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Cracks are accounted as the most destructive discontinuity in rock, soil, and concrete. Enhancing our
knowledge from their properties such as crack distribution, density, and/or aspect ratio is crucial in
geo-systems. The most well-known mechanical parameter for such an evaluation is wave velocity
through which one can qualitatively or quantitatively characterize the porous media. In small scales, such
information is obtained using the ultrasonic pulse velocity (UPV) technique as a non-destructive test. In
large-scale geo-systems, however, it is inverted from seismic data. In this paper, we take advantage of the
recent advancements in machine learning (ML) for analyzing wave signals and predict rock properties
such as crack density (CD) – the number of cracks per unit volume. To this end, we designed numerical
models with different CDs and, using the rotated staggered finite-difference grid (RSG) technique, simu-
lated wave propagation. Two ML networks, namely Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM), are then used to predict CD values. Results show that, by selecting an opti-
mum value for wavelength to crack length ratio, the accuracy of predictions of test data can reach
R2 > 96% with mean square error (MSE) < 25e-4 (normalized values). Overall, we found that: (i) perfor-
mance of both CNN and LSTM is highly promising, (ii) accuracy of the transmitted signals is slightly
higher than the reflected signals, (iii) accuracy of 2D signals is marginally higher than 1D signals, (iv)
accuracy of horizontal and vertical component signals are comparable, (v) accuracy of coda signals is less
when the whole signals are used. Our results, thus, reveal that the ML methods can provide rapid solu-
tions and estimations for crack density, without the necessity of further modeling.

� 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Cracks (and fractures) are one of the most well-known destruc-
tive features of rocks, soil and concrete decreasing their strength
and causing instabilities in geo-systems. They are mostly induced
due to a relief of in-situ stresses and/or changing of other environ-
mental factors such as pressure, temperature, and precipitation, for
example, during weathering. Their effects have been studied in a
verity of fields such as civil and mining engineering (e.g., concrete
and pavement characterization, slope stability, blasting, tunneling,
and coal-bed methane mining) (Jing and Hudson, 2002; Hoek and
Martin, 2014; Prasanna et al., 2016; Karimpouli et al., 2020a,
2020b; Rezanezhad et al., 2019; Zhang et al., 2021b), hydrocarbon
and geothermal exploration (e.g., reservoir characterization, rock
physics inversion, and hydraulic fracturing) (Hou et al., 2019; Bai
and Tahmasebi, 2020, 2021; Kamali and Ghassemi, 2020;
Karimpouli et al., 2013; van der Voet et al., 2020; Zhuang et al.,
2020), image enhancement for complex microstructures
(Kamrava et al., 2019), and even material science (e.g., microstruc-
ture characterization) (Blackshire, 2017). A comprehensive review
of the advances and applications of machine learning in geo-
sciences and geo-materials can be found elsewhere (Tahmasebi
et al., 2020). Also, Bayar and Bilir (2019) presented a comprehen-
sive literature survey in crack detection methods in a variety of
image types from X-ray tomography and digital photos to radar
images using image processing and machine learning (ML) algo-
rithms. For more info, see Bayar and Bilir (2019) and references
therein.
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It has been shown that evaluation of crack density (CD), defined
as the number of cracks per unit volume, is highly essential to bet-
ter understand the behavior of geo-materials. The CD is not, how-
ever, an easy-to-measure parameter and is indirectly estimated
either qualitatively or quantitatively from limited data. Visual
inspection is a common method for evaluation of CD from conven-
tional cameras and microscopic images or even from Scanning
Electron microscopy images. Nasseri et al. (2007) microseismic
events are the other source of data, which are induced due to frac-
turing and rock damage as the rock mass is brought to failure
under high stress (Cai et al., 2001). Cai et al. (2001) monitored
microseismic events near an excavation and represented them as
fracture density of the rock mass. Other widely accepted methods
are based on propagating elastic wave through rock samples and
velocity measurement with the ultrasonic pulse velocity (UPV)
technique. These measurements are then inverted into CD using
the theory of wave propagation in porous media which was intro-
duced by Biot (Biot, 1962, 1956) and Gassmann (Gassmann, 1951),
which is known as Biot-Gassmann theory (Thomsen, 1985) and
extended afterward. Although this theory is widely accepted for
inversion of the velocity of porous rocks, it is not consistent with
low porosity cracked-rocks. Therefore, other derivatives, namely
Biot-Consistent (Thomsen, 1985) and Self-Consistent (Budiansky,
1965; Hill, 1965) theories, were extended to characterize the
effects of cracks. Some other poroelasticity models were intro-
duced to capture fluid effects on the cracked rocks (Ba et al.,
2017; Zhang et al., 2019, 2020). Byun et al. (2015) used the Biot-
Consistent theory and predicted CD of cracked-rocks using wave
velocities obtained from lab tests. They found that compressional
wave velocity and shear modulus of grains are the most sensitive
parameters in this equation. Kachanov (1993) developed the Self-
Consistent theory for cracks and pores in a specific effective med-
ium (CPEM) to be applied in rocks with cracks. Based on this for-
mulation, Schubnel et al. (2006) and Nasseri et al. (2007)
inverted CD of rock from elastic wave velocities using a least-
square technique. Although they showed that it is possible to con-
duct such an inversion simply, numerical studies by Orlowsky et al.
(2003) and Saenger et al. (2004) revealed that Differential Effective
Medium (Berryman, 1992) theory is the most suitable scheme for
cracked-rocks. In a recent study, Yoon (2020) combined both
Biot-Consistent and CPEM formulations and derived CD and crack
aspect ratio in some artificially weathered rocks. Clearly, all these
methods are affected by analytical limitations and simplifications.
For example, the anisotropy of a real rock medium, and the aspect
ratio, shape, and distribution of real cracks, are not fully considered
in such analytical studies.

