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A B S T R A C T

Background: Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder characterized by 
deterioration of the substantia nigra, resulting in a deficiency of dopamine. PD is considered a movement dis-
order associated with numerous non-motor symptoms related to Autonomic Nervous System failures which can 
precede the motor ones. Therefore, their awareness could be helpful  in the diagnosis of PD at an early stage. 

Methods: Heart Rate Variability (HRV) is assessed by time and frequency domain indices, and by nonlinear 
indices based on symbolic dynamics and multiscale symbolic entropy. The features obtained were used to classify 
between PD patients and control volunteers using a support vector machine. Volunteers performed cardiovas-
cular autonomic reflex tests: active standing, post- hyperventilation and controlled breathing. 

Results: Temporal and frequency indices showed significantly lower values in PD patients compared to 
control volunteers. Symbolic dynamics and multiscale symbolic entropy results suggest a decrease in the 
complexity of the HRV signal in PD patients, in contrast with a more variable pattern of words for control 
volunteers. During controlled breathing differences between groups were found with most of the indices 
computed. Additionally, classification process achieves good separability during cardiorespiratory maneuvers 
(>95% of accuracy) and features based on symbolic dynamics showed high discrimination between groups. 

Conclusions: The results found in this work suggest that the proposed methodological approach can classify 
PD patients in an early disease stage from healthy controls and give additional information about the cardio-
respiratory system, which could be useful for diagnosis and follow up of PD patients.   

1. Introduction

The definition of Parkinson’s Disease (PD) is the loss or degeneration
of the dopaminergic neurons in the substantia nigra. The most common 
neurodegenerative causes of Parkinsonism are alpha-synucleinopathies 
and these disorders are defined based upon the protein that accumu-
lates within degenerating neurons. The most common alpha- 
synucleinopathy in PD patients is Lewy pathology (LP), LP is gener-
ated by the misfolding of the protein alpha-synuclein, which makes it 
insoluble and forms intracellular aggregates in neurons known as Lewy 
bodies and within cell processes, called Lewy neurites. Misfold alpha- 
synuclein in PD has not only an abnormal conformation that generates 
aggregation, but it also has modifications including phosphorylation and 
oxidative damage [1]. The inflammation induced by alpha-synuclein 

affects the optimal neuronal functioning, and it is intimately involved 
in the pathogenetic dysfunction underlying PD. Thus, all this indicates 
that alpha-synuclein plays a central role in PD’s pathogenesis [2]. 

It has been known for many years that LP extends beyond the sub-
stantia nigra and a staging scheme has been proposed [3]. However, 
subsequent iterations of this scheme proposed that autonomic neurons 
in peripheral, autonomic ganglia and central autonomic neurons of the 
spinal cord may be affected before the vagus’ dorsal motor neurons [1]. 

The clinical description of PD consists of four main components, 
motor symptoms, cognitive changes, neuropsychiatric or behavioral 
changes and symptoms related to Autonomic Nervous System (ANS) 
failures [4,5]. The diagnosis of PD is mainly based on the presence of 
motor symptoms, predominantly tremor at rest, bradykinesia, muscle 
rigidity and postural instability [4–7]. In addition to these symptoms, 
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other motor manifestations have been observed. These include hypo-
mimia, decreased blinking frequency, dystonia, kyphosis, scoliosis, gait 
impairment, and speech disability. However, pathological and imaging 
studies suggest that motor symptoms occur when the 50–70 % neurons 
of the substantia nigra have degenerated [5]; therefore, the disease is 
diagnosed at an advanced stage. 

On the other hand, PD’s non-motor symptoms include cognitive 
changes, neuropsychiatric changes, ANS failures, and sensory and sleep 
disorders [4–8]. These symptoms have commonly been a neglected 
feature of PD considering about 90% of patients suffer from these 
symptoms during the disease [8]. These non-motor symptoms of PD can 
precede the motor ones for years, even decades [4,5,9]. Therefore, the 
awareness of the non-motor symptoms is vital because the diagnosis of 
PD could be performed at an early stage. However, there are no diag-
nostic tests that allow a definitive diagnosis in the disease’s premotor 
stages. Besides, the diagnosis is difficult because these symptoms are 
common to other pathologies and not only for PD [8]. Furthermore, the 
treatment used to diminished motor symptoms may aggravate or cause 
other symptoms. For example, psychosis, orthostatic hypotension and 
sleep disorders can be related to levodopa treatment. Then, it is essential 
to detect and correctly treat non-motor symptoms in order to minimize 
their impact on the quality of life in PD patients [5]. 

Autonomic dysfunction in PD patients has been extensively studied 
through heart rate variability (HRV). However, different tests under 
different conditions have been approached, which difficult the correla-
tion between results. In this case, protocols for signal acquisition are 
varied, including rest in a temporal range from 5 to 30 min [10–13], 
active standing position [14,15], tilt test [16–19] respiratory maneuvers 
[12,13,15,18,20] and 24-h ambulatory ECG recording [21–23]. 
Regarding respiratory maneuvers, these including deep breathing at six 
breaths per minute with a duration of 1 min. [12] to 6 min. [15] and 
Valsalva maneuver [12,18,20]. By the other hand, it is important to 
point out that during deep breathing and with PD patients since an early 
stage of the disease, only Delgado et al. [15] and Maetzler et al. [13] 
have reported significative differences with respect to young and age 
matched healthy controls respectively. Additionally, Linden et al. [19] 
reported heart rate differences during deep breathing between the 
control group and long term diagnosed patients with Idiopathic Par-
kinson’s disease. 

