
The Journal of Systems & Software 183 (2022) 111086

A
D
I

s
w
t
C
o
t
a
s
c
a
e
p
2
d

I

(

h
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Supporting IoT applications deployment on edge-based infrastructures
usingmulti-layer featuremodels✩

ngel Cañete ∗, Mercedes Amor, Lidia Fuentes
epartamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain
TIS Software, Universidad de Málaga, Spain

a r t i c l e i n f o

Article history:
Received 10 January 2021
Received in revised form 12 May 2021
Accepted 2 September 2021
Available online 16 September 2021

Keywords:
Task allocation problem
Variability models
Task Deployment
SMT Optimization
Software Product Lines
Edge Computing
DevOps

a b s t r a c t

Edge Computing proposes to use the nearby devices in the frontier/Edge of the access network
for deploying application tasks of IoT-based systems. However, the functionality of such cyber–
physical systems, which is usually distributed in several devices and computers, imposes specific
requirements on the infrastructure to run properly. The evolution of an application to meet new user
requirements and the high diversity of hardware and software technologies in the IoT/Edge/Cloud
can complicate the deployment of continuously evolving applications. The aim of our approach is to
apply Multi Layer Feature Models, which capture the variability of applications and the software and
hardware infrastructure, to support the deployment in edge-based environments of cyber–physical
applications. With this multi-layered approach is possible to support the evolution of application and
infrastructure independently. Considering that IoT/Edge/Cloud infrastructures are usually shared by
many applications, the deployment process has to assure that there will be enough resources for all
of them, informing developers about the feasible alternatives. We provide four modules so that the
developer can calculate what is the configuration of minimal set of devices supporting application
requirements of the evolved application. In addition, the developer can find what is the application
configuration that can be hosted in the current infrastructure. The successive solutions of continuous
deployment generated by our approach pursue the reduction of the system energy footprint and/or
execution latency.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

IoT/CPSs (cyber–physical systems) are a new generation of
oftware intensive systems that are composed by software tasks
ith specific needs in terms of hardware and software. The func-
ionality of CPSs needs to be deployed throughout servers in the
loud, and the system infrastructure, which is typically composed
f a myriad of highly heterogeneous devices that differ in their
ype, memory, computation power, coupled sensing units, oper-
ting system or communication capabilities among others. Cloud
ervers provide high performance computational resources that
an be used to offload processing and storage resources allevi-
ting resource-constrained devices (Ai et al., 2018; Premsankar
t al., 2018; Satyanarayanan, 2017). However, cloud offloading
ays a heavy cost in terms of energy and latency (Bulej et al.,
021; Ai et al., 2018; Shi et al., 2019). With the goal of re-
ucing the energy footprint of IoT/CPSs, novel technologies and

✩ Editor: W.K. Chan.
∗ Correspondence to: Escuela Técnica Superior de Ingeniería

nformática, Bulevar Louis Pasteur, 35, Málaga, 29010, Spain.
E-mail addresses: angelcv@lcc.uma.es (A. Cañete), pinilla@lcc.uma.es

M. Amor), lff@lcc.uma.es (L. Fuentes).
ttps://doi.org/10.1016/j.jss.2021.111086
164-1212/© 2021 The Author(s). Published by Elsevier Inc. This is an open access a
c-nd/4.0/).
paradigms based on Edge Computing (EC) (Premsankar et al.,
2018; Elazhary, 2018) propose to offload some computation in-
tensive tasks from the cloud servers onto nearby edge devices
located in a range of one or two hops (e.g. routers or switches).
Edge-based deployments take advantage of the inactive computa-
tional capacity and unused storage space of edge devices placed
at the Internet’s frontier. Then, part of the data processing and
storage will be displaced to devices closer to where data and ser-
vices are produced and consumed, proposing a more sustainable
solution.

However, despite its advantages, the realization of edge-based
deployments is not, in practical terms, an easy issue with current
approaches (Bagchi et al., 2020; Mao et al., 2017; Liu et al.,
2019; Huang et al., 2020). Roughly, the deployment process of
IoT/CPSs can be formulated as a task assignment problem that
has an miscellaneous set of tasks with variable requirements in
infrastructure and QoS (quality of service) in one side, and an
elastic set of heterogeneous devices in the edge or the cloud
in the other side. However, the heterogeneity of existing edge-
infrastructures and the requirements imposed by applications
complicate the deployment process, making the developer to face
some challenges. On the one hand, the high diversity of hardware
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.jss.2021.111086
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111086&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:angelcv@lcc.uma.es
mailto:pinilla@lcc.uma.es
mailto:lff@lcc.uma.es
https://doi.org/10.1016/j.jss.2021.111086
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

a
t
e
r
O
a
r

k
r
a
E
i
v
r
e
h
t
c
t
i
o
a
q
w
d

b
s
c
i
d
2
r
t
q
a
f
c
s
s
t

w
v
a
m
m
l
R
2
v
v
t
(
a

u
c
t
p
s
i
u
O
a
d

nd software technologies in the Edge makes it more difficult
o find out what is the best deployment as IoT/CPS applications
volve over time—due to changes in user requirements that may
equire application functionality adjustment (Bagchi et al., 2020).
n the other hand, it is also hard to discover when would be
dvantageous to offload some task(s) to a certain Edge device as
esource availability varies over time.

First, before making any offloading decision, it is necessary to
now if the infrastructure in the Edge meets application specific
equirements. The problem is that some tasks are constrained to
concrete node with specific software and hardware resources.
xamples of these requirements are that a certain node must
nclude a camera, a special sensing unit, specific support for a
irtual machine, or particularly high performance computational
esources. In some cases, the software engineer must reuse a (pre-
xisting) given infrastructure, and the application functionality
as to be adapted to the capabilities and resources provided by
he available infrastructure. In order to prevent the developer to
onfigure applications that will not be supported by the infras-
ructure at their disposal, first it must be checked if the current
nfrastructure supports the desired application configuration. In
ther cases, the software engineer is free to acquire the most
ppropriate infrastructure for a CPS that meets application re-
uirements. In this scenario, the goal is to identify and configure
hat is the minimal set of devices that should be included to
eploy and run a given application configuration.
Then, the next step is to decide how the application can

e allocated in an IoT/Edge/Cloud environment. This decision
hould consider the task latency and also the computational and
ommunication power consumption, and find different offload-
ng solutions depending on each task resource demand and its
elay sensitivity (Mao et al., 2017; Liu et al., 2019; Huang et al.,
020). Among these solutions, it is preferable to choose those that
educe energy consumption, to contribute producing more sus-
ainable applications while minimizing latency to provide a good
uality of experience to users. So, considering that infrastructures
re commonly shared among many applications, the next goal is
inding what subsets of devices are capable of running an appli-
ation configuration. After that, it is necessary to determine what
ubset of devices should be selected in order to minimize QoS,
uch as the energy consumption and/or latency, and providing a
ask assignment to a certain infrastructure, fulfilling a certain QoS.

We propose to tackle this deployment problem using a soft-
are product line (SPL) (Pohl et al., 2005) approach, which pro-
ides the means for the identification, representation, and trace-
bility of variability in many domains (Geraldi et al., 2020). We
odel the variability of software tasks and infrastructure by
eans of variability models, concretely multi-stage (i.e., multi-

ayer or multi-view) feature models (FMs) (Dhungana et al., 2010;
eiser and Weber, 2007; Holl et al., 2012; Acher et al., 2012,
013). The definition of different models allows to specify the
ariable set of hardware and software characteristics of the de-
ices independently from the application. This supports the au-
omation of the configuration of different software infrastructures
e.g. a virtual machine or an IoT platform) to make possible that
device can host a certain application task.
These multi-stage feature models are the input of four mod-

les that focus on providing an automated solution to these
hallenges. Specifically, the developer can use these modules
o (1) adapt the application configuration according to the ca-
abilities of the infrastructure. If it is not possible to find a
olution to adapt the application configuration to an existing
nfrastructure, the module suggest new devices and another mod-
le can (2) characterize them—in terms of required resources.
nce the developer is ascertain about deployment is possible,
nother module (3) finds out what subsets of devices are candi-
ate to be part of the deployment solution and where to deploy
2

each application’s task. After that, module (4) determines what
subset of devices should be selected in order to minimize QoS,
such as the energy consumption and/or latency, and provides
a task assignment to a certain infrastructure that guarantees a
QoS. These modules are able to manage the configuration of
both the application and the infrastructure independently. Our
approach provides a mechanism based on variability models that
defines and optimizes (in terms of energy consumption and/or
latency) the deployment of IoT/CPSs applications for a specific
edge infrastructure. This work aims to aid developers to take
advantage of Edge devices’ unused computational capacities dur-
ing the operation of IoT/CPSs applications to ensure a successful
deployment. Several approaches deal with the automated assign-
ment of application components to infrastructures composed of
several nodes (Mao et al., 2017; Liu et al., 2019), but these works
neither consider the software characteristics of the nodes, nor
identify what are the application required features unsupported
by the nodes. So, unlike our approach, these solutions may lead to
unfeasible deployments in which some tasks cannot be executed
since an Edge device does not provide the required software or
hardware support (e.g. a camera).

The rest of the paper is organized as follows: Section 2 dis-
cusses related work, while Section 3 presents our approach, in-
cluding our four reasoning modules in depth. Section 4 presents
two extensible and reusable FMs for IoT infrastructures and their
constraints. Section 5 applies our approach to a real scenario of
a college campus, and evaluates the benefits obtained and its
scalability. Finally, Section 6 concludes the paper and presents the
future work.

2. Related work

This section discusses the related work on variability manage-
ment and code offloading.

2.1. Variability management: SPL and IoT

The use of SPL has being proved to provide benefits to IoT
systems regarding the management and modeling of variability,
which is mainly managed by FMs with variation points, variants,
relationships and constraints (Geraldi et al., 2020). Just a few
works address variability at the deployment stage taking into
account features that model the diversity of existing devices and
technologies into consideration (Gámez and Fuentes, 2013). The
work in Cecchinel et al. (2016) applies SPL concepts to manage
sensor platform variability problem in terms of memory, con-
troller, battery, sensor and communication. The work in Köksal
and Tekinerdogan (2019) applies SPL to manage the variability
in IoT systems in agriculture, which typically have different func-
tional and quality requirements such as choice of communication
protocols, the data processing capacity, the security level, safety
level, and time performance.

