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A B S T R A C T

Bankruptcy prediction and credit scoring are major problems in financial distress prediction. Studies have shown 
that prediction models can be made more effective by performing data preprocessing procedures. Moreover, 
classifier ensembles are likely to outperform single classifiers. Although feature selection, instance selection, and 
classifier ensembles are known to affect final prediction results, their combined effects on bankruptcy prediction 
and credit scoring problems have not been fully explored. This study compares the performance of three feature 
selection algorithms, three instance selection algorithms, four classification algorithms, and two ensemble 
learning techniques. The results obtained using five bankruptcy prediction and five credit scoring datasets 
indicate that by carefully considering the combination of these three factors, better prediction models can be 
developed than by considering only one related factor.   

1 Introduction 

Financial distress prediction has long been regarded as a critical 
research problem for financial institutions, and various statistical and 
machine learning techniques have been employed to construct predic-
tion models, the output of which can be used for loan decision-making 
(Alaka et al., 2018; Chen, Ribeiro, & Chen, 2016; Kumar & Ravi, 
2007; Liang, Tsai, Lu, & Chang, 2020; Lin, Hu, & Tsai, 2012; Tang, Li, 
Tan, & Shi, 2020). In general, financial distress prediction covers two 
related subtopics: bankruptcy prediction and credit scoring. Bankruptcy 
prediction models usually focus on identifying the likelihood that the 
company applying for the loan will go bankrupt. Credit scoring models 
are developed to rate the credit score (high, medium, or low) of the 
customer (either an individual or a company) applying for the loan for 
later decision-making processes (Climent, Momparler, & Carmona, 
2019; Lin et al., 2012; Pérez-Martín, Pérez-Torregrosa, & Vaca, 2018; 
Thomas, 2000). 

Prediction models must be made as effective as possible, irrespective 
of the techniques used to develop them. Therefore, studies have mainly 
aimed to determine the best model that can provide the highest pre-
diction accuracy or the lowest prediction error. Several key factors affect 
the final performance of prediction models, as discussed further on. 

One crucial factor is feature selection. Although the types of related 
features (i.e., indicators) that can provide the highest discriminative 
power to distinguish between bankrupt or nonbankrupt classes and high 
and low credit classes remain unclear, performing feature selection to 
analyze the level of feature representativeness from the collected data-
sets is usually helpful to improve the prediction performance of models. 
For example, Liang, Tsai, and Wu (2015) examined the effect of applying 
filter- and wrapper-based feature selection methods to financial distress 
prediction performance. Lin, Lu, and Tsai (2019) compared various 
combinations of feature selection methods and ensemble classification 
techniques for bankruptcy prediction. Jadhav, He, and Jenkins (2018) 
proposed a novel feature selection approach that combines information 
gain and a genetic algorithm (GA) for enhanced credit rating. 

The effectiveness of prediction models can alternatively be improved 
by filtering out some noisy data (or outliers) from the collected training 
datasets. Specifically, instance selection or related data sampling 
methods can be used to allow the two-class data distribution of the 
processed training datasets to be more easily separated in the feature 
space than would be possible with the original training dataset. For 
example, Ahn and Kim (2009) and Liu and Pan (2018) used a GA and 
fuzzy-rough set for instance selection to improve the performance of 
bankruptcy prediction and credit scoring models, respectively. Tsai and 
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Cheng (2012) introduced a simple distance-based clustering outlier 
detection method for improved bankruptcy prediction. Tsai (2014) also 
comprehensively compared clustering techniques for instance selection 
and various classification techniques for financial distress prediction 
models. 

Unlike the previous two factors—feature and instance selection—-
that are related to data preprocessing issues, ensemble learning tech-
niques that work by combining multiple classifiers (or prediction 
models) have been shown to outperform single classifiers in terms of 
bankruptcy prediction and credit scoring (Sun, Li, Fujita, Fu, & Ai, 
2020). For example, Choi, Son, and Kim (2018) proposed a voting-based 
ensemble model for financial distress prediction. Feng, Xiao, Zhong, 
Qiu, and Dong (2018) constructed dynamic ensemble classifiers based 
on soft probability for credit scoring. Sun, Fujita, Chen, and Li (2017) 
constructed support vector machine ensembles based on the time weight 
of data samples. Garcia, Marques, and Sanchez (2019) investigated the 
training set size effect on various classifier ensembles for bankruptcy 
prediction. 

The aforementioned studies have demonstrated the importance of 
considering feature selection, instance selection, and ensemble learning 
techniques for improved bankruptcy prediction and credit scoring. 
However, most of them only focused on one of these three approaches; 
thus, no study has employed all three factors together for bankruptcy 
prediction or credit scoring problems. In other words, the research 
motivation of this paper is to answer the question: whether performing 
both feature and instance selection to preprocess the data and con-
structing the prediction models by ensemble learning techniques can 
outperform the single usage of these approaches or combining any two 
of these three approaches? To the best of our knowledge, this research 
question has never been answered before in the domain of financial 
distress prediction related literatures. 

In this light, the present study aimed to fill the gap in the literature 
concerning the joint use of feature selection, instance selection, and 
classifier ensembles for bankruptcy prediction and credit scoring. To 
answer the research question, there is a novel technical issue to combine 
feature and instance selection before the construction of classifier en-
sembles. Since feature and instance selection are two individual data 
preprocessing steps, different orders of execution can result in different 
reduced datasets, which can make classifier ensembles perform differ-
ently. As a result, a further research objective is to assess which order of 
combining feature selection and instance selection can allow classifier 
ensembles to perform better. 

The contribution of this paper is threefold. First, this study is the first 
to examine all three factors together affecting the financial distress 
prediction. From the technical viewpoint, a very large number of com-
binations (i.e. prediction models) are implemented for performance 
comparison. In particular, three feature selection algorithms (i.e., GA, 
principal component analysis [PCA], and t-test), three instance selection 
algorithms (i.e., affinity propagation [AP], GA, and self-organizing map 
[SOM]), and four classification algorithms (i.e., artificial neural network 
[ANN], decision tree [DT], logistic regression [LR], and support vector 
machine [SVM]) as well as two ensemble learning techniques (i.e., 
bagging and boosting) are employed, which result in 288 combinations. 