Furthermore, the methodological approaches mainly consider time 
and frequency indices, such as the mean of HR, SDNN, RMSSD, LF, HF, 
LF/HF [11–13,15,18,20–24], some efforts have explored baroreflex 
sensitivity [18,20,25] and non linear indices as DFA, fractal dimension 
and approximate entropy [12], symbolic dynamics [14,26,27], or 
instantaneous measurements based on point process [10]. Most of the 
efforts that explore HRV in PD use spectral indices and some authors 
have reported differences between PD patients and healthy controls 
[13,15,18,21,22,24]. Moreover, other metrics such as non-linear indices 
have not been extensively studied in PD. For example, the symbolic 
dynamics of HRV seems to be more accurate to discriminate autonomic 
dysfunction compared with HRV frequency domain between healthy 
and PD patients [14]. Additionally, a comparison of symbolization 
strategies was previously performed, showing similar trends of symbolic 
indices between PD patients and a healthy group with different sym-
bolization strategies even though symbolic indices exhibited a diverse 
statistical power in separating groups and experimental conditions [27]. 
However, inside the symbolic dynamics other strategies, as Renyi en-
tropy and probabilistic approaches based on the occurrence of the 
words, can be used. In addition, it is important to comment that in 
literature most of the studies discuss the separability of the populations 
based on the statistical power, but the statistical power could not lead to 
a good separability, for this reason, exploring classification approaches 
could be interesting in this regard. In the last years, the classification 
methods have been relevant, supporting the medical decision process, 
the applications range from early diagnosis to treatment of diseases. 
Notably, in PD there are solely a few works that performed classification 

between PD patients and healthy control participants using cardiovas-
cular signals [10]. However, in the light of the easy recording of cardiac 
signal as ECG or HRV, it is useful to explore their potential in the clas-
sification of PD patients for screening proposes, besides of the potential 
of cardiovascular signals in the early diagnosis of PD [16] and clinical 
implications in the treatment. 

On the other hand, the regularity or irregularity of symbol sequences 
from symbolic dynamics can be characterized by entropy-based mea-
sures and considering the advantage of multiscale analysis, a multiscale 
symbolic entropy method can be approached. A multiscale symbolic 
entropy was recently proposed to analyze human gait signals [28] and 
patients with vasovagal syncope [29] obtaining additional information 
about the dynamics of signal complexity. 

As it can be observed from the previous description, there is enor-
mous variability in protocols applied and the results in the different 
studies are not always consistent. Another vital variable to consider is 
the condition of PD patients that were included in the studies, for 
example, disease duration, disease stage according to different scales 
and the treatment that is followed, since these parameters significantly 
influence the obtained results. 

One of the main quests in the research around PD is the early 
detection; therefore, the use of simple and attainable tools as HRV 
analysis to reach this objective is essential. Therefore, it is necessary to 
study other protocols and methods to understand the ANS state in PD 
patients better. This paper proposes the HRV analysis in PD patients with 
traditional indices and symbolic dynamics from a single and multiscale 
perspective to classify them from control volunteers using a well-known 
support vector machine (SVM) classifier. 

2. Materials and methods

2.1. Study population and protocol 

In this study 24 volunteers were considered, patients diagnosed with 
PD and healthy adult volunteers as a control group. The group of pa-
tients with PD consists of 12 volunteers, six males and six females with a 
mean age of 67.50 ± 10.06 years and a mean diagnosis time of 5.09 
years. These patients were diagnosed by clinical experts, who assigned a 
severity scale of the illness according to the Hoehn-Yahr Scale. Besides, 
to the PD, patients have chronic diseases such as Diabetes, Hypertension, 
and Hypothyroidism. The features of the patients with PD are specified 
in Table 1. The control group comprises 12 volunteers, six males and six 
females, with a mean age of 51.2 ± 6.7 years. None of these volunteers 
had clinical symptoms of autonomic and cardiovascular disorders, or 
was under medication. The institutional Ethics Committee approved the 
study, and the volunteers gave their written informed consent to 
participate. 

Data acquisition was performed in the Hospital “Ignacio Morones 
Prieto”, in San Luis Potosí, México. Electrocardiogram (ECG) signal was 
acquired with the BIOPAC® MP150 system at a sampling frequency of 
500 Hz during cardiovascular autonomic reflex tests [12,30,31], 
considering the following conditions:  

• Control: Resting stage where patients remained in a supine position
for 5 min.

• Active Standing (AS): A progressive posture change implemented
the orthostatic phase; the volunteer remained standing for 5 min.
Due to the age of participants and the study’s limitations, volunteers
were supported at the time of standing to accomplish the maneuver
as fast as possible.

• Post-Hyperventilation (PH): Stage of 5 min duration after a minute
performing an hyperventilation at 35 breaths per minute.

• Controlled Breathing (CB): Stage in which volunteers performed
controlled breathing at 0.1 Hz for 4 min.

During the respiratory maneuvers the volunteers were supported
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with a visual stimulus to facilitate control of their breathing. Time series 
of successive beat to beat intervals (RR intervals) were computed from 
ECG as the time difference between consecutive R waves, which were 
detected according to [32]. RR intervals were manually reviewed and 
pre-processed with an adaptive filter in order to remove artifacts and/or 
ectopic beats [33]. 

