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A B S T R A C T   

The prediction of tunnel geological conditions plays an important role in underground engi
neering, such as the tunnel construction and tunnel dynamic design. However, due to the 
invisibility of underground geological conditions, there remain many challenges in the design of 
geological prediction models. In this paper, we propose a generative adversarial network for 
geological prediction (GAN-GP) to accurately estimate the thickness of each rock-soil type in a 
tunnel boring machine (TBM) construction tunnel based on operational data collected from 
sensors equipped on the TBM. The generator of the GAN-GP contains feature-extraction (FE) and 
feature-integration (FI) modules. The former extracts the important features from the TBM 
operational data, and the latter produces the geological condition prediction, which estimates the 
thickness of each rock-soil type at a location. The discriminator of the GAN-GP determines 
whether the FI module’s outputs are true geological data. After adversarial training, if the trained 
discriminator fails to distinguish them, the outputs of the FI module will accurately approximate 
the true geological condition. Experimental results support the effectiveness of the proposed GAN- 
GP model for geological prediction, and show that it outperforms the state-of-the-art models 
including support vector regression (SVR), feed-forward neural network (FNN) and random forest 
(RF) models.   

1. Introduction 

In recent decades, there has been a large demand for tunnel construction in transportation and public traffic projects. Evidently, the 
conventional tunneling technique (i.e., drilling and blasting) has been unable to meet these increasing requirements due to its low 
efficiency and high environmental damage. In contrast, the tunnel boring machine (TBM), a representative mechanical tunneling 
equipment, has been widely used in various kinds of underground construction, such as the mine development [1], soil movement [2] 
and water conveyance projects [3], because of the advantages of low labor intensity, low environmental damage, rapid excavation 
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speed and high safety level. In addition, TBM performance prediction [4,5] and TBM design optimization [6–8] have attracted much 
research interest. 

However, complex geological conditions (e.g., water leakage, weak regions or voids) not only seriously delay TBM construction 
schedules with large extra costs and causing instrument damage but also bring a high risk to the excavation process with additional 
hazards and even tremendous casualties. Therefore, one main challenge of the current TBM tunneling technique is to accurately and 
efficiently foresee unexpected geological condition changes [9]. Extensive research works have studied tunnel geological condition 
prediction. In general, the prediction tasks are mainly addressed through two different strategies: one strategy is based on geological 
analysis methods, which directly analyze the rock-soil samples taken from tunnel sections [10,11], and the other strategy is based on 
geophysical methods, which explore the geological characteristics of tunnel sections by measuring their physical characteristics 
[12–16]. These direct detection strategies for predicting tunnel geological conditions lack generalizability due to two aspects: 1) the 
prediction length is restricted by the performance of the sampling equipment, and 2) their usage is strongly dependent on the specific 
construction situations. These facts restrict the applicability of the two strategies in practical TBM construction, which usually requires 
that some specific rock-soil types be accurately and promptly predicted in front of a few (or tens of) meters from the current TBM 
location. 

1.1. Background and motivation 

To overcome the limitations of direct detection strategies, machine learning techniques have been widely used to build models for 
predicting tunnel geological conditions, where geological prediction is treated as a supervised learning task that explores the mapping 
relationship between observable data and geological conditions. There are two key points to this strategy: to acquire the observable 
data that are strongly related to the tunnel geological condition, and to develop the learning models based on relatively rare labeled 
data and massive unlabeled data. 

One common method is to develop predictors with outputs that are specific indicators associated with rock-soil types. For example, 
Zhuang et al. [17] used support vector regression (SVR) to predict several mechanical indicators of surrounding rock masses, including 
gravity, Poisson’s ratio, elastic modulus cohesion, cohesion, friction angle and layer thickness. After inputting the mechanical pa
rameters of the previous twenty locations, the SVR model provides the mechanical parameters of the next five locations. Alimoradi et al. 
[18] proposed an artificial neural network (ANN) to classify the rock mass rating, and the six input attributes of the network were the 
P-wave velocity, S-wave velocity, orientation, magnitude, wave type and x-coordinate, which were collected from the tunnel sensors. 
Von and Ismail [19] developed another ANN model for the prediction of rock grade points by setting the P-wave velocity, the S-wave 
velocity and the wave type as the input attributes. However, these models were designed only for the prediction task of a limited 
number of rock-soil types, and thus are unsuitable (at least they cannot be directly applied) to the prediction of complex geological 
conditions. 

The TBM operational data, collected by the sensors equipped on a TBM, recode the continuous changes of the TBM’s running state, 
which is strongly related to the geological condition of the construction tunnel. Therefore, many research works use TBM operational 
data to develop prediction models for tunnel geological conditions, as illustrated in Fig. 1. Zhang et al. [20] adopted support vector 
machine (SVM) for classifying the rock-soil types appearing in the TBM construction tunnels. Liu et al. [21] combined SVR with 
stacked single-target technology to establish a predictor for rock mass parameters. Jung et al. [22] proposed an ANN model for 

Fig. 1. Illustration of tunnel geological condition prediction based on TBM operational data.  
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predicting the ground condition ahead of the tunnel face by using TBM operational parameters, including the penetration rate, thrust 
force, cutter torque and all pairs of parameters. In [23,24], an ensemble of long short-term memory networks with additional one- 
dimensional convolutional layers was designed to describe the rock mass behavior based on TBM operational data. Shi et al. [25] 
made a comparison among several kinds of machine learning models for the geological prediction task. Liu et al. [26] employed a 
backpropagation (BP) neural network to predict the rock mass parameters in a TBM tunnel. Zhao et al. [27] designed a four-layer 
feedforward neural network (FNN) to predict the thickness of the specific rock-soil types, where the seven nodes of the 2nd hidden 
layer correspond to the seven kinds of physical–mechanical indicators associated with the TBM tunneling process. Moreover, Li et al. 
[28] designed a diagonal recurrent neural network for the predictive control of slurry pressure balance in the TBM tunneling process. 
However, it is still challenging to address the imbalance between the relatively few labeled data and massive unlabeled data. It is 
important to find a learning model that has a powerful mapping capability with a low demand on the size of labeled training samples. 
Subsequently, we will show that a neural network equipped with a generative adversarial structure is capable of meeting the demand 
better than conventional machine learning models. 

