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A B S T R A C T   

Power systems as critical infrastructure are an integral part of human society and are therefore of paramount 
importance to modern life. Vulnerabilities in the system, that are revealed either by accidental or deliberate 
events, can cause large losses of power supply with sever social and economic consequences. A tool that identifies 
the vulnerabilities in a power system can provide the operators the means to support reliable power system 
operations. This paper presents a methodology for power system vulnerability assessment that couples an AC 
based cascading failure simulation model and a meta-heuristic optimization procedure. The objectives of the 
assessment are to (1) rank the most important branches in the transmission grid, and (2) identify sets of branches 
if simultaneously tripped will cause the cascade with highest intensity. The first objective is achieved by ranking 
the criticality of the branches using two criteria (i) the impact that each branch failure has on the DNS and (ii) the 
frequency of line overload. The second objective is achieved by hard linking an AC based cascading failure 
simulation model and a meta-heuristic based optimization procedure. The methodology allows the generation 
and the identification of vulnerability scenarios, and therefore, provides insights that can be used by operators in 
developing strategies to minimize the effects of accidental and deliberate events. The algorithm developed for the 
purpose of this study is applied to the IEEE 118-bus test system and the Swiss power grid. The results demon-
strate the capability of the proposed methodology for assessing power system vulnerability.   

1. Introduction 

Power systems as a critical infrastructure are an integral part of 
human society and are therefore of paramount importance to modern 
life. They are one of the most complex engineered systems ever build, 
aiming to provide a reliable power supply [1]. Power systems vulnera-
bilities are reviled either by accidental or deliberate events [2]. As 
accidental events are considered the random failures and natural haz-
ards [3], and as deliberate events are considered the physical attacks, 
cyber-attacks, and electromagnetic pulses (EMP) [4]. An extensive body 
of research on power system vulnerability, performed in the past de-
cades, highlights the relevance of the topic [3]. The vulnerability of a 
system can be defined as the “manifestation of the inherent states of the 
system that can be exploited by an adversary to harm or damage the 
system” [5]. 

Scientific literature reviles variety of models and methods used for 
power system vulnerability analysis. In general, they can be placed in 
two categories: (1) topological approaches; and (2) flow-based ap-
proaches. The topological approaches are based on network 

connectivity and the complex network concept [6, 7]. They rely only on 
information on the gird topology, and are computationally efficient [8]. 
The flow-based approaches are based on the power flow dynamics and 
physical characteristics of the power grid. They rely on the information 
of the physical characteristics of the grid, and can be computationally 
expensive [9]. A more detailed review of all types of methods used in 
power system vulnerability analysis is present in [3]. 

A topological model for the identification of groups of most critical 
elements in the Italian high-voltage grid is presented in [8]. The model 
identifies the important groups by applying the betweenness centrality 
of groups of nodes and groups of edges, and the variation in network 
connection efficiency. An integrated topological and reliability frame-
work, comprising different centrality measures, for assessing the 
vulnerability of the high-voltage Iranian power grid is introduced in 
[10]. The paper shows that the reliability characteristics differ from the 
topological results, because they are mostly uncorrelated. Eusgeld et al. 
[11] use topological analysis to identify the most relevant parts for 
system vulnerability, supplemented by a physical analysis to understand 
better the mechanisms responsible for these vulnerabilities. Similarly, 
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[12] presents an extended topological approach that, besides the regular 
topological metrics, considers the line flow limits and applies a real 
power-flow allocation over lines. Furthermore, topological models are 
used in combination with probabilistic safety assessment (PSA), where 
fault trees are applied to identify and rank critical components in the 
power grid [13]. A statistical model for estimating the probability of 
restoring power to the electric grid before a determined time after a 
blackout is presented in [14]. This developed knowledge can be used to 
inform event tree calculations in PSA models. In general, the topological 
approaches are criticized for their inability to capture the physical 
process occurring in the power grids, despite the attempts to perform 
additional physical analysis. 