2.2. Signal analysis 

Linear and non-linear methods were used to study the cardiovascular 
system’s characteristics to understand its dynamics in PD patients. In 
this context, classical linear indices and symbolic dynamics jointly with 
multiscale entropy were explored. A block diagram of the proposed 
method is shown in Fig. 1. Firstly, temporal and frequency indices were 
carried out as linear indices. Secondly, non-linear indices based on 
symbolic dynamics were performed with words formed by a sequence of 
symbols from an alphabet. Thirdly, a combination of multiscale entropy 
and symbolic dynamics was computed. Additionally, a classification 
process between healthy controls and PD patients was carried out 
employing a SVM. 

Temporal indices included mean, standard deviation and the root 
mean square differences of successive RR intervals (RMSSD). In the 
frequency domain, the RR intervals were resampled to 2 Hz and the 
power spectral density was obtained by means of an autoregressive 
model [34], whose order was selected according to the Akaike criterion 
in the range of 6 to 14. Before computing the spectral density, the offset 
was removed. Power in the high frequency band (HF, 0.15 < f < 0.4 Hz), 
low frequency band (LF, 0.04 < f < 0.15 Hz), very low frequency band 
(VLF, f < 0.04 Hz), LF/HF ratio and normalized spectral components (LF 
%, HF%) were calculated. For illustration, see Fig. 1. 

2.2.1. Symbolic dynamics 
The RR intervals were transformed into a sequence of symbols, called 

alphabet. The alphabet was generated based on the following rule: 

si =

⎧
⎪⎪⎨

⎪⎪⎩

0 : μ < xi⩽(1 + a)μ
1 : (1 + a)μ < xi < ∞ ∀i = 1, 2, 3…
2 : (1 − a)μ < xi⩽μ
3 : 0 < xi⩽(1 − a)μ

(1)  

where μ denotes the mean of the RR intervals, xi represents each sample 
of RR intervals and a is a scalar that helps to define the ranges in which xi 
is assigned [33]. In this work, tests were performed with a from 0.03 to 
0.08. However, a = 0.05 was selected because this value showed a better 

Table 1 
Demographic and clinical features of Parkinson’s disease patients.  

Volunteer Sex Age Hoehn- 
Yahr 
Scale 

Chronic diseases Treatment 

1 M 53 1 None Pramipexole, 
selegiline, 
venlafaxine 

2 M 75 2 Diabetes Levodopa, 
gabapentin 

3 M 78 – Barrett’s esophagus Levodopa, 
pramipexole 

4 M 83 2 Hypertension, 
Hypothyroidism 

Levodopa 

5 M 54 – None Levodopa 
6 M 73 1 None Levodopa 
7 F 67 1 Diabetes, 

Hypertension, 
Hypothyroidism 

Pramipexole, 
gabapentin 

8 F 71 – Osteoporosis Levodopa, 
pramipexole 

9 F 54 1 Hypertension, 
Hypothyroidism 

Pramipexole 

10 F 63 1 Hypertension, 
Hypothyroidism 

Pramipexole 

11 F 75 1 Hypertension Levodopa, 
selegiline, 
amantadine 

12 F 64 – Diabetes, 
Hypertension 

Levodopa, 
pramipexole  

Fig. 1. Block diagram of the proposed methodology.  
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discrimination between groups. This selection of a value agrees with 
other HRV analyses, since the idea behind this value is related to com-
mon rest variability of RR intervals [33,35,36]. Once si is obtained, 
words of three consecutive symbols are formed. Then the sequence of 
words was created by overlapping two symbols, leading to a maximum 
of 64 different words wi. Fig. 2 shows an example of the coding 
procedure. 

The complexity of the sequence of symbols was computed utilizing 
the Renyi entropy [33,37]: 

Hq =
1

1 − q
ln
∑64

i=1
p(w)q (2)  

where p(w) refers to the probability of each word. The advantage of 
Renyi entropy against Shannon entropy is that q value can give rele-
vance to words with higher or smaller probabilities. If q > 1, the Hq is 
determined mainly by words with higher probabilities, whereas if q < 1, 
the entropy will be weighted by words with a smaller probability of 
occurrence. The Renyi entropy is defined for positive q ∕= 1 and con-
verges to the Shannon entropy in the limit q →1. For any value q⩾0 the 
generalized entropies Hq are equal to zero for certain events described 
by the distribution Q1 = {1,0,…,0}, and achieve their maximum In(N)

for the uniform distribution. The generalized entropies are correlated; e. 
g., for the distributions Qk the entropies are equal to In(k) independently 
of the value of q [38]. In this study, q values higher and smaller than one 
were assessed and the value which shows the most significant differ-
ences is reported. Additionally, dominants words were considered as the 
words with a probability of 0.02 or higher and non-dominants words 
with a probability less than 0.02. A comparison between common 
dominants words that appear in both groups was performed and the 
dominants words in control volunteers that are non-dominant words in 
PD patients were analyzed. 

2.2.2. Multiscale symbolic entropy 
Given a time series {xn}, consecutive coarse-grained time series 

corresponding to the scale factor τ is constructed [39]. First, the initial 
time series is divided into non-overlapping windows of length τ; second, 
the data points inside each window are averaged. In general, each 
element is calculated according to Eq. (3): 

yτ
j =

1
τ

∑jτ

i=(j− 1)τ+1

xi, 1⩽j⩽
N
τ . (3) 

Then the new time series {yτ
j } is transformed into a sequence of 

symbols by Eq. (1). The algorithm was performed considering the τ scale 
from 1 to 10 and the dynamic of the symbol sequence was assessed by 
Renyi entropy. This method is illustrated in Fig. 3. 

