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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Various techniques for understanding 
cyanobacterial metabolism are reviewed 
here. 

• Integration of multi-omics data with 
metabolic models are discussed. 

• Various applications of metabolic sys-
tems biology and multi-omics are 
presented.  
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A B S T R A C T   

Cyanobacteria are oxygenic photoautotrophs whose metabolism contains key biochemical pathways to fix at-
mospheric CO2 and synthesize various metabolites. The development of bioengineering tools has enabled the 
manipulation of cyanobacterial chassis to produce various valuable bioproducts photosynthetically. However, 
effective utilization of cyanobacteria as photosynthetic cell factories needs a detailed understanding of their 
metabolism and its interaction with other cellular processes. Implementing systems and synthetic biology tools 
has generated a wealth of information on various metabolic pathways. However, to design effective engineering 
strategies for further improvement in growth, photosynthetic efficiency, and enhanced production of target 
biochemicals, in-depth knowledge of their carbon/nitrogen metabolism, pathway fluxe distribution, genetic 
regulation and integrative analyses are necessary. In this review, we discuss the recent advances in the devel-
opment of genome-scale metabolic models (GSMMs), omics analyses (metabolomics, transcriptomics, prote-
omics, fluxomics), and integrative modeling approaches to showcase the current understanding of cyanobacterial 
metabolism.   
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1. Introduction 

The rapidly growing human population and expanding industriali-
zation have increased energy demand and expedited the consumption of 
natural resources. This overexploitation of natural resources has led to 
severe damage to the environment and threatened an impending global 
energy crisis soon. Therefore, there is an increasing demand to design 
sustainable and eco-friendly strategies to produce sustainable fuel and 
chemical alternatives (Luan and Lu, 2018). In this context, several native 
microbes and their engineered variants have been effectively used to 
produce various renewable biofuels and biochemicals. However, most of 
these systems are based on heterotrophic microorganisms such as 
Escherichia coli and Saccharomyces cerevisiae, which require organic 
carbon sources (glucose or sugar-based feedstocks) for their growth 
(Dodds, 2002; Jojima et al., 2010; Wang et al., 2019). On the other hand, 
cyanobacteria can utilize atmospheric carbon to produce biomass 
through photosynthesis (Singh et al., 2016). Furthermore, marine cya-
nobacteria offer additional sustainability advantages as they do not need 

fresh water-based media to grow (Merlo et al., 2021). The recently 
identified fast-growing strains such as Synechococcus elongatus UTEX 
2973 (Yu et al., 2015), Synechococcus elongatus PCC 11801 (Jaiswal 
et al., 2018b), Synechococcus elongatus PCC 11802 (Jaiswal et al., 2020), 
Synechococcus elongatus PCC 11901 (Włodarczyk et al., 2020), and 
Synechococcus elongatus BDU 130192 (Pathania and Srivastava, 2021) 
have further enriched the list of potential cyanobacterial strains for 
biotechnological purposes. In addition to growth advantages, these 
strains also exhibit valuable properties such as higher biomass accu-
mulation and higher tolerance towards various abiotic factors. 

Cyanobacteria contain the biochemical pathways necessary to 
convert solar energy into biochemical energy to produce a wide variety 
of energy-rich compounds. Considering the benefits offered by cyano-
bacteria, many researchers have established and employed metabolic 
engineering tools to modify native pathways and express heterologous 
pathways to divert the photosynthetic carbon flux towards value-added 
bioproducts such as alcohols, hydrocarbons, isoprenoids, sugars, etc. 
(Knoot et al., 2018; Pattharaprachayakul et al., 2020). 

Fig. 1. Strain designing through the application of 
metabolic models. The diagram illustrates different 
steps involved in metabolic systems biology that uti-
lizes an integration of computational automation, 
systems biology, and synthetic biology tools to guide 
engineering strategies for creating superior cyano-
bacterial strains. In the lowermost panel, the upre-
gulated gene products (metabolites) are indicated by 
green color whereas the downregulated gene products 
are indicated by red (For interpretation of the refer-
ences to color in this figure legend, the reader is 
referred to the web version of this article).   
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1.1. Bottlenecks in research and recent approaches to resolve them 

It has been realized that improving the production of native and/or 
non-native molecules of interest will require extensive manipulation of 
their genetic and metabolic makeup. Such issues prompt a detailed 
understanding of cyanobacterial metabolism and its regulation at 
different levels as well as to generate a comprehensive picture of the 
regulation. Additionally, such information is required to efficiently 
develop the newly-identified promising strains as cyanobacterial bio-
factories. Thus, it is essential to systematically find and remove the 
metabolic and regulatory blockages, waste cycles or pathways that are 
responsible for reducing the productivity of desired compounds (Hage-
mann and Hess, 2018). 

