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a b s t r a c t 

Explanation methods shed light on the decision process of black-box classifiers such as deep neural net- 

works. But their usefulness can be compromised because they are susceptible to manipulations. With 

this work, we aim to enhance the resilience of explanations. We develop a unified theoretical framework 

for deriving bounds on the maximal manipulability of a model. Based on these theoretical insights, we 

present three different techniques to boost robustness against manipulation: training with weight decay, 

smoothing activation functions, and minimizing the Hessian of the network. Our experimental results 

confirm the effectiveness of these approaches. 
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. Introduction 

In recent years, deep neural networks have revolutionized many 

ifferent areas. Despite their impressive performance, the reason- 

ng behind their decision processes remains difficult to grasp for 

umans. This can limit their usefulness in applications that re- 

uire transparency. Explanation methods promise to make neural 

etworks interpretable. In this work we consider explanations of 

ndividual predictions that can be given in terms of explanation 

aps [1–20] which visualize the importance of each input feature 

or the network’s prediction. They give valuable information about 

elevant features [21–24] , help us understand what a model has 

earned [3,25–27] , and identify unwanted behavior or biases in the 

ata [7,28–30] . 

While explanation methods show promising results in many 

reas, concerns regarding their reliability exist. Recent work has 

hown that explanations are sensitive to small perturbations of the 

nput that do not change the classification result [31] . Furthermore, 

hese perturbations can be constructed such that an arbitrary tar- 

et explanation is closely reproduced and all class scores are ap- 

roximately unchanged (as opposed to only the classification re- 
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ult), see [32] . An alternative approach leaves the input unchanged 

ut manipulates the model such that it has the same output on 

he entire data manifold but reproduces an arbitrary target expla- 

ation map [33,34] . The former class of methods is often refered 

o as input manipulations and the latter as model manipulations. 

Untrustworthy explanations are evidently problematic for vari- 

us reasons. For a large number of applications, one is interested in 

he prediction as well as in the explanation of a phenomenon. Ex- 

mples include medical and natural science applications. As some 

xplanations are susceptible even to random input perturbations, 

t seems questionable if much insight can be derived from inspect- 

ng such explanations. In a setting where explanations are legally 

equired [35] , explanation manipulability obviously raises serious 

oncerns as they cannot be considered trustworthy evidence. An 

xample for this is credit risk assessment: The supplier can ob- 

uscate that a decision was made based on racist, sexist or other 

iscriminating features by manipulating the model [34] . Similarly, 

ttacks from the user side are possible by manipulating the input 

s they can create the impression that the decision was based on 

naccepted features and thus subvert the result. 

In this paper, we develop methods to make explanations prov- 

bly more robust against attacks that manipulate the input . To this 

nd, we provide the following key contributions: 

• We analyze the difference between the original and the ma- 

nipulated explanation maps theoretically and provide a unified 
under the CC BY-NC-ND license 
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Fig. 1. Intuition for our approach and results. a The gradient (red arrows) changes drastically when moving along a line with high curvature but changes only gradually when 

the curvature is low. We get a similar effect for networks with high and low curvature (see c). b We propose several techniques that reduce curvature when incorporated 

in the training procedure. Weight decay flattens the angles between piece-wise linear functions, softplus smooths out the kinks of the ReLU function, Hessian minimization 

reduces curvature locally at the data points. c We show how the Gradient explanation maps change when adding small perturbations to the input. For the vanilla net the 

explanation maps differ strongly. For networks trained with a combination of our proposed methods the explanation maps become robust to the input perturbations. For a 

network trained with weight decay, softplus activations and Hessian minimization (last column) the explanation stays approximately constant. d A quantitative analysis on 

the complete test set confirms our theoretical findings. The similarity—measured as Pearson correlation coefficient (PCC)—between original explanation and explanation of a 

perturbed input is significantly higher for networks trained with our methods. We get most benefits when combining our methods (last network). We show results for three 

different noise levels ν . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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theoretical framework which allows us to derive bounds on the 

maximal change. 
• Based on this theoretical framework, we derive several tech- 

niques to make neural networks more resilient against attacks 

on the explanation, namely: 
• regularizing: here, training with weight decay, 
• training with smoothed activation functions, 
• training while minimizing the Hessian of the network with 

respect to the input. 
• We demonstrate the effectiveness of the above methods exper- 

imentally for several different explanation methods and archi- 

tectures on the CIFAR-10 and ImageNet data set. 

Fig. 1 provides an intuition for why explanations are susceptible 

o manipulation and how our methods lead to more robust expla- 

ations. 

.1. Related work 

In some works, changing the input is part of the expla- 

ation process itself: [12] averages gradients over noisy in- 
2 
uts, [7] trains an interpretable (linear) classifier on perturbed 

amples, [13] and [15] use gradual interpolation between an in- 

ut and a root point to create the explanation and [3] occludes 

art of the input with a gray square and then tracks the correct 

lass probability, as a function of the position of the occluded area. 

ther studies have used input or model manipulation to compare 

ifferent explanation methods: In [5,36] the pixel flipping method 

s introduced. Based on the relevance score of the explanation, 

ixel values are sequentially replaced and the effect on the net- 

ork output is measured. The idea is to verify that the explana- 

ion method accurately identified the relevant pixels—those that 

he network needs to correctly classify an image. Variants of this 

ethod are also used in [37] and [38] . [39] takes a similar ap-

roach but retrains on the modified data to avoid effects from ar- 

ifacts outside of the original data distribution. Reference [40] pro- 

oses “sanity checks” for explanations by either perturbing the 

odel weights or the labels of the data set and measuring the re- 

ulting change in the explanation. Some explanations turn out to 

e visually appealing but insensitive to the model or the data gen- 

rating process. In [41] , a more theoretical analysis of why many 



A.-K. Dombrowski, C.J. Anders, K.-R. Müller et al. Pattern Recognition 121 (2022) 108194 

p

i

s

i

s

t

u

t

e

c

r

e

f

N

p

t

p

n

c

o

a

a

s

s

b

e

f

s

c

t

p

b

p

t

s

a

t

p

t

n

b

F

t

i

m

u

i

r

2

i

u

t  

a

c

p  

p

i

g

b

c

|
T

t

d  

δ  

c

t

x

γ

I

e

t

n

t

t

h

L  

i

|
I

t

|

w  

t

s

t

3

t

t

n

3

d

i

t

L

w

n

L
p

sarial attacks. 

1 Here we assume that the classifier g is twice differentiable. However, this as- 
ropagation-based explanations fail the sanity checks introduced 

n [40] is given. Reference [42] modifies the input by adding a con- 

tant shift, which is then subtracted in the first layer by chang- 

ng the bias. The modified network and data set produce the exact 

ame outputs as the original but some explanation methods at- 

ribute relevance to the shifted pixels. 

On the other hand, attention towards more malignant manip- 

lation of explanations has developed relatively recently. The au- 

hors in [33] explicitly change model weights to manipulate the 

xplanations while keeping the model output approximately un- 

hanged and [34] expands on this, by analyzing these experimental 

esults with theoretical insights and providing a method to make 

xplanation more robust against model manipulations. In [43] , a 

acade model is added to the original network in the context of 

atural Language Processing. The combined network has similar 

redictions but the Gradient Explanation is dominated by the cus- 

omized facade model. Furthermore, [44] proposes a similar ap- 

roach treating the classifier as a blackbox. Their scaffolding tech- 

ique can change an explanation of a biased classifiers to look 

ompletely innocuous. 

In [31] , an approach similar to conventional adversarial attacks 

n the model output is presented. The difference to adversarial 

ttacks on the model output is that attacks on the explanation 

im to keep the classification unchanged while the explanation 

hows major modifications. The work [32] expands on this and 

hows that explanations can be changed to arbitrary target maps 

y adding imperceptible perturbations to the input. The authors 

xplain this susceptibility to manipulations with tools from dif- 

erential geometry. Our theoretical analysis extends these results 

ignificantly in that it also holds for a small (but non-vanishing) 

hange in output of the network, for more general network archi- 

ectures and various attack methods. 

Explanations that include averaging over multiple in- 

uts [12] are naturally more resilient to input perturbations, 

ut are not completely save from manipulation [32] . Several works 

ropose to counteract susceptibility of explanations by changing 

he explanation process. In [32] ReLU activations are changed to 

oftplus activations. This is done for the explanation process only 

nd not part of the training process, in contrast to the approach 

aken in the present work. Reference [45] proposes to include a 

enalty on the largest principle curvature in the loss function to 

rain networks that are more resilient to attacks on the expla- 

ation. This is different to our Hessian norm training which can 

e roughly understood as a penalty on all principle curvatures. 

urthermore, [34] proposes a projection of the explanation onto 

he previously estimated data manifold, [46] shows that combin- 

ng several explanation methods can often improve robustness to 

anipulated inputs, [45] averages over several examples from a 

niform distribution around the input, and [47] proposes adversar- 

al training to construct black box explanations like [7,10] that are 

obust to input perturbations and distribution shifts. 

. Theoretical considerations 

In the following, we formally introduce the basic underlying 

dea of a theoretical analysis of explanation manipulability. Let 

s consider gradient explanations for concreteness. We restrict 

o the output of the winning class, i.e. g(x ) := g(x ) k with k =
rg max i g(x ) i , since the gradient method only depends on this 

omponent of the output. To manipulate the explanation of an in- 

ut x ∈ R 

N of a classifier g : R 

N → R , we construct an adversarially

erturbed input x adv = x + δx such that the output of the network 

s (approximately) unchanged, i.e. 

(x ) ≈ g(x ) (1) 
adv s

3 
ut the corresponding (gradient) explanations h = ∇g are drasti- 

ally different, i.e. 

| h (x ) − h (x adv ) || � 1 . (2) 

ypically, the perturbation is assumed to be small, || δx || � 1 , such 

hat it is imperceptible. For theoretical analysis, one would like to 

erive upper bounds on the change of saliency map || h (x ) − h (x +
x ) || by any such perturbation δx . To this end, one considers a

urve γ : R → R 

N with affine parameter t connecting the unper- 

urbed data point x with its adversarially perturbed counterpart 

 adv , i.e. 

