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Abstract

The fuzzy integral equation is used to model many physical phenomena which arise in many fields like chemistry, physics,
nd biology, etc. In this article, we emphasize on mathematical modeling of the fuzzy fractional Fredholm–Volterra integral
quation. The numerical solution of the fuzzy fractional Fredholm–Volterra equation is determined in which model contains
uzzy coefficients and fuzzy initial condition. First, an operational matrix of Chebyshev polynomial of Caputo type fractional
uzzy derivative is derived in fuzzy environment. The integral term is approximated by the Chebyshev spectral method and the
ifferential term is approximated by the operational matrix. This method converted the given fuzzy fractional integral equation
nto algebraic equations which are fuzzy in nature. The desired numerical solution is to find out by solving these algebraic
quations. The different particular cases of our model have been solved which depict the feasibility of our method. The error
ables show the accuracy of the method. We also can see the accuracy of our method by 3D figures of exact and obtained
umerical solutions. Hence, our method is suitable to deal with the fuzzy fractional Fredholm–Volterra equation.
c 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Fuzzy calculus; Chebyshev polynomial; Operational matrix; Mathematical modeling

1. Introduction

Fractional calculus has emerged as an important area of investigation because of its widespread applications
n various fields like medical science, physics, chemistry, bio-mathematics, and groundwater problems. Many
evelopments have taken place in fractional calculus in the last few decades. The concept of fractional calculus
riginates from the idea of the extension of integer order derivative or integration to the real order derivative or
ntegration. The concept of fractional integration/differentiation is extended with the help of the gamma function.
he related theory and concepts of fractional derivative/integration can be found in [19,21,26]. The fractional
erivatives can be used in describing those physical phenomena which are complex in nature and cannot be easily
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escribed by integer-order derivatives. Some examples of those phenomena are anomalous diffusion, groundwater
ontamination problems, epidemic modeling, and simulation of real data in medical science.

In literature, many types of fractional operators can be found such as Riemann–Liouville, Hadamard, Grunwald–
etnikov, and the Caputo derivative. In the early stage, all fractional operators are defined with a singular kernel.
hese derivatives follow the power-kernel law. In the last decade, researchers have found out the other types of

ractional derivatives which have a non-singular kernel. Some of them are popular and using these days very
xtensively like as Caputo–Fabrizio derivative which has an exponential kernel and the other one is the Atangana–
aleanu derivative which has a Mittag-Leffler kernel. The fractional differential equations are obtained from the
lassical ones by replacing the integer-order derivatives with fractional ones. Nowadays mathematical modeling is
very powerful tool in depicting the behavior of real-life problems. So, determining the solution of the fractional

ifferential equation is a tough task for researchers because of its complex nature. To get rid of this problem, many
umerical techniques and methods are derived and extended from the classical ones. In the fractional model of
physical system, the current stage is the function of the current stage as well as the previous stage. Fractional

uid dynamics traffic model can be helpful in shorting the continuum traffic flow [24]. Some of the numerical
ethods are Adomian decomposition method [30], predictor–corrector method [9,13], Legendre wavelets [17],
enocPsi polynomial [7], Laguerre polynomial [16], Legendre polynomial [23] and fractional differential transform
ethod [12].
Nowadays, mathematical modeling in a fuzzy environment is so useful in many different fields. In every physical

ystem, the phenomena are not always be put in the deterministic mathematical model. The parameters available
n the model, initial and boundary conditions may absorb value from a finite interval. So, such a type of model
an be studied in fuzzy mathematical modeling. Like COVID-19 model is studied with the fuzzy environment
n article [5]. This article depicts the advantages of the fuzzy differential equation model over the non-fuzzy.
he fuzzy modeling gives us the freedom to study those who are not deterministic in nature. Many numerical
ethods have been introduced to deal with a fuzzy fractional differential equation such as Adomian decomposition
ethod [27], Laplace transforms method [28], implicit finite difference method [32], Homotopy analysis method

or Volterra-Fredholm fuzzy integral equation [14] and fuzzy fractional diffusion equation [32]. Some literature on
uzzy concepts and theories can be found in [2,3,8]. Some recent research in the field of a fuzzy differential equation
an be found in the literature [18,20,31]

The article is divided into the following sections:
The introduction to fuzzy concepts, fuzzy calculus is described in Section 2. Section 2 also includes the properties

of Chebyshev polynomial which are used in this article and procedure of approximation of fuzzy function in terms of
Chebyshev polynomial. The fuzzy model of the Fredholm–Volterra integral equation and the concerned method has
been incorporated in Section 3. The numerical validation and accuracy of the method through numerical examples
are given in Section 4. The concluding part of the whole article is added in Section 5.