Second, from a practical point of view, although there are no general 
rules for different data sets (i.e., no free lunch theorem), the ten data sets 
used in our study cover both small and large bankruptcy prediction and 
credit scoring problems. The findings can be used as the representative 
baselines for future researches. When a new dataset is collected, and 
feature selection, instance selection, and classifier ensembles are 
required to be employed, it is infeasible to test all possible combinations 
of these algorithms. Therefore, to reduce the computational load and 
meet the practical need in a time-efficient manner, the best combination 
of algorithms determined by this research can be used as a starting point. 

Third, from an academic point of view, when future studies propose 
novel algorithms related to feature selection, instance selection, and 
classifier ensembles, the results can be compared with our 

recommended approaches instead of conducting experimental evalua-
tions from scratch (i.e., all possible combinations). 

The rest of this paper is organized as follows. Section 2 provides an 
overview of the feature selection, instance selection, and classifier en-
sembles and discusses the limitations of related works. Section 3 de-
scribes the research methodology, including the experimental setup and 
procedure. Section 4 presents the experiment results. Finally, Section 5 
presents the conclusions of this study. 

2 Literature review 
2.1 Feature selection 

Feature selection or dimensionality reduction aims at selecting a 
number of representative features from a given training dataset, where 
the dimension-reduced training dataset can provide more discriminative 
power to distinguish between classes than can the original one. As a 
result, a model constructed using a dimension-reduced training dataset 
is likely to outperform one obtained using the original training dataset 
(Guyon & Elisseeff, 2003). 

In general, the feature selection process consists of four steps: subset 
generation, subset evaluation, stopping criterion, and result validation. 
Subset generation is based on the use of some search strategy to produce 
candidate feature subsets for later evaluation steps. In subset evaluation, 
each candidate subset is compared with the previous best one based on 
some evaluation criterion. The subset generation and subset evaluation 
steps are repeated until a given stopping criterion is satisfied. The final 
step of result validation is based on using synthetic and/or real-world 
datasets to validate the selected best subset. 

Previously reported feature selection algorithms can be divided into 
three categories: those using filter, wrapper, and embedded methods 
(Bolon-Canedo, Sanchez-Marono, & Alonso-Betanzos, 2013; 2004;; Li, 
Li, & Liu, 2017). Filter methods use some feature ranking criteria for 
identifying features that have higher discriminative power. By contrast, 
wrapper methods use a chosen predictor or classifier, the performance of 
which is used as the objective function to evaluate the feature subset. 
Embedded methods incorporate the feature selection process as part of 
the model training procedure, meaning that feature selection is 
embedded in the construction stage of the prediction model; conse-
quently, the representative features are selected as the prediction model 
is developed. 

2.2 Instance selection 

Instance selection is used to not only reduce the size of the training 
dataset but also filter out noisy data or outliers. The instance selection 
process is outlined in the following. Given a training set T, an instance 
selection algorithm aims at selecting a more representative subset S of T, 
where S does not contain redundant instances. The models trained by S 
are likely to outperform or at least perform similarly to the models 
trained by T (Garcia, Derrac, Cano, & Herrera, 2012; Olvera-Lopez, 
Carrasco-Ochoa, Martinez-Trinidad, & Kittler, 2010). 

As with feature selection algorithms, instance selection algorithms 
can be classified into those using filter and wrapper methods, where 
filter methods use a selection function instead of a classifier function and 
wrapper methods are based on the accuracy obtained by using a clas-
sifier to select the best subset of a given training dataset. 

Clustering algorithms are one type of filter-based instance selection 
method. According to the clustering results, where each data sample is 
grouped into a specific cluster, the data samples that are far away from 
their cluster centers can be removed, meaning that the data samples that 
are closer to their cluster centers should be more representative than 
those that are further from their cluster centers (Tsai & Chen, 2014). 

A GA is a wrapper-based instance selection method. It is based on 
using a fitness function as a classifier to iteratively train and test subsets 
to identify the optimal subset that allows the classifier to provide the 
highest classification accuracy (Tsai & Chen, 2014). 

C.-F. Tsai et al.                                            
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2.3 Classifier ensembles 

Classifier ensembles or multiple classifiers are based on ensemble 
learning techniques. In this approach, multiple classifiers are con-
structed, and their classification results are combined for the final 
output (Masoudnia & Ebrahimpour, 2014; Rokach, 2009; Sun et al., 
2020; Wozniak, Grana, & Corchado, 2014). Two widely used ensemble 
learning techniques are bagging and boosting. 

The bagging ensemble method or bootstrap aggregation method 
samples the original training dataset to produce a number of training 
subsets. Then, various models are constructed based on these training 
subsets, with the final result obtained by combining the outputs pro-
duced by the constructed models. Averaging the multiple outputs and 
voting are the most commonly used combination methods for regression 
and classification problems, respectively (Breiman, 1994). 

In the boosting method, weak classifiers are trained iteratively and 
finally converted to strong classifiers by considering the data weights or 
reweighting, which relate to the accuracy of weak classifiers. Thus, 
misclassified input data are assigned a higher weight, whereas correctly 
classified data are assigned a lower weight. As a result, future weak 
classifiers focus more on the data that are misclassified by previous weak 
classifiers (Schapire, 1990). 

2.4 Comparison of related works 

Table 1 summarizes related works in terms of the techniques 
employed (including feature and instance selection and ensemble 
learning), domain datasets used (including bankruptcy prediction and 
credit scoring), and evaluation metrics considered. 

Some limitations of these related works are clear from Table 1. First, 
some considered either feature or instance selection when performing 
data preprocessing step, except for Ahn and Kim (2009) and Kim, Lee, 
and Ahn (2018), both of which used only one algorithm (i.e., GA) for 
both feature and instance selection tasks over Korean datasets. In 
particular, Kim et al. (2018) demonstrated that performing both feature 
and instance selection can enable an SVM classifier to provide higher 
prediction accuracy (i.e., 80.3%) than those obtained by performing 
feature and instance selection individually (i.e., 77.8% and 80%, 
respectively). Similarly, Ahn and Kim (2009) found that a case-based 
reasoning model based on the combination of both feature and 
instance selection provided a prediction accuracy of 87.08%, which is 
higher than that obtained by combining feature and instance selection 
alone (i.e., 83.71% and 84.64%, respectively). 