Despite its importance, the infrastructure is often neglected
in the SPL models. Typically, when included, the modeling of
infrastructure-specific features is intermingled with the rest of
application-specific features, mapping the application’s features
to pieces of software in a 1:1 relation. Separating the platform
and infrastructure-dependent feature into an independent model
aims of reflecting the possible independent evolution and the
restrictions that the infrastructure imposes on the deployment
of software applications. The definition of separated but related
FMs is not new, as maintaining a single large FM for an entire
system is neither feasible nor desirable. Several works (Dhungana
et al., 2010; Reiser and Weber, 2007; Holl et al., 2012; Acher
et al., 2012, 2013) propose defining multiple FMs to cope with
variability management of large and complex FMs related by



A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

n
s
w
p
2

l
m
a
l
H
i

p
p
o
c
a
r
i
e
t
n
k
a
t
n
o
c
t
m
t
b
t
s

h
d
m
a
r
p
t
m
t
i
e
t
a
a
o
o
o
t
(
f
s

2

o
p
f
a
w

umerous complex constraints. Each FM groups features repre-
enting different viewpoints, sub-systems, concerns of the soft-
are system (Acher et al., 2013), or levels of abstraction, such as
latform descriptions (Lettner et al., 2019; Farahani and Habibi,
019), or stages of development (Rabiser et al., 2016).
The framework presented in Lettner et al. (2019) uses two

ayers (by multi-layered FMs) to develop applications executed in
obile phones. Those device’s features whose changes strongly
ffects the application configurations dependent on the under-
ying platform are separated in a FM. The work in Farahani and
abibi (2019) proposes to separate the modeling application and
nfrastructure in two FMs.

Although the separated modeling of infrastructure features
romotes its independence and reusability across different ap-
lication domains, these approaches just allow the configuration
f a single device, preventing its application to infrastructures
omposed of multiple nodes. Consequently, they are not suit-
ble for being applied to real EC environments. This neglect in
elation to modeling platform dependencies also limits software
nfrastructure optimization, as many features (e.g., performance,
nergy consumption) depend on the devices in which applica-
ions run (Abbas et al., 2018; Guo et al., 2011). In addition,
one of the aforementioned approaches helps the developer to
now if a configured infrastructure does not meet the configured
pplication functionalities, or how to resolve the match between
he application demand to infrastructure support. Also, the way
on-functional requirements are modeled limits the reusability
f the infrastructure’s FM for different applications, and does not
onsider the coexistence of several applications running simul-
aneously in a sharing an infrastructure and difficulties the FM
aintenance and evolution of the application and/or the infras-

ructure. Also, only contemplate hardware infrastructure features,
ut nowadays, with the virtualization options and the prolifera-
ion of IoT middleware, the software variability in cyber–physical
ystems is getting much importance.
In contrast, our approach supports the explicit modeling of

eterogeneous edge nodes, IoT devices and cloud machines, which
iffer in both software and hardware resources. This
odel, which can be extended and reused, allows reasoning
bout the constraints and interrelationships among application
equirements, software infrastructure and hardware. Our ap-
roach also allows the management of alternative implemen-
ations for the same task interface. The possibility of having
ore than one implementation of a task allows finding out

he best tasks’ implementation for the different nodes of the
nfrastructure, considering a certain quality of service (e.g. low
nergy consumption). We also consider the real scenario in which
he deployment nodes (i.e. the infrastructure) are often shared
mong a set of applications, so both software infrastructure
nd resources available are variable and not fixed as in many
ther proposals. Finally, our approach provides a customizable
ptimizer of edge-based application deployments with the goal
f minimizing energy consumption, which allows considering
he energy in both, the whole application and isolated nodes
customizable according to the necessities of the developer/in-
rastructure). In this way, we provide very flexible task allocation
olutions.

.2. Task assignment problem: Offloading

On the other hand, our approach is also focused on task
ffloading in edge infrastructure. Existing task offloading ap-
roaches differ with respect to the type of edge nodes considered
or offloading and the number of user considered. Most of the
pproaches contemplate only one edge node (or a group of them
ith homogeneous characteristics), being focused on systems
3

formed by one mobile user (single user) or multiple mobile nodes
(multiuser approaches) (Mao et al., 2017; Liu et al., 2019; Huang
et al., 2020). Considering only homogeneous nodes, as these
approaches make, allow to reduce the complexity of task al-
location to just deciding if the computational load is allocated
locally or remotely. A more realistic but complex scenario, in-
volving a heterogeneous set of edge nodes (in hardware, software
and available resources) shared among multiple users, requires
deciding which node is the most adequate for offloading.

Task offloading approaches also differ in the objective(s) that
drive it (e.g., reducing the energy consumption, latency, etc.), the
nodes involved (user node, all nodes, etc.), granularity level, task
model used, mechanisms used to obtain the solution, and devices’
characteristics considered (Mao et al., 2017; Cañete et al., 2020).
The granularity level indicates the size of the computational load
that is considered for offloading (tasks, services, or applications),
while the task model determines the use of offloading scheme,
mainly binary or partial offloading (Mao et al., 2017); the bi-
nary offloading does not allow the partition of tasks, while the
partial offloading allows splitting tasks into simpler components,
providing more flexible solutions. Most of the approaches deal-
ing with the tasks assignment problem in code offloading use
heuristic algorithms or solve this problem by means of Inte-
ger Linear Programming (ILP), Mixed Integer Linear/Non-linear
Programming (MILP/MINLP) and SMT (Satisfiability Modulo Theo-
ries) solvers (Mao et al., 2017). While heuristic algorithms do not
ensure to return a solution (even if exists), ILP, MILP/MINLP and
SMT solvers always return a solution if it exists, or on the contrary
inform about the infeasibility of the problem. ILP and MILP/MINLP
solvers differ in the type of variables and degree of the equations
supported: in ILP, all variables are restricted to take integer values
and equations must be linear; MILP and MINLP can support
other types of variables, but at least a variable must be integer-
valued, being the equations linear/non-linear respectively. Finally,
SMT solvers do no restrict the type of variables to be optimized
and support non-linear equations. Our approach considers het-
erogeneous nodes and multiples simultaneous users, allows to
minimize the energy consumption and/or latency and customize
where it is focused, works at tasks level, allows partial offloading,
contemplates software and hardware characteristics of the nodes
and uses a SMT solver to provide an optimal solution.

As far as we know, only our previous work (Cañete et al., 2020)
considers software characteristics of the infrastructure (such as
operating system, support for software virtualization, or third
party libraries) when deciding the tasks allocation (Mao et al.,
2017; Liu et al., 2019; Cañete et al., 2020). Nevertheless, while
our previous work did not consider optimizing the latency in
task assignment solution, this work does it. Compared to the rest
of approaches, our approach allows more fine-grained offloading
scheme than current binary offloading, which allows supporting
parallel execution between the user mobile and the edge nodes.
Additionally, our approach provide a mechanism to set the op-
timization according to the user/infrastructure necessities, while
the rest have this parameter fixed.

3. Our approach

In this work we present four independent but complemen-
tary modules that supports developers to adjust the deployment
according to the application requirements and infrastructure ca-
pabilities: the Application Variability Adaptor (AVA), the New
Devices Finder (NDF), the Edge-Deployment Alternatives Finder
(EDAF), and the Energy and Latency Minimizer (ECLAM). The
relation of these modules with others artifacts of our approach
is described in Fig. 1.

Firstly, the software engineer is concerned with the definition
of the FMs of the application and infrastructure. A FM represents,



A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

i
(
m
F
c
(
a

d
o
o
r
t
d
F
n
t
s
(
f
f
t
a
t
i

t

t
A
f
a
t
w
i

s
t
f
a

F

Fig. 1. Full overview of our approach.
n
o
o
t
(
t
t
c
f
t
a

u
t
r
s
n
t
a
R
c
p
t
I
e
t
E
o
d
s
i
d

E
g
t

a
M
(
i

n terms of features, which elements of a family of products
either a family of applications or a family of systems) are com-
on, which are variable and the relationship between them.
Ms are represented as a set of hierarchically ordered features,
omposed of parent–child relationships and a set of constraints
called cross-tree constraints) which represents the relationships
mong features.
Infrastructures are formed of several heterogeneous devices,

escribed by a set of hardware and software characteristics: type
f device, computing power, peripherals, network capabilities,
perating system, third party libraries, etc. These characteristics
elate to the type of services/tasks that can be deployed on
hem, as they refer to the hardware and software requirements
emanded by the applications to the execution platform. This
M allow the modeling more adequately the infrastructure, often
eglected in the SPL models, and allows mapping the applica-
ion’s features selected from the application FM to features of
oftware and hardware of the infrastructure in a 1:n relations
an application feature can be executed by nodes with different
eatures). To facilitate the configuration and reusability of the in-
rastructure’s FM, we split the hardware and software features in
wo FMs, which aids us to manage the evolution of the hardware
nd software characteristics of the devices separately; i.e., we use
hree FMs in total, one for the application and two to model the
nfrastructure.

The information provided by these FMs is used by the modules
o:

(1) Adapt the variability of the application according to
he capabilities of the infrastructure (Application Variability
daptor—AVA module): having a concrete infrastructure’s con-
iguration (either partial or complete), this module returns the
pplication configuration with the maximum number of applica-
ion’s features that fits a given infrastructure. In this scenario, we
ant to provide the most functionality allowed by the current

nfrastructure as possible.
Sometimes, the application must provide a specific set of

ervices, being the infrastructure that must be adapted, i.e., is
he application layer that keeps static. That means that the in-
rastructure may require new devices to support the desired
pplication.
(2) Add new devices to the infrastructure (New Devices

inder—NDF module): this module informs about the new devices
4

eeded to run a specific application. Additionally, the evolution
f the application and/or infrastructure may affect the feasibility
f the current application’s deployment. Some tasks or parts of
he application may require devices with specific characteristics
in terms of location, peripherals, computation capabilities, etc.)
hat the current infrastructure does not meet. This module de-
ects all application’s requisites non-supported by the current
onfiguration of the infrastructure, and returns a minimal con-
iguration (i.e., the minimal set of features and minimal value of
he attributes) of the minimal set of devices needed to deploy the
pplication properly.
Once the software product and the infrastructure are config-

red, the next step is to distribute the application’s tasks among
he nodes of the infrastructure (see Fig. 1). Such distribution
equires to (3) find the deployments alternatives capable of
upporting the application execution (Edge-Deployment Alter-
atives Finder—EDAF module): this module informs about the
ask-to-device assignments that satisfy the requirements of the
pplication, including the amount of memory (in terms of RAM—
andom Access Memory and disk) required to allocate in each
omputing device and the maximal number of users each de-
loyment solution would support—allowing to set this last value
o return solutions with a minimal number of users supported.
f the developer unknowns if the infrastructure is capable of
xecuting the application properly, the EDAF could not be able
o find any deployment solution. Although the NDF and the
DAF are independent between them, the previous execution
f the NDF module (and the posterior purchase of the required
evices found, which are not in the current infrastructure) as-
ures the accomplishment of the application requirements by the
nfrastructure, and, consequently, to find at least one solution of
eployment (see Fig. 1).
While all the alternatives of tasks distribution provided by the

DAF fulfill the application’s requirements, this module does not
ive information about the energy consumption and latency of
he deployment solutions provided.

