
Physica A 586 (2022) 126517

a

b

c

d

o
t
t
i
a
r
m

h
0

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Resilience assessment of an urban rail transit network: A case
study of Chengdu subway
Jinqu Chen a, Jie Liu b, Qiyuan Peng a,c,d, Yong Yin a,c,d,∗

School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China
Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650093, China
National United Engineering Laboratory of Integrated and Intelligent Transportation, Chengdu 611756, China
National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Chengdu 611756, China

a r t i c l e i n f o

Article history:
Received 9 March 2021
Received in revised form 17 September 2021
Available online 12 October 2021

Keywords:
Urban rail transit
Resilience
Effective path betweenness
Modified resilience metric
Resilience triangle

a b s t r a c t

Existing studies seldom consider network structure and passenger travel demand jointly,
and certain impractical assumptions are generally considered for assessing the resilience
of an urban rail transit (URT) network. To address the abovementioned limitations, we
have proposed a performance indicator called the demand–impedance (DI) indicator,
in which demand and impedance are reflected by passenger trips and travel time. By
considering effective travel paths (ETPs) and passengers’ path choice behavior, we have
proposed a node centrality called effective path betweenness (EPB) by modifying the
betweenness centrality (BC) to evaluate the importance of stations. The performance
curve of a URT network during the attack and repair processes is depicted using the DI
indicator, and a modified resilience metric is formulated by referring to the resilience
triangle. The model application in the Chengdu subway network demonstrates that the
correlation coefficient between the EPB and BC of stations is 0.901, which indicates
that stations with a higher EPB are inclined to have a higher BC. The Chengdu subway
network demonstrates a higher resilience under random disturbances than it does under
malicious disturbances. Disturbance duration, passengers’ tolerance time, and rescue
ability on the Chengdu subway network significantly affect its resilience. Several prac-
tical suggestions involving the management of disturbances, shortening the emergency
response time, providing passenger services, and improving emergency rescue ability
are provided for managing the Chengdu subway system under disturbances.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

By the end of 2020, 45 cities started operating an urban rail transit (URT) system in mainland China. The number of
perating stations and operating mileage were 4,681 and 7,969.7 km, respectively [1]. The URT system is the backbone of
he public transit system in China’s metropolises, which has greatly facilitated the daily commute of passengers. However,
he URT system in mainland China faces severe challenges caused by the increasingly complex operating environment. For
nstance, in January 2013, the derailment of a train occurred in the Kunming subway system, which led to a fatality and
n injury [2]. In April 2015, a human stampede disturbance at the Huangbeiling station in the Shenzhen subway system
esulted in nine non-fatal injuries [3]. In January 2018, trains on the Xi’an subway line 2 were delayed for more than 20
in owing to the failure of the railroad turnouts of the line [4]. In January 2019, equipment failure on Shanghai subway
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Table 1
Studies on assessing a URT network’s resilience.
Reference Network Performance indicator Resilience metric

Cox et al. [30] WN Changes in the total number of
passenger trips

Degree of deviation between the estimated total
number of passenger trips reduction and the
possible maximum potential reduction

Jin et al. [27] DN Amount of satisfied travel demand Fraction of satisfied travel demand on the
subway network after disturbances

Chan et al. [31] WN Revenue vehicle-miles Lost service days
Zhang et al. [25] UN Throughput, OD connectivity, average

reciprocal distance
Ratio of the expected maximum performance
that can be accommodated post-failure to the
achievable pre-disaster performance

Lu [26] UN Importance-impedance-based indicator Recovery rate
Zhang et al. [32]
and Saadat et al.
[33]

UN Network efficiency Performance loss

Li et al [34] UN Weighted sum of nodes’ performance Performance loss
Mudigonda et al.
[35]

UN Travel time, total number of passenger
trips

Recovery rate

Chang et al. [29] UN Level of service Performance loss
Chen et al. [36] UN Reciprocal of global accessibility

indicator, proportion of unaffected
passengers

Performance loss

Note: WN = Without constructing network; UN = Undirected network; DN = Directed network.

ine 12 caused trains on this line to be delayed for more than 15 min [5]. In January 2020, the COVID-19 outbreak resulted
n the shutdown of the Wuhan subway system [6]. These disturbances significantly affected the normal operations of the
RT system. Therefore, it is important to assess and enhance the ability of the URT system to respond to disturbances.
The concept of resilience has been widely applied to assess a URT network’s ability to respond to disturbances [7].

esilience stems from the Latin word ‘‘resiliere’’, which means restoration and spring back [8]. In 1973, Holling [9] first
sed resilience as a metric to assess an ecosystem’s ability to respond to external shocks. Thereafter, the concept of
esilience was widely applied to assess the abilities of economies [10], social science [11], and supply chains [12] to
espond to disturbances. Murray-Tuite proposed a specific definition and a quantitative method to assess the resilience of
transportation system in 2006 [13]. Thus far, researchers have assessed the resilience of road [13–15], railway [16,17],
aterway [18], and air transport networks [19]. Different transport modes have distinct definitions of resilience; however,
hey have the following common features [8]: (1) the ability of a transportation network to maintain functionality
nder disturbances; and (2) the time and resources required to restore performance after disturbances. For assessing
he resilience of a transportation network, existing metrics were divided into three categories: (1) topological, (2)
ttribute-based, and (3) performance-based metrics. The topological metrics were constructed based on graph properties
e.g., betweenness centrality (BC) [20], average shortest path [21], and network efficiency [22]), and the resilience of a
ransportation network was assessed by observing the variation in the values of the network’s topological metrics before
nd after disturbances. Attribute- and performance-based metrics were formulated by integrating the network structure
nd passenger trips jointly. The difference between them was that the attribute-based metrics assessed resilience from
ome specific properties (e.g., recovery rate [23]), whereas performance-based metrics assessed a transportation network’s
esilience based on its performance over the entire affected period during the disturbances.