Machine Learning (ML) based methods are accounted as power-
ful and intelligent methods, which have been widely used for esti-
mation, classification, and clustering. Recent advancements in
deep computing showed that ML-based methods are applicable
in many fields of sciences from machine vision (Nasirahmadi
et al., 2019), medical imagery (Bernal et al., 2019) to even geo-
sciences (Waldeland et al., 2018; Xiong et al., 2018; Karimpouli
et al., 2020b; Kamrava et al., 2020; Karimpouli and Tahmasebi,
2020; Tang et al., 2021). This study aims to investigate the capabil-
ity of these methods for the estimation of CD from waveform
instead of simple wave velocity. Thus, we consider a digital model
with a range of CD and then simulate the UPV test using rotated
staggered finite-difference grid (RSG) technique (Saenger and
Shapiro, 2002) to numerically compute waveform signal, which
could be transmitted, reflected, or even coda waves. Such a signal
can be regarded as a 1-dimensional (1D) input array for ML net-
works. 1D data have been used for many other purposes such as
speech recognition (Zhang et al., 2017), seismic signal processing
(Duan and Zhang, 2020), and earthquake applications (e.g., for
2

earthquake detection, phase picking, and early warning)
(Mousavi et al., 2020; Zhang et al., 2021a). There are many types
of ML networks that could be used for such a purpose (e.g., Bilir
et al., 2016). Among them, Convolutional Neural Networks (CNN)
(Krizhevsky et al., 2017) and Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) are two well-known and
highly beneficial networks, which are used in this study. CNNs
extract high-order feature vectors of the input signal based on
small convolutional kernels and translate them into the output
using a Fully Connected Network (FCN). For example, Saenger
et al. (2021) showed that CNNs are capable to be trained for predic-
tion of damage zone characteristics of concrete using Coda waves.
However, LSTMs belong to the group of recurrent networks, which
selectively remember patterns for long durations of time and pre-
dict the output accordingly. Results from laboratory measurements
have revealed that the nonlinearity of the acoustic signal (from
UPV) increases by rising CD in both rock and concrete (Kim et al.,
2020). Thus, it is theoretically understood that ML methods are
able to capture such a relationship and produce reliable predictions
for unseen cases, however, it has been tested neither numerically
nor experimentally. The main objective of this paper is to evaluate
the performance of ML methods for prediction CD from acoustic
signals. From an application point of view, it would be beneficial
if ML methods could be trained by 1D signals for such predictions.
However, we aim to answer: (1) Which method (CNN or LSTM)
does performs better? (2) What kind of acoustic waves (either
transmitted or reflected waves) are the most appropriate waves
for this problem and (3) Are Coda waves capable to be used for this
purpose?

2. Methodology

2.1. Numerical modeling and data

Coda waves are considered to be the result of multiple scatter-
ing of seismic waves at material heterogeneities (Herraiz and
Espinosa, 1987). For material characterization, body as well as sur-
face waves are playing a particularly important role in this interac-
tion. Therefore, coda waves provide a seismographic fingerprint of
the material heterogeneities. Coda waves provide decisive infor-
mation about the mechanisms of scattering and attenuation. One
goal of this paper is to analyze this mechanism for predicting the
effective elastic properties of cracked media induced by CD using
ML.

