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A B S T R A C T

The unique network structure of hydrogels enables very high levels of hydrophilicity and biocompatibility, while 
at the same time exhibiting the soft physical properties associated with living tissue, making them ideal bio
materials. Stimulus-responsive hydrogels are particularly effective. Stimulus-responsive hydrogels can respond to 
the external environment (including light, pH, temperature, electricity, etc.), thus conducting and controlling 
material properties. In recent years, stimulus-response hydrogel has become a hot-spot. However, there are 
limited applications of stimulus-responsive hydrogel in food field, which needs to be further explored. This re
view identified and discussed a variety of response methods that have been developed, including temperature, 
pH, chemical, optical, electrical and other responsive hydrogels. In addition, the fabrication of stimulus- 
responsive hydrogels and the current and future applications of these hydrogels in the field of food are reviewed.   

1. Introduction

Hydrogels can absorb relatively high quantities of water into their
porous polymer networks through hydration and capillary forces (Shen, 
Shamshina, Berton, Gurau, & Rogers, 2016). In the food industry, 
hydrogels are usually formulated from natural polymers such as proteins 
(e.g., gelatin, casein, whey protein, soy protein, and fish) (Zohur
iaan-Mehr, Pourjavadi, Salimi, & Kurdtabar, 2009) and polysaccharides 
(e.g., alginate, carrageenan, pectin, and starch). Numerous fabrication 
methods are available for hydrogel preparation, including macroscopic 
gelation, injection-gelation, emulsion-templating-gelation, phase 
separation-gelation, gel fragmentation, and spray drying methods 
(Zhang, Zhang, Chen, Tong, & McClements, 2015). Moreover, new 
methods are being developed such as additive manufacturing (3D 
printing) of hydrogels (Martinez, Goyanes, Basit, & Gaisford, 2017). 
There has been strong interest in the development of hydrogels because 
of their good biocompatibility, simple preparation, and wide application 
range (Klein & Poverenov, 2020). For instance, they have been utilized 
as functional materials in drug delivery (Narayanaswamy & Torchilin, 

2019), tissue engineering (Naahidi et al., 2017), textiles (Stular, 
Simoncic, & Tomsic, 2017), food packaging (Batista et al., 2019), and 
nutrients delivery (Liu, Zhang, Li, McClements, & Liu, 2018; Zhang, 
Zhang, Chen, Tong, & McClements, 2015). Recently, there has been 
considerable interest in the design and fabrication of “intelligent” 
hydrogels that can respond to external stimuli, such as temperature, 
pressure, light, pH, ionic strength, or enzyme (Chatterjee & Hui, 2021). 
The introduction of stimulus-responsive effects can enhance the func
tionality and increase the range of applications of hydrogels. For 
instance, changes in their swelling or degradation behavior can be used 
to create novel textural or release characteristics (Koetting, Peters, 
Steichen, & Peppas, 2015). Previously, the applications of 
stimulus-responsive hydrogels have mainly focused on drug loading and 
release in the pharmaceutical industry (Sharma, Jain, & Tiwari, 2020). 
There have been far fewer studies on the application of these advanced 
materials in foods. Nevertheless, there may be a number of important 
applications where they have advantages over existing technologies 
(Shewan & Stokes, 2013). Indeed, some studies have already shown that 
stimulus-responsive hydrogels can be used to create intelligent food 
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packaging materials (Batista et al., 2019), nutrient delivery systems 
(Chen et al., 2017; HaqAsif et al., 2021; Zhang, Zhang, Decker, & 
McClements, 2015), and bacterial detection systems (Vogt, Richard, 
Dippold, & Laura, 2005). These studies demonstrate the potential of 
stimulus-responsive hydrogels for certain food applications. In this re
view, we discuss the classification, preparation, and application of 
stimulus-responsive hydrogels in foods. Moreover, we discuss potential 
future developments of this technology in the food industry. 

2. Classification of stimulus-responsive hydrogels

Stimulus-responsive hydrogels alter their microstructures and/or
physicochemical properties in response to some environmental stimuli, 
such as pH, ionic strength, temperature, light, enzyme (Koetting et al., 
2015). Fig. 1 shows some common stimulus-responsive hydrogels 
related to the field of food. 

2.1. pH- and ion-responsive hydrogels 

These kinds of hydrogels respond to changes in the pH or ionic 
composition of the surrounding solution, which lead to alterations in the 
electrostatic interactions between the polymer chains that make up the 
network inside them (Tulain, Ahmad, Rashid, Malik, & Iqbal, 2016). The 
pH determines the charge state of any ionizable side groups on the 
polymer chains, such as COOH ↔ COO− + H+ or NH3

+ ↔ NH2 + H+. The 
ionic composition determines the magnitude and range of electrostatic 
interactions through ion binding and electrostatic screening effects. 

The characteristics of pH-responsive hydrogels can be adjusted by 
changing the composition of the polymer backbone, the cross-linking 
density of the polymer chains, and the nature of the ionic groups 
(Yong, Qiu, Kinam, & Park, 2012). This kind of hydrogel has been 
explored for its potential application as a release system in medical 
applications because there are appreciable changes in pH within the 
human body (e.g., mouth, stomach, small intestine, colon, and blood
stream) and in response to injuries or disease (such as tissue/wound 
inflammation and tumor formation) (Koetting et al., 2015). Thus, 
controlled release systems designed for targeted drug delivery can be 
prepared based on the differing pH conditions in different parts of the 

body. 
pH-responsive hydrogels can be divided into three main types: 

anionic, cationic, and amphoteric hydrogels. The ionizable groups in 
anionic pH responsive hydrogels are usually weakly acidic carboxyl 
groups (such as -COOH and -SO3H) on the polymer chains. When the pH 
is relatively low (pH < pKa), the carboxyl groups are not fully ionized 
and so there is only a weak electrostatic repulsion between them so the 
polymer chains can come close together, thereby leading to a contracted 
hydrogel. Conversely, as the pH is raised (pH > pKa), the carboxyl 
groups become more ionized, leading to greater electrostatic repulsion 
between the polymer chains, thereby causing swelling of the hydrogel. 
The swelling mechanism of cationic pH-responsive hydrogels is similar 
to that of anionic ones, but the important functional groups are amines 
(such as -NH2, -NHR, and -NR2) (Shohraty, Moghadam, Fareghi, 
Movagharnezhad, & Khalafy, 2015). In this case, when the pH is rela
tively low, the amines become charged (-NH3

+), which increases the 
electrostatic repulsion between the polymer chains and leads to swelling 
of the hydrogel. Conversely, when the pH is relatively high the amines 
lose their charge, which results in shrinking of the hydrogel. The 
swelling properties of anionic and cationic hydrogels depend on the 
number of charged groups on the molecular chain and the degree of 
ionization. The greater the number and ionization of the ionizable 
groups, the greater the degree of swelling. 

