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a b s t r a c t 

Selective segmentation aims to separate a subset of target objects or regions of interests in an image. It

is widely used in medical image analysis for some specific tasks such as extracting anatomic organs or

lesions. However, selective segmentation of medical images is usually challenged by their limited imaging

quality. In this paper, we propose a two-phase selective segmentation method. The first phase is a pre- 

processing step, which aims to reduce influence of noise or cluttered background on segmentation. The

second phase performs selective segmentation on the preprocessed image. For the first phase, we propose

a new image smoothing model which can effectively reduce noise or intensity inhomogeneity inside ob- 

jects while retain edges of the original image. Moreover, the proposed model has attractive mathematical

and physical properties, in that it has one single optimal solution. For the second phase, we propose a

modified Gout’s active contour method, which can obtain targeted objects more efficiently and accurately.

Our main contribution is the new image smoothing model, which can effectively attenuate complicated

background but preserve edges of targeted object. Extensive experiments on real medical images show

that, our smoothing model can greatly facilitate the second phase, and our method can significantly im- 

prove some existing related methods in terms of either visual assessment or quantitative evaluation.

© 2021 Elsevier B.V. All rights reserved.
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. Introduction

Image segmentation has wide applications in medical image 

rocessing, security monitoring, and among others [1–4] . Existing 

mage segmentation methods can be divided into two categories: 

emantic segmentation [5–8] and selective segmentation [9–14] . 

emantic image segmentation aims to divide the image domain 

nto disjoint union of sub-regions, with each sub-region corre- 

ponding to a semantic meaningful object. Different from semantic 

egmentation, the goal of selective segmentation is to separate a 

ubset of objects or regions of interests (ROI) in an image from oth- 

rs. Selective segmentation is widely used in medical image anal- 

sis for some specific tasks such as extracting anatomic organs or 

esions [15,16] . In this work, we focus on selective segmentation of 

edical images, which usually have low contrast, inhomogeneous 

ntensity and high level noise, and these adverse factors bring great 

hallenges in selective segmentation. 

In the past decades, the variational modeling of selective seg- 

entation has been widely attended and it has good interpreta- 
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ion than deep learning based models [17–20] . Existing models fall 

nto three categories: edge-based methods, region-based methods, 

nd their hybridization. Edge-based methods encourage an active 

ontour to evolve towards the boundary of ROI. The snake model 

roposed by Kass et al. [21] was the first edge-based variational 

odel for target segmentation. However, the model is not intrin- 

ic, or the solution depends on parameterization of the contour. 

o overcome this, Caselles et al. [22] proposed the geodesic ac- 

ivity contour (GAC) model, which uses an image gradient depen- 

ent edge stopping function to stop the evolving curve on the de- 

ired object boundary. To make the edge detection robust to noise, 

he image is usually filtered by the isotropic Gaussian filter before 

omputing gradient, but this makes the edge detection inexact. In 

ll, the major challenge that these models meet is that, the evolv- 

ng curve cannot fit the boundary exactly when the image intensity 

s inhomogeneous, or the contrast is low, or the image is heavily 

ffected by noise. Gout et al. [23] defined a distance function by 

sing some marker points around the desired boundary, and intro- 

uced this distance function into the GAC model. The distance of 

he points on the desired boundary is small, which helps to attract 

he evolving curve close to the desired boundary. Moreover, the 

istance function is independent of image intensity, thus it is ro- 

ust to image intensity, contrast, and noise. However, Gout’s model 

till suffers from the limitation of GAC. 
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Fig. 1. (a) original noisy image f ; (b) image of g ( | ∇ f | ) ; (c) image of g ( | ∇ GSG f | ) . 

Fig. 2. Segmentation results of a leg image.
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To improve Gout’s model [23] , some models have been pro- 

osed by introducing region information for better segmentation 

ccuracy and robustness. Badshah et al. [24] incorporated the in- 

ensity fitting terms of Chan-Vese model [25] into the Gout’s 

odel. The resulted model performs well in segmenting images 

ith noise or fuzzy boundaries. In [26] , Rada et al. added an area

tting term into the model in [24] . In [27] , Ali et al. further used

he generalized average fitting terms to improve the reliability of 

he model in [26] for selective segmentation of multi regions. In 

28] , Rada and Chen proposed a variational model with two level 

et functions to simultaneously accomplish two tasks: one is global 

egmentation that captures boundaries of all objects, and the other 
2

s selective segmentation that focuses on a selected object. In [29] , 

ada et al. proposed a new level-set model to deal with intensity 

nhomogeneity and presence of noise for selective segmentation. 

n [30] , Roberts et al. proposed a convex selective segmentation 

odel using edge-weighted geodesic distance. A more detailed de- 

cription of selective segmentation can be found in [31] . 

All the above selective segmentation models aim to search for 

he contour of the targeted object. Instead, Liu et al. [32] proposed 

 two-phase method to locate the region that the target object oc- 

upies. First, a smoothed version of the given image is obtained 

y using their proposed model. The major advantage of this model 

s that, the distance function and the edge indicating function in 
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Fig. 3. Segmentation results of a brain tumor.
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26] were used to preserve the target region while other regions 

re smoothed. This operation greatly facilitates the second phase, 

n which the target region is located by thresholding the gray level 

f the smoothed image. However, the optimal threshold is hard to 

nd and the method may produce spurious objects when the im- 

ge contrast is low and there are multiple objects close to the tar- 

et object. 