On the other hand, the main arguments against the flow-based ap-
proaches are their complexity and computational inefficiency. However, 
these approaches are widely used today, e.g. a DC power flow based 
method that exploits game theory is used to assess the vulnerability of a 
power system [15]. Similarly, [16] introduces an optimization method 
in a game theory framework, which utilizes linear approximation AC 
power flow and aims to identify critical components in a power system. 
The DC power flow based OPA model [17] and the AC power flow based 
Manchester model [18] are the most recognized cascading failure ana-
lyses models. In [19], the criticality of individual components of power 
systems is assessed via AC based cascading failure model considering 
multi-element failures. The proposed approach builds upon the 
Fussell-Vesely importance measure quantifying the performance 
decrease ratios due to the loss of grid elements. A flow-based approach 
that utilizes a novel mixed integer linear programming optimization 
framework is described in [20]. The study assesses the impact of several 
natural hazards on the grid infrastructure employing failure and re-
covery probabilities for system components. Similarly, [21] proposes a 
resilience enhancement framework for interdependent gas and power 
grids. The framework utilizes a multi-objective genetic algorithm to find 
the optimal resilience enhancement strategies. A study of the vulnera-
bility and reliability of a power system with various levels of penetration 
of renewables is performed in [22]. The results show that the vulnera-
bility and reliability are affected by the renewable sources and the 
electrical interconnections. Abedi et al. [23] compare a DC and AC ap-
proaches for vulnerability, reliability, and contingency assessment of a 
power grid. The results show that the DC model significantly un-
derestimates the reliability, and, therefore, conclude that the AC models 
should be prioritized. 

A comparison of the criticality of power grid complements is per-
formed using multiple cascading failure models in [24]. Different 
models show some inconsistencies when allocating grid assets criti-
cality, which indicates that cascading failure analysis is still an active 
field of research. Cascading failure models are known for being capable 
of performing comprehensive cascading failure analysis and assessing 
the vulnerability of the power grids. However, their identification of the 
critical components mainly focuses on the impact on the demand not 
served (DNS) caused by a single branch failure or by sets of randomly 
generated contingencies. The methodology proposed in [25] goes 
further, combining a DC based cascading failure model and a stochastic 
“Random Chemistry” (RC) algorithm, to identify large collections of 
multiple contingencies that initiate large cascading failures. Yet, this 
approach does not utilize optimization to determine the sets of contin-
gencies causing the worst blackouts (i.e. DNS). Furthermore, methods 
using optimization are also applied to uncover small subsets of events 
with high impact [26, 27]. However, these methods rely primarily on 
detecting limit violations and load shedding actions, and they do not 
simulate the full propagation of disturbance events, i.e. do not perform 
cascading failure analyses. 

We address this research gap by introducing a vulnerability assess-
ment methodology that couples an AC based cascading failure simula-
tion model and a meta-heuristic optimization procedure. The use of 
cascading failure analyses is motivated by the fact that modern power 
systems, despite the multiple layers of protective schemes, are still 

experiencing blackouts that are mainly caused by cascading failures [28, 
29]. The objectives of the proposed methodology are to: (1) provide 
ranking of the most important branches in the transmission grid, and (2) 
identify sets of branches that will cause the cascade with the highest 
intensity if simultaneously tripped. The first objective is achieved by 
ranking the criticality of the branches using two criteria (i) the impact 
that each branch failure has on the DNS and (ii) the frequency of line 
overload. The second objective is achieved by hard linking an AC based 
cascading failure simulation model and a meta-heurist based optimiza-
tion procedure. This link allows for optimal identification of vulnera-
bilities that have the potential to spread within the power grid, while 
considering automatic and manual system responses. The algorithm 
developed for the purpose of this study is applied to the IEEE 118-bus 
test system and the Swiss power grid. The results provide a ranking of 
the branches according to the two different criteria and identify the sets 
of branches that are most critical to system security. The potential 
application of these results includes asset upgrade and guidance for 
operators on implementation of procedures for improving the system 
response during failures or malevolent acts. 

The contributions of this paper are threefold: 1) it provides a tool for 
vulnerability assessment of power systems that is able to identify critical 
components and combinations of failures that have the potential to 
spread within the power grid, challenging the safe operation of the 
system; 2) it studies the progression of cascading events and system 
responses during single or multiple failures in the grid; 3) it provides a 
tool for system operators to quantify the impact of specific failures on 
the system operations, and thus help in the short- and long-term deci-
sion-making. 

The rest of the paper is organized as follows: Section 2 describes the 
methodology we developed to perform the vulnerability assessment; 
Section 3 describes the test systems used to demonstrate the applica-
bility of the developed methodology; The analysis and results are pre-
sented in Section 4; Finally, Section 5 presents the conclusions. 

2. Methodology 

The vulnerability method introduced in this paper comprises a 
cascading failure analysis model and a meta-heurist based optimization 
procedure. 