2. Preliminaries

Some basic definitions and concepts are discussed here which are going to be used throughout the article. The
definition related to fuzzy sets, fuzzy calculus, fractional derivative and properties of Chebyshev polynomial are
discussed here.

2.1. Fuzzy sets [15,29]

The concept of fuzzy set was developed by Lotfi Zadeh. We need a non-empty set and a function called
membership grade function to define a fuzzy set. The non-empty set is denoted by X membership grade function
is represented by u(ξ ). The fuzzy set is a subset of X × [0, 1]. Let us consider

A ⊆ {(ξ, u(ξ )) : ξ ∈ X} (1)

where u is a function such that u : ξ −→ [0, 1], then we say A is fuzzy set.

Definition 1. A mapping ι̃ from the set of real numbers to the interval [0, 1] is said to be fuzzy number if it follows

some property given as below:
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1. ι̃ satisfies the property of upper semi continuity.
2. ι̃(µξ+(1-µ)µ) ≥ min{ι̃(ξ ), ι̃(µ)} with µ ∈ [0, 1] and ∀ξ, µ ∈ R.
3. ι̃ satisfies the normality condition i.e., ∃ µ0 ∈ R s.t. ι̃(µ0) = 1.
4. If we define the support of ι̃ as

supp(ι̃) = {µ ∈ R : ι̃(µ) > 0}.

Then closure of this support must be compact.

he following definition defines the p-level set of fuzzy number ι̃ ∈ RF where RF stands for all fuzzy numbers
efined on real numbers

[ι̃s] =

{
{µ ∈ R : ι̃(µ) ≥ s}, s ∈ (0, 1],
closure(supp(ι̃)), s = 0. (2)

he level set of a fuzzy number is a closed and bounded interval so we denote the p-level set by [ι̃(p)] =

ι̃−(p), ι̃+(p)]. Here terms ι̃−(s) and ι̃+(s) correspond to the left end point and right end point respectively. The
quivalence in R and RF can be seen from the following formula

ι̃(z) =

{
1, z = µ,

0, z ̸= µ.
(3)

he algebraic operations between fuzzy numbers can be defined as follows

1. ι̃⊕ w̃ = (ι̃− + w̃−, ι̃+ + w̃+),

2. Λ⊙ ι̃ =

{
(Λι̃−,Λι̃+), Λ ≥ 0,
(Λι̃+,Λι̃−), Λ < 0.

e can also define the metric structure on set of fuzzy numbers RF as

Ψ : RF × RF −→ R+
∪ 0

Ψ (ι̃, w̃) = sup
s∈[0,1]

max{|ι̃−(s) − w̃−(s)|, |ι̃+(s) − w̃+(s)|}. (4)

ome properties followed by this metric are as follows

1. Ψ (ι̃⊕ ξ̃ , w̃ ⊕ ξ̃ ) = Ψ (ι̃, w̃), ∀ι̃, w̃, ξ̃ ∈ RF .
2. Ψ (a ⊙ ι̃, a ⊙ w̃) = |a|Ψ (ι̃, w̃),∀a ∈ R, ι̃, w̃ ∈ RF .
3. Ψ (ι̃⊕ w̃, ξ̃ ⊕ µ̃) ≤ Ψ (ι̃, ξ̃ ) + Ψ (w̃, µ̃), ∀ι̃, w̃, ξ̃ , µ̃ ∈ RF .
4. The space of all fuzzy numbers constitute a complete metric space.

efinition 2. Likewise with metric on space of fuzzy numbers, the norm on fuzzy number space is defined as

∥ι̃∥ = Ψ (ι̃, 0̃).

he function ∥.∥ : RF −→ R is consistent with all the properties of norm as one can verify.

efinition 3. Considering two fuzzy valued functions f1 and f2 from [a, b] to RF . The uniform distance between
hese fuzzy numbers is defined as

Ω( f1, f2) = sup
µ∈[a,b]

Ψ ( f1(µ), f2(µ)). (5)

efinition 4 (Differentiability in Sense of Fuzzy Concepts). Let ω : (a, b) −→ RF denote the fuzzy valued function
nd a point µ0 ∈ (a, b). Then the differentiability of function ω is said to be exist if from the condition (1) and (2),
ne is satisfied.