The swelling and shrinking of amphoteric pH-responsive hydrogels is 
more complex because they contain both amine and carboxyl groups on 
the polymer chains that can change their charge status (Lu et al., 2014). 
At higher pH, the carboxyl groups are fully ionized (-CO2

-) and the 
amine groups are non-ionized (-NH2), leading to strong chain repulsion 
and swelling (Xie, Yin, Liu, Zhu, & Yang, 2018). At lower pH, the amine 
groups are fully ionized (-NH3

+) and the carboxyl groups are 
non-ionized (-CO2H), again leading to chain repulsion and swelling. At 
intermediate pH, however, both amine and carboxyl groups are charged, 
which can lead to electrostatic attraction between them, thereby pro
moting shrinking. In this case, the swelling behavior depends on the 
type, number, and location of the anionic and cationic groups on the 
polymer chains. 

The swelling/shrinking behavior of hydrogels containing charged 
polymers can also be modulated by changing the ionic composition 
around them. For instance, a strongly charged hydrogel may be swollen 
at low ionic strengths due to the strong electrostatic repulsion between 
the polymer chains but shrunk at high ionic strengths due to electrostatic 
screening effects (Dou et al., 2012). 

As well as changes in hydrogel pore size (swelling and shrinking), 
changes in pH or ionic strength may also alter the electrostatic in
teractions between an encapsulated substance and the polymer network. 
For instance, under conditions where the encapsulated substance and 
the polymers have opposite charges, then there will be an electrostatic 
attraction between them, leading to retention within the hydrogel ma
trix. Conversely, under conditions where the encapsulated substance 
and the polymers have same charges (or one of them is non-charged), 
there will be an electrostatic repulsion (or no electrostatic attraction), 
leading to release from the hydrogel matrix. 

A number of food-grade biopolymers can be used to create pH- or 
ion-responsive hydrogels, including alginate, carrageenan, pectin, chi
tosan, chitin and many proteins. For instance, alginate hydrogels have 
been shown to shrink under acidic conditions (where the carboxyl 
groups lose their charge) but swell under neutral conditions (where their 
carboxyl groups are fully charged) (Zhang, Chen, Zhang, Deng, & 
McClements, 2016). Due to the good biodegradability and biocompati
bility of polysaccharides, double-network pH-responsive hydrogels with 
alginate and κ-carrageenan as the main components have been devel
oped for targeted release of bovine serum albumin in the intestinal tract 
(Sariyer, Duranoglu, Dogan, & Kucuk, 2020). 

Fig. 1. Classification of stimulus-responsive hydrogels related to the field of 
food. Adaptation from (Sun, Agate, Salem, Lucia, & Pal, 2021). 
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2.2. Temperature-responsive hydrogels 

Temperature is one of the environmental stimuli that can be easily 
controlled. Temperature-responsive hydrogels respond to temperature 
changes with volume changes. Therefore, temperature-responsive 
hydrogels fall into two primary categories, positively and negatively 
responsive systems, which are identified by having an upper critical 
solution temperature (UCST) or a lower critical solution temperature 
(LCST), respectively (Koetting et al., 2015). Generally, 
temperature-responsive hydrogels contain both hydrophilic and hydro
phobic groups, and the swelling-shrinking transition occurs at either the 
UCST or LCST (Ullah, Othman, Javed, Ahmad, & Akil, 2015). 

The LCST system is the dominant system used in the development of 
temperature-responsive hydrogels (Schild, 1992). When the ambient 
temperature is higher than the LCST, the hydrophobic interactions be
tween the non-polar groups in the hydrogel polymer chains increases, 
leading to the formation of a denser network structure (shrinking). 
Conversely, when the ambient temperature is lower than LCST, the 
hydrophobic interaction between the hydrogel polymer chains is 
weakened, leading to the formation of a more open network structure 
(swelling) (Belal et al., 2016). The polymers used to form LCST systems 
are assembled from n-alkyl substituted monomers, polyethylene glycol, 
and so on. However, the LCST response has also been reported in some 
natural polymers, such as chitosan (Koetting et al., 2015). 

UCST-based hydrogels are much less commonly used than LCST- 
based ones (Boustta, Colombo, Lenglet, Poujol, & Vert, 2014). The 
temperature response of these networks can be modified by adding 
hydrophobic or hydrophilic co-monomers to change the critical 
temperature. 

In the food industry, a variety of biopolymers can be utilized to 
prepare temperature-responsive hydrogels. For instance, gelatin mole
cules have regions of helical structure at relatively low temperatures, 
which leads to the formation of hydrogels through hydrogen bonding 
between helical regions on different molecules (Djabourov, Nishinari, & 
Ross-Murphy, 2013). However, they undergo a helix-coil transition 
upon heating, which results in melting of the hydrogel. Similarly, 
polysaccharides like agar can undergo a helix-coil transition upon 
heating, and a coil-helix transition upon cooling, which means that they 
can also be used to create temperature-responsive hydrogels (Dja
bourov, Nishinari, & Ross-Murphy, 2013). Conversely, carboxymethyl 
cellulose (CMC) will form reversible gels upon heating due to an in
crease in the strength of the hydrophobic attraction between the methyl 
groups at elevated temperatures. 

2.3. Light-responsive hydrogels 

The properties of light-responsive hydrogels can be adjusted by 
exposure to light waves of sufficient intensity and appropriate wave
length. The light sources commonly used include near-infrared (NIR) 
(Matai et al., 2020), visible (Vis) (Hong, Kim, Jeong, Park, & Park, 
2020), and ultraviolet light (UV) (Roth-Konforti et al., 2018). 
Light-responsive hydrogels change their properties by responding to 
external light stimuli through three mechanisms (Jiang, Wang, Li, Yu, & 
Chu, 2020). First of all, by grafting photosensitive groups, hydrogels can 
undergo phase transition after absorbing photons of a certain energy to 
trigger the response, which is the most common light response mecha
nism. The second light response mechanism is that the hydrogels con
taining photoactive molecules generate ions, resulting in the reaction 
with the hydrogel network or the change of osmotic pressure, and thus 
the swelling of the hydrogel. Finally, the hydrogel containing photo
sensitive compounds can change the properties of the hydrogel in 
response to environmental changes by absorbing photon energy. 