These requirements necessitated the development of novel and 
integrative strategies. Among the recent developments in metabolic 
engineering of cyanobacteria, the incorporation of the “Design-Build- 
Test-Learn” (DBTL) paradigm has been explicitly helpful in the optimi-
zation of metabolic output and flux distribution (Carbonell et al., 2018; 
HamediRad et al., 2019). The DBTL pipeline implements a robust inte-
gration of computational automation, systems and synthetic biology 
tools to manipulate the metabolic network for designing cyanobacterial 
strains (Fig. 1). Various synthetic biology innovations and multi-omics 
studies such as randomly barcoded transposon insertion have been 
adapted to identify essential genes and assign gene functions while 
CRISPR-interference (CRISPRi) and Antisense Expression technologies 
have been implemented to regulate the expression of target genes to 
design cyanobacterial strains as hosts for biotechnological applications 
(Table 1). 

The rapidly increasing number of genome sequences and emerging 
gene-editing technologies such as CRISPR/Cpf1 are opening up new 
possibilities to explore and engineer cyanobacterial metabolism. Their 
systematic integration with metabolic systems biology will further 
empower the engineering programs of cyanobacterial strains. This re-
view provides an overview of emerging applications and significance of 
metabolic systems biology approaches to delineate the metabolic ca-
pabilities of cyanobacteria and their flux control. 

2. Genome annotation, reconstruction of genome-scale 
metabolic models (GSMMs), and their applications in 
cyanobacterial strain designing 

High-throughput (formerly ‘next-generation’) sequencing tech-
niques (NGS) (Koboldt et al., 2013) such as Illumina dye sequencing, 
pyrosequencing, SMRT (Single-molecule real-time) sequencing, and 

nanopore technologies have been developed to sequence and analyse 
genomes. The rapid and cost-effective genome sequencing techniques 
have enabled the identification and characterization of several cyano-
bacterial genomes each year. Various genome annotation pipelines such 
as the National Center for Biotechnology Information (NCBI) Prokary-
otic Genome Annotation Pipeline (PGAP) (Tatusova et al., 2016), Prokka 
(prokaryotic annotation) (Seemann, 2014), RAST (Rapid Annotations 
using Subsystem Technology) (Overbeek et al., 2014), DRAM (Distilled 
and Refined Annotation of Metabolism) (Shaffer et al., 2020), etc. are 
available for genome annotation of a wide variety of organisms. Various 
databases for cyanobacteria have been developed, having information 
about complete genome sequences, gene annotations, gene information, 
and species information (e.g., CyanoBase) (Fujisawa et al., 2017), 
CYORF (Furumichi et al., 2002) etc. 

The availability of genome sequences and accurate annotation in-
formation represents the first step towards reconstructing genome-based 
metabolic models that help to understand the primary metabolism of 
cyanobacteria and its regulation through systems-level analysis (Brod-
drick et al., 2016). GSMMs are stoichiometry-based structural models 
which provide information about metabolic networks and don’t require 
information on enzyme kinetic parameters (Gu et al., 2019). These 
models can predict growth rates, product formation, theoretical yield, 
and intracellular flux distributions, depending on the constraints and 
steady-state assumptions. The GSMMs are often combined with addi-
tional experimental measurements, such as growth rate, CO2 and photon 
uptake rates, O2 production, etc., to identify the cellular metabolic flux 
distributions (Vu et al., 2012). 

Several automated tools have been developed to reduce the time for 
reconstruction, such as FAME (Flux Analysis and Modeling Environ-
ment) (Boele et al., 2012), Merlin (Metabolic Models Reconstruction 
using Genome-Scale Information) (Dias et al., 2015), RAVEN (Recon-
struction, Analysis, and Visualization of Metabolic Networks) (Agren 
et al., 2013), ModelSEED (Henry et al., 2010), etc. Methods such as 
OptORF (Kim and Reed, 2010), OptKnock (Burgard et al., 2003), Opt-
Force (Ranganathan et al., 2010), RobustKnock (Tepper and Shlomi, 
2010), etc. have been developed to identify the gene modifications 
(deletions or overexpression) to form the desired product(s) by 
analyzing the GSMMs. Tools such as MOMA (minimization of metabolic 
adjustment) (Segre et al., 2002), RELATCH (minimization of relative 
metabolic change) (Kim and Reed, 2012) and ROOM (regulatory on/off 
minimization) (Shlomi et al., 2005) can predict the flux distributions in 
knockout strains. 