(t = −∞ ) = x , γ (t = + ∞ ) = x adv . (3) 

n practice, intermediate points on the curve may correspond to it- 

rations of an optimization procedure which adversarially perturbs 

he input in an iterative manner (although this interpretation is not 

eeded for any of the theoretical considerations). One can then use 

he gradient theorem to rewrite the change in j-th component of 

he explanation h as 1 

 j (x ) − h j (x adv ) = ∂ j g(x ) − ∂ j g(x adv ) = 

∫ 
γ

∑ 

i 

∂ i ∂ j g(x ) d x i 

= 

∫ ∞ 

−∞ 

∑ 

i 

∂ i ∂ j g(γ (t)) ˙ γi (t) d t , (4) 

et the Frobenius norm of the Hessian H i j (g) = ∂ i ∂ j g be bounded,

.e. 

| H(g)(x ) || ≤ H 

∗ ∈ R + , ∀ x ∈ R 

N . 

t then follows immediately that the maximal change in explana- 

ion is also bounded: 

| h (x ) − h (x adv ) || ≤
∫ + ∞ 

−∞ 

|| H(g) γ (t) || d t 

≤ H 

∗
∫ + ∞ 

−∞ 

|| γ (t) || d t = H 

∗ L (γ ) , (5) 

here L (γ ) = 

∫ + ∞ 

−∞ 

|| γ (t ) || d t is the length of the curve γ . We have

herefore deduced that bounding the Frobenius norm of the Hes- 

ian implies a bound on the maximal possible change in explana- 

ion by input manipulation. 

. Methods for robuster explanations 

Based on the theoretical analysis in the last section, we propose 

hree approaches to reduce the Frobenius norm of the Hessian and 

hereby increase the robustness with respect to explanation ma- 

ipulation. 

.1. Curvature minimization 

As a first approach, we propose to modify the training proce- 

ure such that a small value of the Frobenius norm of the Hessian 

s part of the objective. To this end, we add an additional term to 

he loss function which penalizes the Frobenius norm, i.e. 

 = L 0 + ζ
∑ 

x ∈T 
‖ 

H ‖ 

2 
F (x ) , (6) 

here ζ is a hyperparameter regulating how strongly the Hessian 

orm is minimized. Futhermore, T denotes the training set and 

 0 is the unregularized loss function. A related approach has been 

reviously proposed in [48] in the context of conventional adver- 
umption can, under certain circumstances, be relaxed as discussed in Section 3.3 . 
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Calculating the Frobenius norm of the Hessian is expensive, i.e. 

o obtain the second derivative we would have to backpropagate 

hrough the network once per input pixel. For larger images, this 

ecomes unfeasible especially when we want to include the norm 

inimization in the training procedure. 

We therefore propose to estimate the Frobenius norm stochas- 

ically. Let v ∼ N (0 , 1) , which implies that E [ v i ] = 0 and E [ v i v j ] =
i j . 

2 We can then rewrite the Frobenius norm of the Hessian as 

ollows 

| H|| 2 F = 

∑ 

i 

(
∂ 2 g 

∂ x i ∂ x i 

)2 

= 

∑ 

i, j 

E 

[
v i v j 

]( ∂ 2 g 

∂ x i ∂ x j 

)2 

= E 

⎡ 

⎣ 

∑ 

i 

( 

∂ 

∂x i 

∑ 

j 

v j 
∂g 

∂x j 

) 2 
⎤ 

⎦ . 

e can estimate the final expectation value by Monte-Carlo, i.e. 

e draw a random vector v , and compute v T ∇g(x ) at the usual

ost of a single backward pass. Since the resulting expression is a 

calar, we can calculate its derivative at the cost of another single 

ackward pass [49] . Multiple samples can be combined in mini- 

atches. The average over the mini-batch is then an unbiased esti- 

ator for the expectation value. 

.2. Weight decay 

The second approach starts from the observation that the 

robenius norm of the Hessian depends on the weights of the neu- 

al network. More precisely, in Appendix A we show that 

heorem 1. Let g : R 

N → R be a fully-connected neural network with 

 layers. The weights of the l-th layer are denoted by W 

(l) and its

ctivation functions σ are twice-differentiable and bounded 

 σ ′ (x ) | ≤ �1 , | σ ′′ (x ) | ≤ �2 . (7) 

he Hessian of the network is then bounded by 

| H(g) || F ≤
L ∑ 

m =1 

( 

m ∏ 

l=1 

|| W 

(l) || 2 F 

L ∏ 

l= m +1 

|| W 

(l) || F 
) 

�L + m −2 
1 �2 . (8) 

As a practical consequence of the theorem, we can reduce the 

aximal possible change in explanation by decreasing the Frobe- 

ius norms of the weights. Motivated by this theoretical insight, 

e propose to use weight decay for training neural networks such 

hat their explanations are more robust to manipulation. Note 

hile it is well-known that weight decay can improve generaliza- 

ion of neural networks [50–52] , its effect on the manipulability of 

xplanations has not previously been established. Other regulariza- 

ions that reduce the weight norms ( L 1 -regularization, variants of 

 

2 -regularization, etc [53] ) may have a similar effect. 

.3. Smoothing activation functions 

As a third approach, we note that the bound of the network’s 

essian (8) also depends on the maximal values of the activa- 

ion function’s first and second derivatives (7) . Choosing activations 

ith smaller values for these maximal values therefore will lead to 

obuster explanations. 
2 Here, we use the Kronecker delta symbol with δi j = 

{
0 i � = j , 

1 i = j . 

g

d

σ

4 
As a concrete example, consider the softplus activation func- 

ion 

(x ) = 

1 

β
ln (1 + e βx ) , (9) 

here β ∈ R + is a hyperparameter. Its first and second derivative 

re bounded by 

 σ ′ (x ) | ≤ 1 , | σ ′′ (x ) | ≤ 1 

4 

β , (10) 

nd thus �1 = 1 and �2 = 

1 
4 β , see (7) . From the bound (8) , it then

ollows that networks with softplus non-linearities with smaller 

value have robuster explanations compared to networks with 

arger values of β (provided that the Frobenius norms of the 

eights is the same). 

We therefore propose to use smoother non-linearities, i.e. func- 

ions with small �1 and �2 , to make explanations more robust. 

Note on ReLU non-linearites The popular ReLU non-linearity can 

e recovered from softplus in the limit β → ∞ . Note however 

hat the bound (8) diverges in this limit since �2 → ∞ , see (10) .

he fundamental underlying difficulty is that the second deriva- 

ive relu 

′′ (x ) is ill-defined at x = 0 . In Appendix B , we, however,

eneralize the bound (8) to the case of ReLU non-linearities. For 

his, we use the fact that a distributional generalization of the 

econd derivative of the ReLU non-linearity can be defined, i.e. 

elu 

′′ (x ) = δ(x ) where δ denotes the Dirac distribution. The corre- 

ponding right-hand-side of this generalized bound only depends 

n the weights of the neural network. Thus, this result establishes 

heoretically that weight decay also certifiably improves robustness 

or ReLU non-linearities. 

. Experimental analysis 

.1. Overview 

In this section, we compare the performance of the proposed 

ethods experimentally. 

Briefly summarized, we measure the degree of robustness as 

ollows: we perturb an input sample x by Gaussian noise δx ∼
 (0 , σ 2 ) (for a discussion of other noise distributions, we refer to 

.5 ). For the resulting adversarially perturbed input x adv = x + δx ,

e then calculate the explanation h (x adv ) and measure its sim- 

larity to the original explanation h (x ) . The standard deviation σ
s chosen such that the output of the neural network is approxi- 

ately unchanged, i.e. g(x ) ≈ g(x adv ) . We repeat this analysis for 

arious explanation methods. 

In more detail, our experiments use the following setup: 

Similarity Scores for Explanations In order to quantify the visual 

imilarity of the explanations, we use three different measures fol- 

owing [40] : Pearson correlation coefficient (PCC), structural sim- 

larity index measure (SSIM) and mean squared error (MSE). PCC 

nd SSIM are relative error measures where values close to 1 indi- 

ate high similarity and small values indicate low similarity. MSE 

s an absolute error measure where values close to 0 indicate high 

imilarity and large values indicate low similarity. 

Model and Data set To demonstrate the proposed robustness ef- 

ects generically, we use the same convolutional neural network 

CNN) architecture for all our models and train on the CIFAR10 

ata set [54] . The models achieve up to 88% test set accuracy. For 

ore details on the network architecture and training, we refer to 

.2 . 

Noise Level We choose the level of noise such that it does not 

ignificantly change the network’s output. To this end, we perturb 

ll 10k images of the test set of CIFAR10 with Gaussian noise of a 

iven standard deviation σ . It is convenient to express the standard 

eviation σ in terms of the noise level ν by 

= (x max − x min ) ν , (11) 
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Fig. 2. PCC between explanations drops more rapidly than accuracy when adding 

noise with small ν to the original image. We show mean +/- std for PCC. 
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3 More precisely, the second derivative relu 
′′ 
(x ) is not defined for x = 0 and the 

relation only holds up to such root points of the non-linearity. 
here x max and x min denote the maximum and the minimum val- 

es of the input domain. For other types of noise we refer to D.5 . 

Fig. 2 shows the classification accuracy and the PCC similar- 

ty score between the original and adversarially perturbed expla- 

ations for different noise levels ν . Smaller noise levels (between 

.005 and 0.025) lead to a comparatively mild drop in accuracy 

ut result in a significant reduction in the similarity of the expla- 

ations. We therefore restrict the noise levels to this interval for 

ur experiments. 