1.2. Generative adversarial networks (GANs) 

Generative adversarial networks (GANs), originally proposed by Goodfellow [29], refer to a class of neural networks that are 
composed of two networks: a generator and a discriminator, and are trained via the contest between them in a min–max game. Given 
an input, which could be a real or a random noise datum in the different learning tasks, the generator will produce a new instance and 
the discriminator will determine whether the instance belongs to the actual training dataset or not. The essential idea of GANs is to let 
the two networks compete with each other during training until they nearly achieve Nash equilibrium. In particular, when the 
discriminator is trained to be incapable of distinguishing an output of the generator from a real instance, the distribution of the 
instance provided by the generator will approximate that of the real instance as much as possible. Such an adversarial training strategy 
makes the generator produce an accurate approximation of the real data with a relatively lower demand on the size of the training 
samples than traditional learning models. Therefore, GANs and their variants [30–34] have been widely used in many practical ap
plications, e.g., computer vision [35,36], natural language processing [37,38] and three-dimensional object modeling [39]. 

1.3. Overview of main results 

In this paper, we propose a GAN for geological prediction (GAN-GP) of a TBM construction tunnel based on operational data 
collected from sensors equipped on the TBM. The generator of the GAN-GP produces the estimation of the thickness of each rock-soil 
type appearing at a location of the tunnel section, and the discriminator of the GAN-GP determines whether the outputs of the 
generator are the real geological data or not. 

In particular, the generator is composed of two modules: a feature extraction (FE) module that extracts the important features from 
the original operational data and a feature integration (FI) module that integrates the outputs of the FE module to estimate the 
thickness of each rock-soil type appearing at the current location. The input of the discriminator of the GAN-GP is either a real 
geological datum, labeled as ‘true’, or the output of the generator, labeled as ‘fake’. When the discriminator is trained to be incapable of 
determining whether its input is the real geological datum or not, the generator will produce an accuracy approximation of the true 
geological condition of the tunnel section. To improve the training efficiency and stability, we also introduce two extra tricks: the pre- 
training trick and the teacher-loss trick. The former minimizes the teacher loss of the generator to find reasonable initial generator 
weights for the subsequent adversarial training, and the latter balances the individual training progresses of the generator and the 
discriminator during adversarial training. The numerical experiments validate the proposed GAN-GP with the two tricks for the tunnel 
geological condition prediction task. 

The rest of this paper is organized as follows. In Section 2, we preprocess the raw TBM operational data. In Section 3, we introduce 
the structure and the adversarial training strategy of the proposed GAN-GP. In Section 4, we conduct a numerical experiment to 
validate the GAN-GP, and the last section concludes the paper. 

2. Data description and preprocessing 

In this section, we first introduce the background of the research issue and then show preprocessing steps of the raw TBM oper
ational data. 

2.1. Data description 

The tunnel geological condition prediction task of interest is associated with an urban subway construction project in Shenzhen, a 
city in China. The project was processed by using an earth pressure balance shield TBM, which consists of a cutter-head, a chamber, a 
screw conveyor, tail skin and auxiliaries. The TBM has a diameter of 6.2 m and a total mass of over 500 t, and the cutterhead features an 
opening percentage of 30% and 120 cutters with a frequency of 1 Hz. 

The tunnel is about 2000 m long and 6.3 m wide. The engineering route is divided into 1365 ring sections and each section is 
approximately 1.5 m long. The range of the ground surface elevation is 0.2 ∼ 5.8 m, and the depth of the tunnel floor from the ground 
surface is within 11.8 ∼ 25.4 m. The stratum can be divided into five layers in terms of the rock-soil types, and each layer can be further 
divided into 2 ∼ 7 sublayers according to physical–mechanical indicators. In general, there are approximately twenty rock-soil types, 
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which are identified by using different values of seven common physical–mechanical indicators: the natural severity (Y), internal 
friction angle (quick direct shear test) (FI), deformation modulus (EM), Poisson’s ratio (P), coefficient of lateral pressure (SITA), 
permeability coefficient (K), and cohesive strength between the rock mass and anchors (FRB) (cf. Table A.3).1 However, only eleven out 
of the twenty rock-soil types appear in the geological samples, so we omit the rest (cf. Table A.4). 

The TBM operational data are collected by sensors equipped on the TBM. In total, approximately 4.6 million operational data points 
were collected, and each datum has I = 69 attributes corresponding to the different operational parameters, such as torque, thrust, 
tunneling speed and fuel tank temperature (cf. Table A.5). After data cleaning, 3.18 million operational data points remain. 

The geological condition samples are drawn from 88 points from the entire construction tunnel by the drilling method, and the 
operational data within 0.3 m around a drilling point can be considered to have the same geological condition as the drilling samples. 
In this manner, we finally obtain 61,788 operational data labeled with the thickness of each rock-soil type. 

2.2. Data Preprocessing 

The raw TBM operational data are indexed by the discontinuous operation time because the construction will be intermittent in 
some cases, e.g., ceasing for equipment maintenance or rest. To develop a continuous index system for the operational data, we use the 
operation parameter ‘advance rate’ to locate the position of each datum based on the integral, i.e., the TBM’s relative displacement at 
the j-th time point of the i-th ring section can be expressed as 

si,j =
∑i− 1

k=0
Lk +

∫ ti,j

ti,0
vi(t)dt, i = 1,…, 88. (1)  

where Lk stands for the length of the k-th ring section, vi(t) is the function of the ‘advance rate’ in the i-th ring section, and ti,0 and ti,j are 
the initial time point and the j-th time point of the i-th ring section, respectively. Then, the sequence {si,j} provides a continuous index 
system of the TBM operational data, and we denote the set of operational data as {xs}s>0⊂RI if no confusion arises. To exploit the 
sequential characteristics of the TBM operational data with the continuous index system, we concatenate τ-length continuous oper
ational data xsnτ+1 , xsnτ+2 ,⋯, xsnτ+τ to generate a sample: 