A rotated staggered-grid (RSG) finite-difference scheme
(Saenger et al., 2000) is used to propagate the seismic wavefield
in the forward simulations. The RSG uses rotated finite-difference
operators, leading to a distribution of modelling parameters in an
elementary cell where all components of one physical property
are located only at one single position. This can be advantageous
for modelling wave propagation in anisotropic media or complex
media, including high-contrast discontinuities because no averag-
ing of elastic moduli is needed. Coda wave modelling is therefore
a possible application of this technique. With regard to previous
studies (Saenger and Shapiro, 2002; Krüger et al., 2005), we
demonstrated that the RSG-technique is well-suited and accurate
for this purpose.

The cracked region is filled with randomly orientated cracks.
For the models with non-intersecting cracks the same procedure
as in Saenger and Shapiro (2002) is used: if two cracks intersected
during random selection, the more recent crack is eliminated and a
random choice is made again. For the definition of the CD param-
eter, we use (Kachanov, 1992):

CD ¼ 1
A

Xn

k¼1
l2k ð1Þ
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where 2lk is the length of rectilinear cracks, n is the number of
cracks and A is the representative area. Fig. 1 left-hand side shows
a typical model with CD = 0.3. The full model contains 1000 � 4000
grid-points with an interval of 0.00005 m. For the homogeneous
background we set VP = 5100 m/s, VS = 2944 m/s and qg = 2500-
kg/m3, while for the dry cracks we set VP = 0 m/s, VS = 0 m/s and
qg = 0.0001 kg/ m3, which approximates a vacuum. Thus, each addi-
tional crack increases the porosity.

We perform our modelling experiments with periodic boundary
conditions in the horizontal direction. For this reason, our elastic
models are also generated with this periodicity. Hence, it is possi-
ble for a single crack to start at the right side of the model and to
end at its left side. To obtain the seismograms in different models
we apply a body force line source at the top of the model. The plane
wave generated in this way propagates in a downward direction
through the fractured medium (Fig. 1). A finite-difference operator
of second order is used in time as well as in space. The source
wavelet in our experiments is always the first derivative of a Gaus-
sian, with different dominant frequencies, and with a time incre-
ment Dt = 2.1 � 10�9 s. With two horizontal lines of receivers at
the top (depth = 0.00005 m) and in the bottom of cracked region
(depth = 1001 � 0.00005 m), top and bottom receivers in Fig. 1,
it is possible to record the mean peak amplitude of the plane wave
and the coda waves caused by the inhomogeneous region. The top
Fig. 1. Model configuration an
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and bottom receiver lines will record mainly reflected waves and
transmitted waves, respectively. These receivers are set to record
wave point movements in x- and z-direction individually, known
as x- and z-components in this study (Fig. 1). The receiver lines
make it possible to record wave movement in 2D section (time-
distance), which we call them 2D signals. Thus, each 2D signal
could be in x- or z-component (Fig. 1). To generate 1D signals,
we compute an average signal of all receivers in a line as shown
in Fig. 1.

A typical simulation with a model size of 5 cm � 20 cm consists
of 4 million grid points and a simulation with 40,000 time steps
takes about 5 min on one node of a mid-size cluster computer.
>10,000 simulations are performed for this study with different
CDs (0.1, 0.2, 0.3 and 0.4), wavelengths (0.0127, 0.051 and
0.204m) and crack length (0.15, 0.5 and 2mm). For example, Figs. 2
and 3 show 2D and 1D transmitted signals, respectively, in both x-
and z-components with a wavelength of 0.0127 m and different
CDs of 0.1, 0.2, 0.3 and 0.4. According to these figures, different pat-
terns are generated by different CDs, which are theoretically suit-
able for intelligent methods to capture their complex relations. In
the z-component, the high amplitude signal shows arrival of the
plane wave. Clearly, the arrival time depends on the CD value
and is accounted as an informative attribute for the ML methods
to learn the relation. We generate new signals by removing these
d various generated data.



Fig. 2. 2D transmitted signals in z- and x-directions and corresponding coda signals with wavelength of 0.0127 m and different CDs of 0.1, 0.2, 0.3 and 0.4.

Fig. 3. (a) Simulated and (b) normalized 1D transmitted and coda signals in z-direction with a wavelength of 0.0127 m and different CDs of 0.1, 0.2, 0.3 and 0.4.

S. Karimpouli, P. Tahmasebi and E.H. Saenger Geoscience Frontiers 13 (2022) 101277

4



S. Karimpouli, P. Tahmasebi and E.H. Saenger Geoscience Frontiers 13 (2022) 101277
high amplitudes known as the coda signal (Figs. 2 and 3). The idea
behind is to find the ML performance just based of perturbations
caused by cracked region.

