q
∂m2

= −
Hm2

Hq
=

r′

2 − π′

2 +
∫∞

t

(
r′

2 − π′

2

)
e− ρ(y− t)dy

τ + τ
ρ

> 0. (A3) 

Dramatic changes in scientific and technological level and resource allocation efficiency brought from smart urban innovation exert a positive 
effect on EEQ. That is, EEQ is higher in areas where the US is higher (Result 1); differentiating Eq. (A3) yields 

∂2q
∂m2∂E3

=

(

r′

2 − π′

2 +

∫ ∞

T

(
r′

2 − π′

2

)
e− ρ(y− t)dy

)

⋅
− τ′

(
τ + τ

ρ

)2 < 0. (A4) 

Smart urban construction has a stronger positive impact on EEQ in areas with a higher urban scale (Result 2); and differentiating Eq. (A1) 
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yields Gm1 = r′1 − π′

1 + τ′ε +
∫∞

t

(r′1 − π′

1 +τ′q)e− ρ(y− t)dy and Gq = − τ+
∫∞

t

− τe− ρ(y− t)dy = − τ − τ
ρ. Thus, if r′1〈0, π′

1〉0 and τ′

< 0, as assumed above, 

∂q
∂m1

= −
Gm1

Gq
=

r′

1 − π′

1 + τ′q +
∫∞

t

(
r′

1 − π′

1 + τ′q
)
e− ρ(y− t)dy

τ + τ
ρ

< 0. (A5) 

In general, SCC is faster than traditional construction in areas with a higher urbanization rate. Combined with Eqs. (A4) and (A5), we propose 
Result 3, that is, urban EEQ has a U-shaped relationship with its urbanisation rate. 

We analyse the transition to the long-run equilibrium allocation of land between traditional urban and smart urban uses with a phase plane analysis 
in (E2,λ2). Eq. (2.8) implicitly defines land conversion m2 as a function m2(E2,λ2) that is decreasing in the stock of smart urban land (∂m2

∂E2 
= − 1 < 0) 

and increasing in the shadow price of smart urban land (∂m2
∂λ2

= − 1
r′2 − π′

2+τ′ q > 0). The long-run equilibrium is thus defined as the solution to the

equations: 

Ė2 = m2(E2, λ2) = 0, (A6)  

λ̇2 = ρλ2 − r2(E2 +m2) + π2(E2 +m2) + τ(E3 − m2)q(E3 − m2) = 0. (A7) 

The slope of Ė2 = 0 is 

dλ2

dE2

⃒
⃒
⃒
⃒

Ė2=0
= −

(
r
′

2 − π′

2 + τ′

q
)
>0. (A8) 

We observe from Eq. (A6) that E2 is increasing at points above Ė2 and decreasing at points below it. 
The slope of λ̇2 = 0 can be written as 

dλ2

dE2

⃒
⃒
⃒
⃒

λ̇2=0
= −

(
r′

2 − π′

2 + τ′ q
)
>0. (A9) 

We observe from Eq. (A7) that λ2 is increasing at points above λ̇2 = 0 and decreasing at points below it. 
Fig. A1 depicts a phase diagram summarising the results. Under the given assumptions, we can verify the existence of an interior solution, such that 

the long-run equilibrium (E∗
2, λ

∗
2) is a unique saddle point and is therefore stable. Land conversion m2 will be positive, that is land will be converted 

from agricultural to smart urban use, in a region that is initially under smart urbanisation(E2 < E∗
2). Land conversion will be negative, that is land will 

be reverted from smart urban to agricultural use, in a region that is initially under smart urbanisation (E2 > E∗
2). In either case, the rate of land 

conversion decreases gradually in absolute value over time. 
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