Xn =
[
xsnτ+1 , xsnτ+2 ,⋯, xsnτ+τ

]
∈ R69×τ,

where τ is the step size parameter. Then, we form the sample set {(Xn, yn)}
Nτ
n=1 with yn = (y(1)n ,⋯, y(11)

n )
T
∈ [0,1]11, where Nτ is the 

sample size associated with the step size τ, and y(j)n stands for the normalized thickness of the j-th rock-soil type (j = 1,2,⋯,11). Note 
that there exists a tradeoff in the choice of τ: a large τ can magnify the dissimilarity among these samples, but the sample size will 
accordingly become too small to guarantee the training quality. In subsequent experiments, we will empirically explore the rela
tionship between the choice of τ and the prediction performance and find that a small τ is suitable for training the GAN-GP. 

Fig. 2. The structure of the GAN-GP, where the hidden layers in the same color have identical structures.  

1 In fact, there are additional kinds of frequently used rock-soil physical–mechanical indicators, such as the natural moisture content, pore ratio, 
cohesive force (quick direct shear test), internal friction angle (consolidation quick direct test), compression modulus, coefficient of subgrade re
action (vertical & horizontal) and uniaxial compressive strength of rock (saturation & natural). Since these indicators are not shared by all rock-soil 
types, we omit them here. 
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3. Generative adversarial network for geological prediction (GAN-GP) 

In this section, we will present the structure of the GAN-GP, including the generator and the discriminator (cf. Fig. 2). Moreover, we 
introduce the specific loss functions and the corresponding adversarial training strategy for the GAN-GP. 

3.1. Generator of the GAN-GP 

Since the geological information is encoded in the operational data around the point, the design of GAN-GP needs to exhaustively 
explore the sequential characteristics of the operational data, and thus the generator, denoted by G, contains two modules: the FE 
module and the FI module. The following are the details of the two modules. 

3.1.1. Feature extraction (FE) module 
Instead of human-made feature extraction, the FE module aims to self-learn the relatedness among the different samples and then 

extracts the important features as the inputs of the subsequent FI module. Here, we consider four kinds of FE methods (or network 
structures) to implement feature extraction: data concatenation (DC), nonlinear dimensionality reduction (NDR), convolution oper
ation (Conv) and self-attention (SA). 

For clarity, we first introduce matrix functions to mathematically formalize the operations of matrix vectorization, average pooling, 
convolution and nonlinear matrix products. Consider two matrices X = [x1, x2,⋯, xτ] ∈ RI×τ with column vectors xt = (x1t , x2t,⋯, xIt)

T 

(t ∈ {1,2,⋯, τ}) and W = [w1,w2,⋯,wK] ∈ RI×K with column vectors wk = (w1k,w2k,⋯,wIk)
T (k ∈ {1,2,⋯,K}).  

(1) The vectorization of X is expressed as 

vec(X) =
(
xT

1 , x
T
2 ,⋯, xT

τ
)T

∈ RτI .

(2) The columnwise average pooling of X is expressed as 

avpc(X) = (x1, x2,⋯, xτ)
T
∈ Rτ (2)  

with xt = 1
I
∑I

t=1xit(1⩽t⩽τ).  
(3) The convolution operation of X based on the convolution kernel C ∈ Rω×I with width ω and stride λ (ω,λ < τ) is expressed as 

Cλ(X) =
(
tr
(
[X]I 0

⋅ C
)
, tr

(
[X]I 1

⋅ C
)
,⋯, tr

(
[X]I L

⋅ C
))T

, (3)  

where I l = {1+lλ,2+lλ,⋯,ω+lλ} is the index set composed of t continuous indexes and [X]I l 
stands for the matrix composed of 

the columns taken from matrix X w.r.t. the index set I l.  
(4) The rectified linear unit (ReLU) function is denoted by r(x) := max{0, x} (x ∈ R), and the matrix-valued ReLU function w.r.t. the 

matrix product XTW is defined as 

r
(
XT W) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

r
(
xT

1 w1) r
(
xT

1 w2) ⋯ r
(
xT

1 wK)

r
(
xT

2 w1) r
(
xT

2 w2) ⋯ r
(
xT

2 wK)

⋮ ⋮ ⋱ ⋮
r
(
xT

τ w1)r
(
xT

τ w2)⋯r
(
xT

τ wK)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

τ×K

.

(5) Given a vector x = (x1, x2,⋯, xN)
T
∈ RN, the vector-valued softmax function σ→ : RN → RN is defined as 

σ→(x) := (σ1(x), σ2(x),⋯, σN(x))T
,

where 

σn(x) =
exn

∑N

n=1
exn

.

Furthermore, given a matrix X = [xmn]M×N, the matrix-valued softmax function is defined as 
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σ(X) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
σ
((

x(1))T
))T

(
σ
((

x(2))T
))T

⋮(
σ
((

x(M)
)T
))T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

M×N

,

where x(m) is the m-th row vector of matrix X.  
(6) The sigmoid function is defined as sig(x) := 1

1+e− x (x ∈ R). Given a matrix X = [xmn]M×N, the matrix-valued sigmoid function is 
written as 

sig(X) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

sig(x11) sig(x12) ⋯ sig(x1n)

sig(x21) sig(x22) ⋯ sig(x2n)

⋮ ⋮ ⋱ ⋮
sig(xm1)sig(xm2)⋯sig(xmn)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

M×N

.

Based on these notations, we then formalize the four kinds of FE methods (or network structures) adopted in the FE module. Given a 
sample Xn, let an := a(Xn) be the corresponding output of the FE module,  

• Data Concatenation (DC): This method directly concatenates the columns of the matrix Xn into one vector, which is also treated as an 
output of the FE module; i.e., an = vec(Xn).  