Please note, due to an integration-effect of the line source the
wave-induced at the top is Gaussian-shaped with a high low-
frequency content (in contrast to the first derivative of a Gaussian
of the source). Strictly speaking, the wavelength used in this paper
is an upper bound of 90% of the corresponding frequencies (be-
cause the wavelength was calculated with the corresponding fun-
damental frequency of the source wavelet). To find the effect of
crack length and wavelength on the generated signals, we define
wl/cl as wavelength to crack length ratio for each model and pro-
duce the signals accordingly. Fig. 4 shows 1D transmitted signals
in z-direction with CD of 0.2 and different wl/cl = 0.64, 2.5, 8.5,
34 and 136. It is obvious that by increasing of wl/cl ratio a
smoother signal is generated. During our investigation we will
introduce some optimum ranges for wl/cl with more reliable
predictions.

2.2. Machine learning methods

In this study, to find a robust and efficient method, two ML net-
works are used: the CNN and LSTM. These methods are extensively
discussed elsewhere (Lecun et al., 1998; Krizhevsky et al., 2017;
Aloysius and Geetha, 2018; Yu et al., 2019). However, a brief
review of them is firstly introduced and, then, their specific archi-
tectures, used in this study, are presented. Our networks have been
implemented in Python using Keras interface (based on Tensorflow
platform) and, therefore, layers are named accordingly.

2.2.1. Architecture of the CNNs
The CNNs are composed of two main parts: feature extraction

and conventional neural network. In the feature extraction part,
small size kernels are convolved with the data and the results
are activated using an activation function such as ReLU (Nair and
Hinton, 2010). This leads to extract new features in a number of
channels called convolutional layers. These layers are then down-
sampled through a moving window selecting either minimum,
average or maximum values to produce features maps (or, in 1D,
feature vectors). The extracted and downsampled features are used
as the input layer of the conventional neural network part, which
makes a connection between features and the output layer. The
basic relation between one layer and the next is written as:
Fig. 4. (a) Simulated and (b) normalized 1D transmitted signals in z-dire
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Y ¼
X
i

Wi � Xi

 !
þ b ð2Þ

where W is the kernel (or weight matrix) and X is the input image
(or last layer) each with i channels. b is the bias vector and � is
either convolution operation or dot product in convolutional layers
and hidden layers. The CNN uses an optimization function such as
adam (Kingma and Ba, 2014), trying to minimize a loss function
such as mean square errors (MSE), which is a criterion for difference
between measured observations and estimation of the network.
During the training phase, all connecting weights are optimized as
the CNN could produce valid estimations for new data (e.g., test
data).

There are many well-known CNN architectures for different
purposes (Aloysius and Geetha, 2018), but here we designed speci-
fic architectures, which are best performed for our data. Table 1
reports the main features of all CNNs in this study. The general
architecture used for all data are very similar, but there are also
minor differences. For example, as it is reported in Table 1, the
CNN used for 1D-transmitted waves contain 4 convolutional layers
with 16, 32, 64, and 128 channels. Each of these layers are con-
volved with a kernel size of 9, 7, 5 and 3. They are followed by a
Maxpooling layer with a pool size of 2, 10% Dropout layer and
Bachnormalization. The downsampled features are transformed
to the output (CD) using two Dense layers with 1024 and 1 chan-
nels. The ‘Tanh’ and ‘Sigmoid’ activation functions are used in Dense
layers. In all networks, adam optimization function with a learning
rate of 0.01 and MSE loss function is used. In some cases, we
decreased the learning rate into 0.001.

2.2.2. Architecture of LSTM
When data from a sequence, for example in a sentence where

every word or data depends on the previous ones, all previous
inputs have to be considered for predicting the output. Traditional
neural networks are designed to only use the data without consid-
ering the connection between them, while, in some cases such as
this study, we need a network that can take the relationships
between the input data into account while producing the output.
Recurrent neural networks are designed to address this issue.
When the sequence of data is short, such as a simple sentence,
the recurrent neural networks (RNN) perform finely. However, a
special type of RNN called long short-term memory (LSTM) per-
forms more efficiently when the sequence becomes longer. In fact,
ction with CD of 0.2 and different wl/cl = 0.64, 2.5, 8.5, 34 and 136.



Table 1
The architecture of the CNNs used in this study (ch: number of channels; k: kernel size; ReLU-, Tanh-, Sigmoid: activation functions).