Light-responsive hydrogels have been used in food packaging ma
terials to make it have light-activated antibacterial activity to prevent 
microbial cross-contamination, reduce the risk of foodborne diseases 
and prolong the shelf life of products (Tosati, de Oliveira, Oliveira, Nitin, 

& Monteiro, 2018). There have been some examples of researchers using 
food-grade biopolymers to create light-responsive hydrogels and this 
could be an important area for future research. Giammanco, Sosnofsky, 
and Ostrowski (2015) prepared visible light responsive gels using algi
nate and pectic acid as raw materials and coordinated with Fe (III) ions. 
Oligomeric proanthocyanidins as a photothermal agent can endow 
hydrogels with controllable photothermal properties. A hydrogel scaf
fold with sodium alginate and oligomeric proanthocyanidins as the main 
components has been prepared, which can respond to near-infrared laser 
(Ma, Zhou, Chang, & Wu, 2019). The photoresponse and controlled 
release of the materials can be adjusted by changing the type of poly
saccharides and metal coordination environment. 

2.4. Glucose-responsive hydrogels 

Glucose-responsive hydrogels undergo changes in their structure or 
properties when exposed to glucose molecules in their environment. 
There are three main glucose-sensitive substances used to fabricate this 
kind of hydrogel: glucose oxidase (Jung, Magda, & Han, 2000), conca
navalin A (ConA) (Brownlee & Cerami, 1979), and phenylboric acid 
(PBA) (Kataoka, Miyazaki, Bunya, Okano, & Sakurai, 2012). 
Glucose-responsive hydrogels can be used as glucose sensors and insulin 
delivery systems for those suffering from diabetes (Cai et al.,; Chen et al., 
2019). 

In biomedicine, there have been a large number of studies on the 
construction of controlled release systems for insulin delivery using 
glucose responsive hydrogels to improve the therapeutic effect of dia
betes and the quality of life of patients (Lee et al., 2018). For instance, 
glucose-responsive chitosan microgels have been developed for the 
treatment of type 1 diabetes (Gu et al., 2013). In this case, insulin was 
encapsulated within a hydrogel matrix to maintain its stability and 
biological activity. The microgel is designed to release insulin at a fixed 
rate under normal blood glucose conditions, but when the blood glucose 
concentration increases, it releases insulin at a faster rate, thus acting as 
a self-regulating system (Gu et al., 2013). Similar kinds of systems may 
also be useful for some applications within the food industry. By 
smearing the hydrogel which can combine with glucose on the elec
tronic tongue, the juice containing different concentrations of glucose 
can be detected to distinguish different commercial brands of apple juice 
(Daikuzono et al., 2019). 

2.5. Enzyme-responsive hydrogels 

Enzyme-responsive hydrogels undergo changes in their structure or 
properties in response to the presence of specific enzymes in their 
environment. These kinds of systems may be useful for the controlled 
release of bioactive components in specific regions of the human gut, 
where particular enzymes are most concentrated (such as proteases or 
amylases). They may also be useful for controlling fermentation pro
cesses in the food industry since microbes release different enzymes in 
different growth stages. Enzyme-responsive hydrogels are usually based 
on the ability of specific enzymes to hydrolyze specific polymers in the 
hydrogel matrix, e.g., proteases will digest proteins while amylases will 
digest starches (Zhang, Zhang, Chen et al., 2015). Alternatively, the 
hydrogel matrix may contain an encapsulated substrate that undergoes a 
change when it comes into contact with a specific enzyme in the envi
ronment or vice versa (Cheng, Jin, Qi, Fan, & Li, 2015). Phosphatase 
(Shigemitsu et al., 2018), trypsin (Panayiotis et al., 2018), matrix met
alloproteinases (Joshi et al., 2018) are all common enzymes used to 
prepare enzyme-responsive hydrogels. Compared with physically and 
chemically stimulus-responsive hydrogels, enzyme-responsive hydro
gels have many advantages, such as high catalytic efficiency, good 
substrate specific selection and so on. 

Z. Yang et al.                            
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2.6. Multiple stimulus-responsive hydrogel 

At present, there have been many studies on single stimulus- 
responsive hydrogels, but usually the conditions for the application of 
stimulus-responsive hydrogels are not only single environmental stim
uli, therefore, the development of dual or even triple stimulus- 
responsive hydrogels has attracted wide attention. Zhao & Li. (2019) 
used Tremella polysaccharides, carboxymethyl cellulose and Nonionic 
surfactants as main raw materials to prepare 
pH/temperature-responsive hydrogels for controlled release of hydro
phobic drugs by free radical polymerization. Liao et al. (2020) synthe
sized Fe3O4, in situ in carboxymethyl chitin hydrogel matrix using 
hericium Erinaceus residue as raw material, and synthesized a kind of 
pH/magnetic double sensitive intelligent hydrogel. The pH/magnetic 
sensitivity and swelling degree of hydrogels can be regulated by 
changing the content of Fe3O4, and the release behavior of 5-fluorouracil 
in vitro is controlled by pH. The digestive system of the human body is a 
complex environment, and the environmental conditions such as pH, 
temperature and enzymes are different in the gastrointestinal tract 
(Mcclements, Decker, Park, & Weiss, 2009). Researchers often need to 
consider these factors when designing drug delivery systems using 
stimulus-response hydrogels, which provides a reference for food sci
entists to design stimulus-response hydrogels to deliver nutrients. The 
delivery system undergoes a series of complex physical and chemical 
changes as it passes through the mouth, stomach, small intestine and 
large intestine. As the particles pass through the digestive tract, the pH 
of the aqueous phase around the particles in the release system will 
undergo considerable changes, which will lead to changes in the charge 
on the various components of the particles (such as surfactants, proteins 
and polysaccharides), thus changing their composition, structure and 
interaction (McClements & Li, 2010). In addition, there may be a change 
in temperature from the initial food to the human body, which may 
cause changes in the physical state, interactions of specific components 
that impact digestibility (McClements & Li, 2010). Secondly, there are 
various enzymes in the mouth, stomach and small intestine that can 
digest food components, such as lipids (lipase), phospholipids (phos
pholipase), protein (protease) and starch (amylase) (Esmon, Debault, 
Carroll, Comp, & Esmon, 1984). Ma et al. (2017) developed the ion 
strength/pH/enzyme three-response site delivery hydrogel of L-glutamic 
acid and L-lysine mixed peptides according to the conditions of gastro
intestinal tract. According to these environmental conditions, food 

scientists can design hydrogels with multiple responses to achieve tar
geted release of nutrients in various parts of the gastrointestinal tract of 
the human body, which will have a good application prospect. Table 1 
briefly lists the synthesis methods, response modes and mechanisms of 
some common stimulus-responsive hydrogels. 