• Nonlinear Dimensionality Reduction (NDR): Given an input sample Xn, we first introduce the weight matrix W and the matrix-valued 
ReLU function r(⋅) to implement a nonlinear matrix product and then use columnwise average pooling to achieve a τ-dimensional 
output an (1⩽n⩽N); i.e., 

an = avpc
(
r
(
XT W)

)
.

• Convolution (Conv): Given K convolution kernels C(k) ∈ Rω×I with ω-width (1⩽k⩽K), we can use the convolution operation to 
convert the sample Xn into a K-dimensional output of the FE module; i.e., 

an = avpc
( [

C(1)
λ (Xn),⋯,C(K)

λ (Xn)
] )

.

• Self-attention (SA) [40]: Given a sample Xn, set Kn = Qn = Vn = Xn. By introducing the weight matrices W(h)
K ,W(h)

Q ,W(h)
V ∈ RI×K 

(1⩽h⩽H), we compute 

K̂
(h)
n = ReLU

(
XT

n W(h)
K
)
∈ Rτ×K ; Q̂

(h)
n = ReLU

(
XT

n W(h)
Q

)
∈ Rτ×K ; V̂

(h)
n = ReLU

(
XT

n W(h)
V
)
∈ Rτ×K ,

and then obtain H attention matrices in the following way: 

Z(h)
n := σ

⎛

⎝
Q̂

(h)
n ⋅

(
K̂

(h)
n

)T

̅̅̅̅̅
dk

√

⎞

⎠ ⋅ V̂
(h)
n ∈ Rτ×K , 1⩽h⩽H.

Subsequently, we form the attention tensor 

Zn :=
[
Z(1)

n ,Z(2)
n ,⋯,Z(H)

n

]

τ×K×H  

and then concatenate the 2nd and the 3rd dimensions of the tensor Zn to form a matrix 

Ẑn :=
[
ẑT

1 , ẑT
2 ,⋯, ẑT

τ
]T

∈ Rτ×KH  

with ̂zt = vec([Ẑn]t,:,:), where [Ẑn]t,:,: stands for the matrix corresponding to the t-th row of the tensor Ẑn. Finally, the output of the 
FE module is expressed as 

an = avpc

(
Ẑn

)
∈ Rτ.
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3.1.2. Feature integration (FI) module 
The FI module is a four-layer fully-connected neural network, where the input layer is actually the output layer of the FE module; 

and the last three layers are of the 20-7-11 structure, which is in accordance with the findings in [27]. Specifically, the 7 nodes in the 
second hidden layer correspond to the 7 kinds of physical–mechanical indicators that are related to the TBM’s excavation process, and 
the 11 nodes in the output layer are squashed by the softmax function to signify the thickness of each of 11 kinds of rock-soil types. 

Given an input Xn, the corresponding output of the FI module is denoted by sn := G(Xn), which is also the output of the generator G. 
Moreover, the weights of the generator G are denoted by WG. 

3.2. Discriminator of the GAN-GP 

The discriminator, denoted by D, aims to determine whether its inputs are real geological data. If the discriminator is trained to be 
incapable of distinguishing them correctly after adversarial training, the output of the generator is deemed an accurate estimate of the 
true geological condition. Similar to the original GAN, the discriminator, which partially inherits the structural characteristics of the FI 
module, is also a four-layer fully-connected neural network with an 11–7-20–1 structure, where the input layer has 11 nodes that 
correspond to the thicknesses of the 11 rock-soil types and the single output node indicates whether the input is a real geological datum 
or an output of the generator. The activation functions between the input layer and hidden layers are ReLU functions, and the output 
node is squashed by the ‘0–1’ sigmoid function. We note that the similarity between the structure of the discriminator and that of the FI 
module can improve the training stability of the proposed GAN-GP. Moreover, the weights of the generator D are denoted by WD. 

3.3. Adversarial training strategy of the GAN-GP 

There are two kinds of loss functions associated with the generator of the GAN-GP: the generator loss and the teacher loss. As 
suggested by the ordinary GAN, the generator loss should be defined as 

L
′

G := Ey{log(D(y))}+EX{log(1 − D(G(X)))}, (4)  

where the expectation Ey (resp. EX) is taken on the real geological (resp. TBM operational) data. Since the generator loss is minimized 
to update the generator weights WG rather than the discriminator weights WD, the generator loss (4) can be simplified as 

L G := EX{log(1 − D(G(X)))}. (5)  

The discriminator loss is expressed as 

L D := Ey{log(1 − D(y))}+EX{log(D(G(X)))}. (6)  

The minimization of (6) makes the generator provide fake geological data that are identical to the real geological data so that the 
discriminator is cheated. 

The teacher loss is expressed as 

L T := E(X,y)
{
[G(X) − y]2

}
, (7)  

where E(X,y) stands for the expectation taken on the pair of TBM operational and real geological data. The teacher loss L T will be used 
to pre-train the generator with the following purposes: 1) model adjustment - to avoid the phenomenon that the outputs of the 
generator match the distribution of real geological data, while the distribution of corresponding inputs is far away from that of real 
operational data, and 2) model stability - to avoid the corruption of the model and accelerate the training speed. 

In Alg. 1, we sketch the workflow of the adversarial training strategy for GAN-GP. Different from the standard GAN’s adversarial 
training strategy, the training strategy of the GAN-GP contains two particular tricks: one is the pre-training trick, which uses the 
training samples to pre-train the generator before the adversarial training; and the other is the teacher-loss trick, which minimizes the 
teacher loss L T to refine the generator weights after minimizing the generator loss L G and the discriminator loss L D during each 
iteration of the adversarial training.  