Input layer 2D transmitted waves 1D transmitted waves 1D transmitted coda waves 1D reflected waves 1D transmitted coda waves

Conv(2D or 1D) 32 ch, 9 � 9 k, ReLU 16 ch, 9 k, ReLU 128 ch, 3 k, ReLU 64 ch, 9 k, ReLU 128 ch, 3 k, ReLU
Maxpooling pool size: 2
Dropout 10%
Bachnormalization
Conv(2D or 1D) 64 ch, 7 � 7 k, ReLU 32 ch, 7 k, ReLU 256 ch, 3 k, ReLU 128 ch, 7 k, ReLU 256 ch, 3 k, ReLU
Maxpooling pool size: 2
Dropout 10%
Bachnormalization
Conv(2D or 1D) 128 ch, 5 � 5 k, ReLU 64 ch, 5 k, ReLU 512 ch, 3 k, ReLU 256 ch, 5 k, ReLU 512 ch, 3 k, ReLU
Maxpooling pool size: 2
Dropout 10%
Bachnormalization
Conv(2D or 1D) 256 ch, 3 � 3 k, ReLU 128 ch, 3 k, ReLU – 512 ch, 3 k, ReLU –
Maxpooling pool size: 2 – pool size: 2 –
Dropout 10% – 10% –
Bachnormalization – –
Dense 1024 ch, Tanh 1024 ch, Tanh 1024 ch, Tanh 1024 ch, Tanh 1024 ch, Tanh
Dropout 30%
Bachnormalization
Dense 1 ch, Sigmoid 1 ch, Sigmoid 1 ch, Sigmoid 1 ch, Sigmoid 1 ch, Sigmoid
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LSTM are designed to address the shortcoming of RNN when the
sequence of data is large. They decide what information should
be kept or discarded through their different gates to make accurate
predictions.

All signals, here, are considered as time sequences, thus we use
LSTM to find how they could learn the relations between input sig-
nals and the CDs. The architecture designed for this purpose is sim-
ilar for all types of signals and summarized in Table 2. The main
layer is a LSTM layer with 512 units, which is followed by a Dense
layer with 1024 channels and a Bachnormalization layer. A Drop-
out layer with 30% is used after both LSTM and Dense layers. The
CD value is predicted by a final Dense layer with 1 channel. In all
layers ReLU is used as the activation function.
3. Results and discussion

Two types of ML methods (CNN and LSTM), with the mentioned
architectures, were used for predicting CD values from five sets of
data with various wl/cl ratios each with 1000 simulations. In each
case, the transmitted and reflected waves and their following coda
waves in two perpendicular (i.e. z- and x-) components were
assume as the input data. All data were normalized into [0, 1].
We used soft-clipping normalization for the signals (Zhu et al.,
2019):

Sn ¼ 1
1þ e�kSo

ð3Þ

where So and Sn are original and normalized signals and k is chosen
empirically based on the maximum amplitude in the original signal.
Since CDs are in the range of [0.05, 0.4], they were simply multi-
plied by 2.5 to produce normalized outputs. All 1000 models (for
Table 2
The architecture of the CNNs used in this
study (ch: number of channels, ReLU: activa-
tion functions).

Input layer All types of 1D-signlas

LSTM 512 units, ReLU
Dropout 30%
Dense 1024 ch, ReLU
Dropout 30%
Bachnormalization
Dense 1 ch, ReLU

6

each wl/cl) are divided into 75% and 25% as training and validation
data, respectively. Since validation data are not seen by the network
during the training phase, they were also used as test data. We used
two popular criteria for evaluation of predictions namely MSE and
coefficient of determination (R2) with the following relations:

MSE ¼ 1
n

Xn
i¼1

CDi � cCDi

� �2
ð4Þ

R2 ¼ 1� SSres
SStot

ð5Þ

where CD and cCD are original and predicted CDs for n data. Also SStot
and SSres are the total and residual sum of squares errors regarding
mean and predicted CDs, respectively.

To have a better arrangement, we divided the results into trans-
mitted and reflected waves as follows and, in each part, we will
discuss the capabilities of the ML methods.

3.1. Transmitted waves

Tables 3 and 4 are summaries of results obtained for transmit-
ted waves in z- and x-components, respectively. These results
reveal that both CNN and LSTM are valid enough to capture the
highly complex relationship between input signals and output
CDs. Since their accuracies are very close, it can be concluded that
both of them are reliable methods for CD predictions.

According to Table 3, the best performance of the MLmethods is
in the case with wl/cl = 34. Although all cases are discussed in
detail, here we examine this case as the best predictions. To have
a better view of these results, Fig. 5 illustrates loss values and pre-
dictions for various methods and data of this case. Based on MSE
and R2 values in this figure, both CNN and LSTM produced promis-
ing predictions of CD either for 2D, 1D, or coda transmitted waves.
In the following sub-sections, we will discuss them in detail.

Table 4 summarizes the results for the same model (wl/cl = 34),
but for x-component signals. A comparison of these results with z-
component (Table 3) demonstrates that the ML networks perform
similarly as z-component data in this case. Our investigation
showed that the same trends as x-component data are seen in z-
component and, therefore, we avoid reporting similar results.
Another reason for not going through x-component data is that
they are not routine data in lab tests, and one may need special
receivers to record signals in x-component.