(4) Optimize the deployment by minimizing the latency
nd/or energy consumption (Energy Consumption and Latency
inimizer—ECLAM module): configurations returned by module

3) meet the requirements of the application, but they may differ
n the energy consumption and execution latency (apart from the



A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

n
o
2
(
i
c
m
A
b
c
s
r
a
F
E
w
s
a
E

l
B
t
w
s
a
h
o
2
S
p
a
d
m

f

w
t
a
b
A

umber of users supported), which depend on the characteristics
f the devices and tasks deployed in each of them (Mao et al.,
017). The goal of this module is to evaluate these parameters
i.e. energy consumption, execution latency and user supported)
n the deployment solutions, according to the computation and
ode offloading demands and the capabilities of the devices, and
inimizes one or more of them (De Moura and Bjørner, 2008).
s a result, this module returns only one of the solutions found
y the EDAF, the optimal one. In addition, this module allows to
ustomize the devices in which the reduction in the energy con-
umption is focused; e.g., just on the user device, regardless the
est of devices (so this policy will offload as much functionalities
s possible from the user device), on battery powered devices, etc.
urther details are provided later in Sections 4 and 3.4. Like the
DAF, this module allows setting the number of users supported,
hich guarantees that the deployment solution will be able to
erve a certain number of simultaneous users. Although the tasks
ssignment returned by this module is among the found by the
DAF, both modules are independent; i.e., can be used separately.
The four modules are posed as constraint satisfaction prob-

ems. Concretely, we rely on Z3, a SMT solver (De Moura and
jørner, 2008), to obtain the solutions. Thus, (1) the algorithm of
he solver always returns a solution (unlike heuristic algorithms),
hich guarantees that the deployment is feasible or the impos-
ibility to deploy the application if no solution is found; and (2)
large number of constraints (required to solve the problems at
and) help SMT-solvers to reduce the search space and to find the
ptimal solution faster (Niewiadomski et al., 2014; Bjørner et al.,
015). Unlike solvers that use ILP/MILP/MINLP (see Section 2.2),
MT solvers neither restrict the variables types involved in the
roblem formulation (that are unknown, as our modules inputs
re derived from the FMs) nor the degree of the equations. Ad-
itionally, it is proved that Z3, and concretely its optimization
odule (νZ), returns optimal solutions (Bjørner et al., 2015).

Nevertheless, the flexibility of our approach may allow the use of
any other mathematical model (that do no restrict the variables
types) for optimization.

3.1. Module 1: Application Variability Adaptor (AVA)

This module is useful to foresee if a given infrastructure sup-
ports the deployment of an application. Some application’s func-
tionalities require specific hardware and/or software components
to be executed. The goal is not to adding more nodes to the
infrastructure, but to constraint the variability of the application
(i.e. those features that are optional or adaptable) to the infras-
tructure capabilities and resources. The aim of the AVA is to find
out whether the application’s features are supported by a given
infrastructure.

To operate with the FM of the application, it is transformed in
a tuple ⟨F , A, R, CMCs⟩, where:

• F contains the set of boolean features included in the model.
In case of configurations, F contains the selected features.

• A is the set of variables that represent the attributes of the
model, which value is a real number.

• R identifies the set of clonable services of the application
(i.e., those that can be instantiated more than once). At the
same time, each clonable service included in R is formed
by tuples ⟨F , A⟩, that contain the children features and at-
tributes of each clonable service. Clonable services are typ-
ically executed on devices located on a specific location.

• CMCs (Cross-Models Constraints) represents the set of con-
straints between models. According to the model, it will be
related with none, one or more models (see Fig. 1).

The main operation of this module uses the next additional

unctions:

5

• support(device(s), feature/attribute, restrictions): its value is
True if device(s) support(s) device(s)/attribute(s) according to
restrictions; False in other case.

• capabilities(clonable, device, restrictions): returns the limi-
tations that device imposes in clonable in case of being
assigned this feature to it, according to restrictions.

As an input, the AVA module receives the application’s FM, as
ell as the hardware and software configuration of the infrastruc-
ure (either full or partial), split into: N, that contains the nodes;
nd CMCs, that contains the hardware and software restrictions
etween the infrastructure and the application. As output, the
VA returns the features split into two groups: supported (s) and

non-supported features (ns) by the infrastructure. Regarding the
attributes, the AVA module returns their value range in case of
being restricted by the infrastructure.

Maximize : size(s)
∀aϵA : amax

Minimize : ∀aϵA : amin

Subject to : ∀f ϵs : support(N, f , CMCs) (1)
∀aϵA : support(N, amax, CMCs) (2)
∀aϵA : support(N, amin, CMCs) (3)
∀nϵN, cϵR : cϵS

∧ support(n, c, CMCs) →

capabilities(c, d, CMCs) (4)
Return : s

ns = F \ s
∀aϵA : (amin, amax)

(1)

Eq. (1) shows the formalization of AVA. Concretely, this mod-
ule maximizes the number of supported features and upper range
of the attributes, while minimizing their lower range, and max-
imizes the number of supported features. As constraints, the
AVA: (1) checks that the infrastructure supports the features
contained in supported; (2–3) confirms that the infrastructure
supports the maximal and minimal values of each attribute; (4)
iterates each clonable service and device, evaluating and return-
ing the maximal capabilities supported by each device in case of
executing the service on it. Finally, the AVA returns the supported
and non-supported features, as well as the value range of the
attributes.

3.2. Module 2: New Devices Finder (NDF)

Sometimes, the developer knows the specific application
he/she wants to run on the infrastructure, but ignore which are
the specific features of the device/s to do so. Starting from a
specific (configured) application and a infrastructure that can be
evolved to meet (unsupported) application features, the goal of
this module is to define the characteristics of the minimum set
of IoT/Edge/Cloud devices that are not included in the current
infrastructure, yet needed to support the application. With this
purpose, the NDF module evaluates the requirements of the
application services – once mapped from the FM – already met
by the current infrastructure, and defines an instance of the least
amount of devices required to support the unsupported ones.

This module works at service level, using the demands of
the application’s services not already supported to determine
the characteristics of the devices needed. To assure the QoS of
the application related with user experience and latency, each
service has a maximal execution time associated (i.e., time re-
striction). The NDF module performs two different steps. In the
first step, the NDF detects the non supported services and in-

stantiates one (provisional) device for each one. In the second



A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

s
o
e

z
D

t

i
t
f

i
s
t
m
T
d
b
c

t

tep, these provisional devices are combined to construct a set
f indispensable devices, while avoiding to include those that are
xpendable(function merge presented below).
This module uses several additional functions:

• meets(service,device): returns True if device accomplishes the
service requirements, involving their hardware and software
demands and time restrictions (considering computation
and communication times).

• createDevices(non-supported): returns one device per each
non-supported service with the minimum characteristics to
meet it.

• merge(devices,virtualization): if devicei and devicej included
in devices share location – or any of both can be located any-
where – and share its type, then their peripherals, commu-
nication capabilities, sensing units and software capabilities
are combined. CPU power, RAM capacity, and disk will be ei-
ther combined or equaled to the device with more resources
according to the boolean value virtualization, which value
its True if our intention is to reserve hardware resources
(i.e., use virtual machines, see Section 4.2).

Eq. (2) formalizes the NDF. As an input, this module receives
the full configuration (both software and hardware) of the nodes
presented in the infrastructure, the configuration of the applica-
tion, and the boolean value virtualization. To handle this infor-
mation, the configured FMs are processed, including the nodes in
the set N, and all the services of the application included in the
set S. The set S is then composed by the software components
that implement the application’s functionality, which are derived
from the full configuration of the application FM, including those
clonable services defined as part of the set R. As an output, the
NDF returns the minimal set of characteristics required by each
new device to support the application configuration given as an
input.

Maximize : size(s)
Subject to : ∀seϵS, nϵN : xse,n → seϵs ∧ meets(se, n) (1)

nϵN : seϵS →

∑
seϵS

xse,nseRAM ≤ nRAM (2)

nϵN : seϵs →

∑
seϵS

xse,nsedisk ≤ ndisk (3)

Post processing : ns = F \ s (4)
provisional = createDevices(ns) (5)

Return : merge(provisional, virtualization)

(2)

where xse,n is 1 if the service se is assigned to device n; 0 other-
wise.

Firstly, the NDF (see Eq. (2)) maximizes the number of sup-
ported devices (s), according to a series of restrictions: (1) s
contains the application services already supported by the infras-
tructure; and (2–3) the devices have RAM and disk enough to
allocate the supposedly supported services. Secondly, the result
of this maximizing problem is post-processed, identifying the
non-supported services (4) and creating a set of provisional de-
vices from the non-supported characteristics (5). Finally, the NDF
operates with the devices contained in provisional, and returns
the minimal set of devices with the configuration the infrastruc-
ture needs to support the application, adapting its characteristics
according to the boolean value virtualization, given as an input.

3.3. Module 3: Edge-Deployment Alternatives Finder (EDAF)

Once the application and infrastructure are configured, the
aim of the EDAF is to inform developers about the different
6

deployment options available that guarantee the fulfillment of
the application requirements. In practice, infrastructures are com-
monly shared among many applications; some devices of the
infrastructure may be crucial for some applications (e.g., due to
their peripherals), while others applications only demand the use
of a certain computational power of them. For this reason, the
EDAF module provides a mechanism to avoid, if possible, the use
of some devices that are indispensable for others applications.

To control the hardware and software requirements of services
increasing the opportunities and alternatives of deployment, the
application services are split into tasks. Thus, the EDAF module
operates at task level (Wang et al., 2019), being the most suitable
granularity level to provide flexible solutions of deployment (Mao
et al., 2017). The order of execution and data inter-dependencies
among tasks are represented using task-call graphs (Mao et al.,
2017) (see the input of the EDAF in Fig. 1). Nodes of the graph rep-
resent the tasks, while the edges represent relationships between
tasks (by means of data produced and required). Specifically, each
node the graph includes the hardware and software requisites of
the task it represents, including the required CPU cycles, and the
minimum RAM and required. On the other hand, the graph edges
are labeled with the amount of data transmitted between tasks.