3. Fabrication of stimulus-responsive hydrogels

Stimulus-responsive hydrogels are mainly fabricated using three
main methods: chemical, physical, and enzymatic cross-linking 
methods. Chemical cross-linking methods include free radical-, graft
ing-, and radiation-polymerization approaches (Ahmed, 2015; Akhtar, 
Hanif, & Ranjha, 2016). Many food materials have been used to prepare 
stimulus-responsive hydrogels by chemical cross-linking. Quercetin was 
grafted onto chitosan to form chitosan-quercetin conjugate, which can 
be used as a multi-functional component of multi-responsive hydrogel 
(Cirillo et al., 2019). Zhu, Ma, Wang, Zhang, and Zhang (2016) prepared 
multi-responsive hydrogels from lotus root starch by free radical poly
merization. Physical cross-linking methods mainly utilize hydrogen 
bonding, hydrophobic attraction, and electrostatic attraction to hold the 
polymer network together (Jones & McClements, 2010). Enzymatic 
cross-linking methods utilize specific enzymes to create bonds between 
the polymers in the network. Various types of stimulus-responsive were 
prepared with natural/synthetic polymers (Table 2). 

3.1. Chemical cross-linking 

The chemical cross-linking method involves the formation of cova
lent bonds between functional groups on different polymer chains. The 
hydrogels prepared using this approach typically have good structural 
stability because the bonds formed between the polymers that make up 
the network are relatively strong. 

3.1.1. Radical polymerization 
Free radical polymerization is the most common method for chem

ical preparation of hydrogels based on synthetic polymers. These 
hydrogels are typically prepared by free radical polycondensation or co- 
polymerization of monomers in the presence of appropriate cross- 
linking agents (Fig. 2A). The common free radical polymerization 
methods include bulk, solution, suspension, and emulsion polymeriza
tion (Li, Jia, & Yin, 2021). Monomers, initiators, and cross-linking 

Table 1 
Synthetic methods, response modes, mechanisms of stimulus-responsive hydrogels (Muhammad et al., 2017; Su, Xia, Li., & Xiao, 2019).  

Nature of 
Stimulus 

Stimulus Synthesis method Response Mechanism 

Physical 
stimuli 

Temperature Free radical polymerization; ATRP; 
RAFT; Freeze drying; Ultrasonic 
radiation 

Volume; Transmittance; 
Change the shape 

Shift in temperature changes polymer-polymer and polymer-water 
interaction responsible for swelling and drug release. 

Light Free radical polymerization; ATRP; 
RAFT 

Volume; Transmittance; 
Change the shape 

Exposure to light (UV and visible light) reversibly changes the hydrogel 
from its flowable form to non-flowable form and vice versa. 

Electric field Copolymerization; Blend Volume; Osmotic 
pressure 

Changes in electrical charge distribution within the hydrogels matrix on 
theapplication of electric field cause swelling–deswelling and is 
consequently responsible for the on demand drug release. 

Magnetic 
Field 

Encapsulation Volume When a magnetic field is applied, it causes pores in the gel to swell leading 
to drug release. 

Pressure Free radical polymerization Volume; Change the 
shape 

Swelling under increased pressure and vice versa. This fact is due to an 
increase in lower critical solution temperature (LCST) value of hydrogels 
with pressure. LCST is the temperature below which negative thermo 
responsive hydrogels swell. 

Chemical 
stimuli 

pH Free radical polymerization; ATRP; 
RAFT 

Volume; Dissociate Shift in pH causes change in the charge on the polymer chains leading to 
swelling and drug release 

Glucose Free radical polymerization; ATRP; 
RAFT 

Volume; Change the 
shape 

Hydrogels show swelling in response to increased glucose concentration. 
The complex formed between glucose and phenylboronic acid drives the 
swelling of the hydrogels and consequently insulin release. 

Biological 
stimuli 

Enzyme Free radical polymerization; 
Enzymatic cross-linking; ATRP; RAFT 

Volume; Change the 
shape 

Enzymes cause hydrogel degradation and consequently the drug release. 
This is called a chemically controlled drug release mechanism 

DNA Free radical polymerization; 
Enzymatic cross-linking; ATRP; RAFT 

Volume; Change the 
shape 

Single stranded (ss) DNA grafted hydrogel probes show swelling in the 
presence of ssDNA  

Z. Yang et al.                            
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agents are the main three components used to prepare hydrogels by free 
radical polymerization. Generally, monomers are water-soluble mole
cules containing a double bond that can be cross-linked. The 
cross-linking agent is usually a molecule containing at least two double 
bonds that can be polymerized. The initiator is a substance that is 
capable of producing a sufficient quantity of free radicals under 
appropriate conditions, such as heating, irradiation, or electrolysis. As 
an example, hydrogels with dual response to pH and temperature have 
been produced by co-polymerization of acrylic acid and acrylamide 
using free radical polymerization (Zhou, Weng, Qiang, Zhang, & Jian, 
2003). In addition, Shabir et al. (2017) prepared pH-responsive hydro
gels by grafting acrylic acid and methacrylic acid as monomers onto 
these polysaccharides from flaxseed by free radical polymerization. 