Second, some studies focused on constructing classifier ensembles 
and demonstrated how they outperform single classifiers. However, only 
some of them performed feature or instance tasks. Moreover, studies 
that considered feature or instance selection and classifier ensembles 
only used either bankruptcy prediction or credit scoring datasets, except 
for Lin et al. (2019) and Tsai (2014). 

Third, because datasets for financial distress prediction contain a 
class imbalance and because the number of bankruptcy (or bad credit) 
cases is much smaller than the number of nonbankruptcy (or good 
credit) cases, it is misleading to only assess prediction models based on 
the average prediction accuracy. The AUC and type I/II errors should be 
examined to provide a reliable conclusion. However, few related works 
have considered these evaluation metrics. If the collected datasets were 
preprocessed by some data-sampling techniques or systematically cho-
sen to become class-balanced datasets for the experiments, examining 
AUC may not be critical. However, among the eight related works listed 
in Table 1 that examined the rate of prediction accuracy alone, only four 
studies used class-balanced datasets, which are Kim et al. (2018), Sun 
et al. (2017), Finlay (2011), and Ahn and Kim (2009). 

By contrast, for type I/II errors depending on the definition, the error 
of misclassifying bankruptcy or bad credit cases into the nonbankruptcy 
or good credit class, respectively, is critical for financial institutions to 
reduce the risk of bad debts. However, only six related works out of the 

18 examined the type I/II errors of prediction models. 
In summary, both feature and instance selection tasks are crucial in 

the data preprocessing step and can directly affect the performance of 
classifier ensembles. This study explored the effect of combining feature 
selection and instance selection on the prediction performance by 
ensemble classification techniques. Thus, various combinations of these 
three technical factors—feature selection, instance selection, and 
ensemble classification techniques—were investigated. 

3. Research methodology

3.1 Data preprocessing procedures

In this study, 10 related datasets—five bankruptcy prediction and
five credit scoring datasets—containing various numbers of features and 
instances were chosen for the experiments. Table 2 summarizes the in-
formation on these 10 datasets. 

Fig. 1 shows the four data preprocessing procedures—feature selec-
tion, instance selection, performing feature selection first and instance 
selection second, and performing instance selection first and feature 
selection second—that result in four processed datasets that are 
respectively denoted as FS Dataset, IS Dataset, FS-IS Dataset, and IS-FS 
Dataset. 

For the baseline approach, the original dataset D is divided into 
training and testing sets that are respectively denoted as Dtraining and 
Dtesting. The four data preprocessing procedures are described below.  

• Feature selection (FS): Dtraining is input into the chosen FS algorithm
to identify representative features. Suppose that D contains m feature
dimensions and n features are finally selected where n < m. The
resulting training set containing n features, denoted as
Dtraining reduced features, is used to train a classifier. For classifier testing,
the features of Dtesting should be selected to be the same as the ones in
Dtraining reduced features, leading to a new testing set that contains n
features, denoted as Dtesting reduced features. This new testing set is used
to assess the performance of the classifier.

• Instance selection (IS): Dtraining is input into the chosen IS algorithm to
select representative instances. Suppose Dtraining contains o instances
and p instances are finally selected where p < o. As a result, a subset
of Dtraining is produced, denoted as Dtraining reduced instances, and is then
used to train a classifier. For classifier testing, Dtesting is used.

• FS-IS: Dtraining reduced features is input into the chosen IS algorithm to
select representative instances, where q instances are selected,
denoted as Dtraining reduced features+instances. The selected q instances of
Dtraining reduced features+instances are not necessarily the same as the
selected p instances of Dtraining reduced instances. Next,
Dtraining reduced features+instances is used to train the classifier, and
Dtesting reduced features is used to test the classifier.

• IS-FS: Dtraining reduced instances is input into the chosen FS algorithm,
resulting in a new training set that contains l features, denoted as
Dtraining reduced instances+features. The selected l features of
Dtraining reduced instances+features are not necessarily the same as the
selected n features of Dtraining reduced features. Next,
Dtraining reduced instances+features is used for classifier training. To test the
classifier, the features of Dtesting selected are the same as the ones in
Dtraining reduced instances+features, which results in a new testing set that
contains l features.

For the feature selection algorithms, PCA, t-test, and GA1 methods
are used, whereas the instance selection algorithms are based on SOM2, 
AP (Frey & Dueck, 2007), and GA. Consequently, three sets of results are 

1 The parameters of GA are based on Tsai and Chen (2014).  
2 The map size of SOM is based on Tsai (2014). 

C.-F. Tsai et al.                                            



Journal of Business Research 130 (2021) 200–209

203

produced by the data preprocessing procedures for FS Dataset and IS 
Dataset, and nine sets of results are produced for FS-IS Dataset and IS-FS 
Dataset. 

3.2 Construction of classifier ensembles 

In this study, four classification techniques—LR, SVM, ANN, and 
DT—were used to construct classifier ensembles. For the ensemble 
techniques, the bagging and boosting methods were employed, resulting 
in both bagging- and boosting-based LRs, SVMs, ANNs, and DTs. 

The classifier ensembles were constructed using the Weka machine 
learning software3 with the related parameters set to the default values. 
In addition, as in Tsai, Hsu, and Yen (2014), the number of multiple 

classifiers was set to 100. 
Moreover, each dataset was divided into 90% training and 10% 

testing subsets based on the 10-fold cross validation method. Many 
studies listed in Table 1 also considered 10-fold cross validation, 
including Garcia et al. (2019), Choi et al. (2018), Jadhav et al. (2018), 
Liu and Pan (2018), Maldonado, Perez, and Bravo (2017), Liang et al. 
(2015), Tsai and Cheng (2012), Sun, Jia, and Li (2011). The average of 
10 results is reported for performance comparison between data pre-
processing approaches and classifier ensembles. Furthermore, the 
training and testing subsets of each fold were controlled to contain 
almost the same class ratio of the original dataset. 