The characteristics of the nodes modeled in Section 4, along
with the ones of the tasks, are used to predict the latency asso-
ciated for computation and data transmission (Dinh et al., 2017;
Zhang et al., 2016; Mao et al., 2017). The first expression of Eq. (3)
shows the expression used to calculate the computation time (s)
of a task i by node n (tCompi,n), given by the relationship between
the number of CPU cycles associated to the task i (wi)–which
value is estimated (Melendez and McGarry, 2017)–and the CPU
power of node n (cycles per second, Fn). The communication time
(in seconds) of the output data that task i sends to task j is given
by the sum of the relationship between the amount of bits to
send (ci,j) and the minimum between the upload transmission
rate (RTx

n ) of the sender node (n) and the download transmission
rate (RRx

z ) of the receiver node (z) for a given connection type (ct)–
e.g., WiFi 2.4 GHz, plus the propagation delay (s) between n and
(tpropn,z )–assumed as 0 between edge devices (Mao et al., 2017;
inh et al., 2017)–as seen in the second expression of Eq. (3):

Compui,n = xi,n
wi

Fn

tCommui,j,n,z,ct = xi,nhi,j

(
ci,j

Min(RTx
n,ct , RRx

z,ct )
+ tpropn,z

)
(3)

where xi,n is 1 if task i is assigned to node n, 0 otherwise; hi,j is 1
f node n and z are not the same. The propagation delay is set as
he half of the mean round trip time (RTT) obtained by pinging
rom n to z, and considered like constant (Dinh et al., 2017).

While the NDF evaluates the time restrictions at service level,
t makes no sense do the same with the tasks, as application’s
ervices are formed by groups of tasks. Instead, the EDAF groups
he tasks responsible for providing each service and give them a
aximal amount of time to be completed (i.e., a time restriction).
asks with time restrictions are collected in lists named tr; this
ata structure not only refers the tasks involved in each of them,
ut also contains the maximal time to be completed (trtime). Tr
ontains all the groups of tasks with time restrictions.
In addition to the expressions shown in Eq. (3) and the func-

ion meets previously presented, the EDAF uses:

• nUsers (assignment, nodes): returns the maximum number of
users supported by the infrastructure according to the tasks
assignment and nodes capabilities.

• connType (i, j): returns the connection type assigned to com-
municate tasks i and j.



A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

(
t
t
a
n
p
t
a
a
f
s
a
u
s

Fig. 2. Feature models of the hardware and software information of the infrastructure’s devices.
As an input, the EDAF receives the application’s task-call graph
representing τ the set of tasks and ci,j the amount of data
o transmit between tasks i and j); the time restrictions be-
ween tasks (Tr); the configured infrastructure FMs (hardware
nd software)–modeled in the set N; the devices to avoid (if any,
ToAvoid); and, optionally, the minimal number of users to sup-
ort (nUsers)–considering RAM and usage. This module returns
he different options of tasks assignment, including resources
llocation, communication type used in each data transmission,
nd the maximal number of users supported. If the current in-
rastructure does not support the application (there is not a
olution), the EDAF returns an empty set. Once the tasks are
ssigned to the devices, their resources can be limited in practice
sing virtualization, containers (e.g., Docker), or unikernel based
olutions (Bratterud et al., 2015).

Subject to : N = N \ nToAvoid (1)

∀iϵτ :

∑
nϵN

xi,n = 1 (2)

∀nϵN :

∑
iϵτ

xi,niRAM ≤ nRAM (3)

∀nϵN :

∑
iϵτ

xi,nidisk ≤ ndisk (4)

∀nϵN, iϵτ : xi,nRAMi,nnUsers ≥ iRAMxi,n (5)
∀nϵN, iϵτ : xi,ndiski,nnUsers ≥ idiskxi,n (6)
∀nϵN, iϵτ : xi,n ∧ meets(n, i) ∨ ¬xi,n (7)
∀(n, z)ϵN, (i, j)ϵτ : xi,nxj,z ∧ ci,j > 0

→ connType(i, j) ∈ ncon ∩ zcon (8)
∀trϵTr, (n, z)ϵN, iϵτ : xi,ntCompu(i, n)+∑

(j)ϵtr

hi,jxj,z tCommu(ci,j, n, z,

connType(i, j)) ≤ timetr (9)
Return : ∀iϵτ , nϵN : xi,n → RAMi,n; xi,n → diski,n

∀(i, j)ϵτ : ci,j → connType(i, j)

(4)
nUsers(x,N)
7

The EDAF, formalized in Eq. (4), does the following: firstly,
excludes the nodes to avoid from the set N (1); (2) checks that
every node have a node assigned for its execution; (3–4) assure
that nodes allocate RAM and enough to execute their assigned
tasks, while (5–6) verify that nodes have RAM and enough to
serve nUsers; (7) checks that nodes accomplish the tasks’ require-
ments, while (8) assures that nodes that have to send/receive data
between them are using the same communication capability; (9)
verifies the accomplishment of the time restrictions, considering
the execution and communication times; finally, the EDAF returns
the solution (tasks allocation, communication capabilities used
and number of users supported). Unlike the rest of modules,
the EDAF does not minimize or maximize any variable, but is
executed multiple times, returning every existing alternative of
deployment that meets the aforementioned conditions.

3.4. Module 4: Energy Consumption and Latency Minimizer (ECLAM)

The objective of the ECLAM is to provide the optimal subset
of devices and tasks allocation to deploy the application that
minimizes the energy consumption and/or execution latency,
accomplishing the application requirements on the way.

The functions of latency and energy consumption to mini-
mize are shown in Eq. (3) Eq. (5) respectively. Eq. (3) shows
how is calculated the time required by computation and data
transmission of a deployment solution. The energy consumption
in the nodes is influenced by several factors, such as the usage
of CPU (Central Processing Unit), storage, and RAM, being the
CPU usage the most influential factor (Tran and Pompili, 2019)
and the one in which most of EC approaches typically base
their energy consumption models (Mao et al., 2017). The first
expression of Eq. (5) shows the expression used in this work to
predict the energy consumption of computation (J) required by
node n to compute task i (eCompui,n). The energy consumed by
task i to communicate with task j (using connection type ct , that
will be WLAN or the Internet) is presented in second and third
expressions of Eq. (5), that calculate the energy consumption for
data sending and receiving in nodes n and z (sender and receiver
nodes, respectively) (Mao et al., 2017):

eCompu = x κ w F 2ew
i,n i,n n i n n



A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

e

e

f
r
,
i
s
e
t
e
f
a

t
t
c
t

s
t
u
a
b

l
m

Sendci,j,n,ct = xi,nhi,jPTx
n,ct

ci,j
RTx
n,ct

ewn

Recpci,j,z,ct = xj,zhi,jPRx
z,ct

ci,j
RRx
z,ct

ewz (5)

In contrast to other task-offloading approaches that typically
ocus on the energy consumption in the user device regardless the
est of the infrastructure (Chen et al., 2016; Chen and Yixue, 2018)
our proposal allows minimizing the global energy consumption;
.e., the total energy consumption of the infrastructure. At the
ame time, it allows to select the importance of saving energy in
ach device separately. Thus, if your intention is to minimize only
he energy consumption in the user device, simply set the rest of
w (energy weight, see Expression (5)) to 0. This allows providing
lexibility to the deployment solutions and ease to define policies
ccording to developer’s necessities.
The ECLAM module receives the same input as the EDAF, and

he objective(s) sought (energy and/or latency). As output it re-
urns the optimal tasks distribution among the infrastructure. In
ase of not being supported the application by the infrastructure,
his module returns an empty set.

Minimize : energy → ∀(n, z)ϵN, iϵτ : xi,neCompu(i, n)+∑
jϵτ

(
hi,jeSend(ci,j, n, connType(i, j))

+ xj,zeRecp(ci,j, z, connType(i, j))
)

latency → ∀(n, z)ϵN : ∀(i)ϵτ :

xi,ntCompu(i, n)+∑
(j)ϵτ

hi,jxj,z tCommu(i, j, n, z, connType(i, j))

Subject to : N = N \ nToAvoid (1)

∀iϵτ :

∑
nϵN

xi,n = 1 (2)

∀nϵN :

∑
iϵτ

xi,niRAM ≤ nRAM (3)

∀nϵN :

∑
iϵτ

xi,nidisk ≤ ndisk (4)

∀nϵN, iϵτ : xi,nRAMi,nnUsers ≥ iRAMxi,n (5)
∀nϵN, iϵτ : xi,ndiski,nnUsers ≥ idiskxi,n (6)
∀nϵN, iϵτ : xi,n ∧ meets(n, i) ∨ ¬xi,n (7)
∀(n, z)ϵN, (i, j)ϵτ : xi,nxj,z ∧ ci,j > 0

→ connType(i, j) ∈ ncon ∩ zcon (8)
∀trϵTr, (n, z)ϵN, iϵτ : xi,ntCompu(i, n)+∑

(j)ϵtr

hi,jxj,z tCommu(ci,j, n, z,

connType(i, j)) ≤ timetr (9)
Return : ∀iϵτ , nϵN : xi,n → RAMi,n; xi,n → diski,n

∀(i, j)ϵτ : ci,j → connType(i, j)
nUsers(x,N)

(6)

Eq. (6) formalizes the ECLAM, that minimizes the energy con-
umption and/or latency, subject to the same restrictions (1–9)
hat the EDAF (see Section 3.3). Nevertheless, this time the mod-
le only returns one solution. In case of receiving both objectives
s an input (energy and latency), the ECLAM returns a trade-off
etween the both (De Moura and Bjørner, 2008).
We present a more detailed description of the output of the

ast two modules in Section 5. As the output provides the infor-
ation needed to deploy the application, in case of using any
8

Infrastructure as Code (IaC) tool, their output can be processed
to transform it into a understandable input for the IaC tool used.

4. Extensible and reusable FMS for edge-based infrastructures

To deal with the high variability presented in applications
and deployment infrastructures, we use multi-layer FMs (Rosen-
müller et al., 2011). We propose the use FMs with cardinal-
ity (Czarnecki et al., 2005) and numerical attributes (Benavides
et al., 2005) (see 1). CMCs, which are formed by logic formulas,
maintain the coherence between the FMs of different layers.
CMCs allow to comply with the application requirements as de-
termine what hardware and software demands the application’s
services configured by the FMs from the infrastructure. Note that
all these models are defined only once by the domain engineer,
and can be reused to deploy different applications of the same
family or domain.

As aforementioned, we use three FMs: one to model the ap-
plication and two for the infrastructure. While the application FM
will depend on the specific application, the FMs of the infrastruc-
ture can be extended and reused to be applicable to any scenario.
In this section, we present two extensible and reusable FMs for
infrastructures formed by cyber–physical systems. We define the
hardware and software layers, as well as their CMCs.

4.1. FM of the hardware infrastructure

Devices are characterized by their type, network connections
and, optionally, peripherals and sensing units associated. Com-
puters, IoT Gateways, home appliances, smartphones, sensing
motes and virtual assistants, such as Alexa, are some examples
of the type devices that can be configured (see top of Fig. 2).
Devices may play two roles inside the infrastructure which de-
termine their function: computing nodes (capable to receive tasks
offloaded from other nodes) and interactive nodes (used directly
by the users). For instance, the role of a Google home device can
be to interact with the user and/or receive offloaded tasks. Periph-
erals and sensing units will determine the hardware possibilities
of the devices to interact with the environment.