Table 3
ML results for prediction of CD from transmitted waves (z-component).

wl/cl ML Phase Criterion 2D transmitted waves (z-comp) 1D transmitted waves (z-comp) 1D transmitted coda waves (z-comp)

0.64 CNN Train MSE (e-4) 10 4 10
R2 (%) 98.37 99.40 98.25

Test MSE (e-4) 40 46 192
R2 (%) 93.79 93.30 70.01

LSTM Train MSE (e-4) – 14 20
R2 (%) – 97.8 96.88

Test MSE (e-4) – 63 136
R2 (%) – 90.8 77.8

2.5 CNN Train MSE (e-4) 4 4 3
R2 (%) 99.42 99.38 99.55

Test MSE (e-4) 8 12 63
R2 (%) 98.65 98.17 87.57

LSTM Train MSE (e-4) – 7 21
R2 (%) – 98.82 96.63

Test MSE (e-4) – 10 76
R2 (%) – 98.30 86.66

8.5 CNN Train MSE (e-4) 2 4 2
R2 (%) 99.31 99.31 99.64

Test MSE (e-4) 4 5 29
R2 (%) 99.31 99.08 95.62

LSTM Train MSE (e-4) – 5 31
R2 (%) – 99.17 94.90

Test MSE (e-4) – 5 42
R2 (%) – 99.28 93.54

34 CNN Train MSE (e-4) 4 4 3
R2 (%) 99.36 99.44 99.52

Test MSE (e-4) 5 6 25
R2 (%) 99.24 99.02 96.31

LSTM Train MSE (e-4) – 4 10
R2 (%) – 99.32 98.48

Test MSE (e-4) – 9 20
R2 (%) – 99.04 97.13

136 CNN Train MSE (e-4) 11 10 17
R2 (%) 98.19 98.48 97.46

Test MSE (e-4) 11 16 74
R2 (%) 98.27 97.35 88.96

LSTM Train MSE (e-4) – 15 41
R2 (%) – 97.72 93.42

Test MSE (e-4) – 17 51
R2 (%) – 97.22 92.36

Table 4
ML results for prediction of CD from transmitted waves (x-component).

wl/cl ML Phase Criterion 2D transmitted waves (x-comp) 1D transmitted waves (x-comp) 1D transmitted coda waves (x-comp)

34 CNN Train MSE (e-4) 3 4 25
R2 (%) 99.49 99.42 99.09

Test MSE (e-4) 6 5 34
R2 (%) 99.08 99.29 94.93

LSTM Train MSE (e-4) – 3 45
R2 (%) – 99.51 93.20

Test MSE (e-4) – 3 50
R2 (%) – 99.54 92.47
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With our data set, it was possible to use both x- and z-
components as the input data with two channels. However, our
studies showed that no drastic improvement is seen regarding to
what we have in each individual component. Therefore, we again
avoid repeating similar results.
3.1.1. Effect of wl/cl ratios
As mentioned before, wl/cl ratio is one of the most important

parameters in this study since it controls perturbation of the input
signal which directly affects the CD predictions. In fact, one needs
to use high frequency or low wavelength signal if micro-structure
of rock such as pore, crack, and/or fracture are investigated. Never-
theless, the question is how long should be signal wavelength to be
7

used in the ML methods? We generated numerical models for five
sets of data with wl/cl of 0.64, 2.5, 8.5, 34, and 136 to explore this
effect. Fig. 6 shows the variation of MSE and R2 for various wl/cl for
transmitted waves. Based on these plots, the optimum range could
be introduced as 5 � wl/cl � 50. The MSE and R2 are minimum and
maximum in the case of wl/cl = 34 as the best case in this study. By
increasing wl/cl to 136, input signals are less affected by the cracks
(see Fig. 4) leading to poorer predictions. Decreasing this ratio has
the same effect, but this time it is due to strong effects of cracks
which generate highly perturbed signals making the prediction
process more complex. Experimentally speaking, using a normal
transducer producing signals with 100–200 kHz frequencies, the
ML methods can be applied for CD prediction for crack lengths
about 0.75–1.5 mm.



Fig. 5. Loss and prediction values of different methods (CNN, LSTM) for different phases (train, validation and test data) and different transmitted data (2D, 1D and coda) for
the case of wl/cl = 34 as the best cases.
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3.1.2. Comparison of 2D and 1D data
TherearemanysuccessfulapplicationsofCNNwith2D inputdata

(see Introduction). Here, we aim to evaluate such a capability for CD
predictions. However, from a practical point of view, recording such
a 2D section (t-x) is not straightforward and special receivers are
8

needed. The conventional receivers in the laboratory or in the field
(geophone)recordjusta1Dsignalalongthetimeand,therefore,these
kindsofsignalsaremoredesiredtobeusedasinputsforMLnetworks.