1. The definition of 1-differentiability on open interval (a, b) is given by equation

lim
l→0+

ω(µ0 + l) ⊖ ω(µ0)
l

=
ω(µ0) ⊖ ω(µ0 − l)

l
= ω′(µ0) (6)

provided numerator of above terms exists.
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2. Similarly, the definition of 2-differentiability is defined by the equation

lim
l→0+

ω(µ0 ⊖ ω(µ0 + l))
−l

=
ω(µ0 − l) ⊖ ω(µ0)

−l
= ω′(µ0). (7)

Definition 5. The h-differentiability of function h from the interval (a, b) into the space of fuzzy numbers RF at
point µ0 is given by

h′(µ0) = lim
l→0

h(µ0 + l ⊖ω h(µ0))
l

. (8)

efinition 6. Let h be a fuzzy valued function, we say it is Riemann-Integrable if ∀ ϵ > 0 ∃ δ > 0 such that
orresponding to every partition P = {[µ1, µ2], ζ } of domain [a, b]

Ψ
( ∗∑

P

(µ1 − µ2) ⊙ h(ζ )
)
< ϵ, (9)

ith norms ∆(P) < δ. Fuzzy Riemann-Integrability is denoted by the following expression

I = (F R)
∫ b

a
h(µ)dy. (10)

.2. Definitions of fractional derivatives in Riemann–Liouville and Caputo sense [10,25]

efinition 7. The fractional integral in Riemann–Liouville sense of function ξ (z) of order β can be defined as

I βξ (z) =
1

Γ (β)

∫ z

0
(z − Ω )β−1ξ (Ω ) dΩ , z > 0, β ∈ R+. (11)

he Riemann–Liouville fractional derivative in terms of Riemann–Liouville integral operator is defined as

Dβ

l ξ (z) = (
d
dz

)l(I l−βξ )(z), (β > 0, l − 1 < β < l). (12)

efinition 8. The derivative which is very useful from application point of view named as Caputo derivative can
e represented by the following formula

Dβ
c ξ (z) =

{
dl ξ (z)

dzl , β = l ∈ N ,
1

Γ (β)

∫ z
0 (z − ς )l−β−1ξ l(ς )dς, l − 1 < β < l.

(13)

ere, l is an integer, z > 0.

This derivative has a property common with the integer order derivative

Dϑ
c C = 0, (14)

here C is a constant and

DΩ
c zσ =

⎧⎨⎩ 0, σ ∈ N ∪ 0 & σ < ⌈Ω⌉

Γ (1 + σ )
Γ (1 −Ω + σ )

z−Ω+σ , σ ∈ N ∪ 0 & σ ≥ ⌈Ω⌉orσ /∈ N and σ > ⌊Ω⌋ ,
(15)

where ⌊Ω⌋ is floor function. Notice that

DΩ
c (C1ξ1(t) + C2ξ2(t)) = C1 DΩ

c ξ1(t) + C2 DΩ
c ξ2(t), (16)

with C1 and C2 are constants. The Riemann–Liouville integral and Caputo derivative operators satisfy the relation:

(IΩDΩ
c ξ )(z) = ξ (z) −

l−1∑
k=0

ξ k(0+)
zk

k!
, l − 1 < Ω ≤ l. (17)
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.3. Fuzzy Caputo fractional derivative [1,4]

The definitions of fractional operators are extended for fuzzy application which is as follows

efinition 9. The collection of all measurable function which are fuzzy in nature are denoted by L E
p [a, b]. The

notation C E [a, b] stands for all continuous fuzzy valued functions. Let h(ξ ) belong to the set L E
p ∩C E then g-Caputo

fuzzy fractional of this function given by

(g Dγ

a+h)(ξ ) = lim
h→0

ψ(ξ + k) ⊖g ψ(ξ )
k

, (18)

where

ψ(ξ ) =
1

Γ (1 − γ )

∫ ξ

a
(ξ − t)−γ h(t)dt.

We can derive the following s-level set of this derivative

(g Dγ

a+h−)(ξ, s) =
1

Γ (1 − γ )

∫ ξ

a
(ξ − t)−γ h−′(t, s)dt

, (g Dγ

a+h+)(ξ, s) =
1

Γ (1 − γ )

∫ ξ

a
(ξ − t)−γ h+′(t, s)dt.