The computational power of the devices is modeled by the
CPU frequency (GHz) and the number of cores; the same with
the GPU (Graphic Processing Unit). Memory capacities can be
configured by the attributes RAM and disk. The communication
capabilities are modeled by the typical networking layers or
protocol stacks. Each network connection includes the uploading
and downloading transmission rates (RTx and RRx respectively).
All these features and attributes provide information enough to
predict the latency of the application execution. Regarding the
energy consumption of task computing and data transmission,
the model contains several features to predict it. Concretely, κ

is a constant that depends on the hardware and directly influ-
ences the energy consumption of computing tasks (Zhang et al.,
2013); other influencing factors are the CPU frequency and the
time required for computation (Dinh et al., 2017; Zhang et al.,
2016; Mao et al., 2017). Concerning the energy consumed by
communication, factors such as PTx and PRx (W), which are the
upload/download transmission powers (assumed like constants
and calculated using power control systems Dinh et al., 2017),
and the time required for transmission are used to predict it (Mao
et al., 2017). Our model contains the attribute ew (energy weight),
which value ranges between 0 and 1, used in our modules (Sec-
tion 3.4) to determine how important is to save energy in the
device (Cañete et al., 2019).



A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

4

s
w
d
t
w
t
v
c
i
s
w
w
T
a
h
a
o
t
A
b
d
b
s
t
t
n
p
i
c

4

b
e
p

s
t
i
m
r

n

Fig. 3. Feature model of the smart campus application (left). Disposal and type of the devices of the infrastructure (right).
.2. FM of the software infrastructure

This layer models software components like the operating
ystem, third party libraries, and also the interaction modes,
hich models the data input/output channels (e.g., text intro-
uction, voice recognition, etc.). In addition, software virtualiza-
ion (i.e., virtualization and containment technologies supported),
hich extends software device capabilities, is also included, dis-
inguishing between hardware/OS virtualization and lightweight
irtualization based on containers (Plauth et al., 2017). In the first
ase, software applications run on virtualized hardware, which
s considered as a device. The same physical device can include
everal virtual machines (VMs), that are constrained by the hard-
are resources of the device—modeled by linking these features
ith the hardware feature model (Spinczyk and Beuche, 2004).
his configuration allows to select the technology used for virtu-
lization with the aim of deploying VMs on demand. On the other
and, containers emulate the services of an operating system,
llowing to define runtime usage limitations related to mem-
ry, CPUs, and GPUs (although is not mandatory). Once again,
his information allows to launch new containers on demand.
lthough containers technologies (e.g., Docker) allow workload
alancing among containers instantiated in the same device, they
o not allow it among containers running on different devices
y themselves. To do so, it is necessary to defined orchestration
ystems by identifying and configuring the devices subscribed to
he orchestration (e.g., Kubernetes) (Casalicchio, 2019). Regarding
he network connectivity, devices may have one or more virtual
etworks associated. Cloud devices are described by the software
latform and communication type, which can be located both
n the core and in the edge of Internet, differing in latency and
omputation features.

.3. Constraints between hardware and software layers

Hardware and software characteristics are highly dependent,
eing the software conditioned by the hardware. Thus, it is nec-
ssary to define the CMCs between the feature models previously
resented.
The user interaction (presented in the software layer) is re-

tricted by the peripherals of the hardware configuration. Despite
hat, we consider the presence of some hardware characteristics
nsufficient to assure an interaction method (e.g,. acoustic sensing
otes do not allow voice recognition). Thus, we consider several

estrictions that our models must contain:

1play sounds requires speaker
2text introduction requires keyboard or tactile screen
3voice recognition or sound recorder requires microphone
4computing node or interactive node requires operating system
5cloud requires platform

Regarding virtualization, technologies based on VMs emulate
ot only the software, but also the hardware of the devices.
9

Nevertheless, most of the hardware features are inherent to the
device and cannot be modified in the VM configuration (such
as the power supply, type of device or the constant of power
consumption (κ)). On the other hand, some of them are limited
by the hardware, like the CPU, GPU, RAM and disk. Finally, sev-
eral features may be restricted in terms of accessibility by the
VM (e.g., sensing units, peripherals, connectivity, etc.). All these
restrictions are collected by the constraint rules presented below:

1(
∑device.VMs

i=1 device.VMi .RAM) ≤ device.RAM

2(
∑device.VMs

i=1 device.VMi .GPURAM) ≤ device.GPURAM
3(

∑device.VMs
i=1 device.VMi .disk) ≤ device.disk

4(
∑device.VMs

i=1 device.VMi .CPUNcores) ≤ device.CPUNcores
5∀ VM ϵ device:
6VM.peripherals ⊆ device.peripherals and
7VM.sensingUnits ⊆ device.sensingUnits and
8VM.CPU ≤ device.CPU and
9VM.GPUclocks ≤ device.GPUclocks
10and VM.networkConnectivities
11⊆ device.networkConnectivities and
12VM.powerSupply = device.powerSupply
13and VM.type = device.type

where the first four assure that device has enough resources
– in terms of CPU cores, GPU memory, disk, and RAM capac-
ity – to allocate all the VMs configured on it. The rest of the
constrains guarantee the correlation between physical and vir-
tualized devices concerning peripherals, sensing units, CPU and
GPU frequencies, network connectivity and power supply.

5. Proof of concept

This section demonstrates the feasibility of our approach, ap-
plying it to a real IoT scenario and evaluating its scalability.

5.1. Illustrative example

Consider an academic campus where several devices, those
typical of CPSs, are geographically distributed serving different
applications. The campus infrastructure includes sensing units,
IoT gateways, computers, cloudlets, and dedicated cloud servers,
scattered across the campus. These devices are not using all
their computation and communication capacities (or even are
suspended most of the time). All of them are located at the edge
of Internet, connected to the campus institutional access net-
work. Their use is shared among several deployed applications,
which are managed by different research groups and academic
departments.

Fig. 3 shows the geographical location of the devices on a map
of the campus (on the right side). Concretely, the map includes
the location of two Meshlium IoT-Gateways1 (G1 and G2), four
motes with parking sensors (S1–S4), four motes with presence
sensors (S5–S8), one mote with temperature, humidity and wind
sensing units (S9), two computers without special peripherals or

1 http://www.libelium.com/development/meshlium/documentation/.

http://www.libelium.com/development/meshlium/documentation/


A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

s
c

f
c
r
f
i
i
c
i

t
F
(

n
c
s
t
T
w
t
4

s
v
i
t
P
n
a
t

t
t
l
f
c
e

d
n
t
o
d
t
t

D
t
t
t
a
(
a
f
u
t
w
S
e
s
c
o
w
e
t
i
r
c
t
t
a
t
c
r

i

ensing units associated (E1 and E2), and four computers with
amera and microphone (E3–E6).
A new version of a smart application for mobile devices (app

or short) to guide students, staff and visitors across the college
ampus is going to be released. This app supports augmented
eality functionality to enrich user experience through the in-
ormation obtained by sensing units, providing environmental
nformation or notifying the presence of professors in their offices
n real time. In addition, this new version allows attending video
onferences and online classes. The FM of the application family
s shown in the left part of Fig. 3.

Firstly, the developer is quite concerned about the applica-
ion’s functionalities that the infrastructure supports (see Fig. 3).
or this reason, executes the Application Variability Adaptor
AVA),2 obtaining as a result:

1Non-Supported: {Smart lock}
2Feature: Smart parking, Location: {P1, P2, P4, P7}
3Feature: Smart office, Location: {O2, O5, O7, O9}
4Feature: Environmental information , Location: {M2}

Restrictions: {Owner: TST Group}
5Feature: Telematic Classroom , Location: {C4,C6}

Restrictions: {Video Quality <= 720p}
6Feature: Telematic Classroom , Location: {C9, C10},

Restrictions: {Video Quality <= 480p}

Now, the developer knows that the current infrastructure does
ot support any smart lock. Nevertheless, the infrastructure is
apable of monitoring three parking places (P1, P2 and P4), four
mart offices (O2, O5, O7 and O9) and the context information
hrough the environmental station located at M2 (owned by the
ST research Group). In addition, the smart campus application
ould support video streaming classes C4, C6, C9 and C10, being
he maximal video quality of 720p for classes C4 and C6, and of
80p for C9 and C10.
Now, suppose that the app must allow the teacher to facilitate

tudents the remote assistance to classroom C8 by creating a
irtual conference room and transmit audio and video streaming
n 1080p resolution, opening the door C8 to the face-to-face at-
endants using a NFC lock, and monitoring the state of the parking
6. The developer does not know the minimal set of new devices
eeded to run the desired application on the infrastructure. The
nswer entail the evolution of the infrastructure by purchasing
he devices given as an output of our second module, the New
Devices Finder (NDF):

1Node 1: {Type: Mote, Sensing units: Parking, Location: P6}
2Node 2: {Type: Smart lock, Location: C8}
3Node 3: {Type: Computing , Peripherals: {Camera, Microphone},
4Location: C8, Restrictions: {Transmission rate >= 3686400}}

Now, the developer can inform the infrastructure administra-
or that the infrastructure requires three new devices to support
he desired functionalities of the app. Concretely, a parking sensor
ocated at P6 (Node 1); a smart lock, located at C8 (Node 2);
inally, a computing node located at C8, with camera and mi-
rophone as peripherals, and a transmission rate greater than or
qual to 3686400 bits/s (Node 3).
Thanks to a new research project budget, an investment is

one to upgrade and improve the college infrastructure. The
ew devices required by new research project (highlighted by
he NDF) are included in the infrastructure, while the resources
ffered by the existing ones can improve their capabilities. The
eveloper plans to deploy the new application on the infrastruc-
ure, but does not know how to distribute the application tasks
o accomplish the QoS.

2 Source code available at: https://doi.org/10.5281/zenodo.4744293.
10
The answer is provided by the use of the third module Edge-
eployment Alternatives Finder (EDAF). Concretely, the func-
ionality of this application (configured from the FM shown in
he left side of Fig. 3) is decomposed in 21 different tasks (t):
1–t3, responsible for monitoring three parking places (P1, P2
nd P4); providing video sharing in classrooms C4, C9 and C10
t4–t6); notifying the presence of professors in offices O2, O5
nd O7 (t7–t9); and collecting environmental conditions (t10)
rom the environmental station located at M2, which provides
pdated information about the weather. Apart from these func-
ionalities, the augmented reality component enriches the real
orld according to the user’s location, which is determined using
LAM (Simultaneous Location and Mapping) technology (Sarker
t al., 2019), provided by t11–t21. These kind of applications are
pecially attractive to apply edge computing, as the tasks are
omputational-intensive and delay-sensitive and their execution
n mobile devices is generally prohibitive in terms of battery cost
hen satisfying users’ expectations in terms of latency (Sarker
t al., 2019; Al-Shuwaili and Simeone, 2017). Concretely, 11 of
hese 21 tasks correspond to activities for enriching the real-
ty, 3 of which must be executed in the user node—the tasks
esponsible for camera calibration, capture frames and overlay
ontext (t11, t13 and t17). Regarding the available resources of
he infrastructure (formed by the 17 devices depicted in Fig. 3 and
he user’s smartphone), their sensing units, peripherals, location
nd communication capabilities were previously described in
his section; their CPU frequency, transmission rates and other
haracteristics have been randomly generated. In that case, nodes
eserve 3 Gb of RAM and 10 Gb of disk to execute offloaded tasks.