In terms of evaluation metrics, the AUC and type II error were 
examined. AUC is a suitable measurement for class-imbalanced datasets 
(Galar, Fernandez, Barrenechea, Bustince, & Herrera, 2012), and the 
type II error focuses on the misclassification error of bankruptcy or bad 
credit cases into the nonbankruptcy or good credit class, which can leave 

Table 1 
Overview of related research.  

Works Techniques Domain datasets Evaluation metrics 

Feature selection Instance 
selection 

Ensemble techniques Bankruptcy 
prediction 

Credit scoring 

Garcia et al. (2019)   Bagging & boosting ANN1/C4.5/kNN2 Australian/Finland/ 
German/Japanese/Polish/ 
SabiSPQ/Taiwan/Thomas 

AUC/ 
Type I/II errors 

Lin et al. (2019) GA/IG3 Bagging & boosting LR/NB4/ANN/DT5/ 
SVM/kNN 

Australian/German/Taiwan Type I error 

Choi et al. (2018)   Voting of SVM6, ANN, DT, NB, LR7 Korea AUC 
Du Jardin (2018) Mann-Whitney 

test  
Bagging & Boosting DA8/LR/DT/ 
SVM/ANN/ELM9 

France  Accuracy 

Feng et al. (2018)   Bagging DT/ANN/SVM; boosting DT; 
voting of DT, ANN/SVM 

AER credit card/Australian/Chinese/ 
German/Japanese/Kaggle/ 
PAKDD2010/Taiwan 

Accuracy/AUC/ 
Type I/II 
errors 

Jadhav et al. 
(2018) 

IGDFS 10/GA 11 Australian/ 
German/ 
Taiwan 

Accuracy/AUC 

Kim et al. (2018) GA GA  Korea  Accuracy 
Liu and Pan (2018)  FRIS 12 Australian/ 

German 
Accuracy 

Maldonado et al. 
(2017) 

CBFS 13 New/ 
returning customer 
datasets 

AUC 

Sun et al. (2017)   Boosting SVM Chinese  Accuracy 
Zhou and Lai 

(2017)   
Boosting DT/ANN Japan/USA  Accuracy/AUC 

Liang et al. (2015) GA/DA/LR/PSO 
14/t-test   

Australian/Chinese/German/Taiwan Accuracy/Type I/II 
errors 

Tsai (2014)  k-means/SOM 
15 

Voting of CART 16, ANN, LR; bagging 
ANN 

Australian/German/Japanese/UC 
competition 

Accuracy/Type I/II 
errors 

Tsai et al. (2014)   Bagging & boosting ANN/DT/SVM Australian/German/Japanese/Taiwan Accuracy 
Tsai and Cheng 

(2012)  
k-means  Australian/German/Japanese/UC 

competition 
Accuracy/Type I/II 
errors 

Finlay (2011)   Bagging & boosting LDA/CAT/ANN/kNN  UK Accuracy 
Sun et al. (2011)   Boosting DT Chinese  Accuracy 
Ahn and Kim 

(2009) 
GA GA  Korea  Accuracy  

1 ANN: artificial neural network. 
2 kNN: k-nearest neighbor. 
3 IG: information gain. 
4 NB: naïve Bayes. 
5 DT: C4.5 decision tree. 
6 SVM: support vector machine. 
7 LR: logistic regression. 
8 DA: discriminant analysis. 
9 ELM: extreme learning machine. 
10 IGDFS: information gain directed feature selection. 
11 GA: genetic algorithm. 
12 FRIS: fuzzy-rough instance selection. 
13 CBFS: cost-based feature selection. 
14 PSO: particle swarm optimization. 
15 SOM: self-organizing maps. 
16 CART: classification and regression tree. 

3 https://www.cs.waikato.ac.nz/ml/weka/ 
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financial institutions vulnerable to bad debts. 

4 Experimental results 
4.1 Feature and instance selection factors 

The first experiment was designed to examine the effect of data 
preprocessing procedures, namely, FS, IS, FS-IS, and IS-FS, on the pre-
diction performance of classifier ensembles. To facilitate understanding 
and illustrate the results obtained using the various data preprocessing 
procedures, the classifier ensemble factor was fixed and based on 
boosting SVM. This was because SVM is one of the most widely used 
classifiers and has been demonstrated to be superior to many other well- 
known classifiers such as LR, ANN, and DT (Lin et al., 2012; Liang, Lu, 
Tsai, & Shih, 2016; Maldonado et al., 2017; Sun et al., 2017). Moreover, 
ensemble classifiers are known to usually outperform single classifiers 
(Tsai, 2014), and the boosting algorithm has the potential to achieve a 
lower error rate than other related algorithms (Freund & Schapire, 
1997). 

4.1.1 Results for bankruptcy prediction datasets 

Tables 3 and 4 show the AUC and Type II errors from boosting SVM 
for various preprocessing procedures over the five bankruptcy 

prediction datasets. The best result for each dataset is underlined. With 
most of the preprocessing approaches, the boosting SVM classifier pro-
vided a higher AUC and lower Type II error than the baseline approach 
did over these datasets. However, the algorithm(s) for the data pre-
processing step should be chosen carefully to obtain the best result. 

Based on the evaluation metrics (i.e., AUC and type II error), the best 
approach for each dataset differed somewhat. According to the AUC and 
type II error results, the best approach was the same only for the TEJ- 
Chain dataset, namely, GA-SOM. The relationship between data char-
acteristics and prediction performance is noteworthy. For the JPNBDS 
and USABDS datasets, which were not class imbalanced (i.e., class 
imbalance ratio is 1:1) and contained smaller numbers of features (i.e., 
11) than the Bankruptcy, TEJ-China, and TEJ-Taiwan datasets, per-
forming AP-PCA provided the highest AUC rate (p < 0.05)4. However, 
no direct relationship was identified between the data characteristics 
and the prediction performances for type II error. 

Fig. 2 shows the average AUC and type II errors obtained with the 24 
data preprocessing approaches as well as the baseline method over the 
five bankruptcy prediction datasets. In terms of the average AUC, all 
data preprocessing approaches outperformed the baseline approach, 
except for GA-GA, for which PCA-AP was the best approach (AUC of 
0.879, p < 0.05). 

For the average type II error, only the GA and PCA approaches 
produced a poorer result than the baseline. Among the 24 data pre-

processing approaches, GA-SOM exhibited the best performance (p <
0.05). 