Explanation Methods We apply our approach to the explanation 

ethods following [32] : 

• Gradient : The map h (x ) = 

∂g 
∂x 

(x ) quantifies change of the scores

g(x ) due to infinitesimal perturbations in each pixel [1,2] . 
• Gradient ×Input : This method uses the map h (x ) = x � ∂g 

∂x 
(x )

[9] which, for linear models, gives the exact contribution of 

each pixel to the prediction. 
• Integrated Gradients : This method defines the explanation 

map h (x ) = (x − x̄ ) �
∫ 1 

0 
∂g( ̄x + t(x −x̄ )) 

∂x 
d t , where x̄ is a suitable 

baseline [13] . 
• Guided Backpropagation (GBP) : This method is a modifica- 

tion of the Gradient explanation which blocks negative compo- 

nents of the gradient when backpropagating through the non- 

linearities [4] . 
• Layer-wise Relevance Propagation (LRP) is a frame- 

work [5,15] that applies specific rules at different layers 

to propagate relevance backwards through the network, 

see [55] for a complete overview over the possible choices for 

the propagation rules. We adopt the following conventions: for 

the output layer, the relevance is given by 

R 

L 
i = δik , (12) 

where k is the index of the predicted class. This is then prop- 

agated backwards through all layers but the first using the z + 

rule 

R 

l 
i = 

∑ 

j 

x l 
i 
(W 

l ) + 
ji ∑ 

i x 
l 
i 
(W 

l ) + 
ji 

R 

l+1 
j 

, (13) 

where (W 

l ) + denotes the positive weights of the l-th layer and 

x l is the activation vector of the l-th layer. For the first layer, 

we use the z B rule to account for the bounded input domain 

R 

0 
i = 

∑ 

j 

x 0 
j 
W 

0 
ji 

− l j (W 

0 ) + 
ji 

− h j (W 

0 ) −
ji ∑ 

i (x 0 
j 
W 

0 
ji 

− l j (W 

0 ) + 
ji 

− h j (W 

0 ) −
ji 
) 

R 

1 
j , (14) 

where l i and h i are the lower and upper bounds of the input 

domain respectively. 

For an extensive overview of these methods see [19,20] . To ob- 

ain a pixel-wise relevance score, we sum over absolute values of 

he three colour channels and normalize the explanation to have 
 

i | h (x ) i | = 1 . 
5 
.2. Robustness from weight decay 

Weight decay adds a regularizing term to the update rule of 

he network parameters w i so that large values are penalized. The 

pdate is then given by 

 i → w i − α( 
∂L 0 

∂w i 

+ λw i ) (15) 

here α is the learning rate and L 0 is the unregularized loss. The 

yperparameter λ controls how strongly the network parameters 

re penalized. We choose five different values for λ and train the 

NN for each. Fig. 3 shows higher PCC values for larger values 

f λ, i.e. weight decay increases the robustness of explanations 

ith respect to input manipulation. As was to be expected, there 

s a trade-off between robustness and accuracy of the networks. 

or networks trained with strong weight decay ( λ > 1e-2), the ac- 

uracy decreases drastically. On the other hand, networks trained 

ith 5e-5 ≤ λ ≤ 5e-3 achieve comparable accuracy but are signif- 

cantly more robust to manipulations than a network trained with 

= 0 . 

.3. Robustness from softplus 

To see how the β value of the softplus activations (9) affects the 

obustness, we train networks with four different β values. We do 

his for all but the largest value of the weight-decay hyperparame- 

er λ from the previous section; in total 4 · 5 = 20 networks. With 

ecreasing β values, the explanations become less prone to input 

anipulations. Fig. 4 shows the results for networks trained with 

= 5e-4 and different values for β . For β values smaller than 5, 

he accuracy of the network decreases slightly. Crucially, compara- 

le accuracy is achieved for β values of 5 and 10. Results for other 

hoices of the weight decay parameter λ look qualitatively similar. 

e list results for all combinations in D.2 . 

.4. Robustness from curvature minimization 

To evaluate the effectiveness of Hessian norm minimization, 

e train networks with different values of the hyperparameter ζ
hich controls the degree of regularization in the modified loss in 

q. (6) . 

We approximate the Hessian norm only for softplus networks 

ince we need to calculate second derivatives and 

3 

∂ 2 g 

∂x 2 
∝ relu 

′′ = 0 

or ReLU networks. We consider six different values for ζ for each 

f the networks from the previous section, i.e. we train 6 · 20 = 120 

etworks in total. 

Fig. 5 shows how curvature minimization affects the robust- 

ess against random perturbations, when using weight decay with 

= 5e-4 and softplus activations with β = 10 . Even a small value 

or ζ results in significant improvement. For larger ζ values, the 

CC value slowly converges to one. We list results for all combina- 

ions of the weight decay parameter λ and the softplus parameter 

in D.2 . 

Fig. 6 shows a concrete example. In the top row, we show 

n image and several samples with added Gaussian noise (with 

oise level ν = 0 . 025 ). Below we show the Gradient explanation 

aps of two different networks. For the first network (middle 

ow) the explanations appear noisy and vary strongly. This net- 
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Fig. 3. Left: PCC increases with stronger weight decay (higher λ). Therefore, weight decay improves robustness of explanations. We show mean +/- std for three different 

noise levels ν . Right: For moderate weight decay ( λ ≈ 5e-4) accuracy increases, while for strong weight decay ( λ ≥ 1e-2) accuracy drops. 

Fig. 4. Left: PCC is higher for networks trained with softplus activation that have small β value. Replacing ReLU with softplus activations improves robustness of explanations. 

We show mean +/- std for three different noise levels ν . Right: Accuracy decreases if β is very small. All networks were trained with weight decay ( λ = 5e-4). 

Fig. 5. Left: PCC is larger for networks trained with strong minimization of the Hessian norm ‖ H ‖ (larger ζ values). Therefore, minimizing ‖ H ‖ improves robustness of 

explanations. We show mean +/- std for three different noise levels ν . Right: accuracy decreases when ζ gets large. All networks were trained with weight decay ( λ = 5 e-4) 

and softplus activations ( β = 10 ). 

w

(

t

s

b

β

4

p

Table 1 

PCC (mean ± std) between original explanations and explanations of perturbed in- 

puts (noise level ν = 0 . 025 ) for explanation maps: Gradient, Gradient ×Input, Inte- 

grated Gradients, Guided Backpropagation (GBP), and Layerwise Relevance Propaga- 

tion (LRP). High PCC values indicate high robustness. 

Network Gradient Grad ×Input IntGrad GBP LRP 

original 0.32 ±0.12 0.44 ±0.13 0.53 ±0.12 0.78 ±0.10 0.91 ±0.06 

robust 0.73 ±0.08 0.76 ±0.08 0.82 ±0.06 0.94 ±0.03 0.98 ±0.01 

m

e

ork was trained without any techniques to enhance robustness 

no weight decay, ReLU activations, no Hessian minimization). For 

he second network (bottom row) the explanations stay relatively 

teady. This network was trained with measures that enhance ro- 

ustness (weight decay with λ = 5e-4, softplus activations with 

= 10 , Hessian minimization with ζ = 1e-7). 

.5. Additional architectures, data sets, and explanation methods 

Explanation Methods: so far we have focused on Gradient ex- 

lanation maps. But we can apply any other suitable explanation 
6 
ethod to our networks. In Table 1 , we show results for differ- 

nt explanation methods. Specifically, PCC values (averaged over 
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Fig. 6. Top row: original image and image with added noise ( ν = 0 . 025 ). Middle row: Gradient explanations for a network trained with λ = 0 , ReLU activations and ζ = 0 . 

Bottom row: Gradient explanations for a network trained with weight decay ( λ = 5e-4), softplus activations ( β = 10 ) and Hessian minimization ( ζ = 1e-7). The explanations 

of the robust network in the bottom row are clearly more resilient to random input perturbations. 

Fig. 7. VGG16 (left) and ResNet18 (right) trained on (a subset of) ImageNet. PCC is larger for networks trained with robustness methods.. 
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4

n

a

l

a

he complete test set) between original and manipulated expla- 

ations when perturbing images with a noise level of ν = 0 . 025 

re listed. In the first row, we show how the respective explana- 

ions change when using the original network ( λ = 0 , ReLU activa- 

ions, ζ = 0 ) and in the second row we show the values for a net-

ork trained with all our robustness measures ( λ = 5 e-4, β = 10 , 

= 1 e-6). While the Gradient explanation is most vulnerable to 

andom perturbations, the results for Gradient ×Input, and Inte- 

rated Gradients look qualitatively similar to the Gradient expla- 

ation. When using all our robustifying measures the PCC similar- 

ty between these explanations improves by around 31 to 40 per- 

entage points. Guided Backpropagation (GBP) and Layerwise Rel- 

vance Propagation (LRP) are noticeably more resilient to random 

erturbations. However, our robust network still achieves signifi- 

antly higher PCC similarities, demonstrating that even more ro- 

ust explanation methods can profit. We refer to D.4 for a more 

etailed discussion. 

Data sets: in order to demonstrate that our results also hold 

or input data with higher dimensions, we consider the ImageNet 

ata set. Due to the substantial computational costs, we restrict to 

 subset of the former following [56] . We train using the origi- 

al train-test split of ImageNet, using 50 images per class for test- 

ng. Architectures: we also applied our methods to VGG16 [57] and 

esNet18 [58] . The training was performed on the ImageNet data 

et as described above. The results are illustrated in Fig. 7 . We ob-

erve similar behaviour as for the convolutional architecture used 

n the CIFAR10 data set. Notably, the largest increase in robustness 
p

7 
s obtained by substituting ReLU with softplus activations while 

urvature minimization does not seem to have a comparative ef- 

ect. For a more detailed discussion, we refer to Appendix F . 