In the past decades, the resilience assessment of URT networks has become increasingly popular. We have listed some
tudies, which have assessed the resilience of a URT network in Table 1. Studies that do not consider the performance
oss during the network recovery phase were excluded. In general, the method for assessing the resilience of a URT
etwork in the existing literature includes the following steps. First, the complex network theory proposed by Watts
nd Strogatz [24] was widely applied to abstract a URT network as an undirected [25,26] or a directed network [27].
hereafter, indicators such as network efficiency [28], amount of satisfied travel demand [27], and origination–destination
OD) station connectivity [25] were formulated from the perspective of network structure or passenger travel demand to
valuate the performance of a URT network. Finally, the resilience of a URT network was assessed using the resilience
heory (e.g., performance recovery rate [26], and performance loss during the entire affected period [28,29]) based on
istorical data or simulations.
Although existing research has established a certain foundation for the resilience assessment of a URT network, there

re some limitations that have to be addressed: (1) Majority of the studies assess the resilience from the perspective
f network structure or passenger travel demand. However, few studies have considered the network structure and
assenger travel demand jointly. (2) Node centrality-based attack strategies are widely used to simulate malicious
isturbances while assessing a URT network’s resilience. The node centrality (e.g., degree centrality and BC) is proposed
ased on the structure of a URT network, and the passengers’ path choice behavior is neglected. (3) Impractical
ssumptions, such as ignoring the duration of performance degradation and neglecting emergency response time before
epair, are considered while applying the resilience triangle to assess the resilience of a URT network.
2
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In this study, we modified the metric for assessing a URT network’s resilience to overcome the abovementioned
shortcomings. The main contributions of this study are as follows: (1) We have proposed a demand–impedance (DI)
indicator that integrates a URT network’s structure and passenger travel demand jointly to evaluate the performance of
a network. (2) A node centrality, called effective path betweenness (EPB), is formulated by modifying the BC. The EPB
considers effective travel paths (ETPs) and passengers’ path choice behavior for evaluating the importance of stations in
a URT network. (3) A performance curve has been introduced by discussing the durations of the disturbance, response,
and recovery phases, and a modified resilience metric has been formulated based on the resilience triangle.

The remainder of this paper is organized as follows: In Section 2, a method for assessing the resilience of a URT network
as been formulated based on the DI indicator, EPB, and performance curve. In Section 3, a simulation-based solution
lgorithm has been proposed to assess the resilience of a URT network. Section 4 implements the proposed method and
etric to assess the resilience of the Chengdu subway network during morning peak hours, and some useful suggestions
ave been proposed. Finally, we have summarized our main findings and future work in Section 5.

. Method

.1. Assumption

1. All disturbances occur at the same time and passengers whose paths contain failed stations are affected.
2. The repair work is carried out at the end of disturbances.
3. In the analysis period, new disturbances do not happen during and after the repair process.

.2. URT network

The URT network is abstracted as an undirected graph G(V , E). V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , el} denote the
sets of URT stations and links, respectively. n and l are the numbers of URT stations and links, respectively. An adjacency
matrix A = [aij]n×n with binary variables is used to describe the adjacency of stations in G. If stations i and j are connected
by a link directly, then aij and aji are equal to 1; otherwise aij and aji are equal to 0.

2.3. Performance of the URT network

2.3.1. DI indicator
We have proposed a DI indicator, which refers to the network efficiency [22], to evaluate the performance of the URT

network. The DI indicator reflects the number of passengers that a URT network can transport within a given time. In
the DI indicator, the number of passengers among OD pairs represented as demand does not change during the analysis
period, and the impedance is reflected in the travel time among OD pairs. The DI indicator Q of a URT network is computed
using Eq. (1):

Q =
1

n(n − 1)

∑
i∈V

∑
j∈V

vij · wij

tij
, i ̸= j, (1)

where vij is the total number of passenger trips from stations i to j (persons). wij, wij =
√
Ii · Ij denotes the travel

mportance from stations i to j. Ii and Ij are the importance of stations i and j, respectively, which will be discussed
n Section 2.4. tij represents the weighted average travel time on all ETPs from stations i to j (s), which is computed using
q. (2):

tij =

∑
k∈Kij

pkij · t
k
ij, (2)

here Kij is the set of ETPs from stations i to j, (the κ-shortest paths from stations i to j are defined as Kij in this study).
is the threshold coefficient obtained from a passenger survey. pkij denotes the probability of path k being selected, and

t is computed based on the stochastic user equilibrium assignment model described in the subsection that follows. tkij is
he travel time on path k (s).