(19)

If function belongs to the space of all absolute continuous function then the definition of fuzzy fractional derivative
of this function is given by

(C Dγ

a+h)(ξ, s) =

[ 1
Γ (1 − γ )

∫ ξ

a
(ξ − t)−γ h−′(t)dt,

1
Γ (1 − γ )

∫ ξ

a
(ξ − t)−γ h+′(t)dt

]
. (20)

he above definition is for the first differentiability of function h(ξ ). Applying this concept for the second
differentiability we have

(C Dγ

a+h)(ξ, s) =

[ 1
Γ (1 − γ )

∫ ξ

a
(ξ − t)−γ h+′(t)dt,

1
Γ (1 − γ )

∫ ξ

a
(ξ − t)−γ h−′(t)dt

]
. (21)

emma 1 ([22]). A function is chosen in such a way that it satisfies h̃(ξ ) ∈ AC E (0, b] and C Dkγ
a+ h̃(ξ ) ∈ C E (0, b]

with k = 0, 1, . . . , n + 1, 0 < γ < 1 then

[h̃(ξ )]r
= [hr (ξ ), hr (ξ )]

hr (ξ ) =

n∑
j=0

ξ γ j

Γ ( jγ + 1)
C Diγ hr (0+) +

C D(n+1)γ hγ (ξ0)
Γ (nγ + γ + 1)

ξ (n+1)γ ,

hr (ξ ) =

n∑
j=0

ξ γ j

Γ ( jγ + 1)
C Diγ hr (0+) +

C D(n+1)γ hγ (ξ0)
Γ (nγ + γ + 1)

ξ (n+1)γ ,

(22)

ith C Diγ hr (0+) =
C Diγ hr (ξ )|ξ=0 and C Diγ hr (0+) =

C Diγ hr (ξ )|ξ=0.

2.4. Some basic properties of Chebyshev polynomials [11]

In this section, we are going to discuss the series representation of Chebyshev polynomial and their properties
which will be used in proposed method. As we take our model on the domain [0, 1] so we shift these polynomials
from the interval [−1, 1] to the interval [0, 1]. The following series representation corresponds to the Chebyshev
polynomials of degree i

ψi (ξ ) = i
i∑ (−1)−k+i (k − 1 + i)!22k

2k!(−k + i)!
ξ k, (23)
k=0
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here i = 0, 1, . . .. As we know these polynomials are orthogonal on their interval [−1, 1]. So the orthogonal
property is modified according to the shift of polynomials from the interval [−1, 1] to [0, 1]. These shifted
polynomials are orthogonal with respect to the weight function 1√

(ξ−ξ2)∫ 1

−1

ψ j (ξ )ψi (ξ )√
1 − ξ 2

=

⎧⎨⎩ 0, m ̸= l,
π, l = m = 0,
π
2 m = l ̸= 0.

(24)

.5. Approximation of fuzzy function [11]

In this article, we are using Chebyshev polynomials which are shifted on interval [0, 1]. Considering the function
[ũ(ξ ) ∈ L E (0, 1)] ∩ C E (0, 1), then the approximation of this function is defined as follows

ũ(ξ ) =

∞∑
p=0

sp ⊙ φp(ξ ), (25)

here ⊕ stands for the fuzzy addition operation. The fuzzy coefficients sp can be derived by the following formula

sp =
cp

π
⊙

∫ 1

0

ũ(ξ ) ⊙ φp(ξ )√
ξ − ξ 2

dξ, (26)

here cp are defined as

cp =

{
1 p = 0
2 p = 1, 2, . . . (27)

estricting the infinite sum to the finite sum for the computational purpose and representing the series into matrix
orm, we have the following

ũm(ξ ) =

m∑
p=0

sp ⊙ φp(ξ ) = ΩT
m ⊙ Ψm(ξ ), (28)

here ΩT
m and Ψm(ξ ) denote the coefficient vector and Chebyshev polynomial vector respectively.

ΩT
m = [s0, s1, . . . , sp]

Ψm(ξ ) = [φ1(ξ ), φ2(ξ ), . . . , φm(ξ )].
(29)

emma 2. Let ũ(ξ ) ∈ L E (0, 1]∩C E (0, 1] and C Dγ ũ(ξ ) ∈ C E (0, 1], 0 < γ < 1, ξ ∈ [0, 1]. If ũ(ξ ) is 1-differentiable,
hen

|ũr (ξ ) −

n∑
j=0

ξ γ j

Γ ( jγ + 1)
C Diγ ũr (0+)| ≤ Mr

γ

ξ (n+1)γ

Γ (nγ + γ + 1)
,

|ũr (ξ ) −

n∑
j=0

ξ γ j

Γ ( jγ + 1)
C Diγ ũr (0+)| ≤ M

r
γ

ξ (n+1)γ

Γ (nγ + γ + 1)
,

(30)

here D(n+1)γ ũ(ξ0) < Mγ and D(n+1)γ ũ(ξ0) < Mγ .