In recent years, metabolic modeling has been applied to several 
cyanobacterial model strains such as Synechocystis sp. PCC 6803 (Fir-
oozabadi et al., 2021), Synechococcus sp. PCC 7942 (Broddrick et al., 
2016), Synechococcus sp. PCC 7002 (Hendry et al., 2016), Cyanothece sp. 
ATCC 51142 (Alagesan et al., 2013), and some of the non-model strains, 
e.g., Synechococcus elongatus BDU 130192 (Ahmad et al., 2020). The first 
metabolic model of Synechocystis sp. PCC 6803 was developed by Fu, 
2009 and has gone through several upgradations (Sarkar et al., 2019). 

The kinetic or dynamic models use thermodynamics, enzyme ki-
netics, and other metabolic regulatory information to calculate the 
fluxes or metabolite concentrations (Hameri et al., 2019; Kim et al., 
2018). Kinetic modeling with the Metabolic Control Analysis (MCA) 
approach (Fell, 1992) has been applied to overproduce limonene and 
ethanol in cyanobacteria (Table 2). Both kinetic modeling and GSMMs 
have advantages and disadvantages (Table 3). 

In recent years, the use of hybrid models has become attractive due 
to the advantages offered by different types of models to define, calcu-
late and optimize the performance of a biological system. The hybrid 
models are developed by integrating stoichiometric information and 
high quality kinetic data and they are evaluated for theoretical and 
experimental accuracy (Kim et al., 2018). For the creation of hybrid 
metabolic models, the GSMMs are systematically reduced, and then the 
kinetic parameters data for the reactions are integrated with the reduced 
network. Various methods are used to reduce the network, such as 

Table 1 
A list of some of the classical and recent synthetic biology innovations used to 
design cyanobacterial strains as workhores for biotechnological applications.  

Techniques Strain Summary References 

RB-Tnseq* Synechococcus 
sp. PCC 7942 

Identified the essential gene 
sets 

(Rubin et al., 
2015) 

RB-Tnseq Synechococcus 
sp. PCC 7942 

Identified genes necessary 
for diurnal growth 

(Welkie et al., 
2018) 

Pooled 
CRISPRi 

Synechocystis sp. 
PCC 6803 

Increased L-lactate 
production 

(Yao et al., 
2020) 

Antisense 
Expression 

Synechococcus 
sp. PCC 7942 

Increased production of 
short chain fatty acids 

(Gong and 
Miao, 2019) 

CRISPRi Synechocystis sp. 
PCC 6803 

Identification of an essential 
gene in ACP (acyl carrier 
protein)-consumption 

(Kaczmarzyk 
et al., 2018) 

Grad-seq Synechocystis sp. 
PCC 6803 

Identification of 
ribonucleoprotein 
complexes 

(Riediger et al., 
2021) 

CRISPR/ 
Cpf1 

Synechocystis sp. 
PCC 6803 

Marker-less gene insertion 
and deletion 

(Ungerer and 
Pakrasi, 2016) 

*RB-Tnseq = Randomly barcoded transposon insertion sequencing. 
**RBS = Ribosome-binding sites. 
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NetworkReducer (Erdrich et al., 2015), minNW (Röhl and Bockmayr, 
2017), etc. 

3. Metabolic flux analyses of cyanobacterial metabolism 

While the GSMMs provide flux distribution consistent with a 
particular objective, e.g., growth maximization, under a specific set of 
condition(s) and constraints, sometimes metabolic fluxes may not follow 
the assumed objective. The quantitative flux distribution is estimated 
through stable isotope-based labeling studies called the Metabolic Flux 
Analysis (MFA) (Zamboni et al., 2009). In isotope labeling experiments 
(ILEs), the labeled intracellular metabolites/amino acids are estimated 
using analytical techniques such as mass spectrometry (MS) or nuclear 
magnetic resonance (NMR) (Antoniewicz et al., 2007; Szyperski, 1995). 
This labeling pattern is analyzed with specialized software and fitted 
into a computational model to extract the flux information. MFA can 
provide valuable information on metabolic mechanisms, regulatory 
bottlenecks, partitioning of fluxes into diverging pathways at branch 
points, discovering unusual pathways, identifying the genetic differ-
ences in closely related microorganisms, and identifying the potential 
ways to improve strain performance to eventually maximize product 
yield (Dai and Locasale, 2017). This approach has been applied to many 

diverse organisms (including prokaryotes and eukaryotes) cultivated in 
a variety of physiological conditions (heterotrophy, mixotrophy, star-
vation, etc.) (Guo et al., 2016). 