.3.2. Stochastic user equilibrium assignment model
A stochastic user equilibrium assignment model incorporating the C-logit model is applied to compute the probabilities

f ETPs being selected. Compared to other logit model variants, the C-logit model reflects not only the overlapping effect
etween paths but also the passengers’ travel characteristics. The stochastic user equilibrium assignment model combined
ith a C-logit model [37] can be expressed as follows:

min Z(v) =

∑∑ ∑ vk
ij

θ
· ln(vk

ij) +

∑∫ ve

0
te(x)dx +

∑∑ ∑
vk
ij · wk

ij, (3)

i∈V j∈V k∈Kij e∈E i∈V j∈V k∈Kij

3
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vk
ij = pkij · vij, (4)

ve =

∑
i∈V

∑
j∈V

∑
k∈Kij

vk
ij · δ

ij
e,k, (5)

pkij =
exp[−θ · (gk

ij + wk
ij)]∑

k∈Kij
exp[−θ · (gk

ij + wk
ij)]

, (6)

gk
ij = gkV

ij + gkE
ij , (7)

gkV
ij =

∑
v1∈kV1

ts(v1) +

∑
v2∈kV2

µ · [tw(v2) + th(v2)] ·
⏐⏐kV2 ⏐⏐ζ , (8)

gkE
ij =

∑
e∈kE

te(x), (9)

wk
ij = θ · ln(

|Kij|∑
o=1

Lk,oij√
Lkij · L

o
ij

), (10)

te(x) =

⎧⎪⎨⎪⎩
1.3re ve ≤ be[
1.3be + 2.32(ve − be)

ve

]
· re be < ve ≤ ce

, (11)

where vk
ij denotes the total number of passenger trips on path k from stations i to j (persons), which is computed using

q. (4). θ is a parameter that reflects the sensitivity of passengers to the travel time of paths. A higher value of θ implies
hat passengers are more sensitive to the travel time of the path. ve represents the total number of passenger trips on
ink e (persons), which is calculated using Eq. (5). δije,k is a binary variable. If link e is on path k from stations i to j, then
δ
ij
e,k = 1; otherwise δ

ij
e,k = 0. te(x) represents the perceived travel time of passengers on link e (s), which is calculated

using Eq. (11). re denotes the running time of trains on link e (s). be refers to the number of seats in the trains on link
e. ce represents the transport capacity of trains on link e (persons). wk

ij is a common factor of path k, which is calculated
sing Eq. (10). Lk,oij represents the total length of the common links on paths k and o (m). Lkij and Loij denote the lengths of
aths k and o, respectively (m). gk

ij is the generalized travel time on path k from stations i to j, which is calculated using
q. (7). gkV

ij and gkE
ij are computed using Eqs. (8) and (9), which denote the generalized travel time at stations and links

n path k, respectively (s). kV1 , kV2 , and kE represent the sets of non-transfer stations, transfer stations, and links on path
, respectively. ts(v1) refers to the dwell time of trains at the non-transfer station v1 (s). tw(v2) and th(v2) represent the
ransfer walking time and transfer waiting time at transfer station v2, respectively (s). We let th(v2) to be half of the line’s
eparture time [38]. µ and ζ are the transfer coefficients.

.3.3. Travel options of passengers under disturbances
Eq. (2) computes the travel time from stations i to j when a URT network operates normally. However, it cannot be

applied to calculate the travel time between an OD pair when the ETPs of that OD pair are affected by disturbances [39,40].
The travel time of affected OD pairs is determined by the travel options of passengers under disturbances, which include
waiting at failed stations until stations are repaired (option 1); traveling through alternative paths on the URT network
(option 2); discontinuing traveling on the URT network and shifting to other public transport modes (option 3).

1. Option 1
If the duration of a disturbance on a travel path is below the tolerance time of the passenger τ , then passengers (called

affected passengers) whose travel paths contain failed stations will wait for recovery at failed stations [26]. The travel time
t ′ij from stations i to j with option 1 is computed using Eq. (12) (s). t̃kij denotes the travel time on path k from stations i to
j under disturbances (s), which is calculated using Eq. (13). tw is the waiting time of the passenger owing to disturbances
(s). In Eq. (14), Dv calculates the passengers’ average waiting time at failed station v before repair (s).

⌈
Wv+Av ·Dv

Cv

⌉
returns

to the ceiling value of Wv+Av ·Dv , which denotes the number of trains required to transport W + A · D passengers after
Cv
v v v

4
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epair. As a result, the total passenger waiting time at failed station v for boarding trains after the repair is formulated as⌈
Wv+Av ·Dv

Cv

⌉
· Fv .

t ′ij =

∑
k∈Kij

pkij · t̃
k
ij, (12)

t̃kij = tkij + tw, (13)

tw = Dv +

⌈
Wv + Av · Dv

Cv

⌉
· Fv, (14)

here Dv is the disturbance duration at failed station v (s). Wv represents the number of passengers waiting at failed
tation v when disturbances occur (persons). Av denotes the passengers’ arrival rate at failed station v (persons/s). Cv is
he transport capacity of trains stopping at failed station v (persons). Fv represents the time interval between the trains
topping at failed station v (s).