Targeted manipulation: in addition to perturbing the explana- 

ion by using unstructured random noise, we also considered a 

argeted manipulation method. For this, we use the CNN model 

n CIFAR10 as well as VGG16 and ResNet18 trained on the sub- 

et of ImageNet. We choose 100 randomly selected test samples. 

or each of them, the target explanations is chosen to be the ex- 

lanation of another randomly selected test sample. As ReLU net- 

orks are not twice differentiable, we substitute the ReLU with 

oftplus activations with small β value during the attack. For the 

nal comparison, we restore the original ReLU activations. We stop 

n attack when the mean squared error exceeds a specified thresh- 

ld. As shown in Fig. 8 , our methods also significantly increase 

he robustness with respect to these targeted attacks. We refer to 

ppendix G for a more detailed discussion. 

.6. Comparison of proposed methods 

All our proposed methods can improve robustness of expla- 

ations against input manipulations. We observe this trend for 

ll considered explanation methods, similarity measures and noise 

evels. 

We note that each method appears to improve robustness in 

 different manner. As evident from our theoretically-derived up- 

er bound Eq. (8) , both weight decay and small β values for the 
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Fig. 8. Targeted attacks for various data sets and architectures. Models trained 

with robustness methods are significantly less vulnerable to targeted manipulations 

(Pearson correlation coefficient between manipulated explanation h and original ex- 

planation h org is higher for the robust nets).. 
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oftplus activations affect the Hessian norm. Weight decay leads to 

maller Hessian norms by minimizing the weight norms. Replac- 

ng ReLU by softplus with comparatively small β parameter also 

eads to smaller Hessian norms but the weight norms stay approx- 

mately constant for different β values. When minimizing the Hes- 

ian norm directly during training, the Hessian norms decrease sig- 

ificantly while the weight norms decrease only minimally. This 

hows that Hessian norm minimization does not just improve ro- 

ustness by indirectly minimizing the weight norms. 

While we showed that each method separately improves 

obustness—we keep the weight-decay hyperparameter λ constant 

hen evaluating different smoothing parameters β for the softplus 

ctivations and we keep the weight-decay hyperparameter λ and 

he smoothing parameter β constant when evaluating different 

alues for hyperparameter ζ for the Hessian norm minimization—

e get most benefits when combining them. Besides enhancing ro- 

ustness, weight decay plays an essential role for the accuracy—

s expected and well-known in the literature [50] ; all networks 

rained without weight decay stay at an accuracy below 86.5%. 

. Conclusion 

Explanation methods have gained significant popularity among 

ractitioners in science and engineering recently. With increased 

ttention to explainable AI, questions about manipulability and 

hus trustworthiness of explanations have been raised. In this con- 

ribution, we have addressed the need for robustness of explana- 

ion methods against manipulation of the input data. Rather than 

ntroducing a new explanation method, we focused on enhancing 

he robustness of the networks themselves and, as a result, any 

pplied explanation method was shown to profit. 

We could derive bounds for the maximal change in explanation. 

ased on this theoretical analysis, we proposed three approaches 

o increase the robustness of explanations. Specifically, we show 

hat weight decay can efficiently boost robustness of explanations. 

e furthermore propose to use networks with smoothed activa- 

ion functions and to include a regularizer for the network’s curva- 

ure in the training process, which leads to significantly enhanced 

esilience against manipulated inputs. 

An interesting direction for future research will be to relate 

he established limits of robust explanation methods to techniques 

or uncertainty quantification respectively in relation to methods 

tudying the relevant structural parts in learning models [59,60] . 

urthermore it will be helpful to discuss resilience to manipula- 
8 
ion of explanation methods also in the context of unsupervised 

earning [61–63] and multi-modal data/similarity streams [64] . 
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ppendix A. Proof of Theorem 1 

Let σ (x ) denote the non-linearity of the network. We also 

se the notation σ (l) (x ) = σ (W 

(l) x ) where W 

(l) are the weights

f layer l. By assumption, the activation functions σ are twice- 

ifferentiable and bounded 

 σ ′ (x ) | ≤ �1 , | σ ′′ (x ) | ≤ �2 . (A.1) 

The activation at layer L is then given by 

 

(L ) (x ) = (σ (L ) ◦ · · · ◦ σ (1) )(x ) (A.2) 

ts derivative ∂ k a 
(l) 
i 

is equal to 

∑ 

 2 ... s l 

W 

(l) 
is l 

σ ′ 
( ∑ 

j 

W 

(l) 
i j 

a (l−1) 
j 

) 

W 

(l−1) 
s l s l−1 

σ ′ 
( ∑ 

j 

W 

(l−1) 
s l j 

a (l−2) 
j 

) 

. . . W 

(1) 
s 2 k 

σ ′ 
( ∑ 

j 

W 

(1) 
s 2 j 

x j 

) 

. 

e therefore obtain 

∇a (l) 
∥∥

F 
≤ ( �1 ) 

l 
l ∏ 

i =1 

∥∥W 

(i ) 
∥∥

F 
(A.3) 

rom the expression for ∂ k a 
(l) 
i 

, we can straightforwardly derive 

hat 

 l ∂ k a 
(L ) 
i 

= 

∑ 

m 

∑ 

s 2 ... s L 

{

W 

(L ) 
is L 

σ ′ 
( ∑ 

j 

W 

(L ) 
i j 

a (L −1) 
j 

) 

W 

(L −1) 
s L s L −1 

σ ′ 
( ∑ 

j 

W 

(L −1) 
s L j 

a (L −2) 
j 

) 

· · ·
∑ 

p 

W 

(m ) 
s m +1 p 

W 

(m ) 
s m +1 s m 

σ ′′ 
( ∑ 

j 

W 

(m ) 
s m +1 j 

a (m −1) 
j 

(x ) 

) 

∂ l a 
(m −1) 
p (x )

. . . W 

(1) 
s 2 k 

σ ′ 
( ∑ 

j 

W 

(1) 
s 2 j 

x j 

) }
. 

https://doi.org/10.13039/100005930
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Fig. B.10. Path (in blue) along an equipotential line (constant network output 

g(x ) = const ). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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estrict to the case for which the index i only takes a single value,

he Hessian H i j (g) = ∂ i ∂ j a 
L (x ) is then bounded by 

 

H(g) ‖ F ≤
L ∑ 

m =1 

( 

m ∏ 

l=1 

|| W 

(l) || 2 F 

L ∏ 

l= m +1 

|| W 

(l) || F 
) 

�L + m −2 
1 �2 . (A.4) 

ppendix B. Relu networks 

As was discussed in the main text, for softplus non-linearites 

he bound (8) diverges for ReLU non-linearities. This is because 

eLU can be obtained from softplus by taking the limit β → ∞ and 

he constant �2 in (8) diverges in this limit, see (10) . The underly- 

ng fundamental difficulty is that the Hessian of ReLU networks is 

ot well-defined. 

In the following, we will discuss how to generalize the analysis 

o networks with ReLU activations. We will establish that a dis- 

ributional generalization of the Hessian can be derived for ReLU 

etworks. A distributional form of the Hessian is sufficient for our 

urposes because in deriving a bound for the maximal change in 

xplanation we only need to consider the Hessian under an inte- 

ral, see (4) . Since integrals over distributions are well-defined, the 

esulting expression will be well-defined as well. 

In the following, we will first illustrate this for a simple toy 

odel before considering the general case. 

1. Toy example 

Consider the network (depicted in Fig. B.9 ) 

(x ) = relu (w 

(1) T x ) + relu (w 

(2) T x ) (B.1) 

ith input vector x ∈ R 

2 and weight vectors w 

(1) = 

1 √ 

2 
[1 , 1] T and

 

(2) = 

1 √ 

2 
[1 , −1] T . 

The first derivative with respect to x j is 

 j g(x ) = w 

(1) 
j 

θ (w 

(1) T x ) + w 

(2) 
j 

θ (w 

(2) T x ) , (B.2)

here we have defined the Heaviside step function 

(x ) = 

{
1 x ≥ 0 , 

0 x < 0 . 
(B.3) 
ig. B.9. Toy function. Lines of rootpoints are marked in green and red. The grey 

rea shows where g(x ) = 0 . (For interpretation of the references to colour in this 

gure legend, the reader is referred to the web version of this article.) 

w

u

a∫

w  

t

(

C

b

i

9 
e note that the derivative of the step function is not well-defined 

t zero. However, a distributional generalization thereof can be de- 

ned, i.e. 

′ (x ) = δ(x ) , (B.4) 

here δ denotes the Dirac delta distribution. 

With this definition, the i j-th entry of (the distributional gener- 

lization of) the Hessian matrix can formally be written as 

 i ∂ j g(x ) = w 

(1) 
i 

w 

(1) 
j 

δ(w 

(1) T x ) + w 

(2) 
i 

w 

(2) 
j 

δ(w 

(2) T x ) . (B.5)

y (4) , the change in (gradient) explanation when moving from 

oint x to x adv is then given by 

h (x ) − h (x adv )) j = 

∫ ∞ 

−∞ 

∑ 

i 

(
w 

(1) 
i 

w 

(1) 
j 

δ(w 

(1) T x ) 

+ w 

(2) 
i 

w 

(2) 
j 

δ(w 

(2) T x ) 
)

˙ x i d t , (B.6) 

here we have used the notation x (t) for the curve connecting the 

nperturbed and perturbed data points. 