4.1.2 Results for credit scoring datasets 

Tables 5 and 6 present the AUC and Type II errors obtained using 
boosting SVM with various preprocessing procedures over the five credit 
scoring datasets. Similar to the results of the bankruptcy prediction 
datasets, not all data preprocessing approaches outperformed the 
baseline approach. Moreover, the best approaches differed based on the 
AUC and type II error results. 

These results indicate that for most credit scoring datasets, except 
Australian, PCA-SOM and t-test-SOM were the superior choices 
depending on the dataset size. For small-scale datasets containing small 
numbers of instances, such as German (1000) and Japanese (690), PCA- 
SOM provided the highest AUC rate (p < 0.05). For datasets containing 
large numbers of instances, such as Kaggle (15000) and PAKDD (50000), 
t-test-SOM is recommended (p < 0.05)5. For the type II error, PCA-AP 

Table 2 
Basic information for the investigated datasets.  

Dataset No. of 
features 

No. of 
instances 

No. of bankruptcy/ 
bad credit cases 

Bankruptcy prediction 
Bankruptcy (Olson, 

Delen, & Meng, 2012) 
16 1321 697 

JPNBDS (Zhou & Lai, 
2017) 

11 152 76 

TEJ-China (Liang et al., 
2016) 

101 3058 69 

TEJ-Taiwan (Liang et al., 
2016) 

95 6819 220 

USABDS (Zhou & Lai, 
2017) 

11 2336 1168 

Credit scoring 
Australian1 14 690 383 
German2 20 1000 300 
Japanese3 15 690 383 
Kaggle4 10 150,000 10,026 
PAKDD5 37 50,000 13,041 

1https://archive.ics.uci.edu/ml/datasets/Statlog+(Australian + Credit +

Approval). 
2https://archive.ics.uci.edu/ml/datasets/Statlog+(German + Credit + Data). 
3https://archive.ics.uci.edu/ml/datasets/Credit + Approval. 
4http://www.kaggle.com/c/GiveMeSomeCredit. 
5http://sede.neurotech.com.br/PAKDD2010/. 

Fig. 1. . The data pre-processing procedures.  

4 The statistical analysis is based on Welch’s T-test (Derrick, Toher, & White, 
2016).  

5 For the Kaggle dataset, there is no a significant difference between SOM, t- 
test-SOM, and SOM-t-test. 
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outperformed most credit scoring datasets except Australian (p < 0.05). 
Fig. 3 displays the average AUC and type II errors obtained using the 

24 data preprocessing approaches as well as the baseline method over 
the five credit scoring datasets. In terms of AUC, SOM (0.786), GA-SOM 
(0.779), PCA-AP (0.78), PCA-SOM (0.827), t-test-SOM (0.829), AP-t-test 

(0.774), SOM-GA (0.819), SOM-PCA (0.787), and SOM-t-test (0.801) 
outperformed the baseline approach (0.772), with t-test-SOM perform-
ing the best (p < 0.05). 

For the type II error, many data preprocessing approaches produced 
better results than the baseline approach, except for PCA, t-test, GA-AP, 
PCA-GA, t-test-GA, and GA-PCA. Among the 24 data preprocessing ap-
proaches, PCA-AP significantly outperformed the others (p < 0.05). 

4.2 Classifier ensemble factors 

The second experiment was designed to fix the data preprocessing 
procedure and to examine the prediction performance of the various 
classifier ensembles combined with the best data preprocessing 
approach, meaning that the effect of combining the identified best data 
preprocessing approach and various classifier ensembles on the predic-
tion performance was examined. The GA-SOM approach was chosen for 
the bankruptcy prediction datasets because it provides the lowest type II 
error rate and an AUC similar to that obtained with the best data pre-
processing approach (i.e., PCA-AP). The t-test-SOM approach was cho-
sen for the credit scoring datasets because it achieved the best and 
second-best performance in terms of the AUC and type II error, 
respectively. 

4.2.1 Results for bankruptcy prediction datasets 

Tables 7 and 8 present the AUC and type II errors obtained with 
various classifier ensembles based on the GA-SOM data preprocessing 
approach. The best result for each classification technique for each 
dataset is underlined. The results indicate that classifier ensembles do 
not always outperform single classifiers. However, upon examining the 
average AUC and type II errors of various classifiers over the five 
bankruptcy prediction datasets, much clearer conclusions can be made. 

Figs. 4 and 5 show that, on average, ensemble techniques can 
improve the prediction performance of single classifiers. However, the 
ensemble method should be chosen carefully to make the various clas-
sifiers more effective. For example, in terms of the AUC and type II error, 
bagging DT outperforms single DT and boosting DT, whereas boosting 
SVM outperforms single SVM and bagging SVM. 

By contrast, bagging ANN and bagging LR provide better AUC results 
than single ANN and LR and their ensembles by the boosting method. 
Boosting ANN and boosting LR provide lower type II errors. 

The best and second-best AUC results were obtained by using 
bagging DT (i.e., 0.903) and bagging ANN (i.e., 0.895), respectively. 
Although the performance of these two ensemble classifiers did not 
differ significantly, they significantly outperformed the other classifiers 
(p < 0.05). In terms of the type II error, boosting SVM significantly 
outperformed the other classifiers (p < 0.05). 

4.2.2 Results for credit scoring datasets 

Tables 9 and 10 exhibit the AUC and type II errors obtained with 
various classifiers based on the GA-SOM data preprocessing approach. 
Similar to the previous results, classifier ensembles did not necessarily 
outperform single classifiers every time. Figs. 6 and 7 present the 
average AUC and type II error obtained with various classifiers over the 
five credit scoring datasets. 

Figs. 6 and 7 indicate that bagging ANN and boosting SVM outper-
form their corresponding classifiers in terms of the AUC and type II 
error. Among DT classifier ensembles, bagging DT and boosting DT 
provided the best results in terms of the AUC and type II errors, 
respectively. Among LR ensembles, bagging LR exhibited a better AUC, 
and both the single LR classifier and boosting LR exhibited the lowest 
type II error. 