. Option 2
If the duration of a disturbance on a travel path exceeds the passengers’ tolerance time τ and alternative paths exist

n the URT network, then the affected passengers choose alternative paths. Several alternative paths may be available
mong stations in a complex URT network, and passengers choose alternative paths according to their utility [41]. The
ogit model and its variants have an advantage in expressing passengers’ pursuit of utilities; thus, the logit model can be
pplied to compute the probabilities of alternative paths being chosen by passengers under disturbances. The travel time
′

ij of passengers who choose option 2 is expressed as follows [42]:

t ′ij =

∑
k∈K ′

ij

p̃kij · t
k
ij, (15)

p̃kij =
exp(−θ · tkij)∑

k∈K ′
ij
exp(−θ · tkij)

, (16)

here K ′

ij denotes the set of alternative paths from stations i to j under disturbances. p̃kij is the probability of alternative
path k being selected under disturbances.

3. Option 3
If the duration of a disturbance on a travel path exceeds the passengers’ tolerance time τ and the affected passengers

do not have alternative paths, they often shift to other alternative public transport modes. Subways and buses are the most
commonly used public transport modes in China’s metropolises (e.g., Beijing, Shanghai, and Chengdu), thus, passengers
shift to the bus system when they choose option 3. Passengers’ travel time t ′ij with option 3 is as follows:

t ′ij =
dii′
vw

+ ϕ · qi′j′ , (17)

here dii′ is the walking distance from URT station i to bus stop i′ (m). Multiple alternative bus stops can be chosen by
assengers around URT stations i and j. Thus, we have depicted a flowchart in Fig. 1 to select the origination bus stop i′
nd destination bus stop j′. Fig. 1 illustrates the assumption that passengers obtain the bus operation information around
RT stations i and j based on smartphone applications (e.g., Google map and Baidu map). Malandri et al. considered
his assumption in their research [43]. Passengers choose the nearest bus stop to the destination URT station j as the
estination bus stop j′ according to smartphone applications. Passengers then select the origination bus stop i′, which has
he minimal travel time to the destination bus stop j′ because they tend to arrive at their destinations as soon as possible.
w is the passengers’ walking speed, vw = 1.25 m/s. ϕ is a penalty coefficient for estimating the penalty time from a URT
ystem to a bus system, ϕ = 1.1 [44]. qi′j′ is the shortest travel time from the origination bus stop i′ to the destination
us stop j′ (s).

.4. Importance of stations

Protecting critical stations is of practical significance for strengthening the URT network’s ability to respond to
isturbances. Critical stations are identified by node centrality, in which the passengers’ path choice behavior is always
eglected. BC, which is one of the most popularly applied node centralities, is calculated using Eq. (18). BC only considers
he shortest paths among stations, and it does not distinguish the probabilities of paths being selected for evaluating
station’s importance. However, all ETPs can be chosen by passengers on a URT network in daily operation, and the

robability of each ETP being selected is different. Hence, a node centrality called EPB is proposed by modifying Eq. (18).

5
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Fig. 1. Flowchart to select origination bus stops. Note: ABSs = Alternative Bus Stops.

he EPB Io of station o is computed using Eq. (19). In particular, BC and EPB are equal only when passengers travel through
he shortest paths on a URT network, and the probabilities of the shortest paths being selected are not distinguished.

Bo =

∑
i̸=o̸=j∈V

σij(o)
σij

, (18)

Io =

∑
i̸=o̸=j∈V

η∗

ij(o)

ηij
=

∑
i̸=o̸=j∈V

1
ηij

∑
k∈Kij

pkij · δk,o, (19)

here Bo represents the BC of station o; σij(o) denotes the number of shortest paths from stations i to j via station o. σij
nd ηij are the numbers of shortest paths and ETPs from stations i to j, respectively. η∗

ij(o) represents the weighted number
f ETPs from stations i to j via station o, the weights of ETPs being equal to the probabilities of ETPs being selected by
assengers, η∗

ij (o) =
∑

k∈Kij
pkij · δk,o. δk,o is a binary variable. If path k contains station o, then δk,o = 1; otherwise δk,o = 0.

.5. Resilience of the URT network

.5.1. Attack strategy
A URT network can be affected by station or link failures. We considered only station failure in this study. The critical

eason is that stations are open to the public and can easily be damaged by attacks and hazards [32]. In daily operations,
he disturbances that lead to station failure include random (e.g., natural disasters, equipment failures) and malicious
isturbances (e.g., terrorist attacks). In this study, to simulate random disturbances, the stations are randomly selected
or removal; and to simulate malicious disturbances, the most important stations are first identified via EPB and are later
elected for removal.
Disturbances that lead to various station failure severities are considered while simulating station failure. In general,

reater passenger trips at a station imply a higher value of failure severity when the station fails owing to distur-
ances [45]. Therefore, Li, which is proportional to the total number of passenger trips at station i, is proposed to measure
he failure severity of station i. Li = 0 denotes that station i is in normal operation, and a higher value of Li implies a
reater failure severity of station i. Furthermore, a station may have a greater failure severity under malicious disturbances
hen compared to that under random disturbances, because the former is more harmful to a URT system than the latter.
fter defining Li, station i’s repair duration Yi (s), which is proportional to Li, is computed using Eq. (20).