In this paper, we propose a new two-phase method for selective 

egmentation of medical images. Our main contributions can be 

ummarized as follows. 

1) Aiming at facilitating medical image segmentation, we

resent a new variational model, which can effectively attenuate 

omplicated background but preserve edges of targeted object. The 

roposed energy functional has attractive mathematical properties, 

hus allows one unique solution in a Hilbert space and the gra- 

ient method can be used to find the minimizer. Compared with 

he smoothing model in [32] , our model has several favorite ad- 

antages described in Section 3 . 

2) We modify the Gout’s model by using a more stable method

o compute image gradients and introducing a scale factor in the 

�

3

dge stopping function. We also give a new initialization method 

or the level set function used in solving Gout’s model. 

3) We give a new two-phase selective image segmentation

ethod. In the first phase, the image is smoothed by using our 

roposed model. Then in the second phase, the modified Gout’s 

odel is used on the smoothed image to detect the target bound- 

ry. Extensive experiments on real medical images show that, our 

moothing model can greatly facilitate the second phase, and our 

ethod can significantly improve two existing related methods in 

erms of either visual assessment or quantitative evaluation. 

. Related works

In this section, we briefly review some related work, including 

he model in [23] and the method in [32] . In the following, we call

he model in [23] Gout model and the method in [32] LMZ model. 

.1. Gout model [23] 

Let f ( x, y ) be the given image defined on a rectangular domain 

. Selective segmentation aims to find a contour � ⊂ � such that 
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Fig. 4. Segmentation of a small organ from a CT image.
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covers the boundary of the object to be detected. The GAC model 

ses the following image gradient dependent edge stopping func- 

ion to stop the evolving curve on the desired object boundary 

 ( | ∇ f ( x, y ) | ) = 1 

1 + | ∇ f ( x, y ) | 2 . (1) 

owever, the evolving curve cannot fit the boundary exactly 

hen the image intensity is inhomogeneous, the contrast is low, 

r the image is heavily affected by noise. Gout et al. [23] de- 

ned a distance function by using some marker points around 

he desired boundary to facilitate the curve evolution. Let S = 

 ( x i , y i ) ∈ �, 1 ≤ i ≤ n } be a set of n marker points around the

oundary of the target object. The distance function is defined as 

ollows: 

 ( x, y ) = min 

( x i , y i ) ∈ S 
| ( x, y ) − ( x i , y i ) | . (2) 

nother option is [9] 

 ( x, y ) = 

n ∏ 

i =1

(
1 − e −

( x −x i ) 
2 

2 σ2 e −
( y −y i ) 

2 

2 σ2

)
∀ ( x, y ) ∈ � (3) 

here d ( x, y ) is tuned by a parameter σ to allow for adjustment 

ccording to the number of points to be fitted. Obviously, the dis- 

ance function d ( x, y ) is close to zero near the marker points and 

lose to one wherever far away from the marker points. In order 

o find the desired contour �, Gout et al. minimize the following 

nergy functional: 

in 

�

∫ 
�

d ( x, y ) g ( | ∇ f ( x, y ) | ) ds . (4) 

learly, this model drives the curve � stop on the target boundary 

here both d and g are small. However, it is difficult to segment 
4

argets accurately when the image noise is strong or the target re- 

ion is cluttered. 

.2. LMZ model [32] 

In [32] , Liu et al. proposed the following variational model for 

mage smoothing: 

min 

 ( x,y ) ∈ W 

1 , 2 ( �)

∫ 
� | ∇u | d xd y+ 

α
2 

∫ 
� | ∇u | 2 d xd y+ 

β
2

∫ 
� w 

2 | u− f | 2 d xd y 

(5) 

here α, β are nonnegative parameters, w 

2 ( x, y ) = 1 −
 ( x, y ) g ( | ∇ f ( x, y ) | ) is a weight function to adjust the fidelity 

erm, d ( x, y ) is defined as that in Eq. (3) , and g ( | ∇ f ( x, y ) | ) is 

efined as follows: 

 ( | ∇ f ( x, y ) | ) = 1 

1 + k | ∇ f ( x, y ) | 2 (6) 

here k > 0 adjusts the strength of gradients. It can be seen that, 

he first two terms in Eq. (5) are regularity terms, which tends to 

ake u smooth; the third term is the fidelity term and the weight 

 tends to make the smoothed image u close to the original image 

t the marker points and image edges. Once u is obtained, then in 

he second stage, the target of interest is obtained by threshold- 

ng u with a proper threshold. This method performs very well by 

sing the optimal threshold. However, it is hard to find, especially 

hen the image contrast is low and there are multiple objects ad- 

acent to the target object. 
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Fig. 5. Segmentation of an ultrasonic image.
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. The proposed method

The major challenge to Gout model is the noise or intensity in- 

omogeneity, which causes false edge detection. And the major dif- 

culty of LMZ model is the threshold estimation. In this work, we 

till use Gout’s model to locate the target boundary. However, to 

ackle the major challenge, we propose a new variational model to 

mooth the given image in advance. In the following equations, we 

ill drop the variable ( x, y ) if it is self-explanatory. 