2.1. Cascading failure analysis model 

The AC power flow based cascading failure analyses model is an 
integral part of the Cascades platform, which is a tool for power system 
security assessment and transmission system expansion planning [30]. 
The cascading failure analyses model: simulates critical scenarios that 
may trigger cascading events; identifies island operations and blackout 
conditions; performs automatic frequency control to restore the power 
balance in the system; performs automatic load shedding in case of 
system frequency deviations beyond a safety threshold or bus voltages 
magnitudes below a tolerable limit; and disconnects overloaded ele-
ments (lines and transformers). One of the main objectives of the model 
is to reproduce the blackout/DNS statistics of a power system. 

2.1.1. Model description 
Before the cascading simulations start, the power system is in a 

steady state, with all components in service. To explore different loading 
conditions a set of power demands is selected from a yearly load curve. 
The generation dispatch is solved for each of the selected demands, 
accounting for all unit and grid constraints. Consequently, the genera-
tors supply all demand and transmission system losses, and no overloads 
exist. A list consisting of sets of contingencies is supplied for each de-
mand. Each contingencies set is created probabilistically, i.e., with the 
Monte Carlo method. Due to discrepancies between different sources of 
data and to the different failure mechanism that dominate in different 
regions/systems, we use a single value of 0.001 for all lines and 
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transformers. This value is based on [31]. Therefore, the majority of the 
contingency sets will consist of single branch failures. This concept for 
selection of contingencies and power demands ensures good exploration 
of the system conditions and in-depth assessment of the power system 
response under variety of possible failures. A graphical representation of 
the cascading failure simulation process is shown in Fig. 1. 

The cascading simulation starts with the introduction of a single 
contingency set (initial failures). Next, islands identification check is 
performed after the branches comprising the contingency set are 
removed from the grid. The frequency deviation at each island is 
calculated, and based on this values two measures are envisioned (i) 
under frequency load shedding (UFLS), and (ii) frequency control. In the 
current setup, the algorithm utilizes the UFLS scheme based on the 
Swissgrid grid code [32], which consists of six steps. The first step is 
activated if the frequency deviation is lower than -0.5Hz1, and includes 
the disconnection of pumped-storage hydro plants operating in pumping 
regime and all sources that are consuming power from the grid, e.g. 
transmission-scale batteries. Steps two to five are activated if the fre-
quency deviation is between 1Hz and -2.5Hz, and load is uniformly 
disconnected proportional to the frequency deviation. Finally, if the 
frequency deviation reach -2.5Hz or +1.5Hz, all generators are discon-
nected. In all other cases, the frequency control employs the generating 
reserves to ensure load balance in the system. 

The AC power flow2 algorithm provides the line/transformer load-
ings and the bus voltages, which are further used for the voltage viola-
tion and line overload check (see Fig. 1). At the buses where voltage 
violation is detected, the under-voltage load shedding (UVLS) procedure 
is enforced. This is a stepwise load shedding procedure which curtails 
25% of the bus load at each step until the voltage is restored within 
safety limits. The AC power flow calculation is repeated after each load- 
shedding step, updating the bus voltages and the branch loadings. The 
overload check is the last step of a process referred to as a cascading 

stage. If overload branches exist, the algorithm removes the branch with 
the highest flow limit violation3, and the cascading simulation proceeds 
to the next cascading stage. Otherwise, the current simulation ends, and 
the next set of contingencies is introduced, initiating a new cascading 
failure simulation. The process is repeated for all sets of contingencies 
and all loading conditions, and then the results are assembled, pro-
cessed, and presented as an output by the model. 

The most relevant results of the cascading failure model is the 
complementary cumulative distribution function (CCDF), referred to as 
the risk curve4. Other relevant results from the cascading model include 
the importance/criticality of the transmission system components, the 
transmission system component outage occurrence, the cascading stages 
(the lines/transformers tripped at each stage and the corresponding 
DNS), and the reserves utilization. 

The grid topology changes as cascade unfolds in a power grid, 
consequently the cascading model executes multiple AC power flows. In 
some occasion the AC power flow does not converge, which is a problem 
recognized in the scientific literature [18, 25]. The Manchester model 
treats this issue as a potential voltage collapse, and assumes that the 
operators have enough time to react and perform load shedding [18]. 
One of the reasons for non-convergence of the AC power flow is power 
system operation outside the steady state stability limits [34]. Such 
operation is a result of a reduced transfer capacity of the system or a lack 
of reactive power to supply the demand, both associated with voltage 
collapse conditions [35]. When the AC power flow does not converge, 
the Cascades model performs a steady state limits violation check by 
running a continuation power-flow algorithm [33, 36]. Subsequently, a 
set of measures are applied, including load shedding, reactive power 
re-dispatch, power re-dispatch, acceptance of the non-converged solu-
tion, or total system collapse. A detail description of Cascades, including 
the resolution of the convergence issues, and model validation, is pro-
vided in [30]. 