Proof. Using Lemma 1 we get

ur (ξ ) =

n∑
j=0

ξ γ j

Γ ( jγ + 1)
C Diγ ur (0+) +

C D(n+1)γ uγ (ξ0)
Γ (nγ + γ + 1)

ξ (n+1)γ ,

ur (ξ ) =

n∑ ξ γ j

Γ ( jγ + 1)
C Diγ ur (0+) +

C D(n+1)γ uγ (ξ0)
Γ (nγ + γ + 1)

ξ (n+1)γ .

(31)
j=0
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|ur (ξ ) −

n∑
j=0

ξ γ j

Γ ( jγ + 1)
C Diγ ur (0+)| ≤

|
C D(n+1)γ uγ (ξ0)|
Γ (nγ + γ + 1)

ξ (n+1)γ

≤ Mγ

ξ (n+1)γ

Γ (nγ + γ + 1)
.

(32)

e can find the another expression like the similar way as discussed above.

heorem 1. Let the derivative of function u(ξ ) satisfy C Dγ ũ(ξ ) ∈ L E (0, 1] ∩ C E (0, 1]. Let φk(ξ )|k=0,...,n represent
he basis of concerned space. The expression ũn(ξ ) = ΩT

n ⊙ Ψn(ξ ) is the approximation in terms of Chebyshev
olynomial and

lim
n→∞

D(ũ(ξ ), ũn(ξ )) = 0. (33)

roof. Picking a function h which is fuzzy in nature and [h̃(ξ )]r
= [hr (ξ ), hr (ξ )]. The following expression is

obtained with the help pf Taylor’s formula which is derived in 1

|ũr (ξ ) − h̃r (ξ )| ≤ Mr
γ

ξ (n+1)γ

Γ (nγ + γ + 1)
,

|ũr (ξ ) − h̃r (ξ )| ≤ M
r
γ

ξ (n+1)γ

Γ (nγ + γ + 1)
.

(34)

s ΩT
n ⊙ Ψn(ξ ) is the best approximation of ũ(ξ ), we have

|ũr (ξ ) −ΩT
n ⊙ Ψn(ξ )| ≤ |ũr (ξ ) − h̃r (ξ )| ≤ Mr

γ

ξ (n+1)γ

Γ (nγ + γ + 1)
,

|ũr (ξ ) −Ω
T
n ⊙ Ψn(ξ )| ≤ |ũr (ξ ) − h̃r (ξ )| ≤ M

r
γ

ξ (n+1)γ

Γ (nγ + γ + 1)
.

(35)

hus

∥ũr (ξ ) −ΩT
n ⊙ Ψn(ξ )∥2

≤ ∥ũr (ξ ) − h̃r (ξ )∥2

≤
Mr
γ

2

(Γ (nγ + γ + 1))2

∫ 1

0
ξ 2(n+1)γ dξ,

≤
Mr
γ

2

(Γ (nγ + γ + 1))2(2(n + 1)γ + 1)2 .

(36)

Similarly, we can obtain

∥ũr (ξ ) −Ω
T
n ⊙ Ψn(ξ )∥2

≤ ∥ũr (ξ ) − h̃r (ξ )∥2

≤
M

r
γ

2

(Γ (nγ + γ + 1))2

∫ 1

0
ξ 2(n+1)γ dξ,

≤
M

r
γ

2

(Γ (nγ + γ + 1))2(2(n + 1)γ + 1)2 .

(37)

As n → ∞, the expressions in (40) and (41) tend to 0. The following conclusion is drawn

lim
n→∞

D(ũ(ξ ), ũn(ξ )) = 0

2.6. Derivation of fuzzy operational matrix

Theorem 2. If the Chebyshev polynomial vector is denoted by Ψn(ξ ) with 0 < γ < 1, then,
C γ γ

0 Dx ΨN (ξ ) = Q ΨN (ξ ), (38)
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here Qγ stands for the N × N operational matrix of order γ

Qγ
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0
0 0 · · · 0
...

... · · ·
...∑⌈γ ⌉

k=⌈γ ⌉
ς⌈γ ⌉,k,1

∑⌈γ ⌉

k=⌈γ ⌉
ς⌈γ ⌉,0,k · · ·

∑⌈γ ⌉

k=⌈γ ⌉
ς⌈γ ⌉,m−1,k

...
... · · ·

...∑i
k=⌈γ ⌉

ςi,0,k
∑i

k=⌈γ ⌉
ςi,1,k · · ·

∑i
k=⌈γ ⌉

ςi,m−1,k
...