.1. Proposed model 

The proposed model is as follows: 

min 

u ∈ W 

1 , 2 ( �)
E ( u ) := 

1 
2 

∫ 
� ( 1 − g ( | ∇ GSG f ( x, y ) | ) ) ( u − f ) 

2 
( x, y ) d xd y

+ 

α
∫ 

g ( | ∇ GSG f ( x, y ) | ) | ∇u | 2 ( x, y ) d xd y

(7) 
2 �

5

here ∇ = ( ∂/x ∂/y ) 
T 

is the standard gradient operator, ∇ GSG is the

lobal sparse gradient (GSG) operator [33] , and g is the edge de- 

ection function defined in Eq. (6) . The first term is the fidelity 

erm and the second one is a regularization term. It is easy to 

ee, in smooth area, g ≈ 1 , the model tends to smooth the image, 

hus removing noise and small scale details; while on edges, g ≈ 0 , 

he model tends to make u close to f , thus preserve edges in the 

moothed image u . 

Three interesting aspects of our model should be noted. First, 

or the edge detection function g, we use the GSG model [33] to 

ompute the gradient of f because it is more robust to noise 

han the traditional gradient operator. Fig. 1 shows the images of 

 ( | ∇ f | ) and g ( | ∇ GSG f | ) for a noisy image f . It can be seen that

he later one is much more robust to noise. Second, the weight 

f our fidelity term only depends on image edges so that the im- 

ge smoothing phase is independent of the marker points. Third, 

ur regularity does not use the total variation (TV) term [32] in 

q. (5) . In fact, our regularity can be regarded as a weighted semi- 
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Fig. 6. Segmentation an object with complicated details.
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orm of the Sobolev space W 

1 , 2 ( �) [34] . Therefore, our variational 

roblem is well-posed in W 

1 , 2 ( �) and it has one single global so- 

ution, which will be analyzed in the following subsection. More- 

ver, the functional is differentiable, thus allows the gradient de- 

cent method. 

.2. Mathematical analysis of proposed model 

In theory, it may happen that | ∇ GSG f | = 0 or | ∇ GSG f | → ∞ . But

n computation, we find that | ∇ GSG f | usually has a positive maxi- 

um value and a positive minimum value, so does g ( | ∇ GSG f | ) de- 

ned in Eq. (6) . We assume 0 < m ≤ g ( | ∇ GSG f | ) ≤ M < 1 , then

 < 1 − M ≤ 1 − g ( | ∇ GSG f | ) ≤ 1 − m. (8) 

aving this, we can conclude that our model (7) has one unique 

olution in W 

1 , 2 ( �) . 

roposition 1. Suppose f ∈ L 2 ( �) . Then the proposed model (7) is 

trictly convex and there exists a unique minimizer u ∗( x, y ) ∈ 

 

1 , 2 ( �) . 

Moreover, the solution satisfies the following extreme principle. 

roposition 2. Suppose f ∈ L 2 ( �) , the unique minimizer u ∗ of our 

odel (7) satisfies inf ( x,y ) ∈ � f ( x, y ) ≤ u ∗( x, y ) ≤ su p ( x,y ) ∈ � f ( x, y ) .
Proofs of Proposition 1 and 2 are given in Appendix B . a

6

.3. Modified active contour model 

When the smoothed image u is obtained, we use the following 

ctive contour model to locate the target boundary. To leverage the 

dvantages of the level set method [35,36] , we rewrite the new 

odel in the level set formulation: 

in 

φ
F ( φ) = 

∫ 
�

g ( | ∇ GSG u ( x, y ) | ) | ∇H ( φ( x, y ) ) | d xd y (9) 

here H is the Heaviside function, the level set function (LSF) φ : 

→ � is a Lipschitz function, satisfying 

 

� = { ( x, y ) ∈ � : φ( x, y ) = 0 }
insi de ( �) = { ( x, y ) ∈ � : φ( x, y ) > 0 }
outs ide ( �) = { ( x, y ) ∈ � : φ( x, y ) < 0 }

nd � is the zero level set. Note that our model is different from 

out’s model and has some advantages. On one hand, our model 

ses g ( | ∇ GSG u ( x, y ) | ) to detect edge of the target object. This not

nly makes edge detection robust to noise or complicated back- 

round, but also makes computation easy because g ( | ∇ GSG u ( x, y ) | )
s computed in the first phase and it is at hand in the second 

hase. On the other hand, we do not use the distance function, 

hich further makes computation of the second phase simpler. In 

ur method, the marker points is only used to construct the initial 

ctive contour. 
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Fig. 7. Segmentation of a small-sized object.
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.4. Numerical algorithm 

To solve Eq. (7) for u , we first find the Euler-Lagrange equation 

s follows: 

 

1 − g ( | ∇ GSG f | ) ) ( f − u ) + αg ( | ∇ GSG f | ) 	u = 0 . (10)

hen introduce an artificial time instant t and embed the above 

quation into the following evolution equation: 

∂u 

∂t 
= ( 1 − g ( | ∇ GSG f | ) ) ( f − u ) + αg ( | ∇ GSG f | ) 	u. (11) 

or easy computation, we use explicit difference (in t) to discretize 

he above equation with step-size τ1 and get the following itera- 

ion scheme: 

 

t+1 = u 

t + τ1 [ ( 1 − g ( | ∇ GSG f | ) ) ( f − u ) +αg ( | ∇ GSG f | ) 	u ] 
t 
. (12) 

or better stability, one can also use implicit difference (in t). 

