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A B S T R A C T

Smart grids are envisioned to accommodate high penetration of distributed photovoltaic (PV) generation, which 
may cause adverse grid impacts in terms of voltage violations. Therefore, PV Hosting capacity is being used as a 
planning tool to determine the maximum PV installation capacity that causes the first voltage violation and 
above which would require infrastructure upgrades. Traditional methods of Hosting capacity analysis are sce
nario based and computationally complex as they rely on iterative load flow algorithms that require investigating 
a large number of scenarios for accurate assessment of PV impacts. Therefore, this paper presents a computa
tionally efficient analytical approach to compute the probability distribution of voltage change due to random 
behavior of randomly located multiple distributed PVs. The proposed approach is based on Spatio-temporal 
probabilistic voltage sensitivity analysis that exploits both spatial and temporal uncertainties associated with 
PV injections. Thereafter, the derived distribution is used to quantify voltage violations for various PV pene
tration levels and subsequently determine the hosting capacity of the system without the need to examine large 
number of scenarios. Results of the proposed framework are validated via conventional load flow based simu
lation approach on the IEEE 37 and IEEE 123 node test systems.   

1. Introduction

Power grid is undergoing significant changes to meet modern- en
ergy demand in a more efficient manner. Integration of renewable en
ergy sources, especially rooftop Photovoltaics (PVs) offers various 
solutions, including (1) low carbon footprint; (2) reduced operational 
cost; (3) ancillary services in terms of peak load shaving and voltage 
restoration at critical loads during contingencies. Therefore, many 
countries are aiming to meet a major portion of energy demand through 
renewable energy sources. For example, by 2050, USA, China, EU and 
India are projected to have 63%, 67%, 70% and 73% of their total en
ergy use met through renewables, respectively [1]. Despite the afore
mentioned benefits, high penetration levels of PVs may impact the grid 
negatively in terms of voltage fluctuations and stability. This necessi
tates the need for thoroughly analyzing the grid in the presence of PVs to 
maximize their integration benefits. Therefore, utilities are interested in 
quantifying the maximum allowable PV penetration level in the system. 
In this regard, PV hosting capacity (HC) as a planning tool has attracted 
the attention of many researchers and practitioners. HC refers to the 
maximum amount of PV generation that can be accommodated in the 

distribution system, while keeping system operational constraints 
within their safe limits, without the need for infrastructure upgrades. 

A comprehensive HC analysis monitors power quality, power loss, 
thermal overload, protection devices, and voltage deviation for different 
PV penetration levels. With increasing PV penetration levels in distri
bution systems, many operational issues have emerged, including 
voltage violations [2,3] which directly impact the HC. Therefore, the 
development of an accurate, yet computationally efficient HC analysis 
framework is essential to ensure efficient, economic, and reliable oper
ation of the distribution system. Most of the existing methods for eval
uating HC are scenario-based and require the execution of multiple load- 
flow runs for various PV allocation scenarios [4,5]. The drawbacks of 
scenario-based HC studies are (1) high computational complexity, which 
increases with the size of the network; (2) scenario-based and scenario- 
specific results that do not provide any performance guarantee for a 
more general case; and 3) very conservative results, typically based on 
worse case scenarios. As voltage is the primary concern for many utili
ties while determining the HC [6,4], voltage sensitivity analysis (VSA) 
can help identify voltage violations, which in turn can be used to 
compute the HC of the system. Traditional methods of VSA such as load 
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flow based numerical approaches have been used by various researchers 
[7–9] to compute the HC. As numerical VSA methods are simulation- 
based, they possess the same demerits as Monte-Carlo based power 
flow methods. Additionally, at the planning stage, there could be sce
narios where the grid operator may not be aware of the actual PV lo
cations in the network. Under these scenarios of random power change 
at unknown locations of the grid, numerical VSA approaches would 
involve simulating a large number of scenarios to account for temporal 
and spatial uncertainties associated with power change. This would 
result in high computational complexity. To overcome the drawbacks of 
numerical methods, there are some limited analytical approaches for 
VSA that have been proposed in [10–14]. The analytical VSA paradigm 
enables quick, yet accurate, estimation of node vulnerability to voltage 
violations, however, these approaches do not apply to HC in their 
original formulations. For instance, authors in [13], provides an 
analytical formulation of voltage change for random power changes but 
the proposed approach is valid only for the balanced network. Similarly, 
in [14], the proposed analytical formulation only accounts for the 
temporal uncertainty whereas for Hosting capacity, one needs to 
incorporate both temporal and spatial uncertainty associated with PV 
generations in a distribution system. Motivated by these shortcomings of 
existing analytical approaches, this paper proposes a novel analytical 
spatio-temporal probabilistic voltage sensitivity analysis (ST-PVSA) 
framework for computing the probability distribution of voltage change. 
The proposed ST-PVSA is applicable to three phase unbalanced distri
bution systems and incorporates uncertainties associated with both 
power change (temporal randomness due to intermittent PV generation) 
and the locations of PV units (spatial randomness) in the system. The 
strength of this paradigm lies in its ability to account for spatio-temporal 
uncertainties associated with power changes in a computationally effi
cient manner. This fundamental theoretical result is then employed to 
simplify HC computation. 

1.1. Related work 

Authors in [15,16] have reviewed the literature related to HC and 
fundamentally classified the efforts into four major categories (deter
ministic, stochastic ([17,18]), optimization-based ([19]), and stream
lined ([5])) based on the available data and the type of study to be 
performed. Most of these approaches for HC depend on numerical load 
flow-based methods [7,4,8,9], and involve the analysis of multiple PV 
deployment scenarios. For instance, a rigorous framework is developed 
in [17], where authors have incorporated both aleatoric (base voltages, 
solar PV production, local consumption) and epistemic uncertainty 
(installed capacity per customer, number of customers with solar PV, 
phase to which single-phase units are connected) of active distribution 
network individually. Similarly, in [4], a scenario is generated by 
randomly allocating PVs in the network, and then load flow is executed 
for each penetration level until a voltage violation is encountered. To 
cover all possible locations, the complete process is repeated for multi
ple scenarios, thereby presenting a huge computational burden. [8] 
assigns each feeder a minimum and maximum HC, corresponding to the 
most conservative and most optimistic HC value. However, the over
voltage risk within the range of two HC endpoint values is not quanti
fied. Furthermore, authors in [5], propose a quasi-static-time-series 
(QSTS) based dynamic PV HC methodology. Here, power flow analysis is 
conducted on the load and PV data over one year, where the time 
duration of violation is also monitored along with the total violations 
count. For a real distribution model with thousands of nodes and one- 
second resolution data, an annual simulation could take a few days 
[5]. Furthermore, the PV and load uncertainties have significant in
fluences upon HC values. As a result, probabilistic HC methods have 
gained attention [20–22]. The authors in [21] determine HC by incor
porating uncertainties associated with PV, Wind turbines, and loads 
while. However, the approach does not consider the stochastic random 
distribution of DGs along the target feeder. Though the probabilistic 

approaches can effectively describe the uncertainty in fluctuations of 
PVs and loads, most of these approaches are simulation-based and thus 
are computationally inefficient. More importantly, the performance of 
these approaches relies heavily on the availability of data. 