Similar to the results for bankruptcy prediction datasets, bagging DT 
and bagging ANN were the best and second-best classifiers, respectively, 
in terms of AUC (i.e., 0.852 and 0.846, respectively). No significant 

Table 3 
AUC under different pre-processing procedures (bankruptcy prediction).   

Bankruptcy JPNBDS TEJ-China TEJ-Taiwan USABDS 

Baseline   
0.723 0.797  0.846  0.905  0.418 

FS 
GA  0.741 0.851  0.862  0.903  0.507 
PCA  0.641 0.8  0.845  0.908  0.525 
t-test  0.737 0.824  0.868  0.9  0.514 
IS 
AP  0.802 0.925  0.844  0.798  0.871 
GA  0.704 0.919  0.821  0.884  0.513 
SOM  0.824 0.9  0.851  0.896  0.801 
FS-IS 
GA-AP  0.768 0.712  0.876  0.888  0.787 
GA-GA  0.66 0.702  0.819  0.902  0.508 
GA-SOM  0.828 0.95  0.958  0.885  0.672 
PCA-AP  0.844 0.9  0.955  0.969  0.725 
PCA-GA  0.667 0.793  0.838  0.9  0.521 
PCA-SOM  0.848 0.861  0.878  0.878  0.705 
t-test-AP  0.807 0.81  0.894  0.826  0.705 
t-test-GA  0.702 0.822  0.86  0.902  0.491 
t-test-SOM  0.853 1  0.933  0.909  0.544 
IS-FS 
AP-GA  0.803 0.833  0.876  0.914  0.819 
AP-PCA  0.787 0.967  0.853  0.785  0.877 
AP-t-test  0.808 0.942  0.889  0.842  0.862 
GA-GA  0.623 0.925  0.859  0.897  0.497 
GA-PCA  0.641 0.879  0.825  0.89  0.517 
GA-t-test  0.671 0.879  0.876  0.902  0.5 
SOM-GA  0.808 0.375  0.893  0.922  0.799 
SOM-PCA  0.831 0.95  0.887  0.83  0.779 
SOM-t-test  0.837 0.9  0.919  0.882  0.775  

Table 4 
Type II error under different pre-processing procedures (bankruptcy prediction).   

Bankruptcy JPNBDS TEJ-China TEJ-Taiwan USABDS 

Baseline   
0.304 0.225 0.9  0.877 0.516 

FS 
GA  0.219 0.259 1  0.968 0.45 
PCA  0.266 0.209 0.867  0.886 0.642 
t-test  0.257 0.105 0.926  0.918 0.504 
IS 
AP  0.531 0.2 0.717  0.633 0.21 
GA  0.275 0.208 0.927  0.607 0.237 
SOM  0.418 0.1 0.558  0.59 0.33 
FS-IS 
GA-AP  0.538 0.367 0.833  0.55 0.275 
GA-GA  0.335 0.115 0.967  0.912 0.054 
GA-SOM  0.382 0 0.417  0.7 0.038 
PCA-AP  0.42 0.2 0.5  0.55 0.205 
PCA-GA  0.288 0.192 0.947  0.795 0.221 
PCA-SOM  0.257 0.3 0.78  0.907 0.372 
t-test-AP  0.464 0.195 0.717  0.8 0.42 
t-test-GA  0.291 0.392 0.933  0.757 0.426 
t-test-SOM  0.376 0 0.675  0.643 0.652 
IS-FS 
AP-GA  0.539 0.2 0.633  0.567 0.274 
AP-PCA  0.524 0.1 0.7  0.633 0.265 
AP-t-test  0.517 0.3 0.608  0.55 0.186 
GA-GA  0.179 0.108 0.967  0.874 0.002 
GA-PCA  0.348 0.133 0.857  0.725 0.223 
GA-t-test  0.365 0.158 0.94  0.655 0 
SOM-GA  0.473 0.75 0.492  0.4 0.325 
SOM-PCA  0.394 0.25 0.608  0.665 0.357 
SOM-t-test  0.448 0.2 0.575  0.6 0.362  
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difference was identified in the performance of these two classifiers, and 
both significantly outperformed the other classifiers (p < 0.05). In terms 
of the type II error, boosting DT significantly outperformed the other 
classifiers (p < 0.05). 

4.3 Further comparisons 

To arrive at a more reliable conclusion about the effects of the data 
preprocessing and ensemble classification technique on the final pre-
diction result, nine data preprocessing approaches combined with 
twelve different classification techniques for bankruptcy prediction and 
credit scoring datasets were further compared, resulting in 288 combi-
nations for each dataset. For convenience, only the top five combina-
tions in terms of the AUC and type II error are listed; Tables 11 and 12 
show the results for the bankruptcy prediction and credit scoring data-
sets, respectively. 

These results indicate that the three factors—feature selection, 
instance selection, and ensemble classification techniques—affect each 
other. Careful consideration of the combination of the data pre-
processing algorithm and the classification technique is needed to 

develop superior prediction models for bankruptcy prediction and credit 
scoring. Furthermore, using the original dataset without performing 
feature and instance selection and constructing classifier ensembles is 
unlikely to produce the best prediction performance. 

For bankruptcy prediction problems, no significant difference was 
identified in the performance of the top three combined approaches in 
terms of the AUC, namely, AP + bagging DT, AP-GA + bagging ANN, 
and AP-t-test + bagging ANN. Further, they significantly outperformed 
the fourth- and fifth-best approaches, namely, GA + bagging DT and 
original + bagging DT (p < 0.05). To realize the highest AUC, AP +
bagging DT is recommended because it does not require the additional 
feature selection step. 

Furthermore, no significant difference was identified in the perfor-
mance of the top three combined approaches in terms of the type II 
error, namely, PCA-AP + LR, PCA-AP + boosting LR, and GA-SOM +
boosting SVM. To realize the best type II error, PCA-AP + LR is rec-
ommended because it requires the lowest computational effort during 
the feature selection step—because it uses PCA instead of GA—and the 
classifier construction step—because it uses LR instead of boosting LR or 
boosting SVM. 

Fig. 2. . Average AUC and type II errors obtained with the different approaches.  

Table 5 
AUC under different pre-processing procedures (credit scoring).   