In our experiment, to further reduce the influence of noise, we 

se the intermediate smooth image u t instead of the original noisy 

mage f for edge detection. The actual evolution equation we used 

s 

 

t+1 = u 

t + τ1 

[(
1 − g 

(∣∣∇ GSG u 

t 
∣∣))( f − u 

t 
)

+ αg 
(∣∣∇ GSG u 

t 
∣∣)	u 

t 
]
.

(13) 

e take the given image f as the initial u , or we set u 0 = f . On the

oundary of �, we use the Neumann boundary condition: ∂u 
∂N 

= 0 

n ∂� (N is the outward normal to ∂�). 
7

Now we present the solution of model (9) for φ. Note that H is 

ot differentiable at the origin, so we use the regularized version 

f H, denoted by H ε and is given by Chan and Vese [25] , Osher and

edkiw [35] : 

 ε ( φ) = 

1

2 

(
1 + 

2

π
arctan 

(
φ

ε 

))
∂� (14) 

nd δε = H 

′ 
ε = 

1
π

ε
ε 2 + φ2 . The energy in Eq. (9) can be written as 

 ε ( φ) = 

∫ 
�

g ( | ∇ GSG u ( x, y ) | ) δε ( φ) | ∇φ( x, y ) | d xd y. (15) 

he associated Euler-Lagrange equation for φ is 

δε ( φ) di v 
(

g ( | ∇ GSG u | ) ∇φ

| ∇φ|
)

= 0 . (16) 

he corresponding evolution equation is 

∂φ

∂t 
= δε ( φ) di v 

(
g ( | ∇ GSG u | ) ∇φ

| ∇φ|
)

. (17) 

e use the following explicit difference scheme to discretize the 

bove equation: 

t+1 = φt + τ2

[
δε ( φ) di v 

(
g ( | ∇ GSG u | ) ∇φ

| ∇φ|
)]t

. (18) 

or our method, we take the polygon connecting the marker points 

s the initial contour. Instead of using the signed distance function, 
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Fig. 8. segmentation of an object occluded with adjacent objects.
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e define the initial LSF simply by 

0 ( x, y ) = 

{ +c , if ( x , y ) is inside P 

0 , if ( x, y ) is on P 
−c, if ( x, y ) is outside P 

here P denotes the polygon and c is a constant. Such initialization 

f the LSF is computationally more efficient than the signed dis- 

ance function, and empirically very effective in our experiments. 

n the boundary of �, we use the Neumann boundary condition: 
δε ( φ) 
| ∇φ| 

∂φ
∂N

= 0 , N denoting the unit exterior normal to the boundary 

f �. 

. Experimental results

In this section, we present some segmentation results on real 

edical images to illustrate the performance of the proposed 

ethod. We compare our proposed method with some previous 

odels, including Gout model [23] , Badshah et al. [24] , Rada-Chen 

26] , Ali et al. [27] , Rada et al. [29] and LMZ model [32] . The re-

ults of the Ali et al. [27] , Rada et al. [29] and LMZ model [32] are

btained by running the codes provided by the authors. The codes 

f Badshah et al. [24] and Rada-Chen [26] are written by ourselves 

ccording to the code of Ali et al. [27] . The results of Gout’s method

nd our method are obtained by using our codes. For all methods, 

e choose the same set of marker points, marked in the original 

mage by green stars around the boundary of the target. The meth- 
8

ds in [23,24,26,27,29] and our method use the same initial level 

et. The final located boundary of the target is superimposed on 

he given image as a red curve. The parameters of our method are 

anually selected for the presented results. The parameters of all 

ethods are provided in Appendix A, Table A.1 . 

.1. Visual assessment and comparison 

First, we present the segmentation results of some commonly 

sed medical images for visual comparison with the methods in 

23,24,26,27,29,32] . We do not give quantitative comparison be- 

ause we do not have the ground-truth segmentation. Fig. 2 shows 

he results of a bone image, which has strong noise. With three 

arking points, the initial LSF and edge stopping function given in 

23] , the desired contour cannot be obtained, as shown in Fig. 2 (a)

nd (b). It mainly because the original image is noisy and edge de- 

ection is not exact. In addition, different initial contours also affect 

he segmentation results. However, when using our initialization 

f the LSF and the edge stopping function with scaled gradients, 

he segmentation of Gout’s method can be significantly improved, 

s shown in Fig. 2 (c) and (d). So, in the followed experiments, 

e use our initial LSF and the same scaling constant k for Gout’s 

odel and our method. For both methods, we also use the same 

teration stopping criterion: the difference between two succes- 

ive LSFs is within a tolerance. The LMZ method first smooths the 

oisy original image so that the target is highlighted while others 
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Fig. 9. segmentation of a large object with complicated shape.
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1 
re diminished. Then a thresholding operation is performed on the 

moothed image to get the final segmentation. Our method also 

mooths the noisy original image, but with a different purpose. We 

im to remove the noise while keep the edges, so the boundaries 

f all objects will be preserved, and the smooth image can be used 

or other applications. We apply the modified active contour model 

9) to locate the boundary of the target. It can be seen that, the 

nal segmentation perfectly matches the real boundary of the tar- 

et. This confirms that, our smoothing process greatly facilitate the 

ollowed active contour evolution. By using our marker points and 

nitial contour, the methods in [24,26,27,29] obtain segmentation 

esults on par with ours. 