Two different types of MFA can be performed: steady-state MFA (SS- 
MFA) and isotopically nonstationary (INST)-MFA (Adebiyi et al., 2015; 
Cheah and Young, 2018). The SS-MFA approach is mainly applied to 
heterotrophic or mixotrophic cultures by using 13C labeled glucose, 
glycerol, or amino acids as a substrate. The term ‘‘steady-state’’ refers to 
the metabolic and isotopic steady-states. Both approaches have advan-
tages and challenges (Table 3). 

The flux distributions measured by MFA can also be used to validate 
the predictions, further refine metabolic models, reveal hidden meta-
bolic bottlenecks, and narrow down the range of possible flux distribu-
tion measurements provided by FBA (Basler et al., 2018). Several studies 
have employed INST-MFA to elucidate the differences in metabolic flux 
distribution in cyanobacterial strains, whether closely-related but 
showing different phenotypes, or upon genetic engineering (Table 4). 

While earlier studies employed INST-MFA to calculate the flux dis-
tribution of the central metabolic pathways, recent studies have 
extended the network to genome-scale metabolic networks. The first 
such study in photoautotrophs, conducted for Synechocystis sp. PCC 
6803 (Gopalakrishnan et al., 2018) showed that most of the fixed carbon 
was used for biomass accumulation while the remaining small per-
centage moved towards the storage of glycogen and organic acids. 
Approximately 12% of the fixed carbon was oxidized to CO2 through the 
TCA cycle and other anabolic reactions, resulting in a significant loss of 
carbon. In another study, intracellular flux distribution was recomputed 
using genome-scale isotopic INST-MFA on two different cyanobacterial 
strains, Synechococcus UTEX 2973 vs. Synechocystis sp. PCC 6803 
(Hendry et al., 2019). The flux map revealed the differences in the CBB 
pathway that contribute to more efficient carbon metabolism and thus 
higher growth in Synechococcus elongatus UTEX 2973. More applications 
of combining 13C-MFA with GSMMs can be expected in the near future. 

4. Metabolomics 

Cyanobacteria produce a wide variety of unique active secondary 
metabolites, which are gaining attention due to their anti-bacterial, anti- 
inflammatory, anti-cancer properties (Jeong et al., 2020). CyanoMetDB 
is a public repository for secondary metabolites of cyanobacteria (Jones 
et al., 2021). Improvements in the sensitivity and resolution of analytical 
techniques, along with development of data analyses tools, have facili-
tated the identification of a large number of metabolites. For example, a 
novel sequential window acquisition of all theoretical fragment-ion 
spectra (SWATH) approach quantifies untargeted precursors and MIDs 
of intracellular metabolites (even at low abundance) from a 13C-labeled 
experiment in a single run with greater resolution and fewer errors than 
conventional techniques (Jaiswal et al., 2018a). 

Table 2 
Various algorithms applied for the production of target bioproducts through strain designing based on model simulations.  

Strain Algorithm used Product/ culture 
condition 

Descriptions Reference 

Synechocystis sp. PCC 
6803 

FBA n-butanol 8 mg/gDCW/day n-butanol in nitrogen-deprived conditions upon 
overexpression of heterologous Phosphoketolase (PKT). 

(Anfelt et al., 
2015) 

Synechocystis sp. PCC 
6803 

FBA Ethanol Predicted that ~ 235% (1.054 mmol/gDCW/h) higher ethanol can be 
produced through 13 genetic manipulations. 

(Lasry Testa et al., 
2019) 

Synechocystis sp. PCC 
6803 

FVA Isoprene 40-fold increase in titer/g DCW (2.8 mg/gDCW or 1.0 mg/L). (Englund et al., 
2018) 

Nostoc sp. CCC-403 Multi-objective hybrid 
machine learning 

Phycobiliproteins 
(PBPs) 

Identified potential metabolic fluxes contributing to PBPs production. (Saini et al., 2021, 
p. 40) 

Synechococcus sp. PCC 
7942 

MCA Limonene Increase in productivity by 100-fold (76.3 µg/L/OD/d). (Wang et al., 
2016a) 

Synechocystis sp. PCC 
6803 

MCA Ethanol Improved ethanol productivity by 1.37-fold (118.2 ± 8.0 mg/L) by 
overexpression of phosphoglycerate kinase (PGK). 

(Nishiguchi et al., 
2019) 

Synechococcus elongatus 
PCC 7942 

FBA with MOMA 1,3-propanediol and 
glycerol 

28% improvement in 1,3-PDO and 111% improvement in glycerol titers. (Hirokawa et al., 
2017)  

Table 3 
The advantages and challenges of different flux analysis approaches.  