For integrating over the delta distribution in composition with 

 (scalar-valued) function, we use 
 ∞ 

−∞ 

f (t) δ(y (t))d t = 

∑ 

t N 

f (t N ) 

| y ′ (t N ) | (B.7) 

ith t N being the roots of y (t) . Using this expression, we then ob-

ain the following change in saliency map 

h (x ) − h (x adv )) j = 

∑ 

t N 

∑ 

i w 

(1) 
i 

w 

(1) 
j 

˙ x i ∣∣∑ 

i w 

(1) 
i 

˙ x i 
∣∣ + 

∑ 

t N 

∑ 

i w 

(2) 
i 

w 

(2) 
j 

˙ x i ∣∣∑ 

i w 

(2) 
i 

˙ x i 
∣∣

= 

∑ 

t N 

sgn 

( ∑ 

i 

w 

(1) 
i 

˙ x i 

) 

w 

(1) 
j 

+ 

∑ 

t N 

sgn 

( ∑ 

i 

w 

(2) 
i 

˙ x i 

) 

w 

(2) 
j 

. 

onsider the blue path in Fig. B.10 whose root points are denoted 

y t 1 and t 2 . We note that these root points correspond to kinks 

n the curve x (t) connecting the unperturbed and perturbed data 



A.-K. Dombrowski, C.J. Anders, K.-R. Müller et al. Pattern Recognition 121 (2022) 108194 

p

b  

t

h

w  

t

H

b

B

a

{  

i

H

s

fi

d

t

T  

p

n  

x  

c  

t

∣∣
w

b  

t  

s  

c

m

p

n

l

∂

∂

w

t

a

I

s

D

∂

W  

A

v  

s

(

w

s(

w

a

|∣∣

A

o

o

m

w

t

oint. Their corresponding normalized velocity vectors are given 

y ˙ x (t 1 ) = w 

(2) and ˙ x (t 2 ) = (0 , −1) T respectively. We therefore ob-

ain 

 (x ) − h (x adv ) = sgn 

(〈 w 

(1) , ˙ x (t 2 ) 〉 
)
w 

(1) + sgn 

(〈 w 

(2) , ˙ x (t 1 ) 〉 
)
w 

(2) 

= sgn 

(
− 1 √ 

2 

)
w 

(1) + sgn ( 1 ) w 

(2) 

= w 

(2) − w 

(1) 

hich is correct as h (x ) = w 

(2) and h (x adv ) = w 

(1) . It is important

o stress that we have obtain this result despite the fact that the 

essian of the neural network g is only given in generalized distri- 

utional form. 

2. General case 

The argument of the previous section can be generalized to 

rbitrary fully-connected networks with weights W 

l of layer l ∈ 

 1 , . . . , L } . The general logic follows closely the toy model discussed

n the previous section, i.e. a distributional generalization of the 

essian is derived and since on the right-hand-side of (4) the Hes- 

ian only appears under an integral, this distributional form is suf- 

cient to obtain a bound on the maximal change in explanation 

ue to a perturbation of the input. Using this technique, we derive 

he following theorem: 

heorem 2. Let x and x adv = x + δx denote the unperturbed and

erturbed data points respectively. We denote by x (t) the curve con- 

ecting the unperturbed and perturbed points, i.e. x (t = −∞ ) = x and

 (t = + ∞ ) = x adv . Furthermore, we assume that all points on the

urve have the same network output, i.e. g(x (t 1 )) = g(x (t 2 )) for all

 1 , t 2 ∈ R . The maximal change of explanation is then given by 

| h (x ) − h (x adv ) 
∣∣| 2 ≤ ∑ 

kinks (x (t)) 

( 

L ∏ 

l=1 

∥∥W 

(l) 
∥∥2 

F 

) 

, (B.8) 

here the sum runs over all kinks of the curve x (t) . 

We can give an intuition for the theorem by considering the 

lue curve of Fig. B.10 for the toy model of the previous section. In

his case, the sum over the kinks would run over x (t 1 ) and x (t 2 ) ,

ee Fig. B.10 . Only at these kinks, the gradient of the network will

hange. In the theorem, we then estimate this change by its maxi- 

al value, i.e. the change is equal to the product of all weights. 

As a practical consequence of the theorem, we can make ex- 

lanations more robust by weight decay also in the case of ReLU 

on-linearities. 

Proof: Let W 

(l) be the weights of layer l. We denote the l-th 

ayer by relu 

(l) (x ) = relu (W 

(l) x ) . It then follows that 

 k relu 

( ∑ 

j 

W i j x j 

) 

= W ik θ

( ∑ 

j 

W i j x j 

) 

(B.9) 

 l θ

( ∑ 

j 

W i j x j 

) 

= W il δ

( ∑ 

j 

W i j x j 

) 

(B.10) 

here θ and δ are the Heaviside step function and the delta dis- 

ribution respectively. The activation at layer L is then given by 

 

(L ) (x ) = ( relu 

(L ) ◦ · · · ◦ relu 

(1) 
)(x ) (B.11) 

ts derivative ∂ k a 
(L ) 
i 

is equal to 
10 
∑ 

 2 ... s L 

W 

(L ) 
is L 

θ

( ∑ 

j 

W 

(L ) 
i j 

a (L −1) 
j 

) 

W 

(L −1) 
s L s L −1 

θ

( ∑ 

j 

W 

(L −1) 
s L j 

a (L −2) 
j 

) 

. . . W 

(1) 
s 2 k 

θ

( ∑ 

j 

W 

(1) 
s 2 j 

x j 

) 

eriving this expression for ∂ k a 
(L ) 
i 

again, we obtain 

 l ∂ k a 
(L ) 
i 

= 

∑ 

m 

∑ 

s 2 ... s L 

{

W 

(L ) 
is L 

θ

( ∑ 

j 

W 

(L ) 
i j 

a (L −1) 
j 

) 

W 

(L −1) 
s L s L −1 

θ

( ∑ 

j 

W 

(L −1) 
s L j 

a (L −2) 
j 

) 

· · ·
∑ 

p 

W 

(m ) 
s m +1 p 

W 

(m ) 
s m +1 s m 

δ

( ∑ 

j 

W 

(m ) 
s m +1 j 

a (m −1) 
j 

(x ) 

) 

∂ l a 
(m −1) 
p (x ) 

. . . W 

(1) 
s 2 k 

θ

( ∑ 

j 

W 

(1) 
s 2 j 

x j 

) }
e now restrict to the case that a (L ) has only a single output value.

s a result, the index i in the expression above only takes one 

alue, i.e. i = 1 . We define g(x ) = a (L ) 
1 

(x ) to ease notation. We then

ubstitute this expression for ∂ l ∂ k g = ∂ l ∂ k a 
(L ) 
1 

in (4) and obtain 

h (x ) − h (x adv ) 
)

k 
= 

∑ 

m 

∑ 

s 2 ... s L 

∫ ∞ 

−∞ 

d t 

{ 
W 

(L ) 
1 s L 

θ

( ∑ 

j 

W 

(L ) 
i j 

a (L −1) 
j 

) 

W 

(L −1) 
s L s L −1 

θ

( ∑ 

j 

W 

(L −1) 
s L j 

a (L −2) 
j 

) 

· · ·
∑ 

ˆ s m 

W 

(m ) 
s m +1 ̂ s m 

W 

(m ) 
s m +1 s m 

δ

( ∑ 

j 

W 

(m ) 
s m +1 j 

a (m −1) 
j 

(x ) 

) 

˙ a (m −1) 
ˆ s m 

(x ) 

. . . W 

(1) 
s 2 k 

θ

( ∑ 

j 

W 

(1) 
s 2 j 

x j 

) } 
, 

here we have used the notation ∂ t a (m −1) = ˙ a (m −1) for notational 

implicity. Using the identity (B.7) , we then obtain 

h (x ) − h (x adv ) 
)

k 
= 

∑ 

m 

∑ 

x m 
N 

∑ 

s 2 ... s L { 
W 

(L ) 
1 s L 

θ

( ∑ 

j 

W 

(L ) 
i j 

a (L −1) 
j 

) 

W 

(L −1) 
s L s L −1 

θ

( ∑ 

j 

W 

(L −1) 
s L j 

a (L −2) 
j 

) 

. . . W 

(m ) 
s m +1 s m 

sgn 

( ∑ 

j 

W 

(m ) 
s m +1 j ̇

 a (m −1) 
j 

(x m N ) 

) 

. . . W 

(1) 
s 2 k 

θ

( ∑ 

j 

W 

(1) 
s 2 j 

(x m N ) j 

) } 
, 

here the sum over x m 

N 
runs over all zeropoints of 

∑ 

j W 

(m ) 
s m +1 j 

a (m −1) 

long the trajectory connecting x with x adv . Using the fact that 

 θ (•) | ≤ 1 and | sgn (•) | ≤ 1 , we obtain 

| h (x ) − h (x adv ) 
∣∣| 2 ≤ ∑ 

m 

∑ 

x m 
N 

∥∥W 

(L ) 
∥∥2 

F 

∥∥W 

(L −1) 
∥∥2 

F 
. . . 

∥∥W 

(m ) 
∥∥2 

F 
. . . 

∥∥W 

(1) 
∥∥2 

F 
. 