Fig. 3 shows segmentation of a tumor from a brain MRI. Since 

he tumor has complicated details, the Gout model fails by us- 

ng either their initialization or our initialization. In comparison, 

t is successfully segmented by using other model and our pro- 

osed method. Fig. 4 shows segmentation of a small sized object 

rom a CT image. The noise is strong and the intensity contrast 

s extremely low, all methods can successfully detect the object. 

ig. 5 shows segmentation of an object from an ultrasonic image. 

bviously, the image has strong noise and the boundary of the tar- 

et is not regular. Four marker points are chosen. By using our ini- 

ial LSF and scaling constant k , the Gout model, Rada et al. and

ur method performs very well. However, LMZ model fail in this 

ase. It is mainly because the target and the nearby objects have 
9

imilar intensity, thus it is hard to find the just right threshold for 

xact segmentation. The segmentations obtained by the methods 

n [24,26,27] are not exact due to the fuzzy edges of the target re- 

ion. 

.2. Quantitative assessment and comparison 

In this section, we evaluate our proposed method quantitatively 

nd compare it with Gout model [23] , Badshah et al. [24] , Rada-

hen [26] , Ali et al. [27] , Rada et al. [29] , LMZ model [32] . All meth-

ds are tested on some abdominal CT images selected from the 

D-IRCADb-01 database. 1 The dataset provides the ground truth 

asks of the target organs so that we can evaluate the results by 

he following commonly used metrics, including Dice coefficient, 

he Jaccard index, precision and recall [37,38] . They are defined as 

ollows: 

ice ( R seg , R gt ) = 

2 | R seg ∩ R gt |
| R seg | + | R gt |

accard( R seg , R gt ) = 

| R seg ∩ R gt |
| R seg ∪ R gt |

 recision = 

| R seg ∩ R gt |
| R seg |
The dataset is available from http://ircad.fr/research/3d- ircadb- 01 .

http://ircad.fr/research/3d-ircadb-01
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Table 1

Quantitative comparisons of our proposed method and other methods.

Images Method Dice Jaccard Precision Recall

Fig. 6 Gout model [23] 0.9841 0.9686 0.9969 0.9716

Badshah et al. [24] 0.9064 0.8288 1 0.8288

Rada-Chen [26] 0.9218 0.8550 0.9980 0.8565

Ali et al. [27] 0.9318 0.8723 0.9809 0.8874

Rada et al. [29] 0.9743 0.9499 0.9767 0.9720

LMZ model [32] 0.9540 0.9120 0.9462 0.9619

Our method 0.9864 0.9731 0.9970 0.9760

Fig. 7 Gout model [23] 0.8964 0.8122 1 0.8122

Badshah et al. [24] 0.9071 0.8299 0.8850 0.9303

Rada-Chen [26] 0.9282 0.8660 0.9191 0.9374

Ali et al. [27] 0.9247 0.8599 0.9518 0.8990

Rada et al. [29] 0.9406 0.8879 0.9245 0.9573

LMZ model [32] 0.8545 0.7460 0.7985 0.9189

Our method 0.9634 0.9294 0.9925 0.9360

Fig. 8 Gout model [23] 0.9488 0.9025 0.9808 0.9187

Badshah et al. [24] 0.9119 0.8381 0.8557 0.9760

Rada-Chen [26] 0.9186 0.8495 0.9235 0.9138

Ali et al. [27] 0.9221 0.8555 0.9285 0.9158

Rada et al. [29] 0.9265 0.8631 0.9037 0.9506

LMZ model [32] 0.8843 0.7926 0.8218 0.9572

Our method 0.9615 0.9258 0.9707 0.9524

Fig. 9 Gout model [23] 0.9710 0.9436 0.9996 0.9439

Badshah et al. [24] 0.9274 0.8646 1 0.8646

Rada-Chen [26] 0.9318 0.8724 1 0.8724

Ali et al. [27] 0.9334 0.8752 1 0.8752

Rada et al. [29] 0.9614 0.9256 0.9999 0.9257

LMZ model [32] 0.9488 0.9026 0.9997 0.9028

Our method 0.9735 0.9484 0.9997 0.9486
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ecall = 

| R seg ∩ R gt |
| R gt |

here | R seg | and | R gt | denotes the areas of the segmented re- 

ion and the ground truth region, respectively, | R seg ∩ R gt | denotes 

he area of their intersection, | R seg ∪ R gt | denotes the area of their 

nion. For all of these metrics, larger values indicate better seg- 

entation performance. 