2.3. Statistical analysis 

A Lilliefors normality test was performed to identify if the indices of 
healthy and PD data from each maneuver come from a normal distri-
bution. According to the results of the normality test, the differences 
between the AS, PH and CB maneuvers concerning the control were 
evaluated using a one-way repeated measures ANOVA for each index per 
group, with maneuvers as the repeated factor and with post hoc com-
parisons based on the Bonferroni method. The differences between the 
PD patients and the control volunteers were evaluated at each maneuver 
and index by applying unpaired two-sample Student’s t-test in those 
scales that follow a normal distribution, and for the values that did not 
have a normal distribution, the Wilcoxon test was performed. Statisti-
cally significant differences were considered with p < 0.05. 

2.4. Classification 

In the context of Biomedical Engineering, the development of sys-
tems to automatically recognize a medical condition based on some 
measurable physiological information is of fundamental importance. In 
the more general case, m physiological measures xi, i = 1, 2,…,m are 
used, and they build up a feature vector x = [x1, x2,…, xm]

T, where T 
stands for transposition and each vector is related to a single volunteer. 
It is important to note that there will be variations between volunteers 
with the same medical condition and our objective is to define a 
mathematical model that is able to work with these variations and to 
assign a new vector into the right medical condition based only on the 
measurable physiological information. In our case, the possible medical 
conditions are healthy and PD, and the feature vectors are composed of 
the linear and nonlinear measures computed from the RR intervals. To 
find the classification model, we used the well-known method called 
SVM, since this is commonly used in many research areas and has 
already been used for healthy/PD classification with interesting results 
[10]. Since the database has a reduced number of volunteers, we 
decided to use the Leave-One-Out Cross Validation (LOOCV) scheme to 
train the SVM classifiers and the SVM used a linear kernel. Before the 
LOOCV, each data was normalized with zero mean and unit variance 
using the whole training set. The mean and variance vectors of the 
training set were used to normalize the test vector. At each LOOCV 
iteration, sigma and soft margin parameters were determined using 
Bayesian optimization. Accuracy, sensitivity and specificity were 
computed and used as performance measures. Feature selection was 
carried out by searching the n-tuple that maximizes performance mea-
sures through a support vector machine recursive feature elimination 
(SVM-RFE) procedure [40]. SVM-RFE is implemented by training an 
SVM with a linear kernel to get a ranked list of all features, and the 
performance was quantified through the area under the ROC curve 
(AUC). The classification procedure was made independently for each 
maneuver. 

3. Results

3.1. Temporal and frequency indices 

Fig. 4 shows an example of the RR intervals fluctuations obtained 
from healthy (right panel) and PD (left panel) conditions. The RR in-
tervals show a reduced oscillatory pattern for PD patients with respect to 
the control volunteers, and this happens for the three maneuvers (rows 1 
to 3, columns 1 and 3). The spectrum of RR intervals of PD patients 
during the control maneuver (row 1) shows an inhibited high frequency 
component. In the controlled breathing case, for control volunteers, we 
can observe how the spectrum is entirely concentrated in the respiratory 
frequency (frequency = 0.1 Hz), while for PD, the spectrum presents 
dispersion regardless the main peak is well located. Please note that the 
RR intervals are detrended and the spectra are normalized with respect 

Fig. 2. Description of the symbols extraction and coding procedure from 
RR intervals. 
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to the total power. 
Table 2 shows the mean and standard deviation for temporal and 

frequency indices of control volunteers and PD patients, where each 
column represents the assessed maneuvers. For control volunteers, all 
the maneuvers showed significant differences concerning the control 
stage in LF% and HF% indices, while in the case of PD patients this 
significant difference was only observed during controlled breathing. 
Regarding differences between groups, PD patients showed a statisti-
cally significant minor value of RMSSD during control, active standing, 
and controlled breathing. Additionally, LF and HF also showed a sta-
tistically significant decreased behavior. 

3.2. Symbolic dynamics 

The number of apparitions of a particular word reflects its impor-
tance in the time series construction. The time series tends to be more 

complex or rich in information if it is composed of many words’ 
participation with the same occurrence. To evaluate this characteristic 
of the RR intervals during healthy and pathologic conditions, the his-
togram of occurrence of words was obtained in each volunteer, which 
later it was normalized with the total number of words. In this way, we 
have a normalized version of the histogram that can be visualized as a 
probability distribution. Thus, we can evaluate the importance of each 
word in the construction of the coded time series. Two types of words 
were defined, called dominants and non-dominants. The dominant 
words were those words that appear in mean with at least 0.02 of 
probability. From here, two analyses were performed: a) to compare the 
words that are dominant in both groups at each maneuver and b) to 
evaluate the dominant words in the control group that became non- 
dominant in the pathologic one. The opposite was also evaluated, the 
dominant words in the pathologic group that became non-dominant in 
the control one. 

Fig. 3. Description of the Multiscale Symbolic Entropy implementation.  

Fig. 4. Temporal and spectral relationship of RR intervals for control and PD volunteers (columns) during control, active standing (AS) and controlled breathing (CB) 
maneuvers (rows). 
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In the first row, Fig. 5 shows the comparison of dominant words in 
both groups at the different maneuvers as mean and standard deviation. 
The white circles stand for the control group and black circles represent 
the pathologic one. The diamonds are the cumulative sum of the circles, 
and the right y-axis shows the scale. The x-axis shows the 64 words; the 
coding can be found in Fig. 2. 