... · · ·
...∑N−1

k=⌈γ ⌉
ςN−1,0,k

∑N−1
k=⌈γ ⌉

ςN−1,1,k · · ·
∑N−1

k=⌈γ ⌉
ςN−1,N−1,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

ςi, j,k =
2i × Γ (−γ + k +

1
2 )

Γ ( j + k − γ + 1)Γ (1 + k − γ − j)
×

(−1)k+i (i − 1 + k)!
c j (−k + i)!Γ (k +

1
2 )
,

= ⌈ϑ⌉ · · · , N − 1 and j = 0, 1, . . . , N − 1.

roof. Differentiating the approximation of ψi (ξ ), the following expression is obtained

C
0 Dγ

x ψi (ξ ) = i
i∑

k=0

(−1)i−k(i + k − 1)!22k

2k!(i − k)!
×

C
0 Dγ

x ξ
k

= i
i∑

k=⌈γ ⌉

(−1)i−k(i + k − 1)!22k

2k!(i − k)!
×

Γ (k + 1)
Γ (k + 1 − γ )

ξ k−γ .

The term ξ k−γ is approximated in terms of Chebyshev polynomials as follows

ξ k−γ
=

N−1∑
j=0

δk jψ j (ξ ), (39)

the unknown coefficients δk j can be easily derived by using the orthogonal property of Chebyshev polynomials

δk j =

⎧⎨⎩ 1
√
π

Γ ( 1
2 −γ+k)

Γ (−γ+k+1) , j = 0,
j

√
π

∑ j
s=0

(−1)−s+ j (−1+s+ j)!21+2s

(2s)!(−s+ j)! ×
Γ (−γ+k+s 1

2 )
Γ (−γ+1+k+s) , j ̸= 0.

(40)

The above derived expression is used for deriving the value of ςi, j,k which ultimately gives ρi, j =
∑i

⌈ϑ⌉
ςi, j,k and

that is how proof of theorem is completed.

3. Proposed algorithms

In this section we introduce and investigate a fractional Fredholm–Volterra integrodifferential equation in the
fuzzy environment given by

dβ ũ(ξ )
dtβ

= µ1

∫ 1

0
κ1(ξ, t)ũ(t)dt ⊕ µ2

∫ ξ

0
κ2(ξ, t)ũ(t)dt ⊕ f̃ (ξ ), (41)

ith 0 < ξ < 1. The initial condition is taken as follows

ũ(0) = f̃ (ξ ). (42)
1
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a

he function ũ(ξ ) which grasps the fuzzy value is a function whose value is to be determined. The functions κ1(ξ, t),
2(ξ, t) and f̃ (ξ ) are known functions. The model (41) can be fuzzified as follows for all value of s ∈ [0, 1]

[ũ(ξ )]s
= [u(ξ, s), u(ξ, s)],[∫ 1

0
κ1(ξ, t)ũ(t, s)dt

]s
=

[∫ 1

0
κ1(ξ, t)u(t, s)dt,

∫ 1

0
κ1(ξ, t)u(t, s)dt

]
,[∫ ξ

0
κ2(ξ, t)ũ(t, s)dt

]s
=

[∫ ξ

0
κ2(ξ, t)u(t, s)dt,

∫ ξ

0
κ2(ξ, t)u(t, s)dt

]
,

[ f̃ (ξ )] = [ f (ξ, s), f (ξ, s)].

(43)

The lower bound and upper bound of model is depicted in the following equations

dβu(ξ, s)
dtβ

= µ1

∫ 1

0
κ1(ξ, t)u(t)dt ⊕ µ2

∫ ξ

0
κ2(ξ, t)u(t)dt ⊕ f (ξ, s),

u(ξ, s, 0) = f (ξ, s),
(44)

dβu(ξ, s)
dtβ

= µ1

∫ 1

0
κ1(ξ, t)u(t)dt ⊕ µ2

∫ ξ

0
κ2(ξ, t)u(t)dt ⊕ f (ξ, s),

u(ξ, s, 0) = f (ξ, s),
(45)

o derive the solution of model, the unknown function ũ(ξ ) is approximated with the help of Chebyshev polynomials
in matrix form