2.1.2. Criticality measures 
We utilize the cascading failure simulation model to accomplish the 

first objective, i.e. to rank the branches in the transmission grid ac-
cording to their criticality. For this purpose, the model relies on two 
criticality measures: (i) branch impact on DNS, and (ii) frequency of 
branch overload. 

The cascading failure simulation model initializes with a separate list 
of contingencies for each of the pre-selected loading conditions. Each list 
consists of pre-selected number of sets of contingencies. Thus, the total 
number of contingency sets, i.e. the total number of cascading failure 
simulations is equal to the number of loading conditions multiplied by 
the number of contingency sets per contingency list. For each cascading 
simulation, the model records the DNS caused by the initial contingency 
set. If the set consist of more than one contingency, same amount of DNS 
is assigned to all of them. The process is repeated for all sets of contin-
gencies and loading conditions and the recorded DNS is aggregated for 
each contingency (branch): 

BDk =
∑M

m=1

∑N

n=1
DNSk

n,m (1)  

where, BDk is the criticality of branch k associated with the branch 
impact on DNS criticality measure, M is the number of loading condi-
tions (power demands), N is the number of contingency sets per loading 
condition, and DNSk

n,m is the DNS assigned to branch k after performing 
the cascading simulations for contingency set n and loading condition m. 
DNSk

n,m is equal to zero in case that the cascading failure analysis do not 
end with DNS. 

Fig. 1. A graphical representation of the cascading failure simulation process 
(Cascades). UFLS stands for under-frequency load shedding; UVLS stands for 
under-voltage load shedding. 

1 The negative sign denotes frequency smaller than the nominal, while the 
positive sign denotes frequency larger than the nominal.  

2 For power flow calculations, the cascading failure model relies on the 
MATPOWER package [33]. 

3 Only one overloaded branch is removed at a time.  
4 The risk curve gives the probability of observing DNS (blackout intensity) at 

least as extreme than the one observed. 
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Furthermore, the model records the frequency of branch overloads, i. 
e. the overloaded branches after the first cascading stage is completed 
(see Section 2). These overloads are important because they directly 
contribute to the evolution of a cascading event. The counting is per-
formed for all sets of contingencies and loading conditions and the 
recorded overloads are aggregated for each branch: 

BFk =
∑M

m=1

∑N

n=1
Fk

n,m (2)  

where, BDk is the criticality of branch k associated with the frequency of 
branch overload criticality measure, and Fk

n,m is equal to 1 if branch k is 
overloaded after the contingency set n is introduced into the system, 
otherwise Fk

n,m is equal to zero. 

2.2. Vulnerability identification method 

To accomplish the second objective of this paper we introduce the 
vulnerability identification method, which aims to find the branches 
that if simultaneously tripped will cause the blackout with the highest 
intensity. In particular, we are looking for a set of two, three, or more 
lines/transformers that if simultaneously tripped will have the highest 
risk impact. The method relies on the cascading failure analysis model 
(Section 2.1) to assess the impact of an initial set of contingencies, and a 
meta-heurist based optimization procedure to explore the contingency 
space. 

The objective function can either maximize the average DNS 
(DNSavr) over a selected number of representable loading conditions 
from a yearly load curve, or find the maximum DNS over these demands 
(DNSmax). Therefore, two objective functions are defined: 

Objective function one : max(DNSavr(Cset)) (3)  

Objective function two : max(DNSmax(Cset)) (4)  

where Cset is a set of contingencies with a size of Nset , i.e. the decision 
variables. We decide which objective function to use and the size of the 
contingency set, Nset, before starting the vulnerability identification. 

Using the objective in Eq. (3), the algorithm identifies the contin-
gency set that results in the largest average DNS over all of the simulated 
hours (i.e., system loadings). Therefore, the identified contingency set is 
expected to have high implication to system security at any hour and any 
loading of the system during the year. The measures undertaken against 
the effects of the identified contingency set will provide an adequate 
level of security during most operating conditions. Using the objective in 
Eq. (4), the algorithm identifies the contingency set that results in the 
largest maximum DNS over all of the simulated hours (i.e., system 
loadings), i.e. the largest disruption caused by the cascading event. The 
identified contingency set is expected to have strong implication only for 
some of the yearly loading conditions and hours. The measures under-
taken against the implications of the contingency set identified by Eq. 
(4) will provide an adequate level of security for the worst event iden-
tified by the proposed method. 