In addition to HC, numerical VSA methods have also been used to 
guide various grid applications such as voltage regulation, DER alloca
tions, etc. [23,24]. For instance, authors in [23] propose a method for 
analyzing voltage variations due to PV generation fluctuations, consid
ering a variety of factors. However, its dependency on the inefficient 
simulation method limits its applications to large scale distribution 
networks. Similarly, authors in [24] develop an optimization model for 
the electric vehicle charging schedule based on VSA approaches. Still, 
the requirements of iterative executions of power flow calculations and 
optimization models hinder its application in real-world scenarios. Thus, 
traditional methods suffer from high computational complexity and do 
not provide analytical insight into the underlying physics of the system. 
Therefore, to overcome the drawbacks of numerical methods, there are 
some limited analytical approaches for VSA that have been proposed. 
Authors in [10,25], develop an algorithm based on VSA which optimally 
manages active and reactive powers of DGs to keep the system voltages 
inside the limits. Here, instead of repeating load flow calculations to 
solve the optimization problem, a sensitivity matrix is used to conduct 
load flow computation in a non-iterative manner, reducing the compu
tational burden significantly. However, the algorithms proposed are not 
properly validated with standard test systems. Authors in [11], have 
taken a probabilistic approach where smart meter data is used along 
with sensitivity analysis to define boundary values of various operation 
indices. This approach does not account for unbalanced load conditions. 
The authors in [14], develop a new probabilistic voltage sensitivity 
approach to quantify voltage change in a computationally efficient way 
and accounts for the temporal uncertainties associated with random 
power change at fixed locations of the grid. However, the assumption of 
a fixed location is not generic enough to account for unknown locations 
of PV installations. Therefore, in [13], authors provide a quick and 
efficient tool for estimating the distribution of voltage change in a dis
tribution system with spatial randomness in PV installations. However, 
the proposed framework is valid only for single phase balanced networks 
and does not hold true for an unbalanced distribution system. 

To summarize, probabilistic VSA represents a viable, low 
complexity, systematic approach to HC computation. Therefore, in this 
work, a generic computationally efficient framework for probabilistic 
voltage sensitivity is developed for an unbalanced distribution system 
that systematically accounts for both spatial and temporal uncertainty 
associated with PV generation. The ST-PVSA framework is then 
employed to efficiently determine the HC of an unbalanced distribution 
system. The proposed formulation helps grid operators prepare for the 
future modernized grid by providing new insights on the impact of high 
PV penetration on grid operations. 

1.2. Contributions 

This work proposes a novel stochastic method of grid voltage 
sensitivity analysis which is used to calculate the likelihood of node 
voltage exceeding operational bounds. This framework is then employed 
to determine the PV Hosting capacity (HC) of an unbalanced distribution 
system. The key contributions of this paper are listed below:  

• For the first time, the probability distribution of voltage change due
to random change in complex power (temporal) across random lo
cations (spatial) of a three phase unbalanced distribution grid is
derived analytically.

• The proposed ST-PVSA method is used to (1) analyze the aggregate
effect of spatial random distribution of PVs on the feeder voltage, and
(2) determine the probability of node voltages exceeding allowable
limits. Analytical results are validated using simulation on the IEEE
37-node and 123-node test systems.
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• ST-PVSA involves a substantial change in the formulation compared
to [14,13] since incorporating both spatial and temporal randomness
in a three phase setting requires extensive mathematical and statis
tical analysis for obtaining the probability distribution of voltage
change.

• The proposed ST-PVSA is employed to efficiently and accurately
determine PV HC in a significantly faster way. For e.g., three orders
faster in IEEE 123-node network relative to the existing load flow- 
based approach.

The rest of the paper is organized as follows: Section 2 discusses the
typical simulation-based method for HC. Then, the probability distri
bution of voltage change with spatio-temporal uncertainties is derived 
in Section 3, followed by its validation in Section 4. In Section 5, the 
distribution is used to determine the HC and validated with a load flow- 
based approach, and finally, conclusions are provided in Section 6. 

2. HC with simulation-based approach

This section describes a typical load flow based approach of deter
mining the HC of the system. Here, the net power injection is increased 
in steps by allocating power to PVs located at random locations of the 
network. Then, load flow is executed for each penetration levels to track 
the number of node voltage violations throughout the network. This 
process is repeated for increasing penetration levels until the number of 
violations exceeds the threshold. The corresponding power (penetration 
level) is the HC for a particular PV deployment scenario. Thereafter, the 
complete process is repeated multiple times to cover all possible spatial 
distribution of the PV installations and the minimum capacity across all 
such scenarios is the final HC of the network. The scenario based anal
ysis presents a huge computational burden due to the requirement of 
multiple load flow runs. Fig. 1 depicts the flow chart of the existing load 
flow based approach of computing HC [4]. 

Alternatively, this paper attempts to develop a probabilistic VSA 
approach that determines the HC in a computationally efficient manner. 
As mentioned in [7], a comprehensive analysis of PV distribution needs to 
monitor voltage, protection, power quality and control limits. However, 
voltage is the primary concern for many utilities [6,4]. So, similar to [4,5], 
this paper only considers voltage limits to determine the PV HC. The first 
step towards the probabilistic VSA approach for HC is to derive an 

analytical expression of voltage sensitivity due to random power change at 
random locations in the network, as presented in the next section. 

3. ST-PVSA for random distribution of PVs

This section details the steps involved in the derivation of the
probability distribution of voltage change at network nodes due to 
random power changes at random locations of the network. Throughout 
this paper, observation nodes are referred to those nodes where voltage 
change is observed and actor nodes are those where power changes. The 
change in complex voltage at any phase (say phase a) of observation 
node O due to change in complex power at any phase of a single actor 
node A is given by [14], 

ΔVa
OA ≈ −

[
ΔSa∗A Zaa

OA

Va∗
A

+
ΔSb∗A Zab

OA

Vb∗
A

+
ΔSc∗A Zac

OA

Vc∗
A

]

, (1)  

where, superscript a, b and c represent the three phases; this notation is 
used throughout the paper. Va☆

A and ΔSa
A represent complex conjugate of 

voltage at phase a and complex power change at actor node A, respec
tively; ZOA denotes the impedance matrix including self and mutual line 
impedance of the shared path between observation node and actor node 
from the source node. The subscript A represents the actor node where 
power is varying. In [14], the authors use the Eqn. (1) to derive the 
distribution of voltage change. However, the distribution only in
corporates the temporal uncertainty associated with power change, 
thereby prevents its uses in hosting capacity analysis. Therefore, here, 
we leverage Eqn. (1) to derive a generic probability distribution of 
voltage change, considering both temporal and spatial randomness in a 
three phase unbalanced network. In this regard, the complex voltage 
change in (1) is decomposed into real and imaginary parts as, 

ΔVa
OA = ΔVa,r

OA + jΔVa,i
OA. (2)  

For simplicity, the voltage change expression throughout the derivation 
is shown for a single phase (phase a). However, similar form and 
approach is applicable to other phases as well. On expanding power 
change (ΔSa☆