An output example of the EDAF for the case presented on Fig. 3
s:

1SOLUTION 1. Users supported: 14 {
2User node -> Tasks:{t11,t13,t14,t17,t19}, RAM:195;
3S1 -> Tasks:{t1}; S2 -> Tasks:{t2}; S3 -> Tasks:{t3};
4E6 -> Tasks:{t4}; E4 -> Tasks:{t5}; E3 -> Tasks:{t6};
5S8 -> Tasks:{t7}; S7 -> Tasks:{t8}; S6 -> Tasks:{t9};
6S9 -> Tasks:{t10}; G1 -> Tasks:{t15,t16,t18,t20,t21},
7RAM:210, Disk:395; G2 -> Tasks:{t12}, RAM:5, Disk:20;}

8SOLUTION 2. Users supported: 60 {
9User node -> Tasks:{t11,t12,t13,t15,t16,t17,t18,t21}, RAM:
10280; S1 -> Tasks:{t1}; S2 -> Tasks:{t2}; S3 -> Tasks:{t3};
11E6 -> Tasks:{t4}; E4 -> Tasks:{t5}; E3 -> Tasks:{t6};
12S8 -> Tasks:{t7}; S7 -> Tasks:{t8}; S6 -> Tasks:{t9};
13S9 -> Tasks:{t10}; G1 -> Tasks:{t19}, RAM:50, Disk:80;
14G2 -> Tasks:{t14}, RAM:30, Disk:50; E1 -> Tasks:{t20},
15RAM:50, Disk:80;}
16...

In Solution 1, the tasks responsible for monitoring the park-
ing places (t1–t3) have been assigned to their corresponding
motes (S1–S3). The same occurs with the tasks responsible for
video sharing (t4–t6, assigned to E3–E6 depending on their lo-
cations), notifying the presence of professors (t7–t9, assigned to
S6–S8), and collecting environmental information (t10, assigned
to S9). The task responsible for reality augmentation is distributed
among the user node, G1 and G2: the node of the user executes
tasks t11, t13, t14, t17 and t19, using 195 Mb of RAM; G1 allocates
t15, t16, t18, t20 and t21, reserving 210 Mb of RAM and 395 Mb
of disk; finally, G2 executes t12 and reserves 5 Mb of RAM and
20 Mb of disk. Note that the user node has the entire application
installed, delegating tasks according to the infrastructure char-
acteristics and adapting its execution accordingly (Cañete et al.,
2020). Thus, it does not reserve disk storage. The number of users
supported by this solution is 14 (limited by G1’s workload).

In the second solution, tasks that require a specific location
and nodes (t1–t10) have the same devices assigned as in Solu-
tion 1. Nevertheless, this time the distribution of the augmented
reality tasks differs from the first solution: the user node has t11,
t12, t13, t15, t16, t17, t18 and t21 assigned, requiring 280 Mb of
RAM; G1 executes t19, reserving 50 Mb of RAM and 80 Mb of

https://doi.org/10.5281/zenodo.4744293


A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

d
o
R
R
d
o
a

s
r
d
m
t
d
t
o

c
t
d
o
n
1
t
G
e
m
o

s
a
d
t
o
t
a

t
N
a
T
a
d
G
p

5
t

o
t
r

isk; t14 is assigned to G2, that allocates 30 Mb of RAM and 50
f disk; finally, t20 is assigned to E1, which allocates 50 Mb of
AM and 80 Mb of disk. Considering that nodes reserves 3 Gb of
AM and 10 Gb of disk to execute offloaded tasks, this time the
eployment solution is able to attend the offloading requirements
f 60 users—being G1 the node that requires more resources once
gain, apart from the user node.
A few months after the application deployment, the University

tarts a new plan to reduce its carbon footprint, demanding the
eduction of energy consumption in their facilities. Thus, the
eveloper executes the Energy Consumption and Latency Mini-
izer (ECLAM), with the energy consumption as optimizer func-

ion. Once again, the peripherals, location and sensing units of the
evices are shown in Fig. 3, while their CPU power, RAM, disk and
ransmission characteristics have been randomly generated. The
utput of this module is:

1Minimizing the energy consumption. Users supported:21 {
2User node -> Tasks:{t11,t13,t15,t16,t17,t19}, RAM:225;
3S1 -> Tasks:{t1}; S2 -> Tasks:{t2}; S3 -> Tasks:{t3};
4E6 -> Tasks:{t4}; E4 -> Tasks:{t5}; E3 -> Tasks:{t6};
5S8 -> Tasks:{t7}; S7 -> Tasks:{t8}; S6 -> Tasks:{t9};
6S9 -> Tasks:{t10}; G1 -> Tasks:{t14,t18,t20}, RAM:140,
7Disk:210; G2 -> Tasks:{t12,t21}, RAM:45, Disk:90;}

As in case of the EDAF, the ECLAM assigns the tasks with spe-
ial requirements in terms of location (t1–t10) to the only nodes
hat achieve this condition in the infrastructure. Nevertheless, the
eployment differs from the one provided by the EDAF in the rest
f assignments: t11, t13, t15, t16, t17, t19 are assigned to the user
ode, reserving 225 Mb of RAM; t14, t18, t20 to G1, allocating
40 Mb of RAM and 210Mb of disk; finally, G2 allocates t12 and
21, consuming 45 Mb of RAM and 90 Mb of disk. Typically, IoT
ateways are well balanced in terms of computational power/en-
rgy consumption. That is the reason why the ECLAM assigns the
ajority of the delegable tasks to this kind of devices. The number
f users supported by this deployment solution is 21.
After a few months, the developer checks the satisfaction

urveys that the application includes, realizing that some users
re quite concerned about the performance. Although the current
eployment satisfies the requirements defined at configuration
ime, it is possible to increase the QoS changing the distribution
f tasks. Hence, the developer executes the ECLAM newly, but this
ime optimizing both the energy consumption and latency of the
pplication, obtaining as an output:

1Trade-off energy consumption and latency. Users supported:16 {
2User node -> Tasks:{t11,t13,t15,t16,t17,t19}, RAM:225;
3S1 -> Tasks:{t1}; S2 -> Tasks:{t2}; S3 -> Tasks:{t3};
4E6 -> Tasks;{t4}; E4 -> Tasks:{t5}; E3 -> Tasks:{t6};
5S8 -> Tasks:{t7}; S7 -> Tasks:{t8}; S6 -> Tasks:{t9};
6S9 -> Tasks:{t10}; G1 -> Tasks:{t12}, RAM:5, Disk:20;
7E1 -> Tasks:{t14,t18,t20,t21}, RAM:180, Disk:280}

The assignment for tasks (t1–t10) has not changed, as well as
he tasks assigned to the user node (t11, t13, t15, t16, t17, t19).
evertheless, G1 has only t12 assigned, allocating 5 Mb of RAM
nd 20 Mb of disk, while G2 is not involved in the deployment.
he majority of delegable tasks (t14, t18, t20, t21) have been
ssigned to E1, that reserves 180 Mb of RAM and 280 Mb of
isk. Although not as energy efficient as the IoT gateways (as
1), edge computers (as E1) are usually more powerful, being this
henomenon reflected in the output of the ECLAM.

.2. Reduction in the energy consumption and latency obtained by
he ECLAM

The reduction in the energy consumption and execution time
f the deployments returned by the ECLAM will highly depend on
he application and infrastructure. In this section we compare the

eduction in the execution time (s) and energy consumption (J)

11
achieved by the ECLAM (for a concrete randomly infrastructure
and application) with those obtained in a random assignment—
that accomplishes the functional and non-functional application’s
requirements. With this purpose, we develop a Benchmark3 ver-
sion of the ECLAM, that allows setting the number of devices
and tasks. We set the number of nodes in 30, whose character-
istics have been arbitrary selected (on each experiment). These
randomly generated characteristics involve the RAM, disk, CPU
frequency, transmission capabilities, location, peripherals, sens-
ing units, interaction ways, and operating system. Experiments
consider infrastructures formed by 20, 30 and 40 nodes. To see
to what extend the number of tasks may infer in the benefits
obtained, we evaluate applications formed by 10 and 30 tasks
in each case. Note that an application with fewer tasks may
be more demanding that other with more tasks (resulting in
more workload on the nodes). This phenomenon is considered in
our experiments, since application characteristics are randomly
generated. Experiments have been performed 30 times.

Table 1 shows the results, split in three rows: the first two
for mono-objective optimizations (energy and time respectively),
while the third optimizes both objectives at the same time. Re-
sults show that, when only the energy consumption is minimized
(first row), the ECLAM achieves up to 51.12% of reduction in
the energy consumption (considering all nodes). Table 1 shows
that the more tasks the application has, the more alternatives
of deployment we have (nodestasks) and, consequently, the more
reduction in the energy consumption the ECLAM is able to obtain.
When the objective is to minimize the latency (second row),
the module obtains up to 28.37% of time reduction. Once again,
the number of alternatives of deployments seems to infer in the
reduction obtained. In case of multi-objective optimizations, the
operation returns a trade-off between the both (De Moura and
Bjørner, 2008). This time, the ECLAM continues providing good
results, although not as good as in the case of single objective
problems. In general terms, we conclude from our experiments
that the more alternatives of deployment we have, the more
benefit the ECLAM is able to obtain. We have also included a
graphical view of these results on the left side of Fig. 4, where
you can see at glance that the energy saving is greater than 40% in
almost all cases. And that saving energy not only does not implies
a penalty in the execution time when we include it as part of
the optimization objective, but also it can be reduced at the same
time as energy, although not so much.

5.3. Scalability

The time needed by our modules to provide a solution varies
according to the size of the problem (Sundermann et al., 2020).
This section evaluates their execution time for different problem
sizes. With this purpose, we develop a Benchmark version of the
modules, which allows setting the number of features and devices
in case of Module 1 (AVA), services and devices for the second
module (NDF), and tasks and devices in the case of Modules 3–4
(EDAF, ECLAM). Each experiment is performed 30 times on one
thread of an AMD Ryzen 7 1700X processor.