The optimization procedure uses a Genetic Algorithm (GA), which is 
meta-heuristic optimizer capable to deal with simulation-based opti-
mization problems as the one presented here. The flowchart of the 
vulnerability identification method is shown in Fig. 2. The procedure 
starts with a population of random solutions, Pop: 

Pop =

⎡

⎢
⎢
⎣

c1,1 c1,2 ⋯ c1,Nset

c2,1 c2,2 ⋯ c2,Nset

⋮ ⋮ ⋱ ⋮
cNp ,1 cNp ,2 ⋯ cNp ,Nset

⎤

⎥
⎥
⎦ (5)  

where ci,j is the contingency, i.e. branch j to be tripped (j = 1, 2,…,Nset)

at solution i (i = 1, 2, …, Np), and Np is the population size, i.e. the 
number of potential solutions. Practically, each row in Pop represent a 

single solution, which consists of integer values between 1 and the 
number of branches in the system. 

The objective function given by Eq. (3) / Eq. (4) is evaluated for each 
of the randomly generated solutions. The tournament selection operator 
is utilized to select the solutions (chromosomes) for reproduction. The 
selected solutions enter the reproduction step, where the blending 
crossover operator (BLX-α) and the non-uniform mutation operator are 
applied to produce the population of new solutions. The fitness of the 
solutions from the new (child) population is calculated and compared 
with the fitness of the solutions from the old (parent) population. Only 
the best half of the solutions survive while the rest are discarded in a 
process known as elitist replacement. This procedure is repeated until 
the maximum number of iterations is reached. A detailed description of 
the applied GA is given in [37]. 

The main output of the algorithm is the set of contingencies that 
results in the highest DNS with respect of the selected objective function. 
Furthermore, the algorithm outputs the worst cascade including the 
cascading stages and the DNS at each stage. 

3. Test case 

Two test systems are used; the IEEE 118-bus test system and Swiss 
power system. The 118-bus test system contains 186 branches, 9 
transformers, 118 nodes and 54 generators with a combined maximum 
capacity of 7’200MW [38]. By default, the power demand across all load 
buses amounts to 3’733.07MW. This value is considered to be the mean 
total load over the course of a year, with the yearly load curve extracted 
from [39] being scaled accordingly. The one-line diagram of the IEEE 
118-bus test system marking the zones in the grid is given in [38, 40]. 
The Swissgrid AG provides the Swiss transmission system data under an 
NDA agreement, including current branches and planned grid 

Fig. 2. Flow chart of the vulnerability identification method.  
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expansions up to 2025. The power plant data and power demand data 
are obtained from various open sources. We represent each neighboring 
country with a single node, e.g. all lines connecting Switzerland and 
Germany are connected to one representative node in Germany. 
Furthermore, at each of these nodes we impose the historical hourly 
import/export for the respective country. Due to sensitivity of the ob-
tained results, detailed description of the vulnerabilities of the Swiss 
power system and the grid data are not presented in this manuscript. 

The algorithm assessing grid vulnerabilities is developed in MATLAB 
and executed on an Intel(R) Core(TM) i9-9980XE CPU and the Euler 
computer cluster at ETH Zurich [41]. Calculation times vary from one to 
30 hours, depending on the size of the contingency set, the population 
size, the number of iterations, the size of the analyzed system, and the 
computing machine. 

4. Analysis and results 

Both systems are assessed with respect to both objectives, i.e. the 
importance of each branch is determined, and the most critical sets of 
contingencies are identified. 

4.1. The IEEE 118-bus test system case study 

4.1.1. Criticality ranking results 
The criticality ranking results for the IEEE 118-bus test system are 

obtained with a single run of the cascading failure model. With a list of 
1000 contingency sets per loading condition and 18 loading conditions, 
the total number of executed cascading simulations in a single run of 
Cascades is 18000. Out of these contingencies, 91.1% are single branch, 
8.3% are double branch, 0.5% are triple branch failures, and the 
remaining involve the failure of four branches or more. Fig. 3 shows 
branch criticality in the IEEE 118-bus test system according to the a) 
branch impact on DNS (Eq. (1)), and b) frequency of line overload (Eq. 
(2)). 