Fig. 7 illustrates MSE and R2 values for CD predictions based on
2D and 1D input signals. As expected, predictions by 2D input sig-



Fig. 6. The effect of wl/cl ratio on (a) MSE and (b) R2 values of ML predictions.

Fig. 7. (a) MSE and (b) R2 (%) values of CNN for 2D and 1D signals.
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nals are better. It is due to more features hidden in 2D signals,
which a CNN can use them to find the relation between input
and outputs much easier. However, with a slight difference, 1D sig-
nals produce someway the same accurate predictions although
they contain less features relative to 2D signals. This means hidden
features in 1D signals are informative enough to train a CNN for the
purpose of CD prediction. This is an important result of this work
since it demonstrates that even with the common receivers and
1D signals in the lab, the ML methods still could be trained to learn
how to produce reliable predictions.
3.1.3. Comparison of 1D and 1D-coda signals
A powerful feature, which helps the ML methods to learn the

relation between input signals and corresponding CDs, is the time
of the first arrival signal (Figs. 2–4). Increasing CDs leads to
decreasing effective elastic parameters and, therefore, lower wave
velocity. Subsequently, longer arrival time for receiving first arri-
vals is needed. Even this small variation can be extracted by the
ML methods. It is interesting to see what happens if we remove
the first arrivals and train the networks with just coda signals.

Fig. 8 compares the accuracies of the CNN and LSTM for predict-
ing CDs from 1D and their corresponding coda waves. As expected,
removing first arrivals decreased the accuracy of predictions in
Fig. 8. (a) CNN and (b) LSTM perform
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both methods, however, they are still reasonable in the optimum
range (5 � wl/cl � 50). The MSE are lesser than 29e-4 and 42e-4
and R2 values are higher than 95.62% and 93.54% for CNN and
LSTM, respectively. These results are also promising since they
indicate that the ML networks can be trained even if we miss the
first arrivals in the data and just coda waves are available.
3.2. Reflected waves

Reflected waves are desired in many seismic applications as
well as ultrasonic measurements. This study showed that the ML
methods are proper choices for CD prediction using transmitted
waves. However, the question is how well CD predictions are if
reflected waves are used as the input signals? To this end and using
a similar procedure as the previous section, we used the same ML
architectures for the CNN and LSTM (Tables 1 and 2). Then, the ML
networks were trained after normalizing and dividing data using
the reflected signals. Tables 5 and 6 show the results for z- and
x-components of reflected data for different wl/cl of 0.64, 2.5, 8.5,
34 and 134. Similar to the transmitted data, both CNN and LSTM
could be an effective candidate ML method for CD predictions.
The results of the case with wl/cl = 34 can be introduced again as
the best case with the most reliable predictions. Fig. 9 shows the
ance for 1D and 1D-coda signals.



Table 5
ML results for prediction of CD from reflected waves.

wl/cl ML Phase Criterion 1D transmitted waves 1D transmitted coda waves

0.64 CNN Train MSE (e-4) 4 9
R2 (%) 99.34 98.61

Test MSE (e-4) 168 209
R2 (%) 70.91 66.94

LSTM Train MSE (e-4) 290 32
R2 (%) 97.55 95.08

Test MSE (e-4) 316 361
R2 (%) 50.33 45.31

2.5 CNN Train MSE (e-4) 4 2
R2 (%) 99.31 99.96

Test MSE (e-4) 83 80
R2 (%) 87.40 87.64

LSTM Train MSE (e-4) 25 13
R2 (%) 95.81 97.79

Test MSE (e-4) 174 199
R2 (%) 73.38 68.20

8.5 CNN Train MSE (e-4) 6 5
R2 (%) 99.00 99.17

Test MSE (e-4) 25 29
R2 (%) 95.73 95.15

LSTM Train MSE (e-4) 15 20
R2 (%) 97.48 96.74

Test MSE (e-4) 85 106
R2 (%) 86.46 83.45

34 CNN Train MSE (e-4) 5 6
R2 (%) 99.25 99.11

Test MSE (e-4) 18 22
R2 (%) 97.11 96.70

LSTM Train MSE (e-4) 8 18
R2 (%) 98.76 97.19

Test MSE (e-4) 22 42
R2 (%) 96.54 93.81

136 CNN Train MSE (e-4) 45 55
R2 (%) 96.42 91.28

Test MSE (e-4) 43 70
R2 (%) 93.46 89.97

LSTM Train MSE (e-4) 32 78
R2 (%) 94.20 88.32

Test MSE (e-4) 49 84
R2 (%) 91.50 85.88

Table 6
ML results for prediction of CD from reflected waves (x-component).