Yi = 60ϑ · Li, (20)

here ϑ is a coefficient that reflects the relationship between Li and Yi. A URT system with a greater rescue ability repairs
he failed station i in a shorter time when Li is fixed. Therefore, ϑ is related to a URT system’s rescue ability, and a smaller
represents greater rescue ability.
6
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Fig. 2. DI indicators of a URT network during the attack and repair processes. Note: RbP = Reliable Phase, DP = Disturbance Phase, RsP = Response
hase, RyP = Recovery Phase.

Fig. 3. Part of the schedule diagram of a URT line.

.5.2. Modified resilience metric
The DI indicators of a URT network during the attack and repair processes are depicted in Fig. 2. From Fig. 2, we can

ee that the URT network is attacked by disturbances at t1 and its DI indicator drops to the lowest level at t2. Thereafter,
he repair work is carried out at t3 and the work is completed at t4. The URT network depicted in Fig. 2 is divided into
eliable, disturbance, response, and recovery phases according to its DI indicator at different moments. Let us discuss the
urations of the disturbance, response, and recovery phases in detail.

. Duration of the disturbance phase
Disturbances affect the operations of trains whose routes include failed stations. As a result, passengers who intend

o board or have already boarded the affected trains are affected. In China, trains operate according to schedules. A small
art of the schedule diagram of a URT line is depicted in Fig. 3. In Fig. 3, the horizontal and slanted lines represent the URT
tations and trains, respectively. t

Dv1
T1 and t

Av2
T1 denote train T1’s departure time at station v1 and arrival time at station v2,

espectively, t
Av2
T1 > t

Dv1
T1 .

It is assumed that a disturbance occurs at station v1 at time to and the failed station is repaired at tm (as depicted in
ig. 3). The duration of the disturbance phase is t

Dv1
T2 − to. This is because the URT network normally operates from t

Dv1
T1 to

o. The disturbance does not affect the operation of train T1. Train T2 is the first train to get affected after the disturbance.
assengers who intend to board or have already boarded train T2 are affected, and the DI indicator of the URT network is
onsidered to drop to the lowest level at t

Dv1
T2 . We assume that to follows a uniform distribution U(t

Dv1
T1 , t

Dv1
T2 ), because of

he possibility of a disturbance to occur at any time between t
Dv1
T1 and t

Dv1
T2 [46]. The expectation E(to) of to is (t

Dv1
T1 +t

Dv1
T2 )/2.

ence, we apply the expectation of t
Dv1
T2 − to to estimate the duration of the disturbance phase when station v1 fails.

T1 = E
(
t
Dv1
T2 − to

)
= t

Dv1
T2 − E (to) =

t
Dv1
T2 − t

Dv1
T1

2
=

Fv1

2
(21)

f the number of failed stations exceeds 1, then the duration of the disturbance phase can be expressed as follows:

T1 = max
v∈V1

{
Fv

2

}
, (22)

here V1 denotes the set of failed stations.

. Duration of the response phase
The duration of the response phase is mainly affected by the emergency response time of the URT system. In China,

he law of the People’s Republic of China on work safety [47] requires that the duration of emergency response for a
RT operation department cannot exceed a specific time. That is, the emergency response time is fixed for a URT system.
ence, we defined the duration of response phase T2 as a constant:

T = t , (23)
2 r

7



J. Chen, J. Liu, Q. Peng et al. Physica A 586 (2022) 126517

w
t

3

T
h

w

d
l
t

w
w

w
o

3

u
s
U
n
o
c
u
s

E
d

Fig. 4. A URT network’s DI indicator during attack and repair processes.

here tr is the emergency response time of the URT system (s). Different URT systems have different values, we set
r = 120 s in this study.

. Duration of the recovery phase
The duration of the recovery phase relates to the station failure severity and the recovery strategy of the URT system.

he preference recovery strategy [38], wherein failed stations are repaired sequentially according to their EPB, is applied
erein to repair the disrupted URT network. The duration of the recovery phase T3 is as follows:

T3 = tp, (24)

here tp represents the total repair time that is determined by the preference repair strategy (s).
The performance curve of a URT network during the attack and repair processes is depicted in Fig. 4 according to the

urations of the disturbance, response, and recovery phases. The shaded area depicted in Fig. 4 denotes the performance
oss of the URT network under disturbances. According to the resilience triangle [32], the retained performance during
he attack and repair processes is used as a resilience metric R:

R = 1 − (R1 + R2 + R3), (25)

here R1, R2, and R3 represent the performance losses during the disturbance, response, and recovery phases, respectively,
hich are calculated using Eqs. (26)–(28).

R1 =

∫ to+T1
to

[Q0 − Q (t)]dt

Q0T1
, (26)

R2 =
T2 · (Q0 − Qto+T1 )

Q0 · T2
, (27)

R3 =

∫ to+T1+T2+T3
to+T1+T2

[Q0 − Q (t)]dt

Q0T3
, (28)

here to is the moment when disturbances occur (s). For ease of calculation, we let to = 0 s. Q0 denotes the DI indicator
f a normally operating URT network (persons/s). Q (t) represents the DI indicator of a URT network at time t (persons/s).