A = ΔP − jΔQ) and impedance (ZOA = R + jX) components 
in (1), the real (ΔVa,r

OA) and imaginary parts (ΔVa,i
OA) of voltage change at 

phase a of the observation node O can be written as, 

Fig. 1. Flowchart of Load flow based HC method.  
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where h ∊ H̃ and u ∊ Ũ. The set H̃ = {a, b, c} denotes different phases and 
the set Ũ = {aa, ab, ac} represents phase sequence for the corresponding 
phase. ΔPh

A and ΔQh
A are the active and reactive power changes, 

respectively. Rh
OA and Xh

OA are the resistance and reactance of shared 
path between the observation node O and actor node Afrom the source 
node. Vh

Adenotes the complex rated voltage of actor node A. The 
magnitude and angle of voltage at a particular phase, say phase a, of 
node A are given by 

⃒
⃒Va

A
⃒
⃒ and θa

A, respectively with reference to the slack 
bus. ωA denotes the rated voltage angle of the actor node A. The detailed 
steps to obtain Eq. (3) from Eq. (2) are described in the Appendix. Line 
voltage of the network is always kept within permissible limits, and thus 
it is reasonable to assume the phase difference of 120◦ between the 
voltage angles of different phases with the same angle for all the node 
voltages of each phase. Based on this assumption, ΔVa,r

OA,ΔVa,i
OA can be 

rewritten as: 

ΔVa,r
OA=

[
− ΔPa

AR
aa
OA⃒

⃒Va
A

⃒
⃒

+
ΔPb

A⃒
⃒Vb

A

⃒
⃒

(
Rab
OA

2
−

̅̅̅
3

√
Xab

OA

2

)

+
ΔPc

A⃒
⃒Vc

A

⃒
⃒

(
Rac
OA

2
+

̅̅̅
3

√
Xac

OA

2

)

−
ΔQa

AX
aa
OA⃒

⃒Va
A

⃒
⃒

+

ΔQb
A⃒

⃒Vb
A

⃒
⃒

( ̅̅̅
3

√
Rab
OA

2
+
Xab

OA

2

)

+
ΔQc

A⃒
⃒Vc

A

⃒
⃒

(
−

̅̅̅
3

√
Rac
OA

2
+
Xac
OA

2

)]

(4)  

ΔVa,i
OA =

[
− ΔPa

AX
aa
OA⃒

⃒Va
A

⃒
⃒

+
ΔPb

A⃒
⃒Vb

A

⃒
⃒

( ̅̅̅
3

√
Rab
OA

2
+
Xab

OA

2

)

+
ΔPc

A⃒
⃒Vc

A

⃒
⃒

(
−

̅̅̅
3

√
Rac
OA

2
+
Xac

OA

2

)

+

ΔQa
AR

aa
OA⃒

⃒Va
A

⃒
⃒

+
ΔQb

A⃒
⃒Vb

A

⃒
⃒

(

−
Rab
OA

2
+

̅̅̅
3

√
Xab

OA

2

)

+
ΔQc

A⃒
⃒Vc

A

⃒
⃒

(

−
Rac
OA

2
−

̅̅̅
3

√
Xac

OA

2

)]

(5)  

The real (4) and imaginary (5) parts of the voltage change can further be 
represented in a simplified form as, 

ΔVa,r
OA = (Za,r)

TΔS,ΔVa,i
OA =

(
Za,i)TΔS (6)   

Za,r =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− Raa
OA

Rab
OA

2
−

̅̅̅
3

√
Xab

OA

2

Rac
OA

2
+

̅̅̅
3

√
Xac

OA

2

− Xaa
OA

[

1pt
] ̅̅̅

3
√

Rab
OA

2
+
Xab

OA

2

−
̅̅̅
3

√
Rac
OA

2
+
Xac

OA

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,Za,i =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− Xaa
OA

̅̅̅
3

√
Rab
OA

2
+
Xab

OA

2

−
̅̅̅
3

√
Rac
OA

2
+
Xac

OA

2

Raa
OA

− Rab
OA

2
+

̅̅̅
3

√
Xab

OA

2

− Rac
OA

2
−

̅̅̅
3

√
Xac

OA

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,ΔS=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΔPa
A⃒

⃒Va
A

⃒
⃒

ΔPb
A⃒

⃒Vb
A

⃒
⃒

ΔPc
A⃒

⃒Vc
A

⃒
⃒

ΔQa
A⃒

⃒Va
A

⃒
⃒

ΔQb
A⃒

⃒Vb
A

⃒
⃒

ΔQc
A⃒

⃒Vc
A

⃒
⃒

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where Za,r and Za,i are the vectors incorporating shared path impedance 
terms corresponding to real and imaginary parts of voltage change, 
respectively. To represent the random variation of PV generation, the 
real and reactive power change is modeled as a random variable. 
Consistent with the prior efforts in modeling PV generation as a time 
series with a trend component and Gaussian noise [26,27], the power 
variation is assumed to be Gaussian. It is important to note that the 
framework is quite general to account for any arbitrary random variable 
with finite mean and variance. Therefore, the vector ΔS, which incor
porate the terms corresponding to the ratio of power change and con
stant base voltages, can be expressed as Gaussian random vector 
ΔS ∼ N (μΔS,

∑
ΔS) with μΔS being mean vector, and covariance matrix 

∑
ΔS as, 

⎡

⎢
⎢
⎢
⎢
⎣

σ2
Pa

|VaA|
cov
(
ΔPa

A

/⃒
⃒Va

A

⃒
⃒,ΔPb

A

/⃒
⃒Vb

A

⃒
⃒
)
…cov

(
ΔPa

A

/⃒
⃒Va

A

⃒
⃒,ΔQc

A

/⃒
⃒Vc

A

⃒
⃒
)

⋮

cov
(
ΔPa

A

/⃒
⃒Va

A

⃒
⃒,ΔQc

A

/⃒
⃒Vc

A

⃒
⃒
)

… σ2
Qc

|VcA|

⎤

⎥
⎥
⎥
⎥
⎦

Here, the diagonal and off-diagonal elements indicate variance and 
covariance among the terms that are ratio of power changes and base 
voltages across different phases of actor nodes, respectively. The 
impedance of the shared line between a given observation node (O) and 
a random actor node can be modeled as a correlated random variable. 
The mean, variance and covariance of resistance ROA and reactance XOA 
corresponding to a given observation node O can be estimated based on 
actual line impedance data. In addition, let μZr and μZi represent the 
mean of real (Za,r) and imaginary (Za,i) parts of impedance vector, 
respectively. The average is taken over all the nodes of the network with 
respect to the observation node. Similarly, 

∑
Zr and 

∑
Zi denote the 

covariance matrices of Za,r and Za,i, respectively. The correlation coef
ficient between the shared path impedances for various actor nodes is 
computed based on network parameters. Particularly, the objective of 
this work is to derive the probability distribution of the magnitude of 
voltage change at an observation node due to random power variation of 
PVs located at random nodes, which will further be used to estimate the 
system HC. The probability distribution of real ΔVa,r

OA and imaginary 
components ΔVa,i

OA of the voltage change due to random spatial distri
bution of multiple PV units can be derived using the following steps: 

Step 1: Compute mean and variance of ΔVa,r
OA and ΔVa,i

OA due to a single 
actor node: 