ũm(ξ ) =

m∑
j=0

c̃ j ⊙ ψ j (ξ ) = Ω̃T
m ⊙ Ψm(ξ ), (46)

the unknowns fuzzy numbers c̃ j are to be determined. With the help of 2, the fractional differentiation of order β
s imposed on Eq. (46)

∂β ũ(ξ, t)
∂tβ

= Ω̃T
m ⊙ QβΨm(ξ ). (47)

he approximation of integration term can be done in following way∫ 1

0
κ1(ξ, t)ũ(t)dt =

∫ 1

0
κ1(ξ, t) ×

m∑
j=0

c̃ jψ j (t)dt

=

∫ 1

0
κ1(ξ, t) ×

m∑
j=0

c̃ j

j∑
k=0

j(−1) j−k( j + k − 1)!22k

2k!( j − k)!
tkdt,

=

m∑
j=0

j∑
k=0

c̃ j
j(−1) j−k( j + k − 1)!22k

2k!( j − k)!
×

∫ 1

0
κ1(ξ, t) × tkdt,

= Ξ j (ξ ),

(48)

nd ∫ ξ

0
κ2(ξ, t)ũ(t)dt =

∫ ξ

0
κ2(ξ, t) ×

m∑
j=0

c̃ jψ j (t)dt

=

∫ ξ

0
κ2(ξ, t) ×

m∑
j=0

c̃ j

j∑
k=0

j(−1) j−k( j + k − 1)!22k

2k!( j − k)!
tkdt,

=

m∑
j=0

j∑
k=0

c̃ j
j(−1) j−k( j + k − 1)!22k

2k!( j − k)!
×

∫ ξ

0
κ2(ξ, t) × tkdt,

(49)
= Λ j (ξ ).
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Fig. 1. Plots of u(ξ, t, s) for m = 6 in case of numerical and exact solution for t = 0.5.

We have used a numerical scheme for evaluating the integral term presented in Eqs. (48) and (49). The fuzzy initial
is also approximated in the following manner

Ω̃T
m ⊙ Ψm(0) = f̃ (ξ ). (50)

The following residue is derived after putting the value of all derivatives and unknown functions in the concerned
model (41)

ξ̃ (ξ ) =Ω̃T
m ⊙ QβΨm(ξ ) ⊖ µ1Ξ j (ξ ) ⊖ µ2Λ j (ξ ) ⊖ f̃ (ξ, s). (51)

system of fuzzy algebraic equation is determined after collocating Eq. (51) Chebyshev nodes. We get the solution
of our model after solving the system of fuzzy algebraic equation [6].

4. Finding and validation of method

This section contains the numerical validation of derived method for the fractional fuzzy Fredholm–Volterra
integral equation. All numerical calculations are performed on Wolfram Mathematica version-11.3.

Example 1. In this first example a simple fuzzy Fredholm–Volterra integrodifferential equation is picked up which
is obtained from the model (41) with parameters value β = 1, µ1 = 1, µ2 = 1, κ1(ξ, t) = eξ−t , and κ2(ξ, t) = ξ − t

dũ(ξ )
dξ

=

∫ 1

0
eξ−t ũ(t)dt ⊕

∫ ξ

0
(ξ − t)ũ(t)dt ⊕ f̃ (ξ ), (52)

he fuzzy initial condition is

ũ(0) = (1 + 0.5s, 2 − 0.5s). (53)

The exact solution of (56)–(57) is ũ(ξ, s) = (1 + 0.5s, 2 − 0.5s)eξ . Fig. 1 represents the exact and analytical
solution respectively. The variation of absolute error can be shown in Table 1. Both shows the accuracy and validity
of presented method for fuzzy type integral equation.

Example 2. Now we consider the following fuzzy fractional Fredholm–Volterra integrodifferential equation that is
obtained from the model (41) with parametric value β = 0.9, µ1 = 1, µ2 = 1, κ1(ξ, t) = eξ−t , and κ2(ξ, t) = ξ − t

dβ ũ(ξ )
dtβ

= µ1

∫ 1

0
κ1(ξ, t)ũ(t)dt ⊕ µ2

∫ ξ

0
κ2(ξ, t)ũ(t)dt ⊕ f̃ (ξ ), (54)

ubject to the following fuzzy initial condition

ũ(ξ, 0) = 0. (55)
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Table 1
Exhibition of absolute errors at t = 0.1, s = 0.1 and for m = 7.