Dominant words in both groups with constant behavior were 000, 
111, 222 and 333, representing low fluctuations in RR intervals. The 
word 000 was significantly different in all maneuvers between groups 
with significant participation in pathologic group, while the word 333 
was significantly different only during active standing and controlled 
breathing, being more important in healthy condition. The dominant 
words 002, 022 and 200, have one variation and were able to differ-
entiate healthy from pathologic condition only during controlled 
breathing statistically. Considering the dominant words’ participation in 
the whole dynamic during the different maneuvers, the pathological 
volunteers showed a higher percentage of these words. In fact, in control 
stage, values close to 0.9 can be observed; suggesting a decreased HRV, 
and it can be observed in Fig. 4. 

For the second analysis, dominants words that became non-dominant 
words between groups at the different maneuvers are shown in the row 

two of Fig. 5. The circles represent the dominants words in control cases 
that are non-dominant in the pathologic case. The squares represent 
dominants words in pathological volunteers that are non-dominant in a 
healthy situation. We can observe that the control volunteers have more 
of these dominant words than the pathological volunteers for all the 
maneuvers. These words participate at least 10% in the construction of 
the time series, and these are words that have variable patterns such as 
011, 110, 223, 233, 322, and 332. These results show that the control 
volunteers present a larger complexity in the HRV than the pathologic 
ones, independently of the maneuver. Further, there are non-dominant 
words that showed significant differences at least in two maneuvers 
between control and pathological volunteers such as 110, 232 and 322, 
which showed a higher occurrence in control volunteers with respect to 
PD patients. These complement the dominant words to generate a rich 
pattern in HRV for control volunteers, even though these words have a 
limited participation, control volunteers showed more participation 
between maneuvers than PD patients. Additionally, the comparison 
versus control stage for each group showed that controlled breathing 
was the maneuver with more statistical differences. In contrast, the 
pathological volunteers did not show a different behavior against con-
trol stage, which suggests that controlled breathing is a maneuver able 
to assess the cardiovascular system’s appropriate functioning. Finally, 
the Renyi entropy analysis of a sequence of symbols from original time 
series at different maneuvers, showed in Table 2, was significantly 
higher in the control group for all the maneuvers, which support the 
difference in the complexity of the sequence of symbols between groups. 
These results were obtained with q =0.25, which evidence the relevance 
of symbols with smaller occurrences. This situation could not be found 
throughout Shannon entropy. 

3.2.1. Multiscale symbolic entropy 
The results of Renyi entropy from multiscale analysis are shown in 

Fig. 6 for a = 0.03 and a = 0.05 (symbolic coding) with q = 0.25 (Renyi 
parameter). A significant decrease was observed in patients with PD 
with respect to control volunteers during active standing and post- 
hyperventilation maneuvers in most of the scales for both a values. 
The decrease of Renyi entropy in patients with PD is more evident in 
control with a = 0.03, while in the case of controlled breathing, better 
discrimination is showed with a = 0.05. 

In supine resting with a = 0.03 is possible to observe how the 
complexity of the RR interval signal decreases as the scale is increased in 
both groups and it is also clearly observed that PD patients have a sig-
nificant decrease in complexity with respect to control volunteers along 
the ten scales evaluated. 

The values of Renyi entropy in the controlled breathing maneuver 
showed an increase in the complexity of the signals along the scales 
corresponding to the short-term variations (1 − 5), followed by a 
decrease in large scales. This behavior is more evident for control vol-
unteers using the factor a = 0.05, since this a value considers changes 
farther from the mean value, and it is the parameter that allows 
analyzing better the variations of this maneuver. 

The significant differences of the maneuvers with respect to control 
of the values of Renyi entropy from the RR intervals are also displayed in 
Fig. 6. Renyi entropy values of active standing and post-hyperventilation 
maneuvers increased with respect to control stage in many scales, 
mainly in control volunteers. In the case of controlled breathing ma-
neuver, control volunteers showed an increase with respect to control 
stage only with a = 0.05. Renyi entropy values of PD patients were 
significantly different from control stage only in small scales during 
post-hyperventilation maneuver with both a values, and in controlled 
breathing only for scales 3 and 4 for each value of a respectively. 

In the active standing maneuver, a decrease with respect to the 
control is observed in Renyi entropy, in scale 1 in control volunteers and 
PD patients with a = 0.03. In contrast, in larger scales, a significant 
increase was found with respect to control stage, only in control vol-
unteers, which suggests that in the long term the complexity recovers, 

Table 2 
Mean and standard deviation of temporal, frequency and nonlinear indices.  