Approaches Advantages Challenges 

Structural 
Models 

Predict organism phenotype 
without the need of extensive 
experimental work (qualitative 
estimation of fluxes).  
Identify fluxes through the whole 
metabolic network. 

Flux distribution depends 
upon assumptions and 
constraints.   
Need validation through 
experiments. 

Kinetic 
Models 

More precise.  
Can give profiles of multiple 
intracellular metabolites. 

Difficult to get accurate 
enzyme kinetic data.  
The system of equations 
obtained may suffer from 
instability. 

Stationary- 
MFA 

Both qualitative and quantitative 
estimation of flux values.  
Easy to estimate fluxes through 
quantification of amino acids 
(slower labeling rate and higher 
abundance than intracellular 
metabolites). 

Can only be applied in 
mixotrophic conditions.  
Takes much time (in hours) 
to reach the steady-state.  
Difficult to confirm isotopic 
steady state. 

Non- 
stationary 
-MFA 

Only one Carbon substrate is 
required.  
Need less time for labeling 
experiments. 

Fluxes only through central 
carbon metabolic pathway 
reactions.  
Requires rapid quenching of 
metabolites.  
More challenging to fit the 
experimental data.  
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The metabolomics analyses have revealed several novel insights into 
cyanobacterial biology. For example, it was shown that Synechococcus 
elongatus UTEX 2973 fixed more carbon through the pentose phosphate 
pathway (PPP) and redirected its flux to synthesize storage compounds 
from the glycolytic pathway for enhancing salt tolerance (Cui et al., 
2020). In another study, it was revealed that UV-B exposure significantly 
reduced intracellular metabolites related to carbon and nitrogen meta-
bolism, such as amino acids, which play a role in secondary metabolite 
production and significantly increased the accumulation of the cyto-
protective amino acid proline, in Chlorogloeopsis fritschii cells (Kultschar 
et al., 2019). Another study on Synechococcus elongatus PCC 11801 
showed that the cellular metabolite inventory undergoes dramatic 
changes during diurnal growth, some of which changed up to 100-fold. 
The intermediate of the CBB cycle peaked during mid-day for faster 

growth. The unknown gamma-glutamyl dipeptides (which act as amino 
acid reservoirs) and several other storage molecules or their precursors 
were accumulated in the cells during the dark period (Jaiswal and 
Wangikar, 2020). A comparative analysis estimating the metabolites of 
Synechococcus elongatus PCC 11802 and Synechococcus elongatus PCC 
11801 revealed that Synechococcus elongatus PCC 11802 has relatively 
more active reactions involved in CO2 assimilation catalyzed by 
RuBisCO and PEPC and the presence of additional intermediates of the 
CBB cycle with minor triose phosphate utilization (Jaiswal et al., 2020). 
Similarly, comparative metabolomics analysis of a library of 44 response 
regulators (RRs) knockout strains of Synechocystis sp. PCC 6803 indi-
cated their differential regulatory roles (Shi et al., 2020). 

5. Transcriptomics 

To precisely determine the metabolic state of a cell, the dynamics of 
changing transcript pools are required. Additionally, the obtained in-
formation can be added to the GSMMs to further constrain the solution 
space of the model. The transcriptomic data of a large variety of cya-
nobacterial strains can be accessed online through publicly available 
databases such as CyanoEXpress (Hernandez-Prieto and Futschik, 2012). 

The study conducted by Pei et al. (2017) identified 133 trans-enco-
ded sRNAs (small RNAs), among which 23 sRNAs were identified for the 
first time in Synechocystis sp. PCC 6803. The overexpression of one of the 
identified sRNAs (Nc117) improved the tolerance against ethanol and 
butanol in Synechocystis sp. PCC 6803 (Pei et al., 2017). Recently, the 
RNA-seq analysis of an alkane producing strain of the filamentous 
cyanobacterium Nostoc punctiformae PCC 73102 revealed the potential 
negative regulators of alkane production (Arias et al., 2020). Such 
studies provide a basis for the engineering of cyanobacteria for the 
production of valuable bioproducts. 