Figs. 6 –9 show the segmentation results of four different or- 

ans: left kidney, venous system, liver, and left lung, respectively. 

he common challenges of these test images are, all have strong 

oise and low contrast. Each image has its particular challenge. For 

xample, the target in Fig. 6 has complicated details, the target in 

ig. 7 is relatively small, the target in Fig. 8 is occluded with ad-

acent objects and they have similar intensity, and the target in 

ig. 9 has very complicated boundary. With the same initial LSFs 

nd same scaling constants k , the skilled Gout model performs al- 

ost as well as ours on these test images. For the image shown in

igs. 6 and 8 , the LMZ method detected both the target object and

ts adjacent object whereas our method detects the target object 

orrectly. For the image shown in Figs. 6 and 9 , due to intensity

eterogeneity inside the target regions, the boundary detected re- 

pectively by Badshah et al. [24] , Rada-Chen [26] , Ali et al. [27] and

ada et al. [29] contains undesired small fragments, causing over 

egmentation of the target regions. Table 1 presents the objective 

etrics, with the best ones in bold.The metrics “Dice”, “Jaccard” of 

ur method are consistently higher than those of other methods. 

lthough the baseline methods obtain higher values of “Precision”

nd “Recall” on the test images shown in Figs. 6 and 9 , the bound-

ries detected by our method are more accurate. 

. Conclusion

Selective segmentation that extract objects of interest from an 

mage are important and challenging, which is widely used in 

edical image analysis for some specific tasks such as extracting 

natomic organs or lesions. In this paper, we propose a new two- 

hase method for selective segmentation. In the first phase, we 
10
resent a new variational model for image smoothing, which can 

ell preserve the edges and filter out noise and small scale de- 

ails. Then in the second phase, we use modified Gout’s model to 

etect the target boundary. We performed extensive segmentation 

xperiments on real medical images, which covers various chal- 

enges: strong noise, low contrast, objects with complicated details, 

mall sized objects, objects with complicated boundary, and oc- 

luded objects. Experimental results show that our smoothing pro- 

ess can greatly remove some adverse factors in medical images, 

nd our method can significantly outperform the related state-of- 

he-art selective segmentation methods. 
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Appendix A 

Table A.1

Parameter settings for the results shown.

Images Parameters

Fig. 2 (σ, 	t, ε, k ) = (5 , 10 , 10 , 10 3 ) [23] 

(μ, λ1 , λ2 , σ, 	t) = ( mn/ 10 3 , 0 . 1 , 0 . 1 , 5 , 1) [24] 

(μ, λ1 , λ2 , ν, α, 	t, k, β, ε, h ) = ( mn/ (3 × 10 3 ) , 0 . 1 , 0 . 1 , 10 −2 , 10 −2 , 1 , 10 2 , 10 −6 , 1 , 1) [26] 

(μ, λ1 , λ2 , ν, k, α, 	t, γ , ε, h ) = ( mn / 10 , 1 , 1 , 0 . 1 , 10 3 , 10 −2 , 1 , 10 −6 , 1 , 1) [27] 

(μ, λ1 , λ2 , ν, k, α, 	t, θ, β, ε, h ) = (mn/ 3 × 10 3 
)
, 1 , 1 , 0 . 1 , 10 3 , 10 −2 , 1 , 1 , 10 −6 , 1 , 1) [29] 

(α, β, μ, λ, σ, k ) = (1 , 2 , 15 , 10 , 15 , 1) [32] 

(α, τ1 , k, ε, τ2 ) = (20 , 10 −2 , 10 3 , 10 , 10) our model 

Fig. 3 (σ, 	t, ε, k ) = (10 , 10 , 10 , 0 . 1) [23] 

(μ, λ1 , λ2 , σ, 	t) = ( mn / 10 3 , 0 . 1 , 0 . 1 , 10 , 1) [24] 

(μ, λ1 , λ2 , ν, α, 	t, k, β, ε, h ) = ( mn/ 
(
3 × 10 3 

)
, 0 . 1 , 0 . 1 , 10 −2 , 10 −2 , 1 , 1 , 10 −6 , 1 , 1) [26] 

(μ, λ1 , λ2 , ν, k, α, 	t, γ , ε, h ) = ( mn / 10 , 1 , 1 , 0 . 1 , 1 , 10 −2 , 1 , 10 −6 , 1 , 1) [27] 

(μ, λ1 , λ2 , ν, k, α, 	t, θ, β, ε, h )= ( mn/ 
(
3 × 10 3 

)
, 0 . 1 , 0 . 1 , 10 −3 , 1 , 10 −2 , 1 , 1 , 10 −6 , 1 , 1) [29] 

(α, β, μ, λ, σ, k ) = (1 , 10 , 15 , 10 , 15 , 1) [32] 

(α, τ1 , k, ε, τ2 ) = (25 , 10 −2 , 0 . 1 , 10 , 10) our model 

Fig. 4 (σ, 	t, ε, k ) = (5 , 1 , 1 , 0 . 1) [23] 

(μ, λ1 , λ2 , σ, 	t) = ( mn / 10 3 , 10 −4 , 10 −4 , 5 , 1) [24] 

(μ, λ1 , λ2 , ν, α, 	t, k, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 10 −4 , 10 −4 , 10 −2 , 0 , 1 , 1 , 10 −6 , 1 , 1) [26] 

(μ, λ1 , λ2 , ν, k, α, 	t, γ , ε, h ) = ( mn / 10 , 10 −4 , 10 −4 , 0 . 1 , 0 . 1 , 10 −2 , 1 , 10 −6 , 1 , 1) [27] 

(μ, λ1 , λ2 , ν, k, α, 	t, θ, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 10 −3 , 10 −3 , 10 −3 , 1 , 10 −2 , 1 , 1 , 10 −6 , 1 , 1) [29] 