Australian German Japanese Kaggle PAKDD 

Baseline   
0.903  0.762  0.907  0.674  0.612 

FS 
GA  0.914  0.738  0.912  0.617  0.607 
PCA  0.924  0.722  0.911  0.645  0.610 
t-test  0.920  0.725  0.909  0.674  0.613 
IS 
AP  0.846  0.725  0.821  0.730  0.616 
GA  0.903  0.697  0.903  0.673  0.609 
SOM  0.898  0.737  0.848  0.826  0.619 
FS-IS 
GA-AP  0.907  0.565  0.916  0.754  0.625 
GA-GA  0.900  0.708  0.917  0.618  0.604 
GA-SOM  0.918  0.795  0.924  0.626  0.631 
PCA-AP  0.894  0.758  0.899  0.793  0.558 
PCA-GA  0.872  0.688  0.857  0.618  0.611 
PCA-SOM  0.950  0.796  0.982  0.805  0.604 
t-test-AP  0.885  0.722  0.873  0.736  0.619 
t-test-GA  0.916  0.681  0.894  0.670  0.610 
t-test-SOM  0.944  0.778  0.959  0.826  0.638 
IS-FS 
AP-GA  0.844  0.769  0.843  0.707  0.611 
AP-PCA  0.881  0.757  0.857  0.712  0.619 
AP-t-test  0.880  0.786  0.867  0.723  0.615 
GA-GA  0.902  0.724  0.913  0.604  0.602 
GA-PCA  0.891  0.710  0.903  0.681  0.607 
GA-t-test  0.896  0.735  0.914  0.669  0.606 
SOM-GA  0.980  0.788  0.885  0.820  0.623 
SOM-PCA  0.953  0.646  0.901  0.824  0.610 
SOM-t-test  0.922  0.732  0.911  0.826  0.615  

Table 6 
Type II error under different pre-processing procedures (credit scoring).   

Australian German Japanese Kaggle PAKDD 

Baseline   
0.160  0.527  0.167 0.985 1 

FS 
GA  0.154  0.52  0.168 0.967 1 
PCA  0.133  0.74  0.173 0.989 1 
t-test  0.172  0.667  0.162 0.985 1 
IS 
AP  0.194  0.407  0.144 0.96 1 
GA  0.173  0.458  0.158 0.983 1 
SOM  0.125  0.457  0.186 0.885 1 
FS-IS 
GA-AP  0.155  0.597  0.127 1 1 
GA-GA  0.193  0.482  0.156 0.973 1 
GA-SOM  0.146  0.420  0.135 1 1 
PCA-AP  0.1  0.35  0.05 0.68 0.984 
PCA-GA  0.197  0.698  0.213 0.985 1 
PCA-SOM  0.04  0.467  0.158 0.722 1 
t-test-AP  0.129  0.525  0.138 0.958 1 
t-test-GA  0.178  0.622  0.197 0.983 1 
t-test-SOM  0.1  0.383  0.046 0.861 1 
IS-FS 
AP-GA  0.141  0.359  0.123 0.96 1 
AP-PCA  0.155  0.488  0.145 0.979 1 
AP-t-test  0.156  0.37  0.159 0.961 1 
GA-GA  0.173  0.437  0.186 0.97 1 
GA-PCA  0.173  0.496  0.208 0.993 1 
GA-t-test  0.173  0.447  0.208 0.983 1 
SOM-GA  0.113  0.443  0.152 0.898 1 
SOM-PCA  0.05  0.580  0.177 0.879 1 
SOM-t-test  0.063  0.580  0.095 0.861 1  
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Fig. 3. . Average AUC and type II errors for the different approaches.  

Table 7 
AUC under different classifier ensembles.   

Bankruptcy JPNBDS TEJ-China TEJ-Taiwan USABDS 

ANN 
Single  0.846  1.000  0.961  0.880  0.730 
Bagging  0.863  1.000  0.962  0.893  0.755 
Boosting  0.844  1.000  0.959  0.849  0.715 
DT 
Single  0.862  0.950  0.897  0.648  0.712 
Bagging  0.916  1.000  0.973  0.877  0.747 
Boosting  0.884  0.950  0.972  0.869  0.696 
LR 
Single  0.857  1.000  0.959  0.893  0.700 
Bagging  0.863  1.000  0.959  0.889  0.700 
Boosting  0.806  1.000  0.940  0.814  0.634 
SVM 
Single  0.500  0.950  0.784  0.548  0.499 
Bagging  0.820  1.000  0.920  0.619  0.589 
Boosting  0.828  0.950  0.958  0.885  0.672  

Table 8 
Type II errors under different classifier ensembles.   

Bankruptcy JPNBDS TEJ-China TEJ-Taiwan USABDS 

ANN 
Single  0.344  0.000  0.467  0.633  0.253 
Bagging  0.344  0.000  0.517  0.700  0.193 
Boosting  0.319  0.000  0.467  0.633  0.219 
DT 
Single  0.308  0.100  0.383  0.767  0.247 
Bagging  0.259  0.100  0.383  0.700  0.199 
Boosting  0.288  0.100  0.367  0.700  0.247 
LR 
Single  0.392  0.050  0.500  0.717  0.097 
Bagging  0.382  0.050  0.517  0.667  0.101 
Boosting  0.392  0.050  0.417  0.717  0.097 
SVM 
Single  0.368  0.000  0.900  1.000  0.000 
Bagging  0.368  0.000  0.900  0.983  0.003 
Boosting  0.382  0.000  0.417  0.700  0.038  
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Fig. 4. . Average AUC obtained with the different classifiers.  
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Fig. 5. . Average type II errors obtained with the different classifiers.  

Table 9 
AUC under different classifier ensembles (credit scoring).   

Australian German Japanese Kaggle PAKDD 

ANN 
Single  0.940  0.950  0.786  0.620  0.837 
Bagging  0.959  0.818  0.963  0.850  0.642 
Boosting  0.944  0.737  0.942  0.793  0.603 
DT 
Single  0.954  0.922  0.697  0.577  0.679 
Bagging  0.970  0.843  0.968  0.844  0.634 
Boosting  0.958  0.809  0.952  0.781  0.594 
LR 
Single  0.940  0.969  0.775  0.655  0.831 
Bagging  0.944  0.799  0.961  0.832  0.655 
Boosting  0.927  0.741  0.953  0.736  0.622 
SVM 
Single  0.949  0.940  0.777  0.500  0.500 
Bagging  0.949  0.821  0.946  0.500  0.501 
Boosting  0.944  0.778  0.959  0.826  0.638  

Table 10 
Type II error under different classifier ensembles (credit scoring).   