The supplementation of RNA-Seq with other tools such as RNA po-
lymerase (RNA pol), ChIP-sequencing, and Grad-seq has further 
enhanced the capabilities of transcriptomic analyses by unraveling 
protein-RNA interactions (Riediger et al., 2021). Recent advancements 
in transcriptomic tools have highlighted the previously undetermined 
roles of sRNAs, asRNAs (antisense RNAs), and some riboswitches in 
cyanobacterial metabolism (Mironov et al., 2021; Till et al., 2020). 
Therefore, these ncRNAs could be considered for designing methods and 
metabolic engineering protocols to optimize metabolic flux distribution 
in cyanobacteria (Muro-Pastor and Hess, 2020). Though the potential of 
engineering ncRNA expression is yet to be realized in cyanobacteria, the 
capability of the information obtained from transcriptomics datasets has 
been much appreciated in designing targeted engineering experiments 
in cyanobacteria. For instance, transcriptomic analyses revealed the 
responsive genes (mainly encoding ROS-degrading proteins and poten-
tial transporters of free fatty acids or FFA ) involved in mitigating 
oxidative stress caused by the biosynthesis of FFA in Synechococcus sp. 
PCC 7942 (Ruffing, 2014, 2013). The responsive genes were targeted for 
mutagenesis to confirm reduced toxic effects and improved FFA yield in 
cells. A recent transcriptomics study has revealed a significant role of 
asRNAs in Synechocystis sp. PCC 6803 cells when exposed to hexan-1-ol 
stress (Mironov et al., 2021). Further, the integrative approaches are 
proving to be efficient in unraveling the unique metabolic properties of 
cyanobacteria. For example, the integration of RNA-seq with a meth-
odology for cataloging the genome architecture (differential RNA-seq or 
dRNA-seq) and identifying 3′-end positions and 3′-untranslated regions 
in transcripts (Term-seq) led to the identification of a distinctive energy 
generation strategy in Synechocystis sp. PCC 7338 (Jeong et al., 2021). 

The emergence of advanced transcriptomic techniques, such as 
single-cell transcriptomic (scRNA-Seq), is promising to tackle popula-
tion heterogeneity-related problems (Srivastava and Shukla, 2021). For 
example, industrial-scale photobioreactors are likely to generate a 
gradient in pH, substrate, temperature, or dissolved carbon concentra-
tion due to their large size and non-uniform mixing conditions (Nadal- 
Rey et al., 2021b). These local environments generate locally adapted 

Table 4 
Various applications of INST-MFA approach on cyanobacteria.  

Base Strain Conditions 
compared 

Major Finding(s) Reference 

Synechococcus 
sp. PCC 7002 

Wild-type (WT) 
and glycogen 
synthase (glgA) 
gene knockout 

Flexible carbon 
partitioning between 
ADPG and UDPG, less 
carbon flux towards G1P 
and a marginal increase 
towards glycolysis and the 
TCA cycle are associated 
with increased 
glucosylglycerol and 
sucrose production by the 
mutant. 

(Hendry 
et al., 
2017) 

Synechococcus 
elongatus 
strains 
(nearly 
identical at 
genome 
level) 

Compared UTEX 
2973 and PCC 
7942 strains 

Even though the genome 
sequence of UTEX 2973 is 
nearly identical to PCC 
7942, the faster growth is 
due to higher flux through 
the CBB cycle, glycolysis, 
and pyruvate kinase 
pathway, but limited flux 
in the TCA cycle and 
negligible in malic enzyme 
and Oxidative-PPP (OPPP). 

(Abernathy 
et al., 
2017) 

Synechococcus 
sp. PCC 7942 

WT and 
isobutyraldehyde 
(IBA)-producing 
strains 

Identified a possible 
puruvate kinase (PK) 
bypass pathway and the 
existence of malate 
dehydrogenase (MDH) 
activity in both strains. 

(Jazmin 
et al., 
2017) 

Synechococcus 
sp. PCC 7002 

WT and mutant 
(ΔccmKLMN) 
strain lacking 
carboxysome 

The mutant could recover 
its growth by achieving 
asimilar metabolic flux 
distribution as that of WT 
in spite of reduced 
photosynthesis and higher 
biomass accumulation, 
protein content, and 
photorespiration activity. 

(Abernathy 
et al., 
2019) 

Synechococcus 
sp. PCC 7002 

Nitrogen replete 
and deprived 
conditions 

The flux through the 
bottleneck reaction for 
glycogen synthesis under 
nitrogen depleted 
conditions, as well as 
increased flux overflows 
through the hybrid 
gluconeogenesis–pentose 
phosphate (hGPP) 
pathway. 

(Qian 
et al., 
2018) 

Synechocystis 
sp. PCC 6803 

WT and ΔnrtABCD 
mutant in 
Nitrogen limited 
condition 

The mutant had higher flux 
values for glycogen 
synthesis, OPPP and 
anaplerotic pathways and 
a waste cycle for ATP 
consumption to 
acclimatize in nitrate- 
limited conditions. 

(Nakajima 
et al., 
2017)  
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subpopulations that differ in their metabolic states. Integration of single- 
cell sorting methods (Fluorescence-activated Cell Sorting) and scRNA- 
Seq could be a promising approach in unraveling the target proteins 
that can be further engineered to design stable and superior strains that 
are less affected by local environmental changes (Nadal-Rey et al., 
2021a). 