Algorithm 1: Adversarial Learning Strategy for the GAN-GP 

Input: {(Xn , yn)}
N
n=1, W(0,0)

G , W(1)
D , J, K, η0, ηG, ηD, ηT;  

Ouput: WG, WD;  
1: forall j = 1,2,⋯,J; do  
2: (Pre-training) Update WG by minimizing the teacher loss L T: W(0,j)

G = W(0,j− 1)
G − η0 ⋅

∂L T

∂WG
;  

3: end for 
4: Set W(1)

G = W(0,J)
G ;  

5: for all k = 1,2,⋯,K; do  
6: Update WG and WD by minimizing the discriminator loss L D: W(k,1)

G = W(k)
G − ηG ⋅

∂L D

∂WHF 
and W(k,1)

D = W(k)
D − ηD ⋅

∂L D

∂WD
;  

7: 

(continued on next page) 
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(continued ) 

Algorithm 1: Adversarial Learning Strategy for the GAN-GP 

Update WG and WD by minimizing the generator loss L G: W(k,3)
G = W(k,2)

G − ηG ⋅
∂L G

∂WG 
and W(k+1)

D = W(k,1)
D − ηD ⋅

∂L G

∂WD
;  

8: Update WG by minimizing the teacher loss L T: W(k+1)
G = W(k,3)

G − ηT ⋅
∂L T

∂WG
;  

9: end for 
10: Set WG = W(K+1)

G and WD = W(K+1)
D .   

4. Numerical experiments 

In this section, we conduct numerical experiments to explore the following concerns: 1) the performance of the GAN-GP in the 
geological prediction task; 2) the influence on the prediction performance caused by different FE methods adopted in the FE module; 3) 
the influence on the prediction performance caused by different choices of step size τ; 4) the feasibility of the proposed adversarial 
training strategy; 5) the effectiveness of the pre-training trick; and 6) the effectiveness of the teacher-loss trick. All the experiments 
were performed by using TensorFlow on a computer equipped with an Intel® i7-6700 K CPU at 4.0 GHz × 8, 64 GB RAM and two 
Nvidia® GTX-1080 graphic cards. 

4.1. Experimental setting 

In the experiments, we consider the varying step sizes τ ∈ {5,10,15, 20, 25} and the corresponding sizes Nτ of the samples labeled 
with the thickness of each rock-soil type (cf. Table 1). For each τ, we split the Nτ samples into two parts: 80% of the samples are for 
training, and the rest of the samples are for testing. We note that the two parts are not randomly selected from the original samples 
because this manner will damage the sequential information encoded in them. The prediction performance is measured by using the 
smallest (top-5) test loss out of five repeated experiments: 

test loss :=
1
J
∑J

j=1

⃒
⃒
⃒
⃒
⃒
yj − ŷ j

(
Xj
)
⃒
⃒
⃒
⃒
⃒
,

where yj and ŷj(Xj) are the real output and the geological prediction corresponding to the input Xj, respectively. 
To validate the adversarial training strategy for the GAN-GP given in Alg. 1, denoted by ‘adln(pre + tch)’, we also consider three 

more strategies in the experiments: 1) the adversarial training without the pre-training trick, denoted by ‘adln(tch)’; 2) the adversarial 
training without the teacher-loss trick, denoted by ‘adln(pre)’; and 3) the adversarial training without the pre-training and the teacher- 
loss tricks, denoted by ‘adln’. 

In the pre-training phase of ‘adln(pre + tch)’ (steps 1 ∼ 4 of Alg. 1, we minimize the teacher loss by using the Adam method with a 
learning rate of η0 = 0.005 and a mini-batch size of 32. The training will stop after J = 200 iterations. In the adversarial phase of ‘adln 

Table 1 
Top-5 test losses of the different prediction models with varying step sizes τ ∈ {5,10,15,20,25}.  

Model FE Method τ = 5  τ = 10  τ = 15  τ = 20  τ = 25    
(Nτ = 12325)  (Nτ = 6141)  (Nτ = 4080)  (Nτ = 3046)  (Nτ = 2431)  

adln DC 0.1210 0.1261 0.1288 0.1325 0.1471 
Conv 0.1420 0.1390 0.1267 0.1641 0.1308 
NDR 0.1354 0.1602 0.1315 0.1425 0.1190 
SA 0.1160 0.1134 0.1186 0.1659 0.1147  

adln(pre) DC 0.0528 0.1302 0.0526 0.0932 0.0844 
Conv 0.0404 0.0974 0.0499 0.0851 0.0895 
NDR 0.0217 0.0764 0.0470 0.0925 0.0739 
SA 0.0317 0.0727 0.0485 0.0923 0.0776  

adln(tch) DC 0.0239 0.1117 0.0841 0.1029 0.1049 
Conv 0.0154 0.0649 0.0766 0.0789 0.1103 
NDR 0.0148 0.0204 0.0442 0.0726 0.0859 
SA 0.0062 0.0170 0.0135 0.0266 0.0180  

adln(pre + tch) DC 0.0038 0.0135 0.0110 0.0319 0.0526 
Conv 0.0046 0.0147 0.0246 0.0254 0.0950 
NDR 0.0037 0.0060 0.0062 0.0182 0.0188 
SA 0.0036  0.0035  0.0055  0.0105  0.0146   

FNN – 0.0737 0.0807 0.0915 0.1037 0.1160  

SVR – 0.0526 0.0548 0.0570 0.1482 0.1554  

RF – 0.0074 0.0108 0.0145 0.0182 0.0202  
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Fig. 3. The test losses of the different models for predicting the rock-soil types.  
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(pre + tch)’ (steps 5 ∼ 10 of Alg. 1, we minimize the generator loss, the discriminator loss and the teacher loss by using the Adam 
method with a mini-batch size of 88. The number of iterations K equals 300 and the learning rates are set to ηG = 0.0001, ηD = 0.0005 
and ηT = 0.001. Following the convention in deep learning literature, these hyper-parameters of GAN-GP are set according to the 
empirical observations in the numerical experiments. 

Remark 1. The following is the reason why the learning rate ηD for the discriminator loss is larger than the learning rates ηG and ηT 
for the generator loss and the teacher loss, respectively. In each iteration, the generator weights WG will be updated twice (by 
minimizing the generator loss and the teacher loss, respectively) but the discriminator weights WD can only be updated once. 
Therefore, setting a larger learning rate ηD for the discriminator loss aims to balance the behaviors of the generator and the 
discriminator. In this manner, we prevent the phenomenon that although the generator has been trained enough to produce an ac
curacy approximation to the real data, the current discriminator cannot distinguish the outputs of the generator from the real data, and 
the gradient of discriminator loss may vanish in advance. 