(α, β, μ, λ, σ, k ) = (1 , 10 , 15 , 10 , 5 , 10 −2 ) [32] 

(α, τ1 , k, ε, τ2 ) = (15 , 10 −2 , 0 . 1 , 1 , 1) our model 

Fig. 5 (σ, 	t, ε, k ) = (15 , 10 , 10 , 0 . 1) [23] 

(μ, λ1 , λ2 , σ, 	t) = ( mn / 10 3 , 0 . 1 , 0 . 1 , 15 , 1) [24] 

(μ, λ1 , λ2 , ν, α, 	t, k, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 0 . 1 , 0 . 1 , 10 −2 , 10 −2 , 0 . 1 , 0 . 1 , 10 −6 , 1 , 1) [26] 

(μ, λ1 , λ2 , ν, k, α, 	t, γ , ε, h ) = ( mn / 10 , 1 , 1 , 1 , 10 5 , 10 −2 , 1 , 10 −6 , 1 , 1) [27] 

(μ, λ1 , λ2 , ν, k, α, 	t, θ, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 0 . 1 , 0 . 1 , 10 −3 , 0 . 1 , 10 −2 , 0 . 1 , 1 , 10 −6 , 1 , 1) [29] 

(α, β, μ, λ, σ, k ) = (30 , 20 , 15 , 20 , 15 , 0 . 1) [32] 

(α, τ1 , k, ε, τ2 ) = (15 , 10 −2 , 0 . 1 , 1 , 1) our model 

Fig. 6 (σ, 	t, ε, k ) = (5 , 10 , 10 , 10 5 ) [23] 

(μ, λ1 , λ2 , σ, 	t) = ( mn / 
(
3 × 10 3 

)
, 0 . 1 , 0 . 1 , 5 , 0 . 1) [24]

(μ, λ1 , λ2 , ν, α, 	t, k, β, ε, h ) = (mn/ 
(
3 × 10 3 

)
, 1 , 1 , 1 , 10 −2 , 1 , 1 , 10 −6 , 1 , 1) [26] 

(μ, λ1 , λ2 , ν, k, α, 	t, γ , ε, h ) = (mn/ 10 , 1 , 1 , 0 . 1 , 10 5 , 10 −2 , 1 , 10 −6 , 1 , 1) [27] 

(μ, λ1 , λ2 , ν, k, α, 	t, θ, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 0 . 1 , 0 . 1 , 1 , 1 , 10 −2 , 1 , 1 , 10 −6 , 1 , 1) [29] 

(α, β, μ, λ, σ, k ) = (1 , 20 , 10 , 10 , 10 , 1) [32] 

(α, τ1 , k, ε, τ2 ) = (25 , 0 . 01 , 10 5 , 10 , 10) our model 

Fig. 7 (σ, 	t, ε, k ) = (10 , 10 , 10 , 10 5 ) [23] 

(μ, λ1 , λ2 , σ, 	t) = ( mn / 
(
3 × 10 3 

)
, 0 . 1 , 0 . 1 , 5 , 0 . 1) [24]

(μ, λ1 , λ2 , ν, α, 	t, k, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 1 , 1 , 1 , 10 −2 , 0 . 1 , 1 , 10 −6 , 1 , 1) [26] 

(μ, λ1 , λ2 , ν, k, α, 	t, γ , ε, h ) = ( mn / 10 , 1 , 1 , 0 . 1 , 10 6 , 10 −2 , 1 , 10 −6 , 1 , 1) [27] 

(μ, λ1 , λ2 , ν, k, α, 	t, θ, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 0 . 1 , 0 . 1 , 0 . 1 , 1 , 10 −2 , 1 , 1 , 10 −6 , 1 , 1) [29] 

(α, β, μ, λ, σ, k ) = (1 , 10 , 15 , 10 , 5 , 1) [32] 

(α, τ1 , k, ε, τ2 ) = (25 , 10 −2 , 10 6 , 1 , 10) our model 

Fig. 8 (σ, 	t, ε, k ) = (15 , 10 , 10 , 10 6 ) [23] 

(μ, λ1 , λ2 , σ, 	t) = ( mn / 
(
3 × 10 3 

)
, 0 . 1 , 0 . 1 , 5 , 0 . 1) [24]

(μ, λ1 , λ2 , ν, α, 	t, k, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 1 , 1 , 1 , 10 −2 , 0 . 1 , 1 , 10 −6 , 1 , 1) [26] 

(μ, λ1 , λ2 , ν, k, α, 	t, γ , ε, h ) = ( mn / 10 , 1 , 1 , 0 . 1 , 10 6 , 10 −2 , 1 , 10 −6 , 1 , 1) [27] 

(μ, λ1 , λ2 , ν, k, α, 	t, θ, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 0 . 1 , 0 . 1 , 0 . 1 , 1 , 10 −2 , 1 , 1 , 10 −6 , 1 , 1) [29] 

(α, β, μ, λ, σ, k ) = (1 , 20 , 30 , 1 , 20 , 1) [32] 

(α, τ1 , k, ε, τ2 ) = (25 , 10 −2 , 10 6 , 10 , 10) our model 

Fig. 9 (σ, 	t, ε, k ) = (15 , 10 , 10 , 10 4 ) [23] 