3.1.2. Interpenetrating polymer networks 
Interpenetrating polymer networks (IPNs) are a unique polymer 

blend formed by the interpenetration and entanglement of two polymers 
through the network (Dashtebayaz & Nourbakhsh, 2019). In this case, 
however, there are covalent bonds between the polymers within each 
separate network but not between the polymers in different networks. 
There are three main types of interpenetrating polymer networks: (i) 
IPNs, which are formed by two polymer networks interacting and 
entangled with each other; (ii) homo-IPNs, which are IPNs comprised of 
two polymers with the same structure that each forms a separate poly
mer network; and (iii) semi-IPNs, one component is a cross-linked 
polymer network, while the other polymer consists of linear chains 

interspersed within the polymer network (Dragan, 2014; Gupta & Sri
vastava, 1994). It should be noted that a similar kind of structure can be 
formed by polymer chains that form cross-links through physical in
teractions (rather than covalent bonds). A new method of 
fully-interpenetrating polymer network using chitosan as raw material 
has been studied. Abandansari et al. (2018) developed an injectable 
fully-interpenetrated polymer network by integration of Diels-Alder 
(DA) crosslinked network and thermosensitive injectable hydrogel. 

3.1.3. Radiation polymerization 
Radiation polymerization has several advantages, including high 

controllability of reaction conditions, wide range of monomer selection, 
and simple processing operations. Therefore, the preparation of hydro
gels by radiation polymerization has become a major research focus in 
recent years (Han et al., 2018). In this case, polymerization is initiated 
by the generation of free radicals in monomer solutions when they are 
exposed to high energy radiation. Water-soluble polymers without 
double bonds can also be cross-linked to form hydrogels under radiation 
due to the generation of free radicals that promote bond formation be
tween functional groups on different polymer chains. For instance, 
Ghobashy et al. (2020) prepared a new type of self-healing hydrogel 
with good mechanical strength by radiation polymerization using 
acrylic acid monomers as raw material. In another study, a 
pH-responsive hydrogel based on polysaccharides was prepared (Gho
bashy, Elbarbary, & Hegazy, 2021). The pH-responsive hydrogel pre
pared by crosslinking chitosan with two kinds of anionic polymers by 

Table 2 
Fabrication of stimulus-responsive hydrogels.  

Fabrication Category Polymers Reference 

Chemical cross- 
linking 

Radical 
polymerization 

Poly (ethylene glycol)methyl ether methacrylate Wang and Wei (2016) 

Chemical cross-linking Whey protein Abaee, Madadlou, and Saboury (2017) 
Grafting Chitosan-cellulose, carboxymethyl cellulose, 

styrene sulfonate 
Chaykar, Goharpey, and Yeganeh (2016) 

Radiation Gelatin, carrageenan (Aliste & Del Mastro, 2016) 
Condensation reaction Cellulose nanofiber Kobe, Yoshitani, and Teramoto (2016) 

Physical 
Crosslinking 

Freeze-thawing Locust bean gum, beta-glucan (Tanaka, Hatakeyama, & Hatakeyama, 1998; El Hosary et al., 2020) 
Hydrogen bonds Cyclodextrin, polypseudorotaxane Feng, Zhou, Dai, Yasin, and Yang (2016) 
Hydrophobic 
interactions 

Methyl cellulose, carboxymethyl cellulose (Fredrick, Podder, Viswanathan, & Bhuniya, 2019; Pan, Zhuang, Zhang, 
Wang, & Wang, 2018) 

Electrostatic 
interactions 

Cellulose microfibrils Masruchin, Park, and Causin (2015) 

Enzymatic 
crosslinking  

Poly (ethylene glycol) methacrylate Wei et al. (2016)  

Fig. 2. Fabrication of stimulus-responsive hydrogels. A. Radical polymerization; B. Grafting; C. Electrostatic attraction; D. Hydrophobic attraction.  
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γ-irradiation can release the drug effectively. 

3.1.4. Grafting 
According to the type of activated initiator, grafting is mainly 

divided into chemical and radiation grafting (Fig. 2B). Chemical grafting 
is initiated by chemical reagents that react with functional groups on the 
polymer chains, whereas radiation grafting is initiated by high energy 
radiation (Varaprasad, Raghavendra, Jayaramudu, Yallapu, & Sadiku, 
2017). These types of hydrogels have been produced from food-grade 
polymers. For instance, chitosan-based hydrogel beads with high 
porosity, good pH responsiveness and biocompatibility have been pro
duced by γ-irradiation graft co-polymerization using L-glutamic acid as a 
source of monomers (Nisar et al., 2021). These hydrogels have potential 
for the controlled delivery of anticancer drugs for localized cancer 
therapy (Nisar et al., 2021). Starch, as a common polysaccharide in food, 
has also been used to study the preparation of stimulus-responsive 
hydrogels. A temperature and pH dual-responsive starch was prepared 
by grafting soluble starch with butyl glycidyl ether and introducing 
2-chloro-4, 6-diglycino-[1,3,5]-triazine (CDT) groups (Zhang et al., 
2018). 

3.2. Physical crosslinking 

Hydrogel networks can also be formed by physical (rather than co
valent) cross-linking of the polymer chains. These hydrogels are often 
much more sensitive to changes in environmental conditions, such as 
temperature, pH, and ionic composition, than hydrogels formed by co
valent cross-linking (Jones & McClements, 2010). A variety of different 
kinds of physical interactions may play an important role in the for
mation of cross-links between polymer chains. 

3.2.1. Hydrogen bonds 
Hydrogen bonds play a crucial role in stabilizing the internal struc

ture of some biopolymer molecules, as well as in the formation of cross- 
links between different biopolymers (McClements, 2015). In polymer 
solutions, intramolecular and intermolecular hydrogen bonds can act as 
cross-linking points. These bonds are usually a result of relatively strong 
dipole-dipole interactions between opposite partial charges on hydrogen 
atoms (e.g., -Hδ+) and other atoms (e.g., - Oδ− ). Although individual 
hydrogen bonds are relatively weak, they can act in concert to form 
relatively strongly cross-links. Hydrogen bond formation typically in
creases with decreasing temperature, which is linked to the formation of 
helical regions in polymer chains where multiple interactions can occur. 
Hydrogen bonds have also been reported to exhibit self-repairing 
properties (Dai et al., 2015). Examples of food polymers where 
hydrogen bonding is important are gelatin and agar (Pandey et al., 
2017). These polymers undergo a coil-helix transition when cooled, 
which is linked to a sol-gel transition. 