Australian German Japanese Kaggle PAKDD 

ANN 
Single  0.100  0.093  0.333  0.907  0.871 
Bagging  0.086  0.300  0.046  0.874  0.957 
Boosting  0.100  0.358  0.068  0.871  0.906 
DT 
Single  0.086  0.093  0.375  0.865  0.838 
Bagging  0.071  0.325  0.046  0.839  0.897 
Boosting  0.086  0.375  0.056  0.790  0.813 
LR 
Single  0.114  0.046  0.433  0.981  0.876 
Bagging  0.114  0.458  0.046  0.877  0.980 
Boosting  0.114  0.433  0.046  0.876  0.981 
SVM 
Single  0.071  0.046  0.275  1.000  1.000 
Bagging  0.071  0.300  0.046  1.000  1.000 
Boosting  0.100  0.383  0.046  0.861  1.000  
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For the credit scoring problem, no significant difference was evident 
in the top two combined approaches in terms of the AUC and type II 
error. However, in light of the computational time, t-test-SOM + bagging 
DT and PCA-AP + ANN are recommended to realize the best AUC and 
type II error, respectively. 

5 Conclusion 

This study examined three important factors—feature selection, 
instance selection, and classifier ensembles—that affect the prediction 
performance of bankruptcy prediction models and credit scoring 
models. Most related studies that have used one of these three types of 
techniques have reported their positive impact on the final prediction 
performance. However, the present study is the first to consider all three 
types of techniques together for financial distress prediction. 

To demonstrate the combinations of these three factors and deter-
mine superior bankruptcy prediction and credit scoring models, three 
feature selection algorithms (i.e., GA, PCA, and t-testing), three instance 
selection algorithms (i.e., AP, GA, and SOM), and four classification 

techniques (i.e., ANN, DT, LR, and SVM) as well as the bagging and 
boosting ensemble algorithms were individually combined to construct 
classifier ensembles, leading to 288 combinations for performance 
comparison. 

Studies have found that performing data preprocessing by using 
either feature or instance selection and constructing the prediction 
model by using ensemble learning techniques can improve the predic-
tion performance. Our experiment results indicate that these three types 
of techniques should be carefully combined to develop more effective 
bankruptcy prediction and credit scoring models. In particular, the order 
in which feature and instance selection and related algorithms used for 
feature selection, instance selection, and model construction steps are 
performed greatly affects the final prediction performance. 

For bankruptcy prediction, the top three combinations exhibited 
insignificant performance differences from each other and significantly 
outperformed the other combinations in terms of the AUC and type II 
error. However, considering the computational cost for data pre-
processing and the classifier training, AP + bagging DT is the best choice 
to achieve the highest AUC, and PCA-AP + LR is the best choice to 
achieve the lowest type II error rate. 

For credit scoring, some combinations exhibited insignificant per-
formance differences from each other and yielded a superior AUC and 
type II error than did other combinations. The approaches of t-test-SOM 
+ bagging DT and PCA-AP + ANN are the superior choices for realizing 
the best AUC and type II error, respectively, in consideration of lower 
computational costs. 

The results of this study have practical value for both general and 
institutional investors. When faced with a high-dimensional and large 
amount of corporate data, it is difficult for general investors to make 
reasonable investment decisions. The proposed approach can help 
determine the key factors of financial distress and develop a decision 
support system for investment recommendations, thereby enabling in-
vestors to avoid investing in high-risk companies. With respect to 
institutional investors, as they may suffer severe losses from the bank-
ruptcy of investment companies, it is a crucial task to detect financial 
distress as early as possible. A real-time financial distress prediction 
model with high precision and low tolerance of error is required. Our 
study gives sufficient evidence of the effectiveness of combining a 
number of data preprocessing and classifier ensemble techniques. 
Institutional investors can develop early warning systems based on the 
proposed approaches to provide more optimal performance of financial 
distress prediction. 

This study has some limitations that can be improved upon in future 
studies. First, other more sophisticated feature and instance algorithms 
can be used for performance comparison, such as ensemble feature se-
lection (Pes, 2020; Tsai & Sung, 2020), constrained nearest neigh-
bor–based instance selection (Yang et al., 2019), and natural ensemble 
margin instance selection (Saidi, Bechar, & A., Settouti, N., and Chikh, 
M.A. , 2018). Second, because many financial distress prediction data-
sets are class imbalanced, some data sampling approaches such as over- 
and under-sampling can be performed to balance the datasets before or 
after the feature and instance selection steps to examine the perfor-
mance improvement (Galar et al., 2012). Third, future studies can 
employ related deep learning techniques such as deep belief networks, 
deep neural networks, and convolutional neural networks (Luo, Wu, & 
Wu, 2019; Qu, Quan, Lei, & Shi, 2019). 
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Fig. 7. . Average type II errors obtained with different classifiers.  

Table 11 
The top five combinations for the bankruptcy prediction datasets.  

Top five combinations AUC Top five combinations Type II error 

AP + bagging DT  0.934 PCA-AP + LR  0.28 
AP-GA + bagging ANN  0.931 PCA-AP + boosting LR  0.28 
AP-t-test + bagging ANN  0.929 GA-SOM + boosting SVM  0.289 
GA + bagging DT  0.914 GA-SOM + boosting LR  0.32 
Original + bagging DT  0.913 GA-SOM + boosting ANN  0.33  

Table 12 
The top five combinations for the credit scoring datasets.  

Top five combinations AUC Top five combinations Type II error 

t-test-SOM + bagging DT  0.852 PCA-AP + ANN  0.414 
t-test-SOM + bagging ANN  0.846 t-test-SOM + boosting DT  0.424 
t-test-SOM + bagging LR  0.838 PCA-AP + boosting SVM  0.433 
t-test-SOM + LR  0.834 AP + boosting DT  0.44 
SOM-GA + ANN 

SOM-GA + bagging ANN  
0.833 AP-t-test + boosting DT  0.44  
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