Using (6), the mean of the voltage change can be expressed as the 
expectation of product of two terms, i.e., the shared path impedance 
vector (Za,r for real and Za,i for imaginary part) and power change vector 
ΔS. As the terms in the product are mutually independent, the expec
tation of their product can be applied to individual terms separately 
yielding the mean of real (μr) and imaginary (μi) parts as, 

ΔVa,r
OA =

∑

h,u

− 1
⃒
⃒Vh

A

⃒
⃒

[

ΔPh
A

(

Ru
OAcos

(

ωA

)

− Xu
OAsin

(

ωA

))

+ ΔQh
A

(

Ru
OAsin

(

ωA

)

+ Xu
OAcos

(

ωA

))]

ΔVa,i
OA =

∑

h,u

− 1
⃒
⃒Vh

A

⃒
⃒

[

ΔPh
A

(

Ru
OAsin

(

ωA

)

+ Xu
OAcos

(

ωA

))

+ ΔQh
A

(

Xu
OAsin

(

ωA

)

− Ru
OAcos

(

ωA

))] (3)   
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μr = E
[
Z(a,r)T
o ΔS

]
= μZa,r

o
μΔS

μi = E
[
Z(a,i)T ΔS

]
= μZa,i

o
μΔS

(7)  

Furthermore, the variance of real and imaginary parts of the voltage 
change can be computed as shown below, 

Var
(

ΔVa,r
OA

)
= E

[(
Z(a,r)T ΔS

)2]
− E

[(
Z(a,r)T ΔS

)]2

Var
(

ΔVa,i
OA

)
= E

[(
Z(a,i)T ΔS

)2]
− E

[(
Z(a,i)T ΔS

)]2
.

(8)  

Since ZT
r and ΔS are independent, the expectation of their product can be 

written in terms of product of their individual expectation as, 

E
[
Z(a,r)T ΔSΔSTZa,r

]
−
(
E
[
Z(a,r)T

]
E
[
ΔS
])2

. (9)  

For simplicity, the equation for variance is shown for the real part of 
voltage change and a similar form exists for imaginary part. Now, using 
the properties of matrix trace, the variance of the real part can be 
rewritten as, 

Now, the term Tr(μZrμT
ZrμΔSμT

ΔS) is rearranged to (μZrμΔS)
2, that cancels 

the last term of (10). After applying trace operator, the variance of real 
part can be expressed as, 

μT
Zr

∑

ΔS
μZr + μT

ΔS

∑

Zr

μΔS + Tr

(
∑

Zr

∑

ΔS

)

(11)  

Following the same steps from Eqs. (9)–(11), the variance of imaginary 
part of voltage change can be written as, 

μT
Zi

∑

ΔS
μZi + μT

ΔS

∑

Zi

μΔS + Tr

(
∑

Zi

∑

ΔS

)

(12) 

Step 2: Compute covariance between real ΔVa,r
OA and imaginary ΔVa,i

OA 
parts of voltage change: 

The covariance between the real and imaginary parts of voltage 
change can be expressed as: 

Cov
(
ΔVa,r

OA,ΔVa,i
OA
)

= E
(
ΔVa,r

OAΔVa,i
OA
)
− E

(
ΔVa,r

OA
)
E
(
ΔVa,i

OA
)

= E
[
Z(a,r)T
A ΔSAZ

(a,i)T
A ΔSA

]

Z(a,r)T
ΔS and Z(a,i)T

ΔS are expanded using Eqn. (4) and (5) to express 
covariance as the expectation of following term, 

E
[[

ΔPa
A⃒

⃒Va
A

⃒
⃒

(
− Raa

OA

)
+

ΔPb
A⃒

⃒Vb
A

⃒
⃒

(
Rab
OA

2
−

̅̅̅
3

√
Xab

OA

2

)

+
ΔPc

A⃒
⃒Vc

A

⃒
⃒

(
Rac
OA

2
+

̅̅̅
3

√
Xac

OA

2

)

−
ΔQa

A⃒
⃒Va

A

⃒
⃒

(
Xaa

OA

)
+

ΔQb
A⃒

⃒Vb
A

⃒
⃒

( ̅̅̅
3

√
Rab
OA

2
+
Xab
OA

2

)

+
ΔQc

A⃒
⃒Vc

A

⃒
⃒

(

−

̅̅̅
3

√
Rac
O1

2
+
Xac

O1

2

)]

×

[
ΔPa

A⃒
⃒Va

A

⃒
⃒

(
− Xaa

OA

)
+

ΔPb
A⃒

⃒Vb
A

⃒
⃒

( ̅̅̅
3

√
Rab
OA

2
+
Xab

OA

2

)

+
ΔPc

A⃒
⃒Vc

A

⃒
⃒

(
−

̅̅̅
3

√
Rac
OA

2
+
Xac

OA

2

)

+
ΔQa

A⃒
⃒Va

A

⃒
⃒

(
Raa
OA

)
+

ΔQb
A⃒

⃒Vb
A

⃒
⃒

(

−
Rab
OA

2
+

̅̅̅
3

√
Xab

OA

2

)

+
ΔQc

A⃒
⃒Vc

A

⃒
⃒

(

−
Rac
OA

2
−

̅̅̅
3

√
Xac
OA

2

)]]

(13)  

Terms inside the expectation operator are cross multiplied as, 

ρpa σ2
pa

⃒
⃒Va

A|
2 μRaa μXaa −

ρqa
⃒
⃒Va

A|
2σ

2
qa μRaa μXaa+

ρpb
⃒
⃒Vb

A|
2σ

2
pb
(
0.43μ2

Rab − 0.5μRab μXab − 0.43μ2
Xab

)
+

ρpc
⃒
⃒Vc

A|
2σ

2
pc
(
− 0.43μ2

Rac − 0.5μRac μXac + 0.43μ2
Xac

)
+

ρqb
⃒
⃒Vb

A|
2σ

2
qb
(
− 0.43μ2

Rab + 0.5μRab μXab + 0.43μ2
Xab

)
+

ρqc
⃒
⃒Vc

A|
2σ

2
qc
(
0.43μ2

Rac + 0.5μRac μXac − 0.43μ2
Xac

)
+

ρpaqa
⃒
⃒VA|

2σpa σqa
(
− μ2

Raa + μ2
Xaa

)
+

ρpbqb
⃒
⃒Vb

A|
2σpb σqb

(
0.5μ2

Rab +
̅̅̅
3

√
μRab μXab − 0.5μ2

Xab

)
+

ρpcqc
⃒
⃒Va

c |
2σpc σqc

(
0.5μ2

Rac −
̅̅̅
3

√
μRac μXac − 0.5μ2

Xac

)

(14)  

where, ρph and ρqh denote the correlation coefficients of active power 
and reactive power change among the same phase of different actor 
nodes with h representing the corresponding phase term (h = {a,b,c}), 
respectively. ρphqh denotes the correlation coefficient between the active 
and reactive power within the same phase. Similarly, σ2

ph and σ2
qh depict 

the variance of active power and reactive power change, respectively. 
For random impedance part, μRk and μXk denote the mean of shared path 
resistance and reactance between all the nodes and a certain observation 
node, respectively, with k representing the corresponding self/mutual 

E
[
Tr
(
ZrZT

r ΔSΔST
)]

− (μZr μΔS)
2
= Tr

(
E
[
ZrZT

r

]
E
[
ΔSΔST

])
− (μZr μΔS)

2

= Tr

[(

μZr μTZr +
∑

Zr

)(

μΔSμTΔS +
∑

ΔS

)]

− (μZr μΔS)
2

= Tr

(

μZr μTZr μΔSμTΔS

)

+ Tr

(

μZr μTZr

∑

ΔS

)

+ Tr

(
∑

Zr
μΔSμTΔS

)

+ Tr

(
∑

Zr

∑

ΔS

)

−
(
μTZr μΔS

)2

(10)   
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impedance terms (k = aa,ab,ac,ba,bb,bc,ca,cb,cc). It is important to note 
that all the defined parameters with respect to power change are user 
defined and usually set based on historical data, whereas, the parame
ters corresponding to shared path impedance are computed based on the 
network specifications. 