Control 
volunteers 

Control Active 
Standing 

Post- 
Hyperventilation 

Controlled 
Breathing 

Mean (s) 0.852 ±
0.153  

0.733 ±
0.120  

0.783 ± 0.129  0.815 ±
0.141*  

RMSSD (s) 0.023±
0.011†

0.018 ±
0.008†

0.021 ± 0.009  0.034 ±
0.014†

VLF (1x103) 
(ms2) 

68.51 ±
108.72  

101.07 ±
123.42†

135.81 ± 77.33† 30.57 ±
17.54†

LF (1x103) 
(ms2) 

138.02 ±
167.58†

194.76 ±
178.04†

182.02 ± 110.08† 668.37 ±
458.78*†

HF (1x103) 
(ms2) 

68.95 ±
62.67†

38.17 ±
27.87†

49.15 ± 35.94† 65.32 ±
53.05†

LF % 62.18 ±
16.08  

80.32 ±
11.18*  

78.71 ± 11.23*  91.32 ± 3.17*  

HF % 37.82 ±
16.08  

19.67 ±
11.18*  

21.29 ± 11.23*  8.68 ± 3.17*  

LF/HF 2.41 ±
2.31  

5.52 ± 3.09  4.82 ± 2.75  11.93 ± 4.43*  

Renyi 4.75 ±
0.43†

4.81 ±
0.31†

4.75 ± 0.25† 4.79 ± 0.16†

Parkinson 
Patients     

Mean (s) 0.806 ±
0.214  

0.754 ±
0.191  

0.783 ± 0.171  0.783 ± 0.175  

RMSSD (s) 0.015 ±
0.012  

0.013 ±
0.013  

0.019 ± 0.018  0.018 ± 0.012  

VLF (1x103) 
(ms2) 

30.81 ± 35  28.83 ±
34.28  

42.67 ± 50.51  13.19 ± 16.94  

LF (1x103) 
(ms2) 

73.98 ±
137.76  

72.16 ±
142.27  

132.91 ± 262.23  127.45 ±
160.56  

HF (1x103) 
(ms2) 

25.32 ±
38.85  

21.21 ±
44.54  

30.74 ± 60.65  15.04 ± 20.35  

LF % 66.26 ±
19.13  

70.9 ±
12.79  

71.68 ± 17.70  85.46 ±
12.09*  

HF % 33.74 ±
19.13  

29.1 ±
12.79  

28.32 ± 17.70  14.54 ±
12.09*  

LF/HF 2.65 ±
1.59  

3.39 ± 2.61  5.76 ± 7.07  11.14 ± 8.22 
*  

Renyi 3.76 ±
0.76  

3.7 ± 0.71  4.29 ± 0.70  4.14 ± 0.64  

* Post hoc comparison vs Control p < 0.05.
† Unpaired two-sample Student’s t test, Control vs PD volunteers p < 0.05.
Renyi entropy of the word distribution with q = 0.25. 
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whereas this behavior does not occur in PD patients. 

3.3. Classification 

Table 3 shows the classification results to discern between PD pa-
tients and control volunteers automatically. Note that all the perfor-
mance metrics achieve more than 90% in the cardio-respiratory reflex 

tests, which means a good separation between classes. In addition, we 
can observe that each maneuver uses different type and number of 
features. For example, in the controlled breathing just one entropy 
feature is needed to fully separate PD and control volunteers. The con-
trol stage used only entropy features, and active standing and post- 
hyperventilation needed from all types of features to achieve a good 
performance. The control stage had the lowest performance metrics with 

Fig. 5. Mean and standard deviation of the words probability. First row illustrates dominant words in both groups (probability >2%) with black circles as PD patients 
and white circles as control volunteers. T means the total occurrence of the dominant words, indicated by diamonds. The second row displays dominants words that 
became in non-dominant words between groups. The squares represent dominants words in pathological volunteers that are non-dominant in control ones. * Sig-
nificant differences between control volunteers and PD patients. ∘ Significant differences vs Control (p < 0.05). 

Fig. 6. Mean and standard deviation of the values of Renyi Entropy of the RR intervals in both groups during Control, AS, PH y CB maneuvers with a = 0.03 y a =

0.05. • Significant differences between control volunteers and PD patients. ∘ Significant differences vs Control stage in healthy volunteers. * Significant differences vs 
Control stage in PD patients (p < 0.05). 
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an accuracy of 83.3%. Fig. 7 shows the features distribution, the support 
vectors and the hyperplane for control, active standing and controlled 
breathing. 

4. Discussion

This paper explores the behavior of RR intervals through classic
indices of time and frequency domain and nonlinear characteristics. 
Particularly, nonlinear characteristics were assessed by means of sym-
bolic dynamics and a mutiscale analysis based on entropy. Although 
HRV has been studied in PD to our knowledge there is no report about 
the complexity study based on multiscale entropy considering different 
cardiovascular and cardiorespiratory stress tests. The performed ana-
lyses showed that PD patients had blunted cardiovascular response, but 
symbolic dynamics and multiscale symbolic entropy expose in a better 
way this behavior in PD patients. 

Temporal and frequency indices were able to identify statistical 
differences between control volunteers and PD patients with a Hoehn- 
Yahr scale 1 and 2. The indices RMSSD, LF and HF were lower in PD 
patients, suggesting that control of the ANS is affected by the disease. 
The frequency domain results are consistent with previous studies in the 
supine position during 5 to 10 min in rest and in the early stage of the 
disease [11,12,18]. However, other authors have not reported signifi-
cant differences in frequency domain indices between PD patients and 
healthy age matched volunteers in the same condition [10,14,26]. 
Considering active standing, Vianna et al. [14] also found differences in 
LF and HF between healthy volunteers and PD patients with orthostatic 
hypotension but not with PD patients without orthostatic hypotension. 