3.2.2. Electrostatic interactions 
Electrostatic interactions are also a common type of physical force 

responsible for cross-linking between polymers. Polyelectrolytes can be 
cross-linked with polyvalent ions with opposite charge by electrostatic 
interaction or by electrostatic interaction between two opposite-charged 
polyelectrolytes (Fig. 2C) (Hoffman, 2002). Alginate is a polysaccharide 
that is often crosslinked by electrostatic interactions to form hydrogels. 
Typically, cationic calcium ions (Ca2+) act as salt bridges between 
anionic carboxyl groups (-COO-) on the alginate chains. pH-responsive 
core-shell hydrogel microspheres have been prepared that consist of 
an alginate core surrounded by a carboxymethyl cellulose shell using an 
in situ gelation method, which may be suitable for drug delivery pur
poses (Yan, Chen, Zhang, Lu, & Sun, 2021). 

3.2.3. Hydrophobic interactions 
The conformation, interactions, and functional performance of some 

biopolymer molecules are affected by hydrophobic interactions 

(Djabourov, Nishinari, & Ross-Murphy, 2013). In particular, these in
teractions play a critical role in protein folding and lipid bilayer for
mation (Fig. 2D) (Donald, M., & Engelman, 2005; Tanford, 1978). In 
stimulus-responsive hydrogels, hydrophobic interactions can be used to 
reversibly adsorb/desorb target particles. The strength of hydrophobic 
interactions typically increases with temperature, which can be useful 
for creating temperature-responsive hydrogels. For instance, 
temperature-responsive hydrogels have been formed from polymers 
based on the lowest critical solution temperature (LCST). Below the 
LCST, the hydrogen bonds between the hydrophilic parts of the polymer 
chain and water molecules play a dominant role, but above this tem
perature the hydrophobic interactions become dominant and the 
hydrogen bonds become weaker (Kim, Jung, Jang, & Huh, 2014). This 
kind of interaction is important in hydrogels formed from carbox
ymethyl cellulose, which tends to gel at high temperatures due to an 
increase in hydrophobic attraction between the methyl groups on the 
polymer chains. 

3.2.4. Crystallization 
Some polymers adopt a random coil structure in aqueous solutions 

under one set of conditions (e.g., high temperatures) but become ar
ranged into ordered structures and form microcrystals under another set 
of conditions (e.g., low temperatures). These microcrystals can act as 
physical cross-linking points between the polymer molecules, leading to 
the formation of a hydrogel network. Crystallization is less common 
than other physical cross-linking methods but it is often used to prepare 
PVA hydrogels, where it is usually accompanied by hydrogen bond 
formation (Nugent, Hanley, Tomkins, & Higginbotham, 2005; 
Yokoyama, Masada, Shimamura, Ikawa, & Monobe, 1986). A number of 
food-grade polymers may form hydrogels through this mechanism. For 
instance, polysaccharides such as agarose, starch and cellulose de
rivatives usually exist as random coils when dispersed in hot aqueous 
solutions, but form helical structures when cooled that lead to the for
mation of microcrystal regions that act as cross-links (Jeong, Kim, & Bae, 
2012). Physically cross-linked chitosan grafted poly (vinylalcohol) 
hydrogels have been formed using this approach by controlled freezing 
and thawing cycles (Xiao, Feng, & Gao, 2010). 

3.3. Enzymatic crosslinking 

Compared with other cross-linking methods, enzymatic crosslinking 
has the advantages of strong specificity, high efficiency, and the use of 
no toxic residues. Enzymatic crosslinking can produce strong covalent 
bonds between polymer chains using relatively mild conditions. More
over, the enzyme molecules themselves do not become part of the cross- 
linked hydrogel formed. Some of the most common cross-linking en
zymes used for this purpose include horseradish peroxidase (HRP) 
(Wang et al., 2019), transglutaminase (TG) (Tsai, Hong, Lee, Cheng, & 
Yu, 2019), and tyrosinase (Kim et al., 2018). These enzymes can be used 
to cross-link food grade polymers, such as many proteins and some 
polysaccharides. Ruzengwe, Amonsou, and Kudanga (2020) crosslinked 
Bambara peanut protein with glutamine transaminase. Glutamine 
transaminase can promote the formation of higher strength hydrogel 
network and improve the properties of hydrogel. New hyaluronic acid 
hydrogels based on horseradish peroxidase and choline oxidase double 
enzyme crosslinking were also developed and found to have good sta
bility and biocompatibility (Gao et al., 2020). 

4. Application of stimulus-responsive hydrogels in foods

There are many examples of the application of stimulus-responsive
hydrogels in foods. Stimulus-responsive hydrogels can be used to 
create smart packaging materials to convey food quality and safety in
formation to consumers, to control the delivery of nutrients in the 
human body, and to detect microbial contaminants in food to ensure 
food safety (Fig. 3). It can be seen that the application of stimulus- 
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responsive hydrogels in food is very broad and promising. 

4.1. Food packaging materials 

Food packaging materials can be described as traditional, active, or 
intelligent according to their intended functions (Batista et al., 2019). 
Traditional packaging materials are mainly used to create a physical 
barrier that protects the foods, which depends on their optical, me
chanical, and barrier properties. Active packaging materials contain 
additional functional components that are designed to protect the foods 
during storage and increase their shelf life, such as antimicrobials or 
antioxidants. Intelligent packaging materials are designed to monitor 
the quality and safety of foods during storage and provide information to 
consumers about their properties (Kalpana, Priyadarshini, Maria Leena, 
Moses, & Anandharamakrishnan, 2019). For instance, intelligent pack
aging may contain a colorimetric indicator that changes color in 
response to a change in pH in the food, which is related to alterations in 
the maturity, quality attributes or safety of the food (Barska & Wyrwa, 
2017). Stimulus-responsive hydrogels can be utilized to create active 
and intelligent packaging materials. These are often formulated from 

natural materials (such as food-grade proteins, polysaccharides, and 
lipids) to as to ensure they have good sustainability, low environmental 
impact, and low toxicity (Azeredo, 2013). 