Lines 8-9 and 9-10, with similar values, are the most critical com-
ponents according to the branch impact on the DNS criticality measure. 
The failure of either of these two lines disconnects a 300 MW generator 
connected to bus 10. The loss of the generator causes frequency insta-
bility and results in DNS under some of the selected loading conditions. 
Transformer 5-8 is the third most critical component in the system ac-
cording to the branch impact on the DNS criticality measure. This 
transformer is the main link between the generator at node 10 and the 
part of Zone 1 with the highest concentration of loads. Cascading 

failures resulting in significant DNS begin by a simultaneous failure of 
Line 8-9, Line 9-10, or Transformer 5-8 with other branches in the grid, 
in particular branches in Zone 1. Furthermore, the disconnection of Line 
8-9, Line 9-10, or Transformer 5-8 initiates an overload of Line 8-30, 
which is the most frequently overloaded branch in the IEEE 118-bus 
test power system. This Line is one of the main links that connect the 
northern and southern part of Zone 1. 

The cascading event in Table 1 is initiate by a simultaneous failure of 
Lines 8-9 and 25-27 causing a chain of failures with seven stages and a 
DNS of 1520 MW. The disconnection of Line 8-9 results in the separation 
of Buses 9 and 10 from the main grid, and therefore splits the grid in two 
parts (islands). Buses 9 and 10 have no connected loads, and therefore 
the generator at Bus 10 is shutdown. The first three stages of the cascade 
do not result in DNS, and each stage proceed to the next with a 
disconnection of a single branch. The first DNS occurs at stage four and is 
a result of the system operating outside the steady state stability limits. 
This problem is resolved by uniform load shedding at all buses in the 
grid. Similar operating conditions occur at stages five and six, and are 
resolved with load shedding. Furthermore, at stage seven with the 
disconnection of Line 22-23 the main grid splits into two islands, where 
the first (smaller) island consists of most of Zone 1 and one bus from 
Zone 2 and the second (larger) island consist of part of Zone 1, most of 
Zone 2 and all of Zone 3. After the splitting, the smaller island has a 
frequency deviation, which is resolved with ~40 MW of load shedding. 
The larger island is stable and thus no additional actions are undertaken. 
At the end of stage seven, there are no overloads in any of the islands, 
and therefore the cascading simulation stops. 

4.1.2. Most critical sets of contingences 
To identify the sets of critical branches in IEEE 118-bus test system 

we run the vulnerability identification procedure described in Section 
2.2. The set size for the IEEE 118-bus test system spans from two to seven 
contingencies, such that the algorithm is executed independently for 
each set size. To perform the analyses, we generate a random population 
of Np contingencies for the designated set size, i.e., for a set size of two 
we randomly generated 90 samples of two simultaneous branch failures. 
Tables 2 and 3 show the sets of contingencies resulting with the worst 
cascades in the IEEE 118-bus test system. The Table 2 contingency sets 
are obtained with the average DNS based objective function (Eq. (3)), 
and the Table 3 sets are obtained with the maximum DNS based 
objective function (Eq. (4)). 

Tables 2 and 3 show that some branches are participating in many of 
the identified contingency sets. In particular, Transformer 5-8, which is 
the third most critical branch according to the impact on DNS criticality 
measure, is part of almost all contingency sets. On the other hand, Line 
8-9, which the most critical branch according to the impact on DNS 
criticality measure, does not show in any of the contingency sets. 
Whereas Line 9-10, which is the second most critical branch, only exists 
in the 7-branch contingency set from Table 3. This is so because in the 
identification of the contingency sets the algorithm is maximizing the 
total contribution of a set, instead of the contribution of a single 
component to the DNS. Furthermore, it is evident that the branches 
ranked according to the frequency of overload criticality measure does 
not show in any of the most critical contingency sets in Tables 2 and 3. 
This is so because the objective of the vulnerability procedure is to 
determine the final impact of the initial set of failures, and therefore the 

Fig. 3. Branch criticality in the IEEE 118-bus test system according to: branch 
impact on DNS (left), and frequency of branch overload (right). 

Table 1 
A cascading event example with all cascading stage and the DNS at each stage.  