In our study, the presence of orthostatic hypotension was not assessed. 
However, it is essential to consider this aspect since orthostatic hypo-
tension is the result of defective sympathetic outflow and a failure to 
increase peripheral resistance when standing [41] and PD patients with 
orthostatic hypotension have showed lower baroreflex sensitivity than 
in those without orthostatic hypotension [20]. Delgado et al. [15] also 
explored the PD patient’s response to active standing founding decreases 
in total power, LF and HF. However, the comparison was against healthy 
volunteers younger than patients (∼ 38 years). Regarding deep breath-
ing maneuver, it was possible to differentiate control volunteers from PD 
patients based on RMSSD, VLF, LF and HF indices. Other authors have 
performed the same cardiorespiratory test [12,13,15,18], but only 
Maetzler et al. [13] and Delgado et al. [15] have reported a decrease in 
some frequency domain indices. In addition to these studies, we found 
that PD patients were not able to adapt their cardiovascular system in 
response to the cardiovascular autonomic reflex tests, as it was observed 
in control volunteers employing LF% and HF% indices in comparison 
with the control stage. Furthermore, it is worth noting that controlled 
breathing to 0.1 Hz showed significant differences in LF and LF% 
compared to the control in both groups. However, this increase is due to 
the 0.1 Hz breathing and does not suggest an increase in the sympathetic 
pathway. 

On the other hand, symbolic dynamics showed that pathological 
volunteers have a higher number of dominant words than control vol-
unteers. This imply that HRV is depressed in PD patients during the four 
maneuvers. Renyi entropy was able to show a minor complexity of the 
sequence of symbols in PD patients in each autonomic stress test 
including the resting stage. It is important to note that symbolic analysis 

Table 3 
Mean performance values of the SVM classifier (PD vs control). Values are expressed in percentages.  

Maneuver Features Accuracy (%) Specificity (%) Sensitivity (%) 

Control RE6, RE8, RE 83.3 ± 38.1  75 ± 45.2  91.7 ± 28.9  
Active Standing RE, VLF, Mean 95.8 ± 20.4  100 ± 0  91.7 ± 28.9  
Controlled Breathing RE5 100 ± 0  100 ± 0  100 ± 0  
Post-Hyperventilation RE2, RE5, LF/HF, RMSSD, VLF, Mean 95.8 ± 20.4  100 ± 0  91.7 ± 28.9  

REx: Renyi entropy in ’x’ scale. 
RE: Renyi entropy for maneuvers. 

Fig. 7. Features distribution of control adults and PD patients of control, active standing and controlled breathing maneuvers. The support vectors and the hy-
perplane are also displayed. RE: Renyi entropy. 
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in PD patients has not been extensively applied, Vianna et al. [14] used 
symbolic dynamics considering patterns with 0, 1, and 2 variations, they 
found significant differences between control volunteers and PD patients 
only with patterns with 2 variations. The expected enhancement in 
cardiac sympathetic modulation and parasympathetic withdrawal 
following active standing was reported in healthy volunteers and PD 
patients without orthostatic hypotension, while PD patients with 
orthostatic hypotension showed a different and unexpected behavior. 
Porta et al. [27] also analyzed PD patients without orthostatic hypo-
tension using different symbolization strategies, they found an increase 
in 2UV patterns in heart period and systolic arterial pressure (SAP) in PD 
patients compared to healthy controls. In addition, Baumert et al. [26] 
also explored patterns with 0, 1, and 2 variations, finding no differences 
between PD patients and healthy volunteers. However, they found dif-
ferences using joint symbolic analysis of cardio-respiratory dynamics in 
PD patients, indicating a loss of cardio-respiratory coordination. 
Therefore, according to the Baumert common symbolic findings, our 
results are more straightforward in alphabet construction and analysis 
methods. 

One main finding is that during supine resting and maneuvers, sig-
nificant differences are found between control volunteers and PD pa-
tients using multiscale symbolic entropy of RR intervals. Besides, the 
Renyi entropy value of the multiscale symbolic series showed a signifi-
cant decrease in PD patients with respect to control volunteers along the 
ten scales, suggesting a reduced HRV complexity. Multiscale Symbolic 
Entropy results during active standing in comparison with control 
showed a significant decrease in the first scale in both groups, and this 
suggests that the word distributions present a subset of patterns more 
likely, while others are missing or infrequent. Although both groups 
have a decreased complexity during active standing in scale one, the 
complexity was minor in PD patients, as also was observed during 
control. This result reflects the reduced adaptive capacity in the patients, 
result of a possible autonomic imbalance. 

The complexity increase in higher scales (>4) for control volunteers 
during active standing suggests that long-term cardiac response could be 
blunted in PD patients, mainly affecting sympathetic-mediated compo-
nents of HRV, leading to a structure less complex than control volun-
teers. One phenomenon that can have an influence around scales > 4 is 
the baroreflex, since to adjust systemic vascular resistance, the arterial 
baroreflex buffers blood pressure, showing a resonance behavior, where 
the resonance period is around 10 s (Mayer waves) [42]. The complexity 
decrease in scale one and a further complexity increase in scales above 
four was also observed in healthy young volunteers [43], where the 
complexity in small scales was associated with a decrease in respiratory 
sinus arrhythmia contribution due to parasympathetic inhibition during 
standing. 

The behavior of a diminished complexity in PD patients was pre-
served in respiratory maneuvers. However, in the case of controlled 
breathing, the differences were observed with the parameter of symbolic 
dynamics a = 0.05, since this maneuver causes changes farther from the 
mean value in the RR intervals, and a higher value allows characterizing 
the phenomenon in a better way. Regarding the changes in respiratory 
maneuvers with respect to control, in post-hyperventilation and 
controlled breathing, an increase in complexity of RR intervals was 
found above scale 2 in control volunteers, with a = 0.05. However, in 
PD patients, the increase was present only during scales 1 and 4 in post- 
hyperventilation and controlled breathing, respectively, supporting the 
finding that long-term cardiac modulation is affected in PD patients. 