ξ ↓ Absolute error value for
lower solution

Absolute error value for
upper solution

0.1 3.2 × 10−10 3.5 × 10−11

0.2 1.0 × 10−11 6.7 × 10−11

0.3 7.1 × 10−10 8.5 × 10−10

0.4 3.8 × 10−10 9.3 × 10−10

0.5 5.5 × 10−10 5.2 × 10−10

0.6 4.6 × 10−10 4.7 × 10−10

0.7 1.9 × 10−10 6.5 × 10−10

0.8 7.9 × 10−10 2.8 × 10−10

Fig. 2. Plots of u(ξ, t, s) for m = 4 in case of numerical and exact solution for t = 0.5.

Table 2
Exhibition of absolute errors with t = 0.1, s = 0.1 and for m = 7.

ξ ↓ Absolute error value for
lower solution

Absolute error value for
upper solution

0.1 4.2 × 10−7 8.6 × 10−7

0.2 3.6 × 10−7 4.7 × 10−7

0.3 5.7 × 10−6 5.5 × 10−6

0.4 6.4 × 10−6 1.9 × 10−6

0.5 5.9 × 10−6 2.9 × 10−6

0.6 4.9 × 10−6 9.2 × 10−6

0.7 1.6 × 10−6 3.4 × 10−6

0.8 6.0 × 10−6 5.8 × 10−6

We choose the force function f̃ (ξ ) such that exact solution of this problem is ũ(ξ ) = (1 + 0.5s, 2 − 0.5s)ξ 5. The
exact and analytical solution of this problem are depicted by Fig. 2. The analogy between both the figures shows
the feasibility of method. The variation of absolute error is given in Table 2. This table shows that our numerical
results are in good agreement with the exact ones.

Example 3. Considering another particular case in which β = 0.9, µ1 = 1, µ2 = 1, κ1(ξ, t) = sinh(ξ − t), and
κ2(ξ, t) = xt

d0.9ũ(ξ )
dt0.9 =

∫ 1

0
sinh(ξ − t)ũ(t)dt ⊕ µ2

∫ ξ

0
xtũ(t)dt ⊕ f̃ (ξ ), (56)

ith the following fuzzy initial condition

ũ(ξ, 0) = 0. (57)

e choose the force function f̃ (ξ ) such that exact solution of this problem is ũ(ξ ) = (1 + 0.5s, 2 − 0.5s) cosh(ξ ).
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Fig. 3. Plots of u(ξ, t, s) for m = 4 in case of numerical and exact solution for t = 0.5.

Table 3
Exhibition of absolute errors at t = 0.1, s = 0.1 and for m = 7.

ξ ↓ Absolute error for lower
solution

Absolute error for upper
solution

0.1 6.7 × 10−6 8.6 × 10−6

0.2 3.7 × 10−5 5.3 × 10−5

0.3 4.9 × 10−5 6.2 × 10−5

0.4 8.8 × 10−5 7.4 × 10−5

0.5 2.3 × 10−5 1.3 × 10−5

0.6 1.7 × 10−5 4.1 × 10−5

0.7 9.3 × 10−5 7.6 × 10−5

0.8 6.4 × 10−5 4.2 × 10−5

Fig. 3 depicts the exact and numerical solution 3D plots for example 3 respectively. These figures prove the
easibility of our method. The Table 3 is drawn for absolute error for this example respectively. We can conclude
hat the accuracy of our method is desirable.

. Conclusion

This article is devoted to study of fuzzy fractional Fredholm Volterra integral equation. First, the introductory
efinitions and concepts of fuzzy calculus are discussed. Some lemmas and theorems are presented to deal with
uzzy model. The unknown fuzzy function is approximated in terms of shifted Chebyshev polynomials. The
hebyshev operational matrix has been derived to find out the numerical solution of model. The differential term was
pproximated by using Caputo fuzzy fractional operational matrix while the integral term was approximated by using
hebyshev spectral method. We solved particular cases of our model with this spectral method and demonstrated the
alidity of our method for fuzzy fractional Fredholm–Volterra integrodifferential equation with a desirable accuracy.
ur contribution in the field of fuzzy fraction dynamical systems is that we have taken a mix model of Fredholm

nd Volterra integral term equipped with fractional differential term which is new of its kind. A complex dynamical
ystem which is uncertain in nature and have property of integro differential equation, its behavior can be easily
epicted by this method. This work can be extended to a new class of integral equation with fuzzy environment.
any physical models having integral equations in their model can be solved by this method. On other hand,

ntegro-differential equation solutions with non-singular kernel like exponential and Mittag-Leffler can be derived

y extending this method.
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