Cascading 
stages 

1 2 3 4 5 6 7 

Contingencies 8-9 23- 
32 

8- 
30 

17-30 33-37 19-34 22-23 
25- 
27 

DNS (MW) 0 0 0 517.22 917.94 1478.96 1520.46  
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contribution of the branches that aid the unfolding of a cascade is not 
directly measured. In other words, the objective functions (Eqs. (3) and 
(4)) are more in alignment with the impact on DNS criticality measure. A 
closer look of the branches given the Tables 2 and 3 shows that all of 
these branches are part of Zones 1 and 2, and the rest are interconnectors 
between these two zones. Moreover, the analysis show that simulations 
failure of two or more of these branches often causes overloads that 
frequently result in voltage and frequency instabilities, such as the event 

show in Table 1. Consequently, the branches that comprise the most 
critical set of simultaneous failures belong to Zone 1 and Zone 2 of the 
IEEE 118-bus test system. 

Figures 4 and 5 show the average and maximum DNS per contin-
gency set obtained using the average DNS based and maximum DNS 
based objective functions, respectively. Both figures show that the IEEE 
118-bus test grid, with a peek demand of 6025 MW, can encounter large 
DNS with only two simultaneous failures. Figure 4 shows that with three 
and seven simultaneous failures, the average DNS is similar, i.e. the 
average DNS does not significantly grow with the number of simulta-
neous failures. Similarly, Fig. 5 shows that the maximum DNS caused by 
the 2-branch contingency set does not differ significantly from the 
maximum DNS caused by the 7-branch contingency set. Table 4 shows 
the cascade initiated by the most critical set of three simultaneous fail-
ures according to the maximum DNS based objective function. The DNS 
observed at stages two, three, and four is a result of load shedding at 
busses 43, 44 and 45, at which the voltage drops below the predefined 
limit of 0.92 p.u. At stage six, after the disconnection of Line 25-27, the 
system splits into two islands, where the small island consists of Buses 
23, 25 and 26, and the large island represents the rest of the power 
system. Furthermore, at stage five, seven, and eight, the large island 
operates outside the steady state stability limits, which results in sig-
nificant load shedding. 

4.2. The Swiss power grid test case 

4.2.1. Criticality ranking results 
The criticality ranking results for the Swiss power system are pro-

duced with a single execution of the cascading failure model. With a list 
of 1000 contingency sets per loading condition and 18 loading condi-
tions, the total number of executed cascading simulations in a single run 
of Cascades is 18000. Out of these contingencies, 85.1% are single 
branch, 13.3% are double branch, 1.5% are triple branch failures, and 
the remaining involve the failure of four branches or more. Figure 6 
shows branch criticality in the Swiss power system according to a) 
branch impact on DNS, and b) frequency of line overload. 

Figure 6 shows that Line 207 is the most critical component ac-
cording to the branch impact on DNS criticality measure. Line 207 is an 
interconnector to a neighboring country that after failure during hours 
with high exports is causing an overload in Line 7, which is another 
interconnector to the same neighboring country. In most case, there are 
no implications of such failure to the Swiss power grid. However, in 
some loading conditions/exports it causes voltage violation at single 
Swiss node, which is resolved by the UVLS. The failure of Lines 261 and 
185 is causing similar effect to the power grid. In all of these cases Line 7 
overloads, which is the reason for becoming the most critical component 
according to the frequency of line overload criticality measure. 

Table 2 
List of the most critical sets of contingencies obtained using the average DNS 
based objective function (Eq. 3).  

Set From Bus To Bus Branch type 

2-branch 5 8 Transformer 
25 27 Line 

3-branch 17 30 Transformer 
25 27 Line 
37 38 Transformer 

4-branch 5 8 Transformer 
22 23 Line 
25 27 Line 
37 38 Transformer 

5-branch 5 8 Transformer 
21 22 Line 
25 27 Line 
37 38 Transformer 
45 46 Line 

6-branch 5 8 Transformer 
22 23 Line 
24 70 Line 
25 27 Line 
37 38 Transformer 
45 46 Line 

7-branch 5 8 Transformer 
17 30 Transformer 
22 23 Line 
25 27 Line 
37 38 Transformer 
42 49 Line 
45 46 Line  

Table 3 
List of the most critical sets of contingencies obtained using the maximum DNS 
based objective function (Eq. 4).  