Some pH-sensitive dyes have been incorporated into stimulus- 
responsive hydrogels as indicators of food freshness in intelligent 
packaging. For instance, Lu et al. (2020) prepared nanocellulose 
hydrogels containing a pH-responsive dye, which gave a color change in 
response to changes in the quality of chicken breasts during storage 
(Fig. 3A). Other researchers have also developed pH-responsive chitosan 
hydrogels from chitosan, polyethylene glycol, and acetic acid, which 
could be used to assess the quality, freshness, and safety of foods during 
storage (Athauda, Banerjee, & Karmakar, 2020). Alpaslan, Dudu, 
Sahiner, and Aktasa (2020) used multi-functional hydrogel as food 
packaging material and add anthocyanin to hydrogel as a natural plant 
colorant. The hydrogel can respond to pH and change color, indicating 
the change of food during storage. In addition, pH-responsive hydrogels 
for monitoring minced pork spoilage have also been developed (Sut
thasupa, Padungkit, & Suriyong, 2021). 

Fig. 3. Application of stimulus-responsive hydrogels in the food field. A. Preparation of stimulus-responsive hydrogel as a colourimetric freshness indicator for 
intelligent food packaging; B. Application of stimulus-responsive hydrogel for controlled release of dyeing oil; C. Enzyme-responsive hydrogel for detection of 
multiplexed bacteria; D. pH-responsive hydrogel based on guar gum as a renewable material for delivery of curcumin; E. Application of stimulus-responsive 
hydrogels in the encapsulation and release of flavors. Source: Fig. 3A is adopted from (Lu et al., 2020); Fig. 3B is adopted from (Wang et al., 2016); Fig. 3C is 
adopted from (Jia, Mareike, & Holger, 2018); Fig. 3D is adopted from (HaqAsif et al., 2021); Fig. 3E is adopted from (Wang, Doi, & McClements, 2019). 
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4.2. Flavor encapsulation and release 

Some flavor substances are lost during food processing and storage 
due to their volatility and chemical instability. Stimulus-responsive 
hydrogels can also be used to encapsulate and control the release of 
flavor compounds in foods, thereby improving their quality attributes. 
The overall sensory perception of foods depends on the type, amount, 
and rate of volatile flavor compounds released before, during, and after 
mastication. In this case, it is useful to have strategies to control the 
release of flavor molecules from foods so that they can reach the 
appropriate flavor receptors (Cayot, Dury-Brun, Karbowiak, Savary, & 
Voilley, 2008). Hydrogels can be used to encapsulate flavors and to 
control their release characteristics (Madene, Jacquot, Scher, & Des
obry, 2010). Their effectiveness depends on their microstructure, 
rheology, and interactions with the flavor molecules (Naknean & Mee
nune, 2010). For instance, a flavor molecule may be retained within a 
hydrogel if it is attracted to the molecules in the polymer network but 
released if it is not (Zeeb, Fischer, & Weiss, 2014). Researchers have 
developed pH-responsive hydrogels that are dissociated in the presence 
of saliva, which leads to the release and perception of the encapsulated 
flavors (Amiryousefi, Mohebbi, Golmohammadzadeh, & Koocheki, 
2016). In another study, it has been shown that pH changes can lead to 
disintegration of gel structures and the release of flavor substances, 
which can therefore be used as a triggered release system (Kwan & 
Davidov-Pardo, 2018). In a recent study, it was shown that hydrogels 
could be used to control the release of volatile garlic flavors during 
cooking (Fig. 3E) (Doi, Wang, & McClements, 2019; Wang, Doi, & 
McClements, 2019). These hydrogels broke down in the presence of high 
salt concentrations, which might be useful for developing ion-induced 
delivery systems. 

4.3. Nutrients delivery 

Stimulus-responsive hydrogels may also be used to encapsulate and 
control the release of nutrients. Nutrients are substances that promote 
the growth and development of the human body and maintain good 
health (such as proteins, lipids, carbohydrates, vitamins and minerals), 
whereas nutrients are minor bioactive substances that may be able to 
prevent or cure certain kinds of chronic diseases, or enhance human 
wellbeing or performance (such as polyphenols and carotenoids). The 
efficacy of these bioactive nutrients is often hampered by their poor 
solubility, chemical stability, and bioavailability characteristics (Ezhi
larasi, Karthik, Chhanwal, & Anandharamakrishnan, 2013; McCle
ments, 2015). Hydrogels, especially microgels, can be designed to 
encapsulate these bioactive substances and overcome these problems 
(Liu, Zhang, Li, McClements, & Liu, 2018). 

Hydrogels have been utilized by a number of researchers to encap
sulate nutrients intended for oral delivery in the food industry. For 
instance, pH-responsive hydrogels have been developed to increase the 
chemical stability of β-carotene (Chen, Li, Li, McClements, & Xiao, 
2017) and curcumin (Kharat & McClements, 2019) by protecting them 
from stressors in their environment. They have also been utilized to 
mask the off flavors associated with some bioactive substances, but then 
release them in the human gut (Rocha, Coimbra, & Nunes, 2017). Chi
tosan has been used to fabricate pH-responsive hydrogels that can slowly 
release nutrients under strongly acidic gastric conditions but then 
rapidly release them under neutral conditions in the small intestines, 
thereby enhancing their overall bioaccessibility (Qu & Luo, 2020). 
Oxidized gelatin and resistant starch have been used to prepare hydrogel 
microspheres to encapsulate resveratrol and control its release in the 
gastrointestinal tract (Wang, Luo, & Xiao, 2021). A guar gum hydrogel 
with pH- and ion-responsiveness has been used to encapsulate and 
deliver curcumin under gastrointestinal conditions (Fig. 3D) (HaqAsif 
et al., 2021). 

Probiotics are living microorganisms that provide health benefits to 
humans by altering the composition of the gut microbiota. They have 

been reported to enhance the development of the immune system and to 
promote the digestion and absorption of some nutrients. They are often 
added to yogurt or beverages to promote human intestinal health (Syl
via, Edward, & Jones, 2006). However, it is important to ensure that a 
sufficiently high level of active probiotics reach the colon to have 
beneficial effects on the human body. pH-responsive hydrogels have 
been developed as delivery systems for probiotics. For instance, hydro
gels assembled from pineapple pulp cellulose have been used to protect 
probiotics from the highly acidic environment in the stomach and then 
release them in the neutral environment of the small intestine (Xing & 
Huang, 2021). pH-responsive hydrogels have also been assembled from 
peach gum polysaccharide (PGP) and Auricularia auricula poly
saccharide (APP) using an inverse emulsion cross-linking method (Zhu, 
Yu, Chen, & Song, 2018). These hydrogels contained a PGP-APP sem
i-interpenetrating network that was relatively stable and dense, which 
helped to protect the probiotics within a gastrointestinal tract model. 