6. Proteomics analysis: tools, techniques, and challenges 

Proteomics represents a powerful approach to investigate the basis of 
metabolome changes guided by protein expression and their post- 
translational modifications in cyanobacterial cells (Srivastava and 
Shukla, 2021). The proteomic changes in cyanobacteria have been sys-
tematically studied by sub-proteome analysis of the thylakoid mem-
brane and cytoplasm. While the cytoplasmic proteome provides a global 
snapshot of cellular changes in the cells, the thylakoid proteome 
exclusively allows the study of biogenesis, assembly, and dynamics of 
photosynthetic apparatuses (Shi et al., 2021). Besides these fractions, 
the analysis of the exoproteome is one of the emerging branches of 
proteomics that specifically analyzes the secreted proteins in the me-
dium (Flores and Tamagnini, 2019). So far, the most common method 
for quantitative proteomics of cyanobacteria is iTRAQ (Isobaric tags for 
relative and absolute quantitation) (Chang et al., 2017). This technique 
utilizes isobaric reagents that can effectively bind to the primary amine 
group of proteins and peptides. 

The metabolome of cyanobacteria is regulated not only by amounts 
of proteins (enzymes) but also by a variety of post-translational modi-
fications (PTMs) such as phosphorylation (phosphatase and kinase ac-
tivity), acetylation (Babele et al., 2019; Xiong et al., 2016) and so on. 
The PTMs play a crucial role in the signal transduction and regulatory 
pathways in cyanobacteria. In particular, acetylation of proteins regu-
lates the protein stability, enzymatic activity, protein interaction, and 
cellular localization of proteins and metabolites inside the cells. There-
fore, the proteome analysis of these modifications has emerged as 
important sub-branches of proteomics named phosphoproteome and 
acetylome (Mo et al., 2015; Spät et al., 2021). A phosphoproteomic 
analysis of Synechococcus sp. PCC 7002 found 410 phosphorylation sites 
on phosphoproteins participating in crucial molecular methods such as 
two-component signal transduction pathways and photosynthesis (Yang 
et al., 2013). The identification of Serine/Threonine/Tyrosine kinases 
and phosphatases further plays a central role in controlling carbon/ni-
trogen metabolism in cyanobacteria. Such information might be bene-
ficial while designing metabolic engineering efforts to redirect the 
metabolic flux towards a target bioproduct in cyanobacteria. The global 
analysis of the lysine acetylome in Synechocystis sp. PCC 6803 found 776 
acetylation sites (Mo et al., 2015). Most of the acetylated proteins that 
appeared were involved in cellular metabolism, including the phycobi-
lisome subunits. Further, analysis of lysine malonylation (addition of a 
malonyl group) identified 598 sites that were found to be involved in 
photosynthetic reactions (Ma et al., 2017). These molecular clues on the 
PTMs of amino acid residues will offer a novel vision into the regulation 
of photosynthesis and other metabolic processes that can be utilized for 
the construction of metabolically superior strains of cyanobacteria. 

7. Integrated omics 

The DBTL cycle, even though an organized and effective approach 
for strain design, requires high quality and multi-omics datasets to in-
crease the precision and robustness of learning. Since an organism’s 
genome-to-phenotype link is still not fully understood, cell phenotypes 
can differ at various levels, even for species with nearly identical ge-
nomes. Thus, the attention is turning towards utilizing and combining 
different omics technologies to facilitate a more comprehensive under-
standing of cell physiology and the metabolic capabilities of biological 
processes (Amer and Baidoo, 2021). The omics approaches have been 
applied successfully in many fields to understand cellular behavior, 

symbiotic associations, wastewater treatment, metal toxicity, biofuel 
production, pharmaceutical and therapeutics, cosmeceuticals, and to 
enhance the productivity of target biochemicals (Lin et al., 2019; Mishra 
et al., 2019). The multi-omics studies information is integrated with the 
system biology approach for developing cyanobacteria as a host for 
biotechnological applications (Fig. 2). 