Step 3: Compute covariance between ΔVa,(r,i)
OA1 and ΔVa,(r,i)

OA2 : 
The covariance between the real component of complex voltage 

change caused by two different PVs located at actor nodes A1 and A2 can 
be calculated as: 

Cov(ΔVa,r
OA1,ΔVa,r

OA2) = E(ΔVa,r
OA1ΔVa,r

OA2) − E(ΔVa,r
OA1)E(ΔVa,r

OA2)

= E
[
Z(a,r)T

A1 ΔSA1Z(a,r)T

A2 ΔSA2

] (15)  

Using Eq. (4), Z(a,r)T
ΔS can be expanded for both the actor nodes in the 

following way, 
[[

ΔPa
1⃒

⃒Va
1

⃒
⃒

(

− Raa
O1

)

+
ΔPb

1⃒
⃒Vb

1

⃒
⃒

(
Rab
O1

2
−

̅̅̅
3

√
Xab
O1

2

)

+
ΔPc

1⃒
⃒Vc

1

⃒
⃒

(
Rac
O1

2
+

̅̅̅
3

√
Xac

O1

2

)

−
ΔQa

1⃒
⃒Va

1

⃒
⃒
Xaa

O1 +
ΔQb

1⃒
⃒Vb

1

⃒
⃒

( ̅̅̅
3

√
Rab
O1

2
+
Xab

O1

2

)

+
ΔQc

1⃒
⃒Vc

1

⃒
⃒

(

−

̅̅̅
3

√
Rac
O1

2
+
Xac

O1

2

)]

×

[
ΔPa

2⃒
⃒Va

2

⃒
⃒

(

− Raa
O2

)

+
ΔPb

2⃒
⃒Vb

2

⃒
⃒

(
Rab
O2

2
−

̅̅̅
3

√
Xab

O2

2

)

+
ΔPc

2⃒
⃒Vc

2

⃒
⃒

(
Rac
O2

2
+

̅̅̅
3

√
Xac

O2

2

)

−
ΔQa

2⃒
⃒Va

2

⃒
⃒
Xaa

O2 +
ΔQb

2⃒
⃒Vb

2

⃒
⃒

( ̅̅̅
3

√
Rab
O2

2
+
Xab

O2

2

)

+
ΔQc

2⃒
⃒Vc

2

⃒
⃒

(

−

̅̅̅
3

√
Rac
O2

2
+
Xac

O2

2

)]]

(16)  

For simplicity, actor nodes A1 and A2 are denoted by subscript 1 and 2, 
respectively. Like (14), the terms inside the expectation operator is cross 
multiplied to express covariance, 

ρpa
⃒
⃒Va

A|
2σ

2
paμ2

Raa +
ρqa
⃒
⃒Va

A|
2σ

2
qa μ2

Xaa+

ρpb
⃒
⃒Vb

A|
2σ

2
pb
(
0.25μ2

Rab − 0.86μRab μXab + 0.75μ2
Xab

)
+

ρpc
⃒
⃒Vc

A|
2σ

2
pc
(
0.25μ2

Rac + 0.86μRac μXac + 0.75μ2
Xac

)
+

ρqb
⃒
⃒Vb

A|
2σ

2
qb
(
0.75μ2

Rab + 0.86μRab μXab + 0.25μ2
Xab

)
+

ρqc
⃒
⃒Vc

A|
2σ

2
qc
(
0.75μ2

Rac − 0.86μRac μXac + 0.25μ2
Xac

)
−

ρpaqa⃒
⃒Va

A

⃒
⃒
σpa σqa (2μRaa μXaa )−

ρpbqb
⃒
⃒Vb

A|
2σpbσqb

(
0.86μ2

Rab − μRab μXab − 0.86μ2
Xab

)
+

ρpcqc
⃒
⃒Vc

c|
2σpc σqc

(
− 0.86μ2

Rac − μRac μXac + 0.86μ2
Xac

)

(17)  

The correlation coefficients and variances are same as defined in Eq. 
(14). Now, following the same steps from (15)–(17), yields 

corresponding covariance for the imaginary part of voltage change. 
Step 4: Compute mean and variance of ΔVa,r

OA and ΔVa,i
OA due to randomly 

distributed multiple actor nodes: 
The mean value of real and imaginary parts of voltage change due to 

randomly distributed multiple actor nodes are: 

E

[

ΔVa,r
O

]

= μr = E
∑N

A=1
ΔVa,r

OA = NμZr
o
μΔS

E

[

ΔVa,i
O

]

= μi = E
∑N

A=1
ΔVa,i

OA = NμZi
o
μΔS

(18)  

Further, the variance of real and imaginary parts of the net voltage 
change can be expressed as,  

Now, by invoking Lindeberg-Feller central limit theorem, it can be 
shown that the real and imaginary parts of voltage change follow non 
zero mean Gaussian distribution with mean and variance as stated in 
Eqs. (18) and (19), respectively. As the square of non zero mean 
Gaussian variable follows non-central chi-square distribution [28], the 
distribution of the squared magnitude of ΔVa

O is the sum of dependent 
non-central chi-square variables. 

|ΔVa
O|

2
∼ σ2

r χ2
1

(
μ2
r

)
+ σ2

i χ2
1

(
μ2
i

)
(20)  

where σ2 and μ2 are the weight and non centrality parameters of non 
central chi square distribution with one degree of freedom correspond
ing to both real and imaginary parts of the voltage change. The sum of 
weighted non-central chi-square distributions can then be approximated 
with a scaled non-central chi-square with weight λ, non-centrality 
parameter w, and v degrees of freedom as shown below [28]: 
⃒
⃒ΔVa

O

⃒
⃒2 ∼ λχ2

v

(
w
)
, (21)  

λ =
σ4
r

(
1 + 2μ2

r

)
+ σ4

i

(
1 + 2μ2

i

)

σ2
r

(
1 + 2μ2

r

)
+ σ2

i

(
1 + 2μ2

i

)

w =

(
σ2
r μ2

r + σ2
i μ2

i

)(
σ2
r + σ2

i + 2σ2
r μ2

r + 2σ2
i μ2

i

)

σ4
r + σ4

i + 2σ4
r μ2

r + 2σ4
r μ2

i

v =

(
σ2
r + σ2

i

)(
σ2
r + σ2

i + 2σ2
r μ2

r + 2σ2
i μ2

i

)