(μ, λ1 , λ2 , σ, 	t) = ( mn / 
(
3 × 10 3 

)
, 1 , 1 , 15 , 1) [24]

(μ, λ1 , λ2 , ν, α, 	t, k, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 1 , 1 , 0 . 1 , 10 −2 , 1 , 1 , 10 −6 , 1 , 1) [26] 

(μ, λ1 , λ2 , ν, k, α, 	t, γ , ε, h ) = ( mn / 10 , 1 , 1 , 0 . 1 , 1 , 10 −2 , 10 , 10 −6 , 1 , 1) [27] 

(μ, λ1 , λ2 , ν, k, α, 	t, θ, β, ε, h ) = ( mn / 
(
3 × 10 3 

)
, 1 , 1 , 1 , 1 , 10 −2 , 10 , 1 , 10 −6 , 1 , 1) [29] 

(α, β, μ, λ, σ, k ) = (1 , 5 , 40 , 10 , 15 , 1) [32] 

(α, τ1 , k, ε, τ2 ) = (25 , 10 −2 , 10 4 , 10 , 10) our model 
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Proof of Proposition 1. First, we note that 

 ≤ inf 
u ∈ W 

1 , 2 ( �)
E ( u ) ≤ E ( 0 ) ≤ 1 − m

2 

∫ 
�

| f | 2 d xd y < + ∞ , (A.1) 

hus in f u ∈ W 

1 , 2 ( �) E ( u ) must exist. It is obvious that 

 

∇u ‖ L 2 ( �) ≤
√

2 

αM 

E ( u ) (A.2) 
11
nd 

 

u ‖ L 2 ( �) ≤ ‖ 

u − f ‖ L 2 ( �) + ‖ 

f ‖ L 2 ( �) , (A.3) 

eanwhile, 

0 ≤ 1 −M 

2 

∫ 
� | u − f | 2 d xd y 

≤ 1 
2

∫ 
� ( 1 − g ( | ∇ GSG f | ) ) | u − f | 2 d xd y ≤ E ( u ) .

(A.4) 

rom which we obtain 

 

u − f ‖ L 2 ( �) ≤
√

2 

1 − M 

E ( u ) . (A.5) 
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ombining (A.2), (A.3) , and (A.5) , we have 

‖ 

u ‖ W 

1 , 2 ( �) ≤ ‖ 

u ‖ L 2 ( �) + ‖ 

∇u ‖ L 2 ( �)

≤
(√

2
αM

+ 

√ 

2
1 −M

)√ 

E ( u ) + ‖ 

f ‖ L 2 ( �) ,
(A.6) 

his indicates the coerciveness of E ( u ) . 

In addition, W 

1 , 2 ( �) is a reflective Banach space, and E ( u ) is 

trictly convex, lower semicontinuous (l.s.c.) and coercive. We con- 

lude that there exists one unique minimizer u ∗( x, y ) of E ( u ) in 

 

1 , 2 ( �) [34,39] . 

Proof of Proposition 2. Let w ( x, y ) = 1 − g ( | ∇ GSG f ( x, y ) | ) ,
e have 0 < 1 − M ≤ w ( x, y ) ≤ 1 − m , ∀ ( x, y ) ∈ �. Denote

 = inf ( x,y ) ∈ � f ( x, y ) and b = sup ( x,y ) ∈ � f ( x, y ) . 

First we note that, for any fixed point ( x, y ) ∈ �, we have F(s ) =
 ( x, y ) | s − f ( x, y ) | 2 is decreasing over the interval ( 0 , f ) and in- 

reasing over ( f, + ∞ ) . Therefore, if c ≥ f , we have 

 | min ( s, c ) − f | 2 ≤ w | s − f | 2 , ∀ s ∈ R.

et c = b, s = u ∗( x, y ) , we have 

 ( x, y ) | min ( u 

∗( x, y ) , b ) − f ( x, y ) | 2 ≤ w ( x, y ) | u 

∗( x, y ) − f ( x, y ) | 2 ,
(A.7) 

or any fixed point ( x, y ) ∈ �. Therefore, ∫ 
� w ( x, y ) | min ( u 

∗( x, y ) , b ) − f ( x, y ) | 2 d xd y

≤ ∫ 
� w ( x, y ) | u 

∗( x, y ) − f ( x, y ) | 2 d xd y
(A.8) 

n the same way we can prove that ∫ 
� w ( x, y ) | max ( u 

∗( x, y ) , a ) − f ( x, y ) | 2 d xd y

≤ ∫ 
� w ( x, y ) | u 

∗( x, y ) − f ( x, y ) | 2 d xd y
(A.9) 

n the other hand, from Proposition 15 in [40] , both 

in ( u ∗, b ) ( x, y ) and max ( u ∗, a ) ( x, y ) fall in W 

1 , 2 ( �) and 

 

∇ ( min ( u 

∗, b ) ) | ≤ | ∇ u 

∗| , | ∇ ( max ( u 

∗, a ) ) | ≤ | ∇ u 

∗| (A.10) 

ombing (A .8), (A .9) , and (A .10) , we have E ( min ( u ∗, b ) ) ≤ E ( u ∗) ,
 ( sup ( u ∗, a ) ) ≤ E ( u ∗) By using the uniqueness of the minimizer, 

e can conclude a ≤ u ∗ ≤ b. 
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