As a comparison, we also apply three state-of-the-art models to handle the prediction task: support vector regression (SVR) with 
Gaussian kernels, feedforward neural network (FNN) and random forest (RF). The SVR, FNN and RF are the most representative 
learning models and have become the benchmark methods in many practical problems. Thus, setting them as references can make the 
performance examination more convincing. 

Fig. 3. (continued). 
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• FNN, a representative connectionist method, models the connections among the neurons to imitate the complex functions of the 
human brain. It has played an essential part in the geological condition prediction works [19,22–24].  

• SVR, a variant of support vector machine (SVM) that was originally designed for classification, approximates complicated 
nonlinear functions by using a linear combination of kernel functions that map the original data into the high-dimensional (or 
infinite-dimensional) feature space. SVR has successfully afforded geological condition prediction tasks in some specific settings 
[17,21]  

• RF, a representative symbolism method, learns rules from the training data and then uses logical reasoning to produce the response 
of future inputs. Its superiority in geological condition prediction has been discussed in [41,42,25]. 

The three models are implemented by using the ‘scikit-learn’ toolbox in Python 3.7, and the following summarizes their main hyper- 
parameter settings.  

• Based on ‘sklearn.neural_network.MLPRegressor’, the FNN has two hidden layers with 20 and 7 nodes, and all the activation 
functions are sigmoid functions except that the output nodes are squashed by using linear functions. This structure is inspired by the 
research findings of [27], where the 7 hidden nodes in the second hidden layer correspond to the 7 kinds of physical–mechanical 
indicators that are related to the TBM excavation process. Adam is chosen as the solver for weight optimization; the L2 penalty 
parameter is 0.001; the learning rate is 0.001; the maximum number of iterations is 200; the exponential decay rate for the es
timates of the first (resp. second) moment vector in Adam is 0.9 (resp. 0.999); the value for numerical stability in Adam is 10− 8; and 
the samples will be shuffled in each iteration.  

• SVR with a Gaussian kernel is implemented by using ‘sklearn.svm.SVR’. Through five-fold cross-validation with grid search, the 
kernel coefficient is 1/11, the regularization parameter is 1, and the tolerance for the stopping criterion is 0.0001.  

• The RF is processed via ‘sklearn.ensemble.RandomForestRegressor’ and the function to measure the quality of a split is set as the 
mean squared error (MSE). Similarly, five-fold cross-validation with grid search leads to the following hyper-parameters: the 
maximum depth of the tree is 8; the minimum number of samples required to split an internal node is 2; the number of trees in the 
forest is 100; the minimum number of samples required to be at a leaf node is 50; and the number of features considered when 
looking for the best split is 11. 

Moreover, we use principal component analysis (PCA) to reduce the dimension of training inputs to 34 while maintaining 95% 
variance. 

4.2. Experimental results and discussion 

As shown in Fig. 3 and Table 1, the GAN-GP with SA in the FE module achieves the best prediction performance among all the 
models. Moreover, the GAN-GP with NDR and the RF model also perform well but worse than the GAN-GP with SA in most cases. The 
teacher-loss trick plays an essential role in the adversarial training of the GAN-GP, and training without the teacher-loss trick fails 
regardless of what FE method is adopted in the FE module. Moreover, the pre-training trick provides reasonable initial weights for 
training the GAN-GP, and thus significantly accelerates the training process. In contrast, training without the pre-training trick requires 
a large number of epochs, making it easier for the model to be trapped by local minima. In addition, a small step size τ is more suitable 
to developing GAN-GPs for the prediction task than a large one, which implies that the sample size plays a more important role in GAN- 
GP training than the dissimilarity among samples. Namely, the GAN-GP training places a relatively high demand on the quantity of the 
samples. 

The contest between the generator and the discriminator of the GAN-GP during adversarial training makes the most of the limited 
amount of labeled training data and yields a better performance than the conventional FNN with the same structure as the generator of 
the GAN-GP (i.e., the GAN-GP trained only through the pre-training progress). As shown in Alg. 1, during each iteration of the 
adversarial training process, the minimization of the discriminator loss (6) simultaneously updates the discriminator and the generator 
weights to fool the discriminator, making it incapable of distinguishing a generator output or a real instance, and the subsequent 
minimization of the generator loss (5) refines the generator weight to make the generator outputs describe the geological condition 
information as exactly as possible. Such adversarial training updates the generator weights twice in one iteration from different 
standpoints: one is to make the distribution of the generator outputs coincide with the real distribution of rock-soil types in the tunnel; 
and the other is to find an accurate mapping relation between the TBM operational data and the thicknesses of the rock-soil types. In 
contrast, the traditional training for the FNN considers only the latter, which is the reason why the GAN-GP with an adversarial 
training strategy outperforms the conventional FNN. However, such an adversarial structure significantly increases the training dif
ficulty of the GAN-GP. To improve the training efficiency and stability, we then introduce the pre-training trick and the teacher-loss 
trick: the former is used to find reasonable initial generator weights before adversarial training, and the latter is used to balance the 
individual training progress of the generator and the discriminator during adversarial training. The experimental results, listed in 
Table 1, demonstrate that the teacher-loss trick plays a crucial role in training the GAN-GP, and the introduction of the teacher-loss 
trick can significantly improve the GAN-GP’s prediction performance. 

Remark 2. Recalling (5) and (6), the minimization of the generator loss L G and the discriminator loss L D (called the adversarial 
training phase) requires the competition between the generator and the discriminator in each iteration, where the generator and the 
discriminator weights will be updated simultaneously. Specifically, the function of the teacher-loss trick lies in the following two 
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Table 2 
Computational costs of the different predictors with varying step sizes τ ∈ {5,10,15,20,25}.  