σ2
r + σ2

i + 2
(
σ4
r μ2

r

)
+ 2
(
σ4
i μ2

i

)

(22)  

Since the square root of a non-central chi-square random variables fol
lows a Rician distribution [28], the magnitude of voltage change will 
follow a Rician distribution: 

|ΔVa
O| ∼ Rician

(
k, σ
)

(23)  

where k =
̅̅̅̅
w

√
and σ =

̅̅̅
λ

√
. The magnitudes of voltage changes for other 

phases follow a similar expression with the respective phase values. If 
the power variation is assumed to follow a zero-mean Gaussian distri
bution, which is a typical assumption used in many prior works [26,27], 
μΔS vanishes from the mean (Eqs. (7)) and variance (Eqs. (11) and (12)) 
equations of voltage change. This eventually leads to zero value for μr 

Var

[

ΔVa,r
O

]

= σ2
r = Var

∑N

A=1

(

Z(a,r)T
A ΔS

)

= NVar

(

Z(a,r)T
ΔS

)

+ 2
∑

I<J
Cov

(

ΔVa,r
OI ,ΔVa,r

OJ

)

Var

[

ΔVa,i
O

]

= σ2
i = Var

∑N

A=1

(

Z(a,i)T
A ΔS

)

= NVar

(

Z(a,i)T
ΔS

)

+ 2
∑

I<J
Cov

(

ΔVa,i
OI ,ΔVa,i

OJ

) (19)   
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and μi. Again, by invoking Lindeberg-Feller central limit theorem, one 
can show that the real and imaginary parts of the voltage change follow 
zero-mean normal distributions as, 

ΔVa,r
O ∼

D
N

(

0, σ2
r

)

, ΔVa,i
O ∼

D
N

(

0, σ2
i

)

(24)  

The square of the magnitude of voltage change follows a gamma dis
tribution [29], and subsequently, the magnitude of voltage change fol
lows a Nakagami distribution [30], 

|ΔVa
O| ∼ Nakagami

(
m,ω

)
, (25)  

where parameter θ = 2(σ4
r + σ4

i + 2c2)/(σ2
r + σ2

i ), shape parameter m =

(σ2
r + σ2

i )/θ, scale parameter ω =
̅̅̅̅̅̅̅
mθ

√
, and c being the covariance 

between the real and imaginary parts of voltage change. In the next 
sections, the proposed ST-PVSA method is first validated using simula
tions, and then it is employed to estimate PV HC in a efficient manner. 

4. Validation of ST-PVSA

The proposed probability distribution of the voltage change is vali
dated on the modified IEEE 37-node test system. The nominal voltage of 
the test system is 4.8 kV. The actual distribution of the magnitude of the 
voltage change is obtained using Newton–Raphson based sensitivity 
analysis method, and the theoretical distribution is obtained using the 
proposed method of ST-PVSA. A scenario is considered for simulation 
where 9 PV units are located at random locations in the distribution 
system. The power at the actor nodes, i.e., the nodes injected with PVs, 
varies randomly due to fluctuations in PV generation. For illustration, 9 
actor nodes are chosen where change in PV generation at a particular 
time instant is modeled as a zero mean Gaussian random variable. 
However, ST-PVSA is valid for any number of actor nodes with any 
arbitrary distribution of power variation. Typically, unbalance in the 
distribution system is caused by single phase loads. Therefore, unbal
ance in our experiments is achieved by employing single-phase and two- 
phase loads in the standard three-phase test networks. The base loads 
are the same as provided in the distribution system analysis sub- 
committee report [31]. Unbalance can also be induced by unequal 
power change across different phases of the system. However, the 
magnitude of power change needs to be strong enough which also 
depend on the base loads. The covariance matrix 

∑
ΔS captures the 

spatial correlation of PV generation, which exists because of 
geographical proximity as PVs in the same region typically exhibit same 
generation profile. The diagonal elements of the covariance matrix 
contain variances that depend on the size of PV units and the off- 
diagonal elements capture the effect of geographical proximity of 
these PV units. In our simulation, the variance of change in real power 
(ΔP) is set to 5 kW and the variance of change in reactive power (ΔQ) is 
set to 0.5 kVar. The values of the correlation coefficients ρph , ρqh and ρphqh 

are set to 0.2,0.2, and -0.5, respectively for all the phases. Variance can 
be set to zero for nodes with no PVs. Now, for random impedance part, 
the mean and variance of resistance and reactance between random 
actor node and observation node 9 is calculated from data of the IEEE 
37-node test system. The value of correlation coefficient between 
resistance and reactance is 0.99. Fig. 2 compares the actual distribution 
of the magnitude of voltage change with the proposed ST-PVSA case. 
The actual distribution of ΔV9 is obtained by randomly varying powers 
of all actor nodes at phase-a and subsequently, voltage change at node 9 
is computed by using Newton–Raphson based method. Further, Monte- 
Carlo simulations (MCS) are incorporated to capture the uncertainties 
associated with the power changes. Here, voltage changes are computed 
for one million MCS. The scaled histogram of |ΔV9| is depicted through 
the orange curve in the Fig. 2. The theoretical distribution computed 
with Eqs. (18) and (19) is shown by blue curve in Fig. 2. It can be 
observed that the probability distribution computed using the proposed 
method is very close to the actual simulated distribution with 0.18 as 
Jensen-Shannon distance. Further, the execution time of our method to 
calculate the voltage change distribution in both the 37-node and 123- 
node networks are within 1 min, whereas the time exceeds 120 min in 
the classical load flow based method. Thus, ST-PVSA is order 2 faster 
compared to the conventional approach. This experiment demonstrates 
the effectiveness of the proposed ST-PVSA approach. 

5. ST-PVSA for PV hosting capacity

This section presents the methodology for computing HC with the
proposed ST-PVSA approach. As ST-PVSA provides the probability dis
tribution of voltage change at a node due to random power changes at 
random locations of the network, it suffices to identify voltage violations 
for different PV penetration levels. The procedure to determine HC be
gins with fixing the number of penetration levels say from 1% to 100% 
level at an increment of 1%. Then, the number of PV units (Nk) that need 
to be integrated for each penetration level is computed using Eqn. (26). 
Nk is determined statistically based on the distribution of real PV sizes. 
The size of actual PV installations in the state of California, USA is 
collected from the California dataset [32]. Fig. 3 depicts the scaled 
histogram of PV sizes which approximately follows a gamma distribu
tion. The penetration level is divided into various bands based on the 
percentage of total demand. For instance, k varies from 1 to 5 for 5 
bands, i.e., (0 − 20%), (21 − 40%) …(81 − 100%). A unique Nk is defined 
for each band such that the same number of PV units is used for all 
penetration levels in that particular band. In each band k, the power 
injection increases with the increasing penetration levels at Nk random 
locations. This is logical in a sense that it is not necessary to increase the 
number of PV units for simulating increasing penetration level rather it 
can be achieved by increasing the power injection in the existing PVs. 