(B.12) 

s in the case of the toymodel, the summands run over all kinks 

f the trajectory. This bound for ReLU networks depends purely 

n the network weights and the number of kinks passed when 

oving from x to x adv . If we reduce the Frobenius norms of the 

eights, we also reduce the maximal possible change in explana- 

ion. 
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Table D.2 

Statistics of all network configurations. Columns show weight decay, activation function (ReLU or β parameter for soft- 

plus), parameter for curvature minimization ζ , test accuracy (acc), mean Pearson correlation coefficient (pcc) for Gaus- 

sian noise with different noise levels ν , average weight norm ( ‖ W ‖ ) and average approximated Hessian norm ( ‖ H ‖ ). 
λ β ζ acc pcc for different ν || W || || H|| 

0.005 0.01 0.025 

0 ReLU 0.0 85.75 0.73 0.57 0.32 30.79 - 

5e-5 ReLU 0.0 86.38 0.77 0.62 0.36 23.28 - 

5e-4 ReLU 0.0 88.63 0.84 0.70 0.45 11.37 - 

5e-3 ReLU 0.0 86.10 0.89 0.80 0.62 4.80 - 

1e-2 ReLU 0.0 81.41 0.89 0.80 0.64 3.61 - 

0 10 0.0 85.61 0.81 0.63 0.34 30.01 503.61 

0 5 0.0 85.60 0.88 0.73 0.39 28.70 280.71 

0 1 0.0 85.60 0.93 0.85 0.61 27.76 59.21 

0 5e-1 0.0 84.51 0.94 0.88 0.67 28.84 39.06 

5e-5 10 0.0 86.36 0.86 0.70 0.39 22.91 298.79 

5e-5 5 0.0 86.33 0.91 0.78 0.46 22.97 154.94 

5e-5 1 0.0 86.03 0.94 0.86 0.62 22.73 51.63 

5e-5 5e-1 0.0 85.34 0.94 0.88 0.67 23.76 36.43 

5e-4 10 0.0 88.84 0.88 0.75 0.49 11.24 91.68 

5e-4 5 0.0 88.76 0.91 0.79 0.53 11.36 59.57 

5e-4 1 0.0 86.80 0.93 0.86 0.63 11.93 28.45 

5e-4 5e-1 0.0 85.36 0.93 0.86 0.67 10.62 16.78 

5e-3 10 0.0 86.13 0.91 0.82 0.64 4.81 9.54 

5e-3 5 0.0 85.44 0.91 0.83 0.64 4.76 7.49 

5e-3 1 0.0 83.35 0.92 0.86 0.71 4.86 3.79 

5e-3 5e-1 0.0 77.60 0.96 0.93 0.85 4.66 2.02 

1e-2 10 0.0 80.44 0.90 0.82 0.66 3.48 5.42 

1e-2 5 0.0 77.57 0.89 0.82 0.65 3.33 5.27 

1e-2 1 0.0 71.74 0.97 0.94 0.86 3.21 1.26 

1e-2 5e-1 0.0 72.03 0.98 0.95 0.89 3.35 0.97 

0 10 1e-7 85.65 0.95 0.87 0.60 24.72 56.77 

0 10 1e-6 85.74 0.97 0.92 0.73 22.45 21.47 

0 10 1e-5 85.56 0.98 0.95 0.84 20.59 8.49 

0 10 1e-4 84.12 0.99 0.97 0.90 19.14 3.23 

0 10 1e-3 82.40 0.99 0.98 0.94 17.91 1.19 

0 10 1e-2 80.07 0.99 0.98 0.94 17.08 0.43 

0 5 1e-7 86.26 0.95 0.88 0.64 25.44 49.58 

0 5 1e-6 85.94 0.97 0.92 0.74 23.41 20.85 

0 5 1e-5 85.87 0.98 0.95 0.83 21.88 7.91 

0 5 1e-4 84.81 0.98 0.97 0.90 20.74 2.96 

0 5 1e-3 83.12 0.99 0.98 0.93 19.72 1.29 

0 5 1e-2 80.95 0.99 0.98 0.94 19.02 0.41 

0 1 1e-7 85.24 0.94 0.88 0.69 27.69 31.61 

0 1 1e-6 85.17 0.95 0.90 0.75 26.29 17.67 

0 1 1e-5 84.85 0.97 0.94 0.83 25.11 7.62 

0 1 1e-4 84.70 0.98 0.95 0.87 24.25 3.03 

0 1 1e-3 82.68 0.98 0.96 0.90 23.23 1.16 

0 1 1e-2 81.57 0.98 0.95 0.89 22.20 0.42 

0 5e-1 1e-7 81.90 0.95 0.90 0.77 12.05 9.28 

0 5e-1 1e-6 85.46 0.96 0.91 0.77 28.07 15.20 

0 5e-1 1e-5 84.41 0.97 0.93 0.82 26.81 6.79 

0 5e-1 1e-4 84.08 0.98 0.96 0.89 25.59 2.86 

0 5e-1 1e-3 82.84 0.98 0.96 0.89 22.21 1.12 

0 5e-1 1e-2 81.04 0.98 0.96 0.90 23.36 0.41 

5e-5 10 1e-7 86.68 0.95 0.87 0.62 20.24 52.22 

5e-5 10 1e-6 86.47 0.97 0.92 0.74 18.75 21.36 

5e-5 10 1e-5 85.87 0.98 0.95 0.84 17.28 8.18 

5e-5 10 1e-4 84.55 0.99 0.97 0.90 16.05 3.29 

5e-5 10 1e-3 83.03 0.99 0.98 0.93 15.01 1.14 

5e-5 10 1e-2 80.47 0.99 0.98 0.94 13.88 0.43 

5e-5 5 1e-7 86.76 0.95 0.87 0.62 21.05 45.57 

5e-5 5 1e-6 86.41 0.97 0.92 0.74 19.57 19.16 

5e-5 5 1e-5 86.16 0.98 0.95 0.84 18.29 8.00 

5e-5 5 1e-4 85.21 0.99 0.97 0.90 17.20 3.24 

5e-5 5 1e-3 82.69 0.99 0.98 0.93 16.41 1.17 

5e-5 5 1e-2 80.91 0.99 0.97 0.93 15.35 0.45 

5e-5 1 1e-7 85.78 0.95 0.89 0.70 22.42 29.93 

5e-5 1 1e-6 86.31 0.96 0.92 0.77 21.76 16.98 

5e-5 1 1e-5 85.54 0.97 0.93 0.82 20.53 7.38 

5e-5 1 1e-4 84.62 0.98 0.95 0.88 18.94 2.99 

5e-5 1 1e-3 83.82 0.98 0.97 0.91 18.00 1.17 

5e-5 1 1e-2 80.49 0.98 0.97 0.92 17.10 0.43 

5e-5 5e-1 1e-7 84.84 0.95 0.89 0.70 23.02 26.39 

5e-5 5e-1 1e-6 85.21 0.96 0.91 0.75 20.38 16.81 

5e-5 5e-1 1e-5 82.98 0.96 0.92 0.81 12.51 6.07 

( continued on next page ) 
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Table D.2 ( continued ) 

λ β ζ acc pcc for different ν || W || || H|| 
5e-5 5e-1 1e-4 84.29 0.97 0.95 0.87 15.54 3.02 