In all the experiments the infrastructure considered is formed
by 30 different devices with arbitrary characteristics (set on each
experiment). As in Section 5.2, these random characteristics in-
volve software and hardware components, as well as the location.
Table 2 and Fig. 4 (right) show the results.

For the first module (AVA) the number of features has been
incremented up to 100, being the 20% attributes and clonable fea-
tures. Experiments show that the AVA module returns a result al-
most instantaneously in most cases, requiring around 4.2 s in the

3 Source code available at: https://doi.org/10.5281/zenodo.4744293.

https://doi.org/10.5281/zenodo.4744293


A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

T
M

w
f

t
S
l
o
f
b
s
b

p
t
m
t
r
m
s
r
3
s

Table 1
Reduction in energy consumption and/or execution time obtained by the ECLAM.
Problem size
(D/T)

20/10 20/30 30/10 30/30 40/10 40/30

O: Ea Energy
reduction

Mean (%) 40.59 51.12 40.58 44.05 43.11 48.32
Std 15.26 7.31 13.57 27.82 26.74 15.02

O: Ti Time
reduction

Mean (%) 24.85 26.81 25.20 28.37 27.26 28.15
Std 10.02 8.05 3.10 9.83 7.29 5.89

O: E + Ti

Energy
reduction

Mean (%) 41.11 38.52 35.57 39.38 40.38 42.12
Std 2.66 10.31 19.67 4.27 2.43 9.76

Time
reduction

Mean (%) 1.26 5.04 6.55 4.05 7.25 8.06
Std 0.71 2.02 3.47 1.72 4.52 3.03

aO: Objectives. E: Energy consumption. Ti: Execution time.
able 2
odules’ execution times.
Problem size:
AVA: (D/F)
NDF: (D/S)
EDAF/ECLAM: (D/T)a

30/10 30/20 30/30 30/40 30/50 30/60 30/70 30/80 30/90 30/100

AVA
(Module 1)

Mean (s) 0.07 0.14 0.24 0.41 0.60 0.88 1.39 1.99 2.95 4.23
Std 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.03

NDF
(Module 2)

Mean (s) 0.12 0.50 1.09 1.97 3.03 4.49 6.03 7.94 10.11 12.21
Std 0.00 0.01 0.01 0.02 0.03 0.07 0.06 0.06 0.16 0.30

EDAF
(Module 3)

Mean (s) 0.55 3.13 6.28 13.81 38.14 73.32 87.93 124.11 250.63 240.99
Std 0.16 1.13 1.96 4.21 7.90 5.93 26.17 31.16 44.33 74.63

ECLAM
(Module 4)

Mean (s) 4.33 16.31 38.44 78.69 149.01 177.93 208.58 345.89 387.96 777.12
Std 1.09 3.58 8.35 18.53 22.28 43.34 17.75 117.39 33.75 122.22

aD: Devices. F: Features. S: Services. T: Tasks.
Fig. 4. Graphical representation of Tables 1 (left) and 2 (right).
orst case of a very big application formed by 100 heterogeneous
eatures.

Regarding the experiments of the NDF module (second row),
he number of services has been incremented from 10 to 100.
ervices characteristics as computational load, data to transmit,
ocation requirements, type of device, peripherals, sensing units,
perating system and interaction ways have been randomly set
or each experiment. Results show that, for an application formed
y 10 different services, the NDF needs around 0.12 s to return a
olution, being 12.2 s in the worst case of an application formed
y 100 different services.
In case of the EDAF, the number of tasks that form the ap-

lication has been also incremented from 10 to 100. Apart from
he characteristics randomly selected for services in the second
odule, the inter-dependencies among tasks and time restric-

ions between them have been also randomly generated. Third
ow of Table 2 collects the execution times required for this
odule to provide the first solution according to the problem
ize—number of tasks and nodes. The results show that the EDAF
equires 0,55 s to provide a solution in case of an infrastructure of
0 different devices and an application composed of 10 tasks. As

hown, the execution time increases with the number of tasks.

12
For a very granulated application formed by 80 different tasks
and an infrastructure of 30 heterogeneous devices (10th column
of Table 2) this module takes around 124 s (i.e., 2 min and 4 s) to
provide a solution. Nevertheless, we can conclude that the EDAF
returns a solution in a moderate amount of time for typical IoT
applications where the number of tasks is under 50 (less than
40 s).

Concerning the ECLAM (fourth row of Table 2), the exper-
iment setup is the same as the EDAF’s, while the objective(s)
to optimize has been randomly set in each experiment (energy,
latency or both). Results show that this module requires around
4 s to optimize a deployment for a scenario of 10 tasks and
30 heterogeneous devices. The execution time increments up to
208 s (i.e., 3 min and 28 s) for a very granulated application of
70 heterogeneous tasks (ninth column). During the experiments,
we have realized that the ECLAM requires slightly more time to
obtain solutions when both energy and latency objectives are
considered—multiobjective. Note that this is the most complex
module, as it solves a general assignment problem (GAP), which
is NP-hard (Özbakir et al., 2010). Despite that, we conclude that
it takes a reasonable amount of time to bring a solution.



A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

6

o
p
t
M
w
i
t
o
u
A
A
t
a
u
N
m
A
m
d
E
t
u
t
s
s
a
s
f

e
d
t
i
n

K
n
S

D

c
t

A

s
D
f
B
c

R

A

A

A

. Conclusions and future work

The application of Edge Computing imposes specific challenges
n the developer to distribute the functionality of IoT and cyber–
hysical system meeting application requirements on the infras-
ructure to run properly. This work applies Multi Layer Feature
odels to capture the variability of applications and the soft-
are and hardware infrastructure and support the deployment

n edge-based environments of cyber–physical applications. With
his multi-layered approach is possible to support the evolution
f application and infrastructure independently. These models are
sed by four different modules implemented using a SMT solver.
pplication and infrastructure configuration is supported by the
VA and NFC modules. For a given and shared infrastructure,
he AVA module assures that there will be enough resources for
n application, informing developers about the feasible config-
ration alternatives. For a given application configuration, the
FC module calculates how to evolve the infrastructure with the
inimal set of devices required to meet application requirements.
pplication deployment is supported by the EDAF and ECLAM
odules. The EDAF is able to determine the alternatives of tasks
istribution among the infrastructure nodes, while the module
CLAM calculates which is the task assignment that better pursue
he reduction of the system energy footprint and/or latency. The
tility of the four modules is showed by applying them to manage
he evolution of an application and the infrastructure of a real IoT
cenario. The execution time of our modules for different problem
izes (Sundermann et al., 2020) has been also evaluated using
Benchmark, and the conclusion is that our modules return a

olution in a reasonable amount of time (in the order of minutes
or the worst case).

For the ECLAM module the reduction in execution time and
nergy has been evaluated. Experiments show that ECLAM re-
uces by approximately 51% the energy consumption and up
o 28% the execution time compared with the results obtained
n a random assignment that accomplishes the functional and
on-functional application’s requirements.
As future work, we plan to integrate the ECLAM engine to

ubernetes, modifying its scheduler to select the deployment
odes according to the output of our optimizations (James and
chien, 2019).

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This work is supported by the European Union’s H2020 re-
earch and innovation programme under grant agreement
AEMON 101017109 and by the projects co-financed by FEDER
unds, Spain LEIA UMA18-FEDERJA-15, MEDEA RTI2018-099213-
-I00 (MCI/AEI) and RHEA P18-FR-1081. Funding for open access
harge: Universidad de Málaga/CBUA.

eferences

bbas, A., Farah Siddiqui, I., Lee, S.U., Kashif Bashir, A., Ejaz, W., Qureshi, N.M.F.,
2018. Multi-objective optimum solutions for IoT-based feature models of
software product line. IEEE Access 6, 12228–12239.

cher, M., Collet, P., Gaignard, A., Lahire, P., Montagnat, J., France, R.B., 2012.
Composing multiple variability artifacts to assemble coherent workflows.
Softw. Qual. J. 20 (3), 689–734.

cher, M., Collet, P., Lahire, P., France, R.B., 2013. FAMILIAR: A domain-specific
language for large scale management of feature models. Sci. Comput.

Program. 78 (6), 657–681.

13
Ai, Y., Peng, M., Zhang, K., 2018. Edge computing technologies for Internet of
Things: a primer. Digit. Commun. Netw. 4 (2), 77–86.

Al-Shuwaili, A., Simeone, O., 2017. Energy-efficient resource allocation for mobile
edge computing-based augmented reality applications. IEEE Wirel. Commun.
Lett. 6 (3), 398–401.

Bagchi, S., Siddiqui, M.-B., Wood, P., Zhang, H., 2020. Dependability in edge
computing. Commun. ACM 63 (1), 58–66.

Benavides, D., Trinidad, P., Ruiz-Cortés, A., 2005. Automated reasoning on feature
models. In: Advanced Information Systems Engineering. Springer Berlin
Heidelberg, pp. 491–503.

Bjørner, N., Phan, A.-D., Fleckenstein, L., 2015. νZ - AN optimizing SMT solver. In:
Tools and Algorithms for the Construction and Analysis of Systems. Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 194–199.

Bratterud, A., Walla, A., Haugerud, H., Engelstad, P.E., Begnum, K., 2015. In-
cludeOS: A minimal, resource efficient unikernel for cloud services. In:
2015 IEEE 7th International Conference on Cloud Computing Technology and
Science (CloudCom). pp. 250–257.

Bulej, L., Bures, T., Filandr, A., Hnetynka, P., Hnetynková, I., Pacovsky, J.,
Sandor, G., Gerostathopoulos, I., 2021. Managing latency in edge-cloud
environment. J. Syst. Softw. 172, 110872.

Cañete, A., Amor, M., Fuentes, L., 2020. Energy-efficient deployment of IoT
applications in edge-based infrastructures: A software product line approach.
IEEE Internet Things J. 1.

Cañete, A., Amor, M., Fuentes, L., 2019. Optimal assignment of augmented
reality tasks for edge-based variable infrastructures. In: 13th Int. Conf. on
Ubiquitous Computing and Ambient Intelligence, UCAmI 2019, Toledo, Spain,
December 2-5, 2019. In: MDPI Proceedings, vol. 31, MDPI, p. 28.

Cañete, A., Horcas, J.-M., Ayala, I., Fuentes, L., 2020. Energy efficient adaptation
engines for android applications. Inf. Softw. Technol. 118, 106220.

Casalicchio, E., 2019. Container orchestration: A survey. In: Systems Modeling:
Methodologies and Tools. Springer International Publishing, pp. 221–235.

Cecchinel, C., Mosser, S., Collet, P., 2016. Automated deployment of data col-
lection policies over heterogeneous shared sensing infrastructures. In: 23rd
Asia-Pacific Software Engineering Conference, APSEC 2016, Hamilton, New
Zealand, December 6-9, 2016. IEEE Computer Society, pp. 329–336.