Model FE Method τ = 5 (Nτ = 12325)  τ = 10 (Nτ = 6141)  τ = 15 (Nτ = 4080)  τ = 20 (Nτ = 3046)  τ = 25 (Nτ = 2431)    

Pre-tr (s) Tr (s) Te (s) Pre-tr (s) Tr (s) Te (s) Pre-tr (s) Tr (s) Te (s) Pre-tr (s) Tr (s) Te (s) Pre-tr (s) Tr (s) Te (s) 

adln DC – 230.7370 0.0040 – 145.3394 0.0040 – 94.5552 0.0030 – 107.7807 0.0040 – 77.3644 0.0040 
Conv – 252.3833 0.0030 – 166.1697 0.0040 – 113.8426 0.0030 – 121.8065 0.0050 – 83.1160 0.0040 
NDR – 332.1682 0.0050 – 199.9912 0.0040 – 142.6855 0.0050 – 135.9410 0.0050 – 102.3887 0.0050 
SA – 475.7299 0.0080 – 309.9502 0.0070 – 194.5308 0.0060 – 183.8108 0.0060 – 144.3189 0.0070  

adln(pre) DC 72.2368 137.8235 0.0030 37.9525 81.4931 0.0050 25.4509 58.4038 0.0040 26.2945 59.7040 0.0040 19.0421 47.1061 0.0030 
Conv 88.7587 152.3756 0.0040 46.5376 86.2992 0.0040 30.3857 64.2203 0.0040 35.8327 67.3398 0.0070 23.4009 51.6554 0.0040 
NDR 108.0501 200.9447 0.0040 54.9132 108.0501 0.0040 36.3179 77.6823 0.0050 37.2883 83.4429 0.0040 26.1578 60.4633 0.0040 
SA 179.5978 292.5856 0.0080 91.8683 158.4683 0.0060 61.0298 116.0856 0.0060 63.8103 119.2858 0.0060 43.1361 85.9866 0.0060  

adln(tch) DC – 255.6933 0.0040 – 147.9329 0.0040 – 105.3682 0.0040 – 94.8773 0.0040 – 83.4488 0.0040 
Conv – 298.1441 0.0040 – 169.2785 0.0040 – 120.9925 0.0040 – 115.5000 0.0050 – 89.3630 0.0040 
NDR – 375.6394 0.0040 – 225.3659 0.0040 – 143.4494 0.0050 – 130.9231 0.0050 – 107.2096 0.0040 
SA – 565.5986 0.0080 – 313.0442 0.0070 – 221.8777 0.0060 – 193.6105 0.0070 – 162.6489 0.0060  

adln(pre + tch) DC 71.3023 154.4949 0.0040 39.4786 90.2387 0.0040 26.4612 64.0637 0.0040 25.4315 76.0675 0.0050 18.0577 48.5013 0.0040 
Conv 85.1004 181.1055 0.0030 47.3286 101.0634 0.0040 32.4452 73.3628 0.0040 35.4921 71.4229 0.0040 21.8515 53.7931 0.0040 
NDR 106.3835 229.3912 0.0050 56.1418 123.9454 0.0040 37.5237 85.5323 0.0040 33.6604 95.5394 0.0050 26.0044 63.4054 0.0040 
SA 178.3351 346.7026 0.0080 93.1430 186.7497 0.0060 63.2080 132.9944 0.0060 65.7298 120.0100 0.0070 41.6775 96.3892 0.0060  

FNN – – 0.8866 0.0010 – 0.7819 0.0010 – 0.8647 0.0010 – 0.9235 0.0010 – 0.6722 0.0010  

SVR – – 1.0981 0.1237 – 1.8720 0.1875 – 1.2467 0.1277 – 0.8198 0.0858 – 0.5785 0.0636  

RF – – 3.8308 0.0110 – 5.7721 0.0130 – 3.8527 0.0100 – 2.8723 0.0110 – 2.2251 0.0120 

1‘Pre-tr’, ‘Tr’ and ‘Te’ are the abbreviations for the words ‘pre-training’, ‘training’ and ‘testing’, respectively. 
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aspects:  

• One is to overcome the lack of real geological data. In the adversarial training phase, the discriminator rectifies the generator by 
using the real geological data, but such a rectification actually has a high demand of the geological-data quality. Unfortunately, the 
current dataset only contains 88 geological sampling points, which may not be enough to support a desired rectification. Alter
natively, after the adversarial training phase of each training iteration, the teacher-loss trick sets the updated generator weights as 
the initial weights, and employs the TBM operational data labeled with the thickness of each rock-soil type to minimize the teacher 
loss L T (cf. (7)). In this manner, the mapping relationship between the TBM operational data and the tunnel geological condition is 
used to improve the rectification results obtained in the adversarial training phase.  

• The other is to stabilize the training process against the uncertainty arising from the Adam method with mini-batch, a variant of 
stochastic gradient method. In the adversarial training phase, there is a strong interaction between the generator and the 
discriminator weights. The uncertainty arising from the Adam method is likely to make the discriminator weights updated in a 
wrong direction, and then to have a negative influence on the update of generator weights. The teacher-loss trick is helpful to pull 
the generator weights back to a reasonable optimization direction in each training iteration. 

In addition, we compare the computational costs of the GAN-GP with different training tricks and the state-of-the-art models (FNN, 
SVR and RF models). The experiment has the same parameter settings as above. As shown in Table 2, the training cost of the GAN-GP is 
significantly higher than that of the state-of-the-art models because of the complex network structure and training strategy, while its 
testing cost is comparable to that of the state-of-the-art models. Interestingly, we also find that the total pre-training cost and training 
cost in ‘adln (pre)’ (resp. ‘adln (pre + tch)’) is lower than the individual training cost in ‘adln’ (resp. ‘adln (tch)’). This experimental 
result demonstrates the important role of the pre-training trick in GAN-GP adversarial training. 

In summary, the advantages of high prediction accuracy, low demand for labeled samples and reasonable test cost guarantee the 
high applicability of the proposed GAN-GP in practical tunnel geological condition prediction tasks. 