. Solution algorithm

The resilience of a URT network is assessed based on the simulation. At first, the ETPs on a URT network are generated
sing the pseudocodes listed in Table 2. Studies that apply the depth-first search algorithm and Floyd algorithm are
ufficient, and the application details are listed in [48,49], respectively. Secondly, the DI indicator of a normally operating
RT network is computed after the passenger trip assignment. Thirdly, the stations are removed and re-added to the URT
etwork during the attack and repair simulations. The curve depicted in Fig. 4 is obtained by calculating the DI indicator
f the URT network during the attack and repair processes. Lastly, the modified resilience metric of the URT network is
omputed. The algorithm flowchart for assessing the resilience of a URT network is depicted in Fig. 5. The research on
sing the method of successive weighted average (MSWA) algorithm to solve the passenger trip assignment model is
ufficient, and the details of applying the MSWA algorithm are described in [50].
The dotted box depicted in Fig. 5 is used to calculate the DI indicator of the URT network under disturbances. The

TPs on a URT network are updated by programming the pseudocode listed in Table 3. Thereafter, the DI indicator of a
isrupted URT network is calculated by the complete scanning of all OD pairs.
8
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Table 2
Pseudocode for generating ETPs on a normally operating URT network.
Algorithm I: Generating ETPs on a normally operating URT network

Input: κ //Threshold coefficient.
P //Set of travel paths among all OD pairs, which is

obtained by applying a depth-first search algorithm.
PT //Set of travel time on all travel paths, which is

obtained by applying a depth-first search algorithm.
ST //Set of shortest travel time among all OD pairs, which

is obtained by applying a Floyd algorithm.
Output: Kij //Set of ETPs.
1. for i = 1 to length[P] do
2. for j = 1 to length[P] do
3. if Pij ̸=empty do //Set of travel paths is not empty.
4. s = 1;
5. for p in Pij do //Traversing set.
6. if PTij (p) ≤ κ · STij do //Path k’s travel time is below the threshold time.
7. Kij[s] = p; //Recording path k as an ETP.
8. s = s + 1;
9. endif
10. endfor
11. endif
12. endfor
13. endfor

Table 3
Pseudocode for updating ETPs on a disrupted URT network.
Algorithm II: Updating ETPs on a disrupted URT network

Input: A //A URT network’s adjacency matrix.
τ //Passengers’ tolerance time.
V1 //Set of failed stations.
Td //Set of failed time at stations.
Kij //Set of ETPs under normal operations.

Output: K ∗

ij //Set of updated ETPs.
1. for i = 1 to length[A] do
2. for j = 1 to length[A] do
3. if Kij ̸=empty do //Set of ETPs is not empty.
4. s = 1;
5. for k in Kij do //Traversing the set of ETPs.
6. if V1 ∩ k ̸=empty do //Path k contains failed stations.
7. t = max(T ∗

d ); //The greatest failed time on path k is recorded.
8. if t ≤ τ do //Path k’s failed time does not exceed τ .
9. K ∗

ij [s] = k; //The set of ETPs is updated.
10. s = s + 1;
11. endif
12. endif
13. endfor
14. endif
15. endfor
16. endfor

4. Implementation

4.1. Chengdu subway

4.1.1. Chengdu subway network
Chengdu is the capital of Sichuan province and the twelfth city that operates a URT system in mainland China. The

ffectiveness of the proposed method and metric are verified by applying them to the Chengdu subway network in April
019. Fig. 6 depicts the six operation lines, 156 stations (including 14 transfer stations), and 166 links in the Chengdu
ubway in April 2019.

.1.2. Data preparation
The data of automatic fare collection, which were obtained from a manager in the Chengdu subway, are processed

efore assessing the network’s resilience. After data processing, passenger OD trips during the morning peak hours are
btained. We obtained train operation data (e.g., train schedule on each line) and transfer walking time at transfer stations
9
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Fig. 5. Flowchart for assessing a URT network’s resilience.

Fig. 6. Chengdu subway network in April 2019.

from a Chengdu subway manager. The bus operation data (bus routes, location of bus stops, and running time among bus

stops) were crawled by processing Amap data [51] with Python.

The parameters used in Fig. 5 are determined as follows: Passengers’ perception parameter θ = 1.866, transfer

coefficients µ = 1.1, ζ = 0.5 according to [38]; Passengers’ tolerance time τ = 5 min and threshold coefficient κ = 1.3

according to a passenger survey. The maximal distance from a bus stop to a URT station is R = 400 m.
b
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Fig. 7. Stations’ EPB versus their BC on the Chengdu subway network.

Table 4
Number of affected passengers and DI indicator reduction caused by the failures of five critical stations identified with EPB and BC.
Node centrality NoAP DI indicator reduction (D = 60 s) DI indicator reduction (D = 360 s)

EPB 181,216 persons 8.256 × 10−7 persons/s 2.644 × 10−5 persons/s
BC 168,539 persons 3.452 × 10−6 persons/s 2.386 × 10−5 persons/s

Note: NoAP = Number of affected passengers.