Chen, M., Dong, M., Liang, B., 2016. Joint offloading decision and resource
allocation for mobile cloud with computing access point. In: 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
pp. 3516–3520.

Chen, M., Yixue, H., 2018. Task offloading for mobile edge computing in software
defined ultra-dense network. IEEE J. Sel. Areas Commun. PP, 1.

Czarnecki, K., Helsen, S., Eisenecker, U., 2005. Formalizing cardinality-based
feature models and their specialization. Softw. Process: Improv. Pract. 10
(1), 7–29.

De Moura, L., Bjørner, N., 2008. Z3: An efficient SMT solver. In: Proceedings
of the Theory and Practice of Software, 14th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. In:
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg, pp. 337–340.

Dhungana, D., Grünbacher, P., Rabiser, R., Neumayer, T., 2010. Structuring
the modeling space and supporting evolution in software product line
engineering. J. Syst. Softw. 83 (7), 1108–1122, SPLC 2008.

Dinh, T.Q., Tang, J., La, Q.D., Quek, T.Q.S., 2017. Offloading in mobile edge
computing: Task allocation and computational frequency scaling. IEEE Trans.
Commun. 65 (8), 3571–3584.

Elazhary, H., 2018. Internet of Things (IoT), mobile cloud, cloudlet, mobile
IoT, IoT cloud, fog, mobile edge, and edge emerging computing paradigms:
Disambiguation and research directions. J. Netw. Comput. Appl. 128,
105–140.

Farahani, E., Habibi, J., 2019. Feature model configuration based on two-layer
modelling in software product lines. Int. J. Electr. Comput. Eng. 9, 1–11.

Gámez, N., Fuentes, L., 2013. Architectural evolution of FamiWare using
cardinality-based feature models. Inf. Softw. Technol. 55 (3), 563–580.

Geraldi, R.T., Reinehr, S., Malucelli, A., 2020. Software product line applied to the
Internet of Things: A systematic literature review. Inf. Softw. Technol. 124,
106293.

Guo, J., White, J., Wang, G., Li, J., Wang, Y., 2011. A genetic algorithm for
optimized feature selection with resource constraints in software product
lines. J. Syst. Softw. 84 (12), 2208–2221.

Holl, G., Grünbacher, P., Rabiser, R., 2012. A systematic review and an expert
survey on capabilities supporting multi product lines. Inf. Softw. Technol. 54
(8), 828–852.

Huang, M., Liu, W., Wang, T., Liu, A., Zhang, S., 2020. A cloud–MEC collaborative
task offloading scheme with service orchestration. IEEE Internet Things J. 7
(7), 5792–5805.

James, A., Schien, D., 2019. A low carbon kubernetes scheduler. In: Proceedings
of the 6th International Conference on ICT for Sustainability, ICT4S 2019,
Lappeenranta, Finland, June 10-14, 2019. In: CEUR Workshop Proceedings,
vol. 2382, CEUR-WS.org.

Köksal, O., Tekinerdogan, B., 2019. Architecture design approach for IoT-based
farm management information systems. Precis. Agric. 20 (5), 926–958.

http://refhub.elsevier.com/S0164-1212(21)00183-7/sb1
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb1
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb1
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb1
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb1
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb2
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb2
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb2
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb2
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb2
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb3
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb3
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb3
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb3
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb3
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb4
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb4
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb4
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb5
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb5
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb5
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb5
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb5
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb6
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb6
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb6
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb7
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb7
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb7
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb7
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb7
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb8
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb9
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb9
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb9
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb9
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb9
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb9
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb9
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb10
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb10
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb10
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb10
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb10
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb11
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb11
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb11
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb11
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb11
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb12
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb13
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb13
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb13
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb14
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb14
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb14
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb15
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb15
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb15
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb15
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb15
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb15
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb15
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb16
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb16
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb16
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb16
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb16
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb16
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb16
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb17
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb17
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb17
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb18
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb18
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb18
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb18
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb18
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb19
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb19
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb19
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb19
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb19
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb19
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb19
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb20
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb20
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb20
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb20
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb20
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb21
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb21
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb21
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb21
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb21
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb22
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb23
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb23
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb23
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb24
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb24
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb24
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb25
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb25
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb25
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb25
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb25
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb26
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb26
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb26
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb26
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb26
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb27
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb27
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb27
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb27
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb27
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb28
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb28
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb28
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb28
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb28
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb29
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb29
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb29
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb29
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb29
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb29
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb29
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb30
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb30
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb30


A. Cañete, M. Amor and L. Fuentes The Journal of Systems & Software 183 (2022) 111086

L

L

M

M

N

Ö

P

P

P

R

R

R

ettner, M., Rodas, J., Galindo, J.A., Benavides, D., 2019. Automated analysis of
two-layered feature models with feature attributes. J. Comput. Lang. 51,
154–172.

iu, F., Tang, G., Li, Y., Cai, Z., Zhang, X., Zhou, T., 2019. A survey on edge
computing systems and tools. Proc. IEEE 107 (8), 1537–1562.

ao, Y., You, C., Zhang, J., Huang, K., Letaief, K.B., 2017. A survey on mobile edge
computing: The communication perspective. IEEE Commun. Surv. Tutor. 19
(4), 2322–2358.

elendez, S., McGarry, M.P., 2017. Computation offloading decisions for reducing
completion time. In: 2017 14th IEEE Annual Consumer Communications
Networking Conference (CCNC). pp. 160–164.

iewiadomski, A., Skaruz, J., Penczek, W., Szreter, M., Jarocki, M., 2014. SMT
versus genetic and OpenOpt algorithms: Concrete planning in the PlanICS
framework. Fund. Inform. 135, 451–466.

zbakir, L., Baykasoğlu, A., Tapkan, P., 2010. Bees algorithm for generalized
assignment problem. Appl. Math. Comput. 215 (11), 3782–3795.

lauth, M., Feinbube, L., Polze, A., 2017. A Performance Survey of Lightweight
Virtualization Techniques. pp. 34–48.

ohl, K., Böckle, G., Linden, F., 2005. Software Product Line Engineering:
Foundations, Principles, and Techniques.

remsankar, G., Di Francesco, M., Taleb, T., 2018. Edge computing for the internet
of things: A case study. IEEE Internet Things J. 5 (2), 1275–1284.

abiser, D., Prähofer, H., Grünbacher, P., Petruzelka, M., Eder, K., Angerer, F., Kro-
moser, M., Grimmer, A., 2016. Multi-purpose, multi-level feature modeling
of large-scale industrial software systems. Softw. Syst. Model. 17.

eiser, M.-O., Weber, M., 2007. Multi-level feature trees. Requir. Eng. 12 (2),
57–75.

osenmüller, M., Siegmund, N., Thüm, T., Saake, G., 2011. Multi-dimensional
variability modeling. In: Fifth International Workshop on Variability Mod-
elling of Software-Intensive Systems, Namur, Belgium, January 27-29, 2011.
Proceedings. In: ACM International Conference Proceedings Series, ACM, pp.
11–20.
14
Sarker, V.K., Peña Queralta, J., Gia, T.N., Tenhunen, H., Westerlund, T., 2019.
Offloading SLAM for indoor mobile robots with edge-fog-cloud computing.
In: 2019 1st Int. Conf. on Advances in Science, Engineering and Robotics
Technology (ICASERT). pp. 1–6.

Satyanarayanan, M., 2017. The emergence of edge computing. Computer 50 (1),
30–39.

Shi, W., Pallis, G., Xu, Z., 2019. Edge computing [scanning the issue]. Proc. IEEE
107 (8), 1474–1481.

Spinczyk, O., Beuche, D., 2004. Modeling and building software product lines
with eclipse. In: Companion to the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications. In:
OOPSLA ’04, ACM, New York, NY, USA, pp. 18–19.

Sundermann, C., Thüm, T., Schaefer, I., 2020. Evaluating #SAT solvers on indus-
trial feature models. In: Proceedings of the 14th Int. Conference on Variability
Modelling of Software-Intensive Systems. In: VAMOS ’20, ACM, New York,
NY, USA.

Tran, T.X., Pompili, D., 2019. Joint task offloading and resource allocation for
multi-server mobile-edge computing networks. IEEE Trans. Veh. Technol. 68
(1), 856–868.

Wang, J., Pan, J., Esposito, F., Calyam, P., Yang, Z., Mohapatra, P., 2019. Edge cloud
offloading algorithms: Issues, methods, and perspectives. ACM Comput. Surv.
52 (1), 2:1–2:23.

Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan, L., Maharjan, S.,
Zhang, Y., 2016. Energy-efficient offloading for mobile edge computing in
5G heterogeneous networks. IEEE Access 4, 5896–5907.

Zhang, W., Wen, Y., Wu, D.O., 2013. Energy-efficient scheduling policy for
collaborative execution in mobile cloud computing. In: 2013 Proceedings
IEEE INFOCOM. pp. 190–194.

http://refhub.elsevier.com/S0164-1212(21)00183-7/sb31
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb31
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb31
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb31
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb31
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb32
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb32
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb32
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb33
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb33
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb33
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb33
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb33
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb34
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb34
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb34
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb34
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb34
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb35
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb35
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb35
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb35
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb35
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb36
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb36
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb36
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb37
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb37
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb37
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb38
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb38
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb38
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb39
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb39
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb39
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb40
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb40
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb40
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb40
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb40
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb41
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb41
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb41
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb42
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb42
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb42
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb42
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb42
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb42
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb42
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb42
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb42
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb43
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb43
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb43
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb43
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb43
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb43
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb43
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb44
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb44
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb44
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb45
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb45
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb45
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb46
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb46
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb46
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb46
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb46
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb46
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb46
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb47
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb47
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb47
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb47
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb47
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb47
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb47
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb48
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb48
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb48
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb48
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb48
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb49
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb49
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb49
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb49
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb49
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb50
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb50
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb50
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb50
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb50
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb51
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb51
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb51
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb51
http://refhub.elsevier.com/S0164-1212(21)00183-7/sb51

	Supporting IoT applications deployment on edge-based infrastructures using multi-layer feature models
	Introduction
	Related work
	Variability management: SPL and IoT
	Task assignment problem: Offloading

	Our approach
	Module 1: Application Variability Adaptor (AVA)
	Module 2: New Devices Finder (NDF)
	Module 3: Edge-Deployment Alternatives Finder (EDAF)
	Module 4: Energy Consumption and Latency Minimizer (ECLAM)

	Extensible and reusable FMS for edge-based infrastructures
	FM of the hardware infrastructure
	FM of the software infrastructure
	Constraints between hardware and software layers

	Proof of concept
	Illustrative example
	Reduction in the energy consumption and latency obtained by the ECLAM
	Scalability

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References