Regarding the cardiovascular autonomic reflex tests, active standing 
and controlled breathing showed a better separation between groups. 
The hemodynamic and autonomic adjustments carried out after an up-
right posture can be summarized as a reduction in stroke volume, heart 
rate increases secondary to vagal withdrawal and sympathetic stimula-
tion, and an increase in total peripheral resistance [44,17]. In this 
context, PD patients showed an impairment in the hemodynamic and 
autonomic adjustments, evidenced by symbolic dynamics and 

multiscale symbolic entropy analyses. On the other hand, controlled 
breathing at 0.1 Hz reduces the chemoreflex response to both hypoxia 
and hypercapnia and increases baroreflex sensitivity [45]. Besides, the 
HRV during controlled breathing increases [46,47]. However, the in-
crease in complexity through the multiscale symbolic entropy analysis 
was evident only in the control group with a = 0.05. 

Multiscale symbolic entropy provides essential features to the clas-
sification process. However, multiscale entropy has two important 
shortcomings: 1) the course of the entropy-based complexity as a func-
tion of the time scale is partially linked to the reduction of variation 
inherent to the procedure for the elimination of the fast temporal scales 
and 2) the procedure for the elimination of the fast temporal scales ex-
ploits a filter with a frequency response that cannot prevent aliasing, 
thus being suboptimal especially in the presence of fast oscillations. 
Refined multiscale entropy proposed by Valencia el al. [48] deals with 
these two shortcomings. However, the refinement of multiscale entropy 
needs to be studied in detail, since just a few differences are reported 
between multiscale entropy and refined multiscale entropy in different 
experimental conditions. But it would be interesting to explore refined 
multiscale entropy to confirm the differences found between groups and 
to evidence a different behavior in longer time scales. 

Finally, the classification process was satisfactory, in fact, it is 
possible to observe that only a few features were needed to achieve good 
separability. It is also essential to mention that the kernel in SVM was the 
linear one, meaning that the selected features have a high discrimination 
between groups. Furthermore, the proposal features, specifically Renyi 
entropy and its multiscale version can be found as selected features in all 
cases, and the exploration of these features for this task was never used. 
In addition, linear indices as mean value, RMSSD, and some frequency 
indices were selected as relevant features to accomplish the classifica-
tion between groups, which reveals the importance of considering linear 
indices in the classification process. Thus, linear indices provide com-
plementary information to nonlinear ones, as previous works have 
showed that linear indices are useful to differentiate control volunteers 
and PD patients [11,18,24]. Obviously, other classifiers can be used 
since the groups showed a linear separability but the advantage of SVM 
is the location of the decision boundary based on closer samples of each 
class, which implies major generalization in the classification process. In 
addition, it is important to mention that the major PD classification ef-
forts have been oriented to classify between healthy and pathologic 
volunteers using movement or voice data [49,50]. Our proposed method 
is able to give additional information about the cardiorespiratoy system. 
Consequently, a possible clinical impact of this set of tools is to help the 
clinician to have a better cardiac diagnostics directly related to a 
possible dysautonomia in a simple way and in a possible real time 
version, for example, by applying controlled breathing, which is a test 
that could be done almost in any place. 

One of the main limitations of this study is that the range of age 
between study groups is not the same, but both groups belong to elderly 
people. In the literature studies showed that cardiac function changed 
between young and elderly people [51,52]. For this reason, it could be 
interesting to explore groups matched by age. On the other hand, our 
results are according to a study where a group of patients with Parkin-
son’s disease was matched by age with a healthy group. The symbolic 
indices from the heart period showed differences between groups and 
between rest and head-up tilt maneuver [27]. This could imply that 
elderly people present a similar cardiac function. 

Another significant limitation is the analysis of the only HRV to 
characterize autonomic control of the PD group. The analysis of arterial 
blood pressure by the SAP signal gives additional information about the 
cardiovascular control in PD, such as baroreflex and feedforward me-
chanical pathway considering causal relationships. Therefore, it would 
be advisable to include the SAP signal analysis to extract essential fea-
tures to evaluate a different feature space to classify between groups. In 
addition, regarding vascular control, SAP variability may increase 
without modification of heart period complexity in PD patients without 
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orthostatic hypotension as stated in [16]. 

5. Conclusion

This study was performed in order to assess the response of the ANS
of PD patients through HRV and to classify between PD patients and 
healthy control volunteers. This assessment was carried out by applying 
different cardiovascular autonomic reflex tests such as active standing, 
post-hyperventilation and controlled breathing. The results of spectral 
and symbolic dynamics indices showed that autonomic nervous system 
of PD patients was not able to adapt to the applied maneuvers, which can 
be observed by the HRV low complexity evidenced by the proposed 
symbolic dynamics analysis, specifically this was assessed by the in-
crease in the dominant words as well as a lower entropy. Therefore, the 
symbolic dynamics joint with the multiscale analysis could be useful as a 
complement index in the methodology of assessment of PD for diagnosis 
and treatment follow up of the disease. The found features showed a 
high discriminatory capacity, since we were able to have good separa-
bility between PD patients and control volunteers using anyone of the 
maneuvers. This suggests that clinical expert could choose one of the 
maneuvers to support the medical decision based on the classification. 
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