5. Conclusion 

In this paper, we propose a generative adversarial network for geological prediction (GAN-GP) to accurately estimate the thickness 
of each rock-soil type in a tunnel boring machine (TBM) construction tunnel based on the operational data collected from sensors on 
the TBMs. In contrast with massive time-continuous TBM operational data, only a small part of the data are labeled with geological 
information obtained at discrete locations by using the drilling method. To overcome the imbalance between the sizes of the labeled 
and unlabeled operational data, we first label the operational data within 0.3 m around a drilling point with the same geological 
condition as the drilling sample, and then concatenate every τ continuous operational data to form a new datum. In this manner, we 
increase the size of operational data labeled with geological information but introduce redundancy into the new dataset. 

In this paper, we propose a generative adversarial network for geological prediction (GAN-GP) of a TBM construction tunnel based 
on operational data collected from sensors on a TBM. The proposed GAN-GP aims to accurately estimate the thickness of each rock-soil 
type at an arbitrary location in the TBM construction tunnel. 

To deal with such a dataset, we design the generator of the GAN-GP composed of two modules: the feature extraction (FE) module 
extracts the important features from the operational data as the inputs of the FI module, and the feature integration (FI) module 
estimates the thickness of each rock-soil type at a location. We adopt four kinds of FE methods: data concatenation (DC), nonlinear 
dimensionality reduction (NDR), one-dimensional convolution operation (Conv) and self-attention (SA). The discriminator of the 
GAN-GP aims to determine whether the outputs of the FI module are real geological data. After adversarial training, if the trained 
discriminator fails, the outputs of the FI module will provide an accurate estimation of the geological condition. Moreover, we also 
introduce the pre-training and the teacher-loss tricks to enhance the stability and efficiency of adversarial training for the GAN-GP. 

The experimental results validate the proposed GAN-GP, and show that 1) the GAN-GP with SA in the FE module outperforms the 
other models in the geological prediction task; 2) both the pre-training and the teacher-loss tricks play essential roles during the 
adversarial training, and the absence of either of them will cause the adversarial training to fail; 3) a small step size τ is more suitable 
for developing the models for geological prediction, which implies that the sample size is a key factor in the adversarial training of 
GAN-GP; and 4) the testing cost of the GAN-GP is comparable to those of the state-of-the-art models (i.e., the FNN, SVR and RF models) 
despite a relatively higher training cost that is due to the complex network structure and training strategy. 

Compared with the state-of-the-art predictors, the superiority of the GAN-GP benefits from its specific structure that fully takes into 
account the inherent characteristics of the geological condition prediction task. First, there is an imbalance between the relatively few 
TBM operational data labeled with geological information and massive unlabeled data. The adversarial training strategy implemented 
between the generator and the discriminator of the GAN-GP aims to exhaustively exploit the rock-soil type classification information 
from the labeled data. Second, the TBM operational data are time-dependent and contain redundancies among adjacent time points. 
The step size τ in the FE module is set to identify these redundancies, and the FE methods (including DC, NDR, Conv and SA) are 
adopted to capture the sequential characteristics of the TBM operational data. Such a network structure can also be generalized to 
other engineering prediction tasks that contain time-series inputs and relatively few labeled training samples. More importantly, we 
introduce two training tricks to improve the training efficiency and stability: the pre-training trick and the teacher-loss trick. The 
former finds desirable initial generator weights before adversarial training, and the latter balances the individual training progress of 
the generator and the discriminator during adversarial training. It is worth pointing out that the teacher-loss trick plays a crucial role in 
the GAN-GP’s training process (cf. Remark 2). Benefiting from the two tricks, the proposed GAN-GP outperforms neural networks with 
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the same structure. 
In future works, we will consider active learning methods to adaptively select drilling-sampling positions and to improve the 

geological prediction performance. 
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Appendix    

Table A.3 
Physical–mechanical indicators of the different rock-soil types [27].   

Type  

Indicator ②3  ②4  ⑨1  ⑨2− 1  ⑨2− 2  ⑨3   

Y (kN/m3)  17.000 18.5 19.50 20.500 22.50 24.50  

FI (◦) 4.500 18.0 25.00 27.500 45.00 55.00  
EM (MPa)  4.000 5.5 40.000 90.000 10000 10000  
P 0.40 0.35 0.250 0.250 0.25 0.22  
SITA 0.650 0.5 0.00 0.00 0.00 0.00  
K (m/d)  0.003 3.5 0.80 2.5 15.00 1.50  
FRB (kPa)  10.000 20.0 45.000 60.000 125.00 380.00    

Type 

Indicator ④2  ④4  ④5  ④8  ④9  ④10  ④11  

Y (kN/m3)  19.000 18.000 19.00 19.50 20.00 20.50 21.00 

FI (◦) 15.000 8.000 20.00 26.00 28.00 32.00 35.00 
EM (MPa)  15.000 4.500 6.50 20.00 22.00 25.00 35.00 
P 0.320 0.420 0.32 0.28 0.25 0.22 0.25 
SITA 0.500 0.700 0.48 0.45 0.40 0.35 0.35 
K (m/d)  0.0050 0.0050 4.50 6.50 12.00 20.0 30.0 
FRB (kPa)  25.00 18.00 22.00 35.00 50.00 55.00 65.00   

Type 

Indicator ⑦2− 1  ⑦2− 2  ②1  122− 1  122− 2  123  124  

Y (kN/m3)  18.50 18.50 19.50 20.50 22.50 24.50 26.50 

FI (◦) 20.50 22.50 27.00 30.00 45.00 55.00 70.00 
EM (MPa)  18.000 20.000 40.000 90.000 10000.00 10000.00 10000.00 
P 0.30 0.28 0.25 0.25 0.25 0.22 0.18 
SITA 0.45 0.55 0.00 0.00 0.00 0.00 0.00 
K (m/d)  0.50 0.50 1.00 2.50 15.00 1.50 0.50 
FRB (kPa)  22.00 28.00 45.00 60.00 125.00 380.00 650.00  
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Pressure of articulation system (bar) Pressure of Shield tail seal at top right front (bar) 
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