Fig. 2. Distribution of voltage change at node 9.  Fig. 3. Distribution of PV sizes from California dataset.  
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However, the power injections cannot be increased beyond a certain 
limit due to the restriction of PV size. Therefore, Nk increases as we move 
to the higher penetration band. Nk for a particular penetration band k is 
computed as following: 

Nk =
Mean penetration level for band k

Max PV size
(26)  

where “Max PV size” comes from the PV size distribution and the mean 
penetration level is the average power injection for band k. In the third 
step, Nk is used to obtain the mean (μl

ΔS) of power change vector ΔS 
(Eqn. 4) for each penetration level l, such that μl

ΔSNl ≈ Pl. Here, Pl and Nl 

are the net power injection and PV units for penetration level l, 
respectively. The complex voltage change due to power injection is 
added to the base voltage to get the future voltage. Following the same 
arguments as mentioned in Theorem 2 of [33], the distribution of future 
voltage is shown to follow Rician with the parameters as defined in Eq. 
(22). The mean of real (μr) and imaginary (μi) parts of voltage change 
(18) are added to the corresponding parts of base voltage to get the mean 
value of the future voltage. The mean future voltage is then plugged in 
the derived Eqn. (23) to find the distribution of future voltage at all 
nodes of the network. Nodes that have a probability of voltage violation 
greater than the threshold are classified as highly vulnerable nodes, and 
violations are reported. For illustration, a violation is recorded when the 
probability of voltage violations is more than 0.5. 0.5 is unbiased and 
gives equal preference to both detection and non-detection of violations. 
The complete process is repeated for increasing penetration levels until 
the algorithm encounters the first violation. The corresponding pene
tration level is the HC of the system. “First voltage violation” refers to 
the situation when we observe voltage violations in the system for the 
very first time while increasing the PV penetration level. In this paper, 
the minimum penetration level for which the violation is observed for 
the first time is considered as the hosting capacity. Algorithm 1 provides 
the pseudo-code of ST-PVSA approach to compute HC. 

Algorithm 1. Proposed ST-PVSA method to compute Hosting capacity   
1: Fix number of penetration levels (1,2,…100%)  
2: Calculate number of PVs for a particular penetration level using Eq. (26). 
3: Compute mean and variance of power change vector corresponding to a particular 

penetration level. 
4: Use ST-PVSA to compute node voltages and track total number of voltage violations. 
5: Repeat steps 2 to 4 for different penetration levels. 
6: The penetration level that causes first voltage violations is the hosting capacity.  

To evaluate the performance of ST-PVSA in determining the HC, load 
flow based HC is used as a benchmark. Similar to the ST-PVSA approach, 
the PV penetration level is fixed from 1% to 100% level at 1% increment. 
For each penetration level, Monte Carlo simulations are repeated 10k 
times thereby creating one million different PV deployment scenarios. 
For illustration purposes, the loads on the test network are chosen as 
reported in the IEEE PES distribution system analysis subcommittee 
report [31]. However, the proposed method is generic enough to 
accommodate other loading scenarios such as daytime (10 am-2 pm) 
maximum load and daytime minimum. Finally, for each penetration 
level, Nk locations are selected randomly to allocate PV units and load 
flow is executed to track the voltage violations. For IEEE 37-node 
network, the number of PV units for each of the five penetration level 
bands are 5, 10,20, 25 and 30. The power is increased from 10 kW (1% 
penetration level) to 1100 kW (100% level) in steps of 11 kW. Fig. 4 
depicts the variation of violations count with increasing penetration 
levels. It can be observed that the proposed STPVSA approach is 100% 
accurate in estimating HC of IEEE 37-node test network. In other words, 
the penetration level predicted by ST-PVSA aligns well with those 
computed from the load flow based approach (i.e., lies within the range 
of load flow based HC values). Further, to demonstrate the scalability of 
the proposed method, the HC analysis is also validated on the IEEE 123- 
node network. 

Table 1 presents the HC values computed with the proposed ST-PVSA 
based approach and existing load flow-based method for a various 
number of scenarios. It is worth noting that for each PV penetration 
level, ST-PVSA needs to be run once (independent of scenarios), whereas 
multiple simulations are required for convergence in the load flow-based 

Fig. 4. Variation of violations count with Penetration levels.  

Table 1 
Hosting capacity with Load flow and ST-PVSA.  

Test Network Scenarios∗ 1 k (%)  10 k (%)  30 k (%)  40 k %  50 k %  60 k%  

IEEE 37 Load Flow 33 32 31 31 31 31  
ST-PVSA 33 

IEEE 123 Load Flow 44 43 42 41 40 40  
ST-PVSA 39  
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approach. For the IEEE-37 node network, ST-PVSA yields a HC of 33% 
which lies in the range of values computed with load flow based 
approach. Similarly, for the IEEE-123 test network, the ST-PVSA based 
HC value is 39%, which again intersects with that of load flow’s 
approach. Furthermore, the proposed approach is also evaluated for a 
balanced load case in the IEEE 37-node test network. The estimated 
value of HC turns out to be 41%, whereas 42% is obtained with 30 k 
simulations in the conventional approach. This demonstrates the 
generalizability of our method. Additionally, HC seems to decrease for 
an unbalanced case compared to a balanced one although all the factors 
(power change and network parameters) remain unchanged. This is 
because of non-uniformity in voltages across the buses which increases 
the probability of extreme voltages leading to violations in a relatively 
earlier stage compared to a balanced load scenario. 

Along with the high estimation accuracy, ST-PVSA offers a signifi
cant advantage in terms of computational complexity. Table 2 repre
sents the execution time of scenarios simulated in 1 for the two test 
networks. All experiments are conducted in a machine with an Intel-i7 
processor and 16 Gb RAM. It can be inferred from Table 2 that in IEEE 
123-node test network, the ST-PVSA is three orders faster than the load 
flow-based approach, and the gap will further increase as the network 
size grows. 

The above-discussed experiments demonstrate the efficacy of ST- 
PVSA for a typical snapshot type HC. Further, it will be more effective 
for a dynamic HC, which is relatively a new way of analyzing HC of 
distribution systems. Dynamic HC is not based on worst-case snapshot 
power flows. It requires probabilistic screens that consider the uncer
tainty around the time-series input variables, like hourly PV productions 
and building loads. Power flow analysis is conducted on large time- 
series data of load and PV on an hourly basis. For a real distribution 
model with thousands of nodes and one-second resolution data, simu
lations could take a few days [5]. Furthermore, the PV and load un
certainties have significant influences on hosting capacity values. Under 

this type of dynamic analysis, the proposed approach could work very 
efficiently by accurately capturing voltage violations in an acceptable 
amount of time. The performance of ST-PVSA in dynamic HC will be 
investigated as part of our future work. 