5e-5 5e-1 1e-3 82.67 0.98 0.96 0.89 14.95 1.12 

5e-5 5e-1 1e-2 80.35 0.98 0.96 0.89 11.56 0.42 

5e-4 10 1e-7 88.96 0.94 0.87 0.62 10.95 35.47 

5e-4 10 1e-6 88.24 0.96 0.91 0.73 10.76 17.68 

5e-4 10 1e-5 87.61 0.98 0.94 0.83 9.98 7.27 

5e-4 10 1e-4 86.54 0.98 0.96 0.88 9.20 3.08 

5e-4 10 1e-3 84.80 0.98 0.96 0.90 8.42 1.10 

5e-4 10 1e-2 82.72 0.98 0.96 0.90 7.67 0.41 

5e-4 5 1e-7 88.68 0.94 0.87 0.63 11.07 32.80 

5e-4 5 1e-6 88.31 0.96 0.91 0.73 10.78 16.68 

5e-4 5 1e-5 87.75 0.97 0.94 0.83 10.03 6.97 

5e-4 5 1e-4 86.35 0.98 0.96 0.88 9.70 2.96 

5e-4 5 1e-3 84.74 0.98 0.96 0.91 8.97 1.16 

5e-4 5 1e-2 82.12 0.98 0.96 0.91 8.04 0.44 

5e-4 1 1e-7 87.11 0.94 0.86 0.64 11.67 25.09 

5e-4 1 1e-6 87.08 0.96 0.91 0.75 11.34 14.06 

5e-4 1 1e-5 86.72 0.97 0.94 0.82 11.13 7.31 

5e-4 1 1e-4 85.64 0.98 0.96 0.88 9.81 2.92 

5e-4 1 1e-3 83.48 0.98 0.97 0.91 9.49 1.20 

5e-4 1 1e-2 81.87 0.98 0.96 0.91 8.11 0.44 

5e-4 5e-1 1e-7 78.10 0.93 0.87 0.73 7.07 4.57 

5e-4 5e-1 1e-6 85.76 0.95 0.90 0.75 11.03 12.23 

5e-4 5e-1 1e-5 85.56 0.97 0.93 0.82 10.82 6.20 

5e-4 5e-1 1e-4 85.21 0.98 0.96 0.88 10.21 2.86 

5e-4 5e-1 1e-3 81.05 0.96 0.93 0.84 6.99 0.94 

5e-4 5e-1 1e-2 81.98 0.98 0.97 0.91 8.12 0.46 

5e-3 10 1e-7 86.09 0.91 0.83 0.65 4.79 8.23 

5e-3 10 1e-6 85.92 0.91 0.83 0.66 4.74 6.31 

5e-3 10 1e-5 85.59 0.93 0.87 0.72 4.66 3.73 

5e-3 10 1e-4 84.53 0.95 0.91 0.79 4.50 1.88 

5e-3 10 1e-3 83.11 0.96 0.93 0.84 4.30 0.86 

5e-3 10 1e-2 80.16 0.97 0.95 0.88 4.00 0.33 

5e-3 5 1e-7 85.90 0.90 0.82 0.64 4.78 7.09 

5e-3 5 1e-6 85.43 0.91 0.84 0.67 4.79 5.57 

5e-3 5 1e-5 85.26 0.92 0.86 0.71 4.67 3.48 

5e-3 5 1e-4 84.51 0.95 0.90 0.78 4.52 1.76 

5e-3 5 1e-3 83.07 0.96 0.93 0.84 4.32 0.82 

5e-3 5 1e-2 80.53 0.97 0.94 0.87 4.06 0.32 

5e-3 1 1e-7 82.84 0.91 0.85 0.70 4.76 4.11 

5e-3 1 1e-6 83.40 0.92 0.86 0.72 4.85 3.37 

5e-3 1 1e-5 81.72 0.93 0.88 0.75 4.65 2.62 

5e-3 1 1e-4 82.19 0.95 0.91 0.81 4.68 1.52 

5e-3 1 1e-3 81.14 0.96 0.93 0.86 4.43 0.74 

5e-3 1 1e-2 79.13 0.96 0.94 0.86 4.16 0.32 

5e-3 5e-1 1e-7 77.41 0.96 0.93 0.85 4.59 2.03 

5e-3 5e-1 1e-6 77.42 0.97 0.94 0.85 4.57 1.91 

5e-3 5e-1 1e-5 76.88 0.97 0.94 0.86 4.47 1.57 

5e-3 5e-1 1e-4 77.17 0.97 0.94 0.86 4.49 1.24 

5e-3 5e-1 1e-3 76.68 0.97 0.95 0.89 4.29 0.64 

5e-3 5e-1 1e-2 75.01 0.98 0.97 0.92 3.89 0.27 

1e-2 10 1e-7 64.43 0.94 0.87 0.65 3.37 7.11 

1e-2 10 1e-6 79.77 0.90 0.83 0.66 3.46 4.06 

1e-2 10 1e-5 79.87 0.91 0.84 0.69 3.46 2.47 

1e-2 10 1e-4 78.86 0.94 0.88 0.75 3.37 1.34 

1e-2 10 1e-3 77.68 0.95 0.92 0.82 3.25 0.63 

1e-2 10 1e-2 75.75 0.97 0.94 0.87 3.12 0.25 

1e-2 5 1e-7 78.63 0.89 0.81 0.65 3.40 4.42 

1e-2 5 1e-6 77.74 0.90 0.83 0.66 3.34 4.21 

1e-2 5 1e-5 78.16 0.90 0.83 0.68 3.35 2.34 

1e-2 5 1e-4 78.18 0.92 0.86 0.73 3.31 1.20 

1e-2 5 1e-3 77.43 0.96 0.92 0.82 3.25 0.59 

1e-2 5 1e-2 74.45 0.96 0.93 0.85 3.02 0.25 

1e-2 1 1e-7 71.74 0.97 0.94 0.86 3.21 1.26 

1e-2 1 1e-6 71.92 0.97 0.95 0.88 3.24 1.18 

1e-2 1 1e-5 73.02 0.97 0.94 0.86 3.30 0.98 

1e-2 1 1e-4 72.02 0.97 0.95 0.88 3.16 0.77 

1e-2 1 1e-3 71.16 0.98 0.95 0.89 3.08 0.43 

1e-2 1 1e-2 69.64 0.98 0.97 0.92 2.90 0.19 

1e-2 5e-1 1e-7 70.53 0.98 0.96 0.90 3.20 0.87 

1e-2 5e-1 1e-6 70.07 0.98 0.96 0.90 3.21 0.89 

1e-2 5e-1 1e-5 70.46 0.98 0.96 0.89 3.20 0.79 

1e-2 5e-1 1e-4 71.49 0.98 0.96 0.91 3.31 0.72 

1e-2 5e-1 1e-3 70.06 0.99 0.97 0.93 3.11 0.41 

1e-2 5e-1 1e-2 67.76 0.99 0.98 0.94 2.84 0.19 

12 
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Fig. C.11. Weights and biases for networks with identical outputs but different β value for the softplus activation. Left: β was changed from 1 to 10. Right: β was changed 

from 10 to 1. 

Fig. C.12. Weights and biases plotted over layers for different networks (left column: networks with weight decay, middle column: networks with different β values, right 

column: networks trained with curvature minimization). 
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ppendix C. Interchangeability of softplus β

1. Interchangeability of softplus β

When training softplus networks with different β values it is 

nteresting to consider how they differ as the beta values partially 

ancel out or can be absorbed into the weights and biases. 

The softplus function is defined as: 

p β (x ) = 

1 

β
ln (1 + e βx ) (C.1) 

Therefore, we can relate two softplus functions with different β
alues β1 and β2 as follows: 

p β1 
(x ) = 

β2 

β1 

sp β2 
( 
β1 

β2 

x ) (C.2) 

A network consisting of linear layers and softplus activations 

ith β = β1 has weights W 

(i ) and biases b (i ) . We can define a net-

ork with the same structure but a different softplus β = β2 and 

eights ˜ W 

(i ) and biases ˜ b (i ) . The networks give identical outputs 

or all inputs if we define the weights and biases of the second 

etwork in the following way: 

˜ 
 

(1) = 

β1 

β2 

W 

(1) 

˜ W 

(i ) = W 

(i ) , ∀ i : 1 < i < n 
13 
˜ 
 

(n ) = 

β2 

β1 

W 

(n ) 

˜ b (i ) = 

β1 

β2 

b (i ) , ∀ i : i < n 

˜ b (n ) = b (n ) 

owever, this mapping is not learned when training networks with 

ifferent β values from scratch as the distribution over weight 

orms stays very similar while the distribution changes drastically 

hen artificially changing the β value as demonstrated above. We 

how this effect for a few examples in C.2 . 

2. Examples 

In Section C.1 , we show that, by adjusting weights and biases of 

 softplus network, it can be functionally equivalent to a network 

ith the same structure but different β value for the softplus ac- 

ivation. Artificially constructing networks in this way leads to a 

arger variance in the weight norms. Even when no weight decay 

s used during training the weight norms of the different network 

ayers in one network tend to vary within one order of magnitude. 

Fig. C.11 shows the weights and biases for two networks from 

able D.2 with β = 1 and β = 10 and the respective weights and 

iases for two networks that produce identical output but have 

hanged β values. In both cases the average weight norm of the 

onstructed network is higher than of the original. 
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Fig. D.13. Setup of simple CNN for CIFAR-10. 
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Fig. C.12 shows weights and biases for some of our networks 

rom Table D.2 . The weight and bias norms for each network are 

ormalized with the respective maximum value over all layers. 

ithout exception the highest weight norm is found in layer 5 in 

ontrast to the maximum weight norm when we do the artificial 

value switch. Thus training softplus networks from scratch does 

roduce fundamentally different networks that cannot be obtained 

ith a mere rescaling of weights and biases. 

ppendix D. Experimental analysis 

1. Error measures 

In this section we define the error measures we use to quan- 

ify our results. To ease notation we refer to the explanation of 

ur original image as h (x ) = u and to the explanation of our per-

urbed image as h (x adv ) = v . both explanations can be expressed

s a vector of length n . 

• The Mean squared error (MSE) between two explanations is 

defined as 

MSE (u, v ) = 

1 

n 

n ∑ 

i 

(u i − v i ) 2 

• The Pearson correlation coefficient (PCC) between two expla- 

nations is given by 

PCC (u, v ) = 

∑ n 
i (u i − μu )(v i − μv ) √ ∑ n 

i (u i − μu ) 2 
√ ∑ n 

i (v i − μv ) 2 

where μu = 

1 
n 

∑ n 
i u i is the mean value of explanation u . Analo- 

gously for μv . 
• The Structural similarity index (SSIM) between two explana- 

tions is given by calculating 

SSIM (u, v ) = 

(2 μu μv + (k 1 L ) 
2 )(2 σu v + (k 2 L ) 

2 ) 

(μ2 
u + μ2 

v + (k 1 L ) 2 )(σ 2 
u + σ 2 

v + (k 2 L ) 2 ) 

for a 7 × 7 window centered at each pixel and then averaging 

over all windows. Mean values μu and μv and variances σu v , σu 

and σv are calculated separately for each 7 × 7 window. L is the 

range between the largest and smallest value that a pixel in the 

explanation can have and k 1 = 0 . 01 and k 2 = 0 . 03 are constants

to stabilize the division. 
• The accuracy (acc) of a network is the ratio of correctly classi- 

fied images of the test set: 

acc = 

correct predictions 

all predictions 

2. Network structure 

The structure of all networks trained within the scope of this 

ork is depicted in Fig. D.13 . The activation function is either ReLU 

r softplus (for the networks trained with β smoothing or Hessian 

inimization). In order to focus on the robustness we aimed to 

rain the different networks to similar accuracy (albeit no longer 

han 200 epochs). We use Stochastic Gradient Descent with mo- 

entum and learning rate decay. We do not perform any further 

yperparameter optimization. Statistics for all trained networks are 

ummarized in Table D.2 . 

3. Gradient explanation 

In Figs. D.14 , D.15 , and D.16 , we show additional error measures

or the Gradient explanation. PCC and SSIM increase with robust- 

ess while MSE decreases. 
14 
4. Other explanation methods 

In Figs. D.17 , D.18 , D.19 , and D.20 , we show how our proposed

easures effect other explanation methods. The trend towards in- 

reased robustness is clearly visible for all considered explanation 

ethods. We note that the explanations start from different lev- 

ls of robustness but can still profit from our methods. The most 

esilient method against random input perturbations is Layerwise 

elevance Propagation, followed by Guided Backpropagation, Inte- 

rated Gradients, Gradient ×Input and Gradient in descending or- 

er. 

5. Other types of noise 

In the main text we only consider Gaussian noise. We repeat 

ur experiments from 4 for the Gradient explanation when we per- 

urb the input images with Laplacian noise and salt-pepper noise. 

5.1. Laplace noise 

We sample random noise from the Laplace distribution 

f (x | μ, b) = 

1 

2 b 
exp −| x − μ| 

b 
(D.1) 

here μ is the data mean and b is a scale parameter which we de- 

ne as b = (x max − x min ) ν , depending on the noise level ν . Fig. D.21

hows effects on the Gradient explanation when adding Laplace 

oise to the input images. We see that the results look statistically 

ery similar to the results for Gaussian noise. 

5.2. Salt-pepper noise 

To perturb an image with salt-pepper noise we randomly se- 

ect 100 ∗ ν
2 % of the pixel in the image and switch them to x max 

white) or x (black) at random. We select a very small amount 
min 
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Fig. D.14. PCC, SSIM and MSE between original Gradient explanation map and explanation after adding random noise to the image. PCC and SSIM are higher and MSE is 

lower for networks trained with weight decay. That means weight decay improves robustness of explanations. We show mean +/- std. 