4.2. Importance of stations

The BC and EPB of stations on the Chengdu subway are calculated, and the relationship between the EPB and BC of
stations is depicted in Fig. 7. The correlation coefficient between the EPB and BC of stations on the Chengdu subway is
0.901. This result implies that a station’s EPB is positively related to its BC, and a station with a higher value of BC tends
to have a higher EPB. The number of affected passengers and DI indicator reduction caused by the failures of five critical
stations identified by EPB and BC are listed in Table 4. Passenger trip assignment result indicates that the critical stations
identified with EPB are more important than the critical stations identified with BC in terms of transporting passengers.
When the disturbance duration is less than the passengers’ tolerance time (5 min), the DI indicator reduction caused by
the failures of critical stations identified with EPB and BC is relatively small. The DI indicator reduction owing to failures of
critical stations identified with EPB is smaller because the total arrival rate of passengers at five critical stations identified
with EPB (2.194 persons/s) is smaller than that of stations identified with BC (2.686 persons/s). However, the failures of
critical stations cause a significant reduction in the DI indicators when the disturbance duration exceeded 5 min. The DI
indicator reduction owing to the failures of critical stations identified with EPB is greater than that identified with BC.
Based on the above discussion, we can see that EPB is more effective for identifying critical stations in a URT network
when compared to BC.

4.3. Resilience of the Chengdu subway network

4.3.1. Performance of the Chengdu subway network
The values of the Chengdu subway network’s DI indicator and the total number of passenger trips on the network

during the operation hours are computed and depicted in Fig. 8. The results indicate that the DI indicator of the Chengdu
subway network is proportional to the total number of passenger trips on the network. According to Eq. (1), a URT
etwork’s DI indicator equals the weighted sum of the OD pairs’ DI indicator. Hence, the effectiveness of a URT network’s
I indicator can be verified by illustrating the effectiveness of the DI indicators among the OD pairs. The Sxl station
station number is 2) on line 1 is considered as an example to illustrate the effectiveness of the DI indicator from the Sxl
tation to other stations on line 1. The normalized DI indicator and normalized efficiency from the Sxl station to another
tation on line 1 (station numbers from 1 to 35) are depicted in Fig. 9. The correlation coefficient between the normalized
I indicator and normalized efficiency depicted in Fig. 9 is 0.237, which implies that the normalized DI indicator and
ormalized efficiency have a low correlation. The efficiency among stations is inversely related to travel time among
tations, and it does not consider the total number of passenger trips among stations. The DI indicator is proportional
o the total number of passenger trips among other stations. Greater passenger trips among stations imply a higher DI
ndicator. The main function of a URT network is to transport passengers; thus, passenger trips are considered important
or evaluating the performance of a URT network. Here, passenger trips among OD pairs and weighted average travel time
n ETPs are considered in the DI indicator, which increase the effectiveness of the DI indicator when compared to the

etwork efficiency while evaluating a URT network’s performance.

11
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Fig. 8. Values of the network’s DI indicator and the total number of passenger trips on the network during the operation hours. Note: TNPTN =

otal Number of Passenger Trips on the Network.

Fig. 9. Normalized DI indicator and normalized efficiency from Sxl station to other stations on line 1.

Table 5
Failure severities and passengers’ arrival rates of stations chosen to simulate random and malicious disturbances.
Random disturbances Malicious disturbances

Station FS PAR Station FS PAR Station FS PAR Station FS PAR

Sl 0.934 0.330 Yxf 3.232 0.826 Tpy 2.113 0.464 CuTCM&Spph 9.967 0.628
Thm 1.908 0.200 Wsm 3.547 0.612 Cp 3.252 0.837 Htz 11.705 0.820
Nxa 2.194 0.411 Tsrs 3.773 0.344 Srs 4.476 0.401 Lms 13.102 0.537
Sxs 2.228 0.368 Fc 3.828 0.782 Cdsph 5.521 0.648 Tfs 13.594 0.256
Jjh 2.449 0.191 Lms 3.976 0.537 Scg 6.808 0.605 Cxr 19.195 0.395

Note: FS = Failure Severity; PAR = Passengers’ Arrival Rate.

.3.2. Chengdu subway network’s resilience

. Simulation scenarios
The failure severities and passengers’ arrival rates (persons/s) of stations that are chosen to simulate random and

alicious disturbances during morning peak hours are listed in Table 5.

. Resilience assessment of the Chengdu subway network
The DI indicator of the Chengdu subway network during the attack and repair processes under random and malicious

isturbances is depicted in Fig. 10. The performance curve in Fig. 10 is more consistent with the real operation of the
hengdu subway network during disturbances than the widely applied performance curve listed in [32]. The performance
urve can describe the change in a network’s DI indicator in detail, and thus, it comprehensively assesses the resilience
f a URT network. The resilience of the Chengdu subway network is computed using Eqs. (25)–(28). The resilience of
he Chengdu subway network under malicious disturbances is 0.840, which is lower than the resilience of the Chengdu
ubway network under random disturbances (0.918). Malicious disturbances are more harmful to the resilience of the
hengdu subway network than random disturbances. Thus, Chengdu subway operators need to focus on the operations
f critical stations (such as Tpy station, which is the bridge node among Shuangliu District and downtown Chengdu, Cp
tation, which connects Wenjiang District and downtown Chengdu) to avoid network paralysis caused by the failures of
ritical stations.
12
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Fig. 10. Network’s DI indicator during attack and repair processes under random and malicious disturbances.

Fig. 11. Relation among resilience, number of failed stations, and failure severities.