6. Conclusion

This work presents an analytical approach to compute the proba
bility distribution of voltage change at a particular node as a function of 
random change in power at random locations of the network due to 
distributed PV units. The proposed approach is validated with a con
ventional load flow based approach in two different test networks 
namely IEEE 37 and IEEE 123. The estimated probability distribution 
matches with the baseline to a high degree of accuracy (as demonstrated 
with a low Jensen-Shannon distance of 0.18). The computational 
complexity is also reduced by an order of 3 compared to the conven
tional approach. Our framework can be applied to analyze stochastic 
operations of a power distribution system. One of the use cases is shown 
by employing the proposed method to determine the hosting capacity of 
the system without investigating multiple scenarios. Our method is 
fairly accurate in identifying the hosting capacity and offers huge 
advantage in terms of computational efficiency. In the IEEE 123-node 
test network, proposed method is an order two faster compared to 
conventional load flow based approach and this gap will further increase 
as the network size grows. As part of future work, we plan to extend our 
framework for dynamic HC involving continuous time series data of load 
and PV with the system allowing violations of small duration in accor
dance with the ANSI standards. 
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Appendix A 

The change in complex voltage at any phase (say phase a) of observation node O due to change in complex power at any phase of a single actor node 
A is given as [14], 

ΔVa
OA ≈ −

[
ΔSa∗A Zaa

OA

Va∗
A

+
ΔSb∗A Zab

OA

Vb∗
A

+
ΔSc∗A Zac

OA

Vc∗
A

]

, (27)  

On expanding the complex power and shared path impedance terms, we get the following equation, 

ΔVa
OA ≈ −

[(
ΔPa

A − jΔQa
A

)(
Raa
OA + jXaa

OA

)

Va☆
A

+ …
]

,

≈ −

[(
ΔPa

AR
aa
OA + Qa

AX
aa
OA

)
+ j
(
ΔPa

AX
aa
OA − Raa

OAΔQa
A

)

(
Va,r

A − jVa,i
A
)
+
(
ΔVa,r

A − ΔVa,i
A
) + …

]

,

(28)  

On normalizing the numerator and denominator, (28) reduces to 

Table 2 
Execution time with Load flow and ST-PVSA.  

Test Network Scenarios*  1 k (min) 10 k (min) 30 k (min) 

IEEE 37 LF 1.93 18.8 55.7  
ST-PVSA 1.13 

IEEE 123 LF 43.93 400.2 1195.6  
ST-PVSA 3.91  
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ΔVa
OA ≈ −

[(
ΔPa

AR
aa
OA + ΔQa

AX
aa
OA

)
+ j
(
ΔPa

AX
aa
OA − Raa

OAΔQa
A

)

(
Va,r

A + ΔVa,r
A
)
− j
(
Va,i

A + ΔVa,i
A
) ∗

(
Va,r

A + ΔVa,r
A
)
+ j
(
Va,i

A + ΔVa,i
A
)

(
Va,r

A + ΔVa,r
A
)
+ j
(
Va,i

A + ΔVa,i
A
)+ …

]

, (29) 

Normalization segregates (29) into real and imaginary parts as shown below, 

ΔVa
OA ≈ −

[(
ΔPa

AR
aa
OA + ΔQa

AX
aa
OA

)(
Va,r

A + ΔVa,r
A
)
−
(
ΔPa

AX
aa
OA − Raa

OAΔQa
A

)(
Va,i

A + ΔVa,i
A
)

(Va,r
A + ΔVa,r

A )
2
+
(
Va,i

A + ΔVa,i
A
)2 − …

+ j
(
ΔPa

AR
aa
OA + ΔQa

AX
aa
OA

)(
Va,i

A + ΔVa,i
A
)
+
(
ΔPa

AX
aa
OA − Raa

OAΔQa
A

)(
Va,r

A + ΔVa,r
A
)

(Va,r
A + ΔVa,r

A )
2
+
(
Va,i

A + ΔVa,i
A
)2 − …

]

.

(30)  

The real part of the voltage change can be expressed as, 

ΔVa,r
OA ≈ −

⎡

⎢
⎢
⎢
⎢
⎣

(

ΔPa
AR

aa
OA + ΔQa

AX
aa
OA

)(

Va,r
A

)(

1 +
ΔVa,r

A
Va,r
A

)

(Va,r
A )

2
(

1 +
ΔVa,r

A
Va,r
A

)2

+
(
Va,i

A
)2
(

1 +
ΔVa,i

A
Va,i
A

)2 −

(

ΔPa
AX

aa
OA − ΔQa

AR
aa
OA

)(

Va,i
A

)(

1 +
ΔVa,i

A
Va,i
A

)

(Va,r
A )

2
(

1 +
ΔVa,r

A
Va,r
A

)2

+
(
Va,i

A
)2
(

1 +
ΔVa,i

A
Va,i
A

)2 − …

⎤

⎥
⎥
⎥
⎥
⎦
, (31)  

Using the same assumptions as in [14], (31) can further be simplified as, 

ΔVa,r
OA ≈ −

[(
ΔPa

AR
aa
OA + ΔQa

AX
aa
OA

)(
Va,r

A
)

(Va,r
A )

2
+
(
Va,i

A
)2 −

(
ΔPa

AX
aa
OA − ΔQa

AR
aa
OA

)(
Va,i

A
)

(Va,r
A )

2
+
(
Va,i

A
)2 − …

]

. (32)  

Similarly, the imaginary part of the voltage change can be written as, 

ΔVa,i
OA ≈ −

[(
ΔPa

AX
aa
OA − ΔQa

AR
aa
OA

)(
Va,r

A
)

(Va,r
A )

2
+
(
Va,i

A
)2 +

(
ΔPa

AR
aa
OA + ΔQa

AX
aa
OA

)(
Va,i

A
)

(Va,r
A )

2
+
(
Va,i

A
)2 − …

]

, (33)  

Eqs. (32) and (33) are rearranged by taking the common factor with power terms as shown below, 

ΔVa,r
OA ≈ −

[
ΔPa

A

(
Raa
OAV

a,r
A − Xaa

OAV
a,i
A
)

(Va,r
A )

2
+
(
Va,i

A
)2 +

ΔQa
A

(
Xaa

OAV
a,r
A + Raa

OAV
a,i
A
)

(Va,r
A )

2
+
(
Va,i

A
)2 − …

]

ΔVa,i
OA ≈ −

[
ΔPa

A

(
Raa
OAV

a,i
A + Xaa

OAV
a,r
A
)

(Va,r
A )

2
+
(
Va,i

A
)2 +

ΔQa
A

(
Xaa

OAV
a,i
A − Raa

OAV
a,r
A
)

(Va,r
A )

2
+
(
Va,i

A
)2 − …

] (34)  

Finally, the real and imaginary part of base voltages are expressed in polar magnitude form (i.e., Va,r
A =

⃒
⃒Va

A
⃒
⃒cos(ωA) Va,i

A =

⃒
⃒
⃒Va

A

⃒
⃒
⃒sin(ωA)) which reduces 

(34) to, 

ΔVa,r
OA ≈ −

[
ΔPa

A

(
Raa
OAcos

(
ωA
)
− Xaa

OAsin
(
ωA
))

⃒
⃒Va

A

⃒
⃒

+
ΔQa

A

(
Xaa

OAcos
(
ωA
)
+ Raa

OAsin
(
ωA
))

⃒
⃒Va

A

⃒
⃒

− …
]

ΔVa,i
OA ≈ −

[
ΔPa

A

(
Raa
OAsin

(
ωA
)
+ Xaa

OAcos
(
ωA
))

⃒
⃒Va

A

⃒
⃒

+
ΔQa

A

(
Xaa

OAsin
(
ωA
)
− Raa

OAcos
(
ωA
))

⃒
⃒Va

A

⃒
⃒

− …
]

.

(35)  
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