Fig. D.15. PCC, SSIM and MSE between original Gradient explanation map and explanation after adding random noise to the image. PCC and SSIM are higher and MSE is 

lower for softplus networks trained with a small β value. That means softplus activations improve robustness of explanations. All nets were trained with weight decay 

( λ= 5e-4). We show mean +/- std. 

Fig. D.16. PCC, SSIM and MSE between original Gradient explanation map and explanation after adding random noise to the image. PCC and SSIM are higher and MSE 

is lower for networks trained with strong curvature minimization. That means minimizing the curvature improves robustness of explanations. All nets were trained with 

softplus activations ( β = 10 ) and weight decay ( λ= 5e-4). We show mean +/- std. 

Fig. D.17. PCCs (mean +/- std) between original Gradient ×Input explanation map and explanation after adding random noise to the image. left: effect of weight decay, 

middle: effect of softplus β (for λ = 5 e-4), right: effect of curvature minimization (for λ = 5 e-4, β= 10). 
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f pixel (for noise level ν = 0 . 005 only 3 pixels) to be perturbed

s salt-pepper noise has a very strong effect on the classification 

ccuracy which we aim to keep approximately constant. 

Fig. D.22 shows effects on the Gradient explanation when 

dding salt-pepper noise to the input images. We can still see 

 significant improvement in robustness when training networks 

ith our proposed methods, however the effect for softplus ac- 

ivations and Hessian minimization is less pronounced than for 

aplace or Gaussian noise. 
15 
6. Connection between Hessian norms and weight norms 

In the main text, Section 4.6 , we mentioned that weight de- 

ay leads to decreased weight norms and thus also to decreased 

essian norms. However when we minimize the Hessian norm di- 

ectly, the weight norms only change minimally. Fig. D.23 shows 

ow weight norms and Hessian norms change when applying 

eight decay (varying λ), substituting ReLU with softplus (vary- 

ng β) and minimizing the Hessian norm directly (varying ζ ). We 
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Fig. D.18. PCCs (mean +/- std) between original Integrated Gradients explanation map and explanation after adding random noise to the image. left: effect of weight decay, 

middle: effect of softplus β (for λ = 5 e-4), right: effect of curvature minimization (for λ = 5 e-4, β= 10). 

Fig. D.19. PCCs (mean +/- std) between original Guided Backpropagation explanation map and explanation after adding random noise to the image. left: effect of weight 

decay, middle: effect of softplus β (for λ = 5 e-4), right: effect of curvature minimization (for λ = 5 e-4, β= 10). 

Fig. D.20. PCCs (mean +/- std) between original Layerwise Relevance Propagation explanation map and explanation after adding random noise to the image. left: effect of 

weight decay, middle: effect of softplus β (for λ = 5 e-4), right: effect of curvature minimization (for λ = 5 e-4, β= 10). 

Fig. D.21. PCCs (mean +/- std) between original Gradient explanation map and explanation after adding Laplace noise to the image. left: effect of weight decay, middle: 

effect of softplus β (for λ = 5 e-4), right: effect of curvature minimization (for λ = 5 e-4, β= 10). 

Fig. D.22. PCCs (mean +/- std) between original Gradient explanation map and explanation after adding salt-pepper noise to the image. left: effect of weight decay, middle: 

effect of softplus β (for λ = 5 e-4), right: effect of curvature minimization (for λ = 5 e-4, β= 10). 

16 
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Fig. D.23. The connection between weight norms ‖ W ‖ and Hessian norms ‖ H ‖ is different for our three methods. Left: ‖ W ‖ and ‖ H ‖ both decrease in a similar manner 

when applying stronger weight decay (increasing λ). Middle: ‖ W ‖ stays relatively constant while ‖ H ‖ decreases with increasing softplus β . Right: ‖ W ‖ decrease slightly 

while ‖ H ‖ decrease strongly with stronger Hessian minimization (increasing ζ ). We show mean ±std. 

Fig. E.24. Relative error (mean and standard deviation) between True Hessian norm 

and approximation via sampling. 
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Table F.3 

Accuracies on ImageNette test set for VGG16 and 

ResNet18 with different parameter configurations. . 

architecture λ β ζ test acc 

VGG16 0.0 ReLU 0.0 84.0 

VGG16 5e-4 ReLU 0.0 84.2 

VGG16 5e-4 10 0.0 79.6 

VGG16 5e-4 10 1e-6 80.8 

ResNet18 0.0 ReLU 0.0 89.0 

ResNet18 5e-4 ReLU 0.0 89.8 

ResNet18 5e-4 10 0.0 88.6 

ResNet18 5e-4 10 1e-6 89.2 
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verage over all softplus networks trained with ζ = 0 for the first 

wo plots and we average over all networks trained with Hessian 

inimization for the last plot. 

ppendix E. Hessian norm approximation 

In Section 3.1 , we showed that for the number of samples 

 → ∞ the sampling approximation approaches the true Hessian 

orm. To include the Hessian approximation in our training proce- 

ure, we need to fix a certain number of samples and to perform 

 Monte-Carlo estimate of the expectation value. Fig. E.24 shows 

he relative error between sampled Hessian norm and true Hes- 

ian norm. Increasing the sample size noticeably reduces the error, 

ut a sample size of 1 already has a relative error of only 6%. If

e average over a batch of images, the error reduces further. This 

eans that for training and validation sampling once per image is 

n practice sufficient. 

ppendix F. Additional network structures and data sets 

Data set: We train on ImageNette [56] , a data set that contains 

0 sub classes of the ImageNet data set (tench, English springer, 

assette player, chain saw, church, French horn, garbage truck, gas 

ump, golf ball, parachute). We train on the original train-test split 

f ImageNet, using 50 images per class for testing. Network archi- 

ectures: We use two different architectures: VGG16 [57] without 

atch normalization and ResNet18 [58] . Configuration: We select 

he most promising parameters for each of our proposed meth- 

ds and train with four different parameter configurations for each 

etwork architecture. We train a vanilla network without weight 

ecay ( λ = 0 ), a network with moderate weight decay ( λ = 5 e-4), 

 network with softplus activations ( λ = 5 e-4, β = 10 ) and a net-

ork with curvature minimization ( λ = 5 e-4, β = 10 , ζ = 1 e-6). All
17 
etworks were trained for 60 to 70 epochs to make them more 

omparable and selected based on their validation set accuracy. We 

ist test accuracies for the different networks in Table F.3 . 

We examine the robustness against random perturbations with 

ifferent noise levels and show the results in Fig. F.25 and F.26 . 

or both architectures we observe a clear trend towards increased 

obustness when applying our methods. Interestingly we get the 

argest increase in robustness when substituting ReLU activations 

ith softplus activations while curvature minimization does not 

eem to have a large effect. In Fig. F.27 we compare weight norms 

nd Hessian norms between the three network architectures we 

nalyse. Compared to the CNN trained on CIFAR, approximated 

essian norms for VGG16 are an order of magnitude smaller even 

ithout curvature minimization. For ResNet18 they are two orders 

f magnitude smaller. 

ppendix G. Targeted adversarial attacks 

We perform targeted adversarial attacks on the CNN model that 

as trained on CIFAR10 as well as on VGG16 and ResNet18 trained 

n ImageNette for 100 test images. We choose the target expla- 

ations from another 100 randomly selected test images. We stop 

n attack when the mean squared error between original and ma- 

ipulated input exceeds 0.0015. We use the Adam optimiser with 

tandard parameters and adapt the learning rate between config- 

rations so that the attacks need roughly the same number of it- 

rations until the stopping criterion is reached. As ReLU networks 

re not twice differentiable we substitute the ReLU activations with 

oftplus activations with small β value during the attack. For the 

nal comparison we re-substitute the ReLU activations. 

We always compare a vanilla net ( λ = 0 , ReLU activations, ζ = 

 ) with a robust net (weight decay with λ = 5 e-4, softplus activa- 

ions with β = 10 , curvature minimization with ζ = 1 e-6). As our 

ttacks are targeted we compare the manipulated explanation h 

o the original explanation h org and the target explanation h t in 

ig. G.28 . For the CNNs trained on CIFAR and VGG16 trained on 

mageNette we see a large positive effect on the robustness when 

sing our methods during training. For ResNet18 we see a smaller 

ffect. 



A.-K. Dombrowski, C.J. Anders, K.-R. Müller et al. Pattern Recognition 121 (2022) 108194 

Fig. F.25. Experiments on VGG16 trained on the ImageNette data set. PCC increases with weight decay, softplus activations and curvature minimization. We show mean +/- 

std for six different noise levels ν .. 

Fig. F.26. Experiments on ResNet18 trained on the ImageNette data set. PCC increases with weight decay, softplus activations and curvature minimization. We show mean 

+/- std for six different noise levels ν .. 

Fig. F.27. Left: effect of weight decay on different architectures. Right: effect of curvature minimization on different architectures (a weight decay of λ = 5 e-4 was used). 

Fig. G.28. Targeted adversarial attacks on different models. Left: similarity between manipulated explanation h and original explanation h org is higher for the robust nets 

trained with our methods. Right: similarity between manipulated explanation h and target explanation h t is lower for the robust nets trained with our methods. This shows 

that our methods also improve robustness against targeted adversarial attacks.. 

18 
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Fig. H.29. Tradeoff between robustness (high PCC between explanations) and accuracies for selected CNNs trained on CIFAR10.. 
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ppendix H. Accuracy-robustnes tradeoff

As discussed in the main text, increasing the robustness of net- 

orks comes at the price of decreased accuracy. This is illustrated 

n Figure H.29 . The best trade-off is obtained by combining all pro- 

osed methods. 
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