Recently, multi-omics data are becoming publicly available, and it is 
believed that GSMMs are promising scaffolds to use these datasets. 
CyanOmics is a database for integrated omics of Synechococcus sp. PCC 
7002 containing information about the complete genome sequence with 
functional annotation, metabolomics, transcriptomes, and proteomic 
analyses under variable conditions (Yang et al., 2015). The GSMMs re-
constructions are converted into predictive models by incorporating 
transcriptional regulatory connections and high-throughput omics data 
as constraints to obtain context-based models (CBM) (Zhou et al., 2021). 
Two significant expansions in GSMMs combined with protein informa-
tion are GEM-PRO (genome-scale models with protein structures) and 
ME models (Models integrating metabolism with protein expression). 
GEM-PRO permits structural bioinformatics analysis from a systems- 
level perspective (Brunk et al., 2016). Recent expansions in network 
content with expression data result in the production of ME-Models, but 
the process needs very detailed information (O’Brien and Palsson, 
2015). Several attempts have been made to integrate datasets from a 
given experiment to obtain a CBM variant and decrease the solution 
space by adding constraints through the integration of omics data. Ad-
vances in omics approaches and bioinformatics tools and databases will 
play an essential role in achieving economically feasible targets. More 
data from diverse cyanobacterial species may unravel novel, universal 
regulatory principles. 

With the increasing importance of multi-omics data, several tools, 
databases, algorithms, and methods (e.g., GECKO (GEMs with Enzy-
matic Constraints using Kinetic and Omics data) (Sánchez et al., 2017), 
ME, REMI (Relative Expression and Metabolomics Integrations) (Pandey 
et al., 2019), etc.) have been developed to incorporate omics data with 
metabolic models with advanced statistics such as principal compound 
analysis, multivariate data analysis, etc. and data depictions through 
correlation maps, volcano plots, etc. (Bekiaris and Klamt, 2020; Zam-
pieri et al., 2019). Various algorithms such as GIMME (Gene Inactivity 
Moderated by Metabolism and Expression) (Becker et al., 2008), iMAT 
(the Integrative Metabolic Analysis Tool) (Shlomi et al., 2008), MADE 
(Metabolic Adjustment by Differential Expression) (Jensen and Papin, 
2011), IOMA (Integrative Omics-Metabolic Analysis) (Yizhak et al., 
2010), etc. are used for the integration of metabolomics and expression 
data with CBM (Volkova et al., 2020). The DeepRiPP database is used for 
integrating genomics and metabolomics data to find out novel riboso-
mally synthesized posttranslationally modified peptides (RiPPs) (Mer-
win et al., 2020). TREM-Flux (Time-Resolved Expression and 
Metabolite-based prediction of flux values) incorporates partial time- 
resolved unlabeled metabolomics and transcriptomic data with CBM 
(Kleessen et al., 2015) to predict non-steady-state fluxes in response to a 
perturbation, such as a treatment or a change of environmental condi-
tions. These techniques are constructed on constraint-specific formula-
tions, and the reduction of metabolic models needs to be optimized 
further to study these added constraints. 

The proteomic and metabolomics approaches were applied to the 3- 
hydroxypropionate-(3-HP)-producing Synechocystis sp. PCC 6803 strain 
(Wang et al., 2016b). The results concluded numerous characteristics of 
cellular metabolism related to energy, reducing equivalents, basic 
metabolism and biomass compound synthesis, which were differentially 
enhanced in the 3-HP-producing strain. A systems analysis based on 
omics data conducted on Synechococcus sp. PCC 7002 for enhanced 
ethanol production (Kopka et al., 2017) showed that during ethanol 
production, the intermediates of pyruvate-based pathways were 
decreased due to unnecessary carbon loss from the primary metabolism. 
Oftadeh et al. (2021) used the ETFL/yETFL (Expression and Thermo-
dynamics FLux) method to efficiently integrate RNA and protein 
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synthesis data with GSMM to predict maximum growth rate, essential 
genes, and the phenotype of overflow metabolism, which provides 
valuable visions on the optimality of the regulatory mechanisms and can 
be further used to design strategies to make valuable strains (Oftadeh 
et al., 2021). In another study, integration of transcriptomics and exo-
metabolomics with GSMM was done to study dynamic population 
behavior and changes during adaptation (Hadadi et al., 2020). 

8. Conclusions 

GSMMs and different Omics analyses have revealed novel insights 
into cyanobacterial biology and regulation. However, understanding the 
dynamic activities of complex metabolism is required to predict cellular 
behavior through systems and synthetic biology tools. The integration of 
high-throughput omics has emerged as a beneficial approach to provide 
in-depth information about metabolism and its regulations for rational 
strain designing. In the future, artificial intelligence and machine 
learning (AI/ML) approaches coupled with omics datasets will generate 
novel information on regulation at various levels to devise molecular 
biology-based strategies to precisely and rapidly create designer strains 
for biotechnological applications. 
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photosynthetic cyanobacterium rich in internal membrane systems via gradient 
profiling by sequencing (Grad-seq). Plant Cell 33, 248–269. https://doi.org/ 
10.1093/plcell/koaa017. 
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