Table 6
The values of failure severities should not be exceeded to guarantee that R > 0.9 when the number of
failed stations is different.
Number of failed
stations

Values of failure severities
should not exceed

Number of failed
stations

Values of failure severities
should not exceed

1 10 9 0
2 10 10 0
3 5 11 0
4 1 12 0
5 1 13 0
6 0 14 0
7 0 15 0
8 0 – –

4.3.3. Sensitivity on parameters on Chengdu subway network’s resilience
In this subsection, we shall discuss the influences of the parameters on the resilience of the Chengdu subway network

sing the control variate method. By considering station failure in the Chengdu subway caused by malicious disturbances
s an example, its resilience under a different number of failed stations with different failure severities is depicted in
ig. 11.
As illustrated in Fig. 11 (tr = 120 s, τ = 300 s, and ϑ = 1), the network’s resilience is inversely proportional to the

number of failed stations when the values of failure severities are fixed. More failed stations imply a smaller value of
resilience. When the number of failed stations is fixed, greater failure severities lead to lower resilience. The Chengdu
subway network has higher resilience when the failure severity is less than 5 (i.e., the disturbance duration is 5 min).

To maintain the high resilience of the Chengdu subway network, i.e., to guarantee that R > 0.9, the values of failure
everities that should not exceed are listed in Table 6, when the number of failed stations is different. To guarantee R > 0.9,
the number of failed stations that should not be exceeded is listed in Table 7, when the values of failure severities are
different. Tables 6 and 7 provide a monitoring failure severity and a monitoring number of failure stations, respectively,
o ensure the high resilience of the Chengdu subway network when station failure occurs, which helps operators monitor
he operations of the network to maintain its high resilience.

The effects of parameters tr, τ , and ϑ on the Chengdu subway network’s resilience are displayed in Fig. 12. Fig. 12(a)
τ = 300 s, and ϑ = 1) depicts that the network’s resilience is inversely proportional to tr. The fitting equation between
and tr is R = −0.009tr + 0.858. This indicates that the network’s resilience can be improved effectively by shortening

he emergency response time, and a 1 s reduction in emergency response time can increase the network’s resilience by
13
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Table 7
The numbers of failed stations should not be exceeded to guarantee that R > 0.9 when the values of
failure severities are different.
Values of failure
severities

Number of failed stations
should not exceed

Values of failure
severities

Number of failed stations
should not exceed

1 5 6 2
2 5 7 2
3 3 8 2
4 3 9 2
5 2 10 2

Fig. 12. Effects of parameters tr , τ , and ϑ on network resilience.

.009. To reduce the emergency response time, an information-sharing platform that integrates governments, operators,
assengers, and public safety agencies should be established in the Chengdu subway system. This platform conveys
nformation efficiently and thus promotes operators to make correct decisions in a shorter time.

Fig. 12(b) (tr = 120 s, and ϑ = 1) indicates that the network’s resilience increases with an increase in passengers’ tol-
rance time. When τ = 100 s, the network’s resilience is 0.797, whereas its resilience is 0.906 when τ = 600 s. Therefore,

the operators can take the following measures to enhance the network’s resilience. At first, they need to provide high-
quality transportation services (e.g., clean train carriages and friendly passenger inquiry services) to passengers. Secondly,
the travel guidance information should be announced promptly through broadcasting and smartphone applications, which
help passengers to choose reasonable paths when they need to detour. Finally, operators can temporarily change the train
routes to evacuate trapped passengers.

Fig. 12(c) (tr = 120 s, τ = 300 s) illustrates that a greater ϑ implies a smaller value of resilience, and the relation
between R and ϑ is R = −0.008ϑ +0.847. This implies that improving a system’s emergency rescue ability can effectively
enhance the resilience of the network. For instance, building professional repair teams in the Chengdu subway system
to efficiently carry out repair work. The skills of repair teams can be improved by organizing regular emergency rescue
drills. Furthermore, operators can seek help from public safety agencies (e.g., the fire and rescue department) when the
disturbances are serious.

5. Conclusion

In this study, the resilience of a URT network is assessed. Considering the efficiency of a URT network in transporting
passengers, an indicator called the DI indicator is proposed to evaluate the performance of a URT network. By considering
a URT network’s ETPs and passengers’ path choice behavior, a node centrality called EPB is proposed to measure the
importance of stations. The performance curve of a URT network during the attack and repair processes has been depicted
using the DI indicator, and a modified resilience metric has been formulated based on the performance curve and resilience
triangle. Finally, the proposed model and metrics are implemented in the Chengdu subway network. The correlation
coefficient between the stations’ EPB and BC is 0.901 on the Chengdu subway network. EPB provides a more effective
assessment of stations’ importance when compared to BC, by considering the importance of stations for transporting
passengers and the effect of the stations’ failure on a URT network’s performance. The DI indicator is considered more
suitable for evaluating the network’s performance than network efficiency because it can effectively reflect the effect of
passenger trips among stations on the network’s performance. The proposed performance curve is more consistent with
the real operation of the Chengdu subway system during disturbances, and it comprehensively assesses the resilience of
the network. The Chengdu subway network possesses greater resilience under random disturbances than under malicious
disturbances. Based on the sensitivity analysis of the network’s resilience assessment, several practical suggestions
involving the management of disturbances, shortening emergency response time, providing passenger services, and
improving emergency rescue ability are provided for the management of the Chengdu subway system under disturbances.

Although the model and metric are only verified with the Chengdu subway network, they can be applied to other URT
networks worldwide. In future works, we will further modify the resilience metric and propose a weighted resilience
metric by considering the importance of different phases (disturbance, response, and recovery phases).
14
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