4.4. Food risk monitoring 

Contamination of foods with microbes can lead to a reduction in shelf 
life, increased food waste, and food safety concerns (Kumar et al., 2017). 
Therefore, the ability to rapidly detect microbial contamination of foods 
is important. Traditional plate counting methods for detecting bacteria 
are accurate but time consuming, and so there is a need for alternative 
rapid methods. A number of researchers have examined the potential of 
using stimulus-responsive hydrogels for this purpose (Su, Ge, Chen, & 
Xu, 2020). The adhesion of bacteria to hydrogel sensing interfaces is 
affected by many factors, including moisture, chemical composition, 
polarity, and charge. Electrostatic, hydrophobic, and hydrogen bonding 
interactions often play an important role in determining the adhesion of 
bacteria to hydrogel surfaces, but these interactions are often not tar
geted and specific. Therefore, components such as enzymes, antibodies, 
and polysaccharides are often added to the hydrogel matrix to enhance 
their selectivity and sensitivity (Su et al., 2020). 

Enzyme-responsive hydrogels have also been explored for their po
tential to detect bacterial contamination (Fig. 3C). These hydrogel-based 
sensors can be used to detect bacterial metabolites in an environment 
suitable for bacterial growth, which allows one to identify the presence 
of specific bacteria (Su et al., 2020). This method is accurate, but it takes 
a relatively long time. Escherichia coli is an important form of bacteria 
that contaminates foods. Eating food contaminated by E. coli may cause 
intestinal diseases such as dysentery and pose a serious threat to human 
health. Therefore, there is a need to rapidly detect E. coli to improve food 
safety (Vogt et al., 2005). A sensing hydrogel has been developed for the 
rapid and selective detection of the enzymes secreted by the O157:H7 
strain of pathogenic enterohemorrhagic Escherichia coli (EHEC) (Ebra
himi, Dohm, Mueller, Jansen, & Schoenherr, 2016). This sensor was able 
to discriminate the pathogenic O157:H7 strain of E. Coli from a 
non-virulent K12 strain. These chitosan-based hydrogels were formed by 
attaching a series of fluorescence sensors to the chitosan molecules in 
the gel network, which enabled different enzymes and bacteria to be 
determined. The further development of composite hydrogels that 
combine highly sensitive fluorescence/chromogenic reagents, bioactive 
enzymes, and hydrogels will lead to a wider range of enzyme-responsive 
hydrogels for bacterial detection and identification. 

4.5. Miscellaneous applications 

Stimulus-responsive hydrogels can also be used for the separation of 
proteins and lipids in the food industry. For instance, stimulus- 
responsive hydrogels have been developed that are hydrophobic under 
one set of conditions and so can selectively adsorb a hydrophobic target. 
However, when the conditions are altered, the stimulus-responsive 
hydrogels become hydrophilic and the affinity to the hydrophobic 
target is weakened, thereby leading to its release. Temperature- 
responsive polymer composite hydrogels have been assembled from 
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acrylic acid, polyoxyethylene ether, and N-isopropylacrylamide mono
mers (Liu et al., 2015). These hydrogels were able to adsorb a model 
protein (bovine serum albumin) from aqueous solutions over certain 
temperature ranges. PNIPAM clay nanocomposite hydrogels have been 
fabricated using an in situ free radical polymerization for application as 
filtration membranes (Teng, Xie, Wang, Zhu, & Jiang, 2016). The 
membrane material developed was shown to be suitable for performing 
oil/water separations because of its strong hydrophobicity, 
anti-adhesion, and self-cleaning attributes. Hydrogels with tempera
ture-, ion- and magnetic-responses have also been developed that have 
potential for application in foods. These hydrogels changed color, con
tracted, or swelled under the external stimulation, which could be uti
lized to control the retention and release of a model lipophilic dye 
(Fig. 3B) (Wang, Yang, Wang, Chen, & Chen, 2016). In addition, 
stimulus-responsive hydrogels have been developed for visual detection 
of substances in food. A o-phenanthroline composite hydrogel was 
formed by free radical polymerization that was successfully used for 
high-throughput visual detection of free Fe3+ in milk (Victoria Martinez, 
Rivarola, Cristina Miras, & Barbero, 2017). 

5. Summary and future outlook

The microstructure or physicochemical properties of stimulus- 
responsive hydrogels respond to changes in environmental conditions, 
such as pH, ionic composition, temperature, light exposure, or enzyme 
activity. For instance, there may be a change in pore size (swelling/ 
shrinking), interactions (attraction/repulsion) or integrity (gel-sol 
transition). Stimulus-responsive hydrogels can therefore be considered 
to be “intelligent” or “smart” materials that have a number of potential 
applications in foods. Previously, they have been mainly been used for 
non-food applications, such as tissue engineering (Jiang et al., 2019), 
drug delivery (Li & Mooney, 2016), biosensor development (Culver, 
Clegg, & Peppas, 2017), textiles (Stular et al., 2017), and sewage 
treatment (Sharshir, Algazzar, Elmaadawy, Kandeal, & Yang, 2020). 
Despite their great potential, there have only been a relatively few 
studies on the application of stimulus-responsive hydrogels in foods. For 
instance, they have been used for the development of intelligent food 
packaging materials (Athauda et al., 2020), the triggered release of 
nutrients, and the detection of harmful microorganisms (Zhao et al., 
2018). There is therefore considerable scope for further research in a 
broad range of application areas in the food industry. In particular, there 
is a need to identify suitable food-grade materials that can be used to 
assemble hydrogels that will respond in a controlled way to specific 
external stimuli. Moreover, there is a need to identify suitable fabrica
tion methods that can economically produce these hydrogels at a scale 
that is suitable for commercial applications. Finally, there is a need to 
explore a wider range of applications within the food industry. For 
instance, hydrogels whose appearance or texture changes in response to 
a specific change in environmental conditions could be used to create 
foods with novel quality attributes and that produce novel sensory 
sensations. Moreover, further research is required to create delivery 
systems that will retain and protect bioactive molecules within foods but 
then release them in specific locations of the human gastrointestinal 
tract (such as mouth, stomach, small intestine, or colon). 
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