Set From Bus To Bus Branch type 

2-branch 17 30 Transformer 
37 38 Transformer 

3-branch 26 30 Line 
37 38 Transformer 
45 46 Line 

4-branch 5 8 Transformer 
25 27 Line 
37 38 Transformer 
45 46 Line 

5-branch 5 8 Transformer 
22 23 Line 
25 27 Line 
38 65 Line 
45 46 Line 

6-branch 5 8 Transformer 
22 23 Line 
25 27 Line 
38 65 Line 
45 46 Line 
60 62 Line 

7-branch 9 10 Line 
23 25 Line 
25 27 Line 
37 38 Transformer 
45 46 Line 
69 70 Line 
69 75 Line  

Fig. 4. The DNS as function of the sets of critical contingencies obtained using 
the average DNS based objective function (Eq. 3). 
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4.2.2. Most critical sets of contingences 
To identify the sets of critical branches in the Swiss power system we 

run the vulnerability identification procedure described in Section 2.2. 
The set size spans from two to seven contingencies, such that the 
vulnerability identification is performed independently for each of 
them. To perform the analyses, we generate a random population of Np 
contingencies for the designated set size, e.g., for a set size of five we 
randomly generated 1024 samples of two simultaneous branch failures. 
Figures 7 and 8 show the average and maximum DNS per contingency 
set obtained using the average DNS based and maximum DNS based 
objective functions, respectively. Both figures show that up to three 
simultaneous failures the Swiss power grid does not encounter signifi-
cant blackouts. The analysis show that the recorded DNS is a result of 
direct disconnection of loads in the system. However, for more than 
three simulations failures the algorithm identifies sets of contingencies 
that can cause cascades with high DNS. Furthermore, the results given in 
Figs. 7 and 8 show that there can be significant difference between the 
average and the maximum DNS, especially in the case when the 
maximum DNS based objective function is used. This shows that at some 
loading conditions a contingency set can cause severe blackouts while in 
others the same set will have little or no effect. Furthermore, Fig. 7 
shows a steady growth of the average DNS from four to seven contin-
gencies. This is not the case when the critical contingency sets are ob-
tained with the maximum DNS based objective function, i.e. Fig. 8 
shows that the DNS is identical for the five, six, and seven most critical 
sets of contingencies. 

5. Conclusions 

The paper introduces a methodology for performing system vulner-
ability analysis by coupling an AC based cascading failure simulation 
model and a meta-heuristic based optimization procedure. The assess-
ment provides a ranking of the individual branches according to criti-
cality and identifies the sets of most critical failures. The applicability of 
the methodology is demonstrated using the IEEE 118-bus test system 
and the Swiss power system. The analysis of the IEEE 118-bus test sys-
tem shows that the simultaneous occurrence of only two failures can 
result in significant blackouts. Furthermore, the sets with three to seven 
contingencies cause similar DNS. This DNS represents most of the power 

Fig. 5. The DNS as function of the sets of critical contingencies obtained using 
the maximum DNS based objective function (Eq. 4). 

Table 4 
An IEEE 118-bus test system cascading event initiated by the 3-branch failure given in Table 3.  

Cascading stages 1 2 3 4 5 6 7 8 

Contingencies 26-30 30-38 23-32 22-23 25-27 23-24 42-49 42-49 
37-38 
45-46 

DNS (MW) 0 27.84 48.72 121.12 3376.97 3376.97 4037.64 5425.05  

Fig. 6. Branch criticality in the Swiss power system according to a) branch 
impact on DNS, and b) frequency of line overload. 

Fig. 7. The DNS as function of the sets of critical contingencies obtained using 
the average DNS based objective function (Eq. 3). 

Fig. 8. The DNS as function of the sets of critical contingencies obtained using 
the maximum DNS based objective function (Eq. 4). 
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demand at the simulated loading conditions. The Swiss power system on 
the other hand does not encounter significant blackouts with up to three 
simultaneous failures. In fact, the worst DNS events with two and three 
simulations branch failures are a result of a direct disconnection of loads 
in the grid. However, with four or more simultaneous failures there are 
cascades that unfold and result in high DNS. Furthermore, the vulner-
ability identification method can reveal contingency sets that result in 
events with larger consequences using the maximum DNS based objec-
tive function as compared to the average DNS based objective function. 
Yet, these contingency sets are particularly effective for very few loading 
conditions and sometimes have little or no effect on the bulk of the 
simulated power demand conditions. Therefore, we recommend that the 
most attention be given to the average DNS based objective function in 
the development of strategies to mitigate system vulnerabilities. Such 
measures will be effective for the entire spectrum of loading conditions, 
thus providing robust protection against accidental or deliberate events. 
Additionally, the maximum DNS based objective function can support 
the identification of few scenarios leading to large consequences. 
Overall, the results demonstrate that the proposed method can identify 
weaknesses in a power system, and, therefore, the grid operators can 
utilize it for short and long-term operations planning and grid expan-
sion/upgrade decisions. 
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