wl/cl ML Phase Criterion 1D reflected waves (x-comp) 1D reflected coda waves (x-comp)

34 CNN Train MSE (e-4) 5 8
R2 (%) 99.18 98.74

Test MSE (e-4) 9 28
R2 (%) 98.59 95.62

LSTM Train MSE (e-4) 5 22
R2 (%) 99.22 96.48

Test MSE (e-4) 12 46
R2 (%) 98.27 92.16
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performance of the CNN and LSTM for this case, which are some-
how comparable to each other. This emphasizes that we can candi-
date both methods for CD predictions. It is implied that these
predictions are less accurate than those predicted by transmitted
signals, however, MSE and R2 values shows that they are promising
results indicating that the ML methods can also be used for CD pre-
diction even with reflected signals. This could be an interesting
output for active/passive seismic applications, where reflected
and/or coda waves are recorded.

Similar to the last section, we produced results for x-component
of reflected signals (Table 4) with wl/cl = 34. It is observed that
similar results relative to the z-component are obtained. Since
other results and their trends are very similar to the z-component,
we avoid repetition.
10
3.2.1. Effect of wl/cl ratio
To explore the effect of wl/cl on CD predictions from reflected

signals, the same models with wl/cl = 0.64, 2.5, 8.5, 34, 136 were
used. Fig. 10 illustrates these results as MSE and R2 values. Accord-
ing to these plots, we can introduce 10 � wl/cl � 100 as the opti-
mum range and again the wl/cl = 34 as the best case. Other wl/cl
values beyond this range lead to less accurate predictions, which
we have discussed them in section 3.1.1.

3.2.2. Comparison of 1D and 1D-coda signals
As demonstrated, first arrivals could be a supportive feature

steering prediction into the right values. However, it interesting
to see how well predictions are using just coda waves. Fig. 11
shows some plots of MSE and R2 values for 1D and 1D coda waves.



Fig. 9. Loss and prediction values of different methods (CNN, LSTM) for different phases (train, validation and test data) and different reflected data (1D and coda) for the case
of wl/cl = 34 as one of the best cases.

Fig. 10. The effect of wl/cl ratio on (a) MSE and (b) R2 values of ML predictions.
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Fig. 11. (a) CNN and (b) LSTM performance for 1D and 1D-coda signals.
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It implies that coda waves are less accurate, however, their differ-
ences are very small declaring that they could be used in such
studies if wl/cl is selected in the optimum range.

4. Conclusions

In this study, the capabilities of the ML methods were investi-
gated for the prediction of CD from waveform signal traversing
through cracked models. These models were numerically gener-
ated with different values of CD. The background is a homogenous
material and cracks are supposed to be in dry condition. A plane
wave was propagated through the model using an RSG finite-
difference method. By positioning two series of receiver lines at
the top and bottom of the crack region, we recorded reflected
and transmitted waves in both x- and z-component. Each series
of receivers produces a 2D section of signals and we produced a
1D signal by averaging on all receivers in each section. Besides,
by removing the first arrival high-amplitude signals, we also gen-
erated coda waves. All types of signals were generated for five
wl/cl ratios of 0.64, 2.5, 8.5, 34, and 136 and 1000 models for each
wl/cl. Each type of these signals was assumed as an individual
input and was used to predict CD values.

The CNN and LSTM networks were used in this study. All signals
were normalized using soft-clipping normalization and training-
test data were divided by 75%–25%. Results showed that the accu-
racy of predictions for test data could reach R2 > 96% with
MSE < 25e-4. According to these results, we can conclude as
follows:

(1) Both the CNN and LSTM networks are powerful enough to
learn the complex relations between the input signals and
CD values.

(2) There are optimum ranges to reach the best perditions,
which are 5 � wl/cl � 50 and 10 � wl/cl � 100 for the trans-
mitted and reflected signals, respectively.

(3) Both the transmitted and reflected signals are accurate
enough. However, the accuracy of transmitted signals is
slightly higher than the reflected signals.

(4) The 2D signals produce marginally better predictions than
1D signals. However, 1D signals are still valid enough to be
used as they are more common to be recorded in reality.

(5) Signals in both components could be used for prediction as
their accuracy are comparable. This implies that a conven-
tional receiver could easily be used for such purposes.

(6) Although the accuracy of coda signals is less than the whole
signals, they are still highly accurate (R2 > 92%) in the best
cases for transmitted and reflected signals and in both x-
and z-component. This shows that the coda waves are still
informative enough to be used as input data in the ML
networks.
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