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a b s t r a c t 

Recent developments in urbanization and e-commerce have pushed businesses to deploy efficient systems to 

decrease their supply chain cost. Vendor Managed Inventory (VMI) is one of the most widely used strategies 

to effectively manage supply chains with multiple parties. VMI implementation asks for solving the Inventory 

Routing Problem (IRP). This study considers a multi-product multi-period inventory routing problem, including 

a supplier, set of customers, and a fleet of heterogeneous vehicles. Due to the complex nature of the IRP, we 

developed a Modified Adaptive Genetic Algorithm (MAGA) to solve a variety of instances efficiently. As a bench- 

mark, we considered the results obtained by Cplex software and an efficient heuristic from the literature. Through 

extensive computational experiments on a set of randomly generated instances, and using different metrics, we 

show that our approach distinctly outperforms the other two methods. In this way, we created a decision support 

and computer-based approach to assist policy and decision-makers in the pathway of constructing a sustainable 

society. 
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. Introduction 

Throughout the past few decades, advancements in information and

ommunications technology have led to novel and innovative businesses

n supply chain management. Vendor Managed Inventory (VMI) is an ex-

mple of such business models, representing an important paradigm in

hich the vendor (supplier) has full responsibility for controlling the re-

ailer inventory using the inventory data that the retailer provides. Un-

ike traditional inventory management practices where retailers make

heir own decisions about the new orders’ size and time, a vendor mon-

tors the retailer’s inventory and acts as the decision-maker in the VMI

odel [1,2] . In this distribution model, deciding on the inventory level

or both supplier and retailer depends on the timing and the number of

eliveries that a retailer needs, which itself is influenced by the capacity

f the vehicles used for delivery. Simultaneous decision making is a vital

omponent to achieve cost-effectiveness in these systems. The main ad-

antage of implementing a VMI system is that the vendor can increase

he service level while reducing the distribution costs by using vehi-

les effectively. Retailers, on the other hand, can release the resources

hey usually use for inventory management. In VMI implementation, a
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endor should solve an Inventory Routing Problem (IRP) to specify a

istribution plan, minimizing the long-run average distribution and in-

entory costs throughout the supply chain, and avoiding shortage [3] .

he IRP simultaneously takes into account both vehicle routing and in-

entory management in a supply chain system and tries to maximize the

verall performance. In the IRP, the supply chain system consists of a

upplier and a number of retailers who are distributed geographically

ith certain demand levels. Within a specified time window, products

re shipped from the supplier to retailers using a several vehicles. The

emand of each customer is met by any vehicle per period. In the VMI

ystem, the supplier determines each retailer’s replenishment policy and

he vehicle routes to deliver the products while ensuring that no short-

ge occurs. The IRP attempts to minimize the overall logistics costs to

eet retailers’ demands in a planning horizon. Under this framework,

hree main decisions need to be made: (1) when to fulfill the demand of

 retailer; (2) the amount of products to be delivered to a retailer; (3)

he optimal routes for vehicles. The IRP literature can be investigated

hrough the modeling and methodology perspectives. From the model-

ng point of view, the literature can be classified into different groups

ased on the length of the planning horizon(single-period, multi-period,
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M

s

nd infinite), type of product (single and multi), and delivery (non-split

nd split). One of the earliest studies was done by Federgruen and Zipkin

4] where authors formulated the IRP as a single-period problem con-

idering a plant and customers with uncertain demand. The research

ork by Azadeh et al. [5] considered a single product IRP with trans-

hipment where the products deteriorate during the time of storage or

t warehouses. Authors in [6] considered a multi-period single-product

ingle-vehicle IRPwith a limited customers to minimize the inventory

nd transportation cost. An IRP with split delivery was studied by Yu

t al. [7] , where the constraint of the VRP that each customer should be

erved by exactly one vehicle was relaxed. From the solution method-

logy perspective, the researchers have chosen different approaches to-

ard solving the IRP problem. Although the IRP is NP-Hard, some re-

earchers attempt to use exact methods to solve the IRP. For example,

uthors in [8] developed a Branch-and-Cut (B&C) algorithm to solve a

ulti-product multi-vehicle inventory-routing problem. A three-phase

xact approach is developed by Bertazzi et al. [9] where in the first

hase, a branch-and-cut algorithm is applied on extended IRP to obtain

n extended lower-bound on cost of IRP. If the optimal integer solution

ould not be obtained in the first phase, the second phase is activated

here a heuristic is applied to provide an upper-bound on the optimal

ost. The upper bound will then be used in the third phase, where a

ranch-and-cut method is applied on the IRP. While most of the ex-

ct methods for IRP are based on the B&C method, Desaulniers et al.

10] developed a branch-price algorithm by incorporating a group of

alid inequalities, and a labeling algorithm to solve column generation

ubproblems, combined with multiple acceleration techniques. 

Due to the complex nature of the IRP problem, many authors devel-

ped heuristic approaches to solve the IRP. A Variable Neighborhood

earch (VNS) heuristic is developed by Popovi ć et al. [11] to solve

 multi-period multi-product IRP. They implemented three different

ethods to generate the initial solutions. The authors in [12] proposed

 three-phase hybrid heuristic, including inventory allocation, ware-

ouse clustering, and routing decisions. A Particle Swarm Optimization-

ifferential Evolution (PSO-DE) is presented by De et al. [13] to solve

reen maritime IRP with time window constraints. They implemented a

enetic Algorithm (GA), Particle Swarm Optimization-Differential Evo-

ution, and basic PSO to validate the results. A Genetic Algorithm is

eveloped by Moin et al. [14] to solve a many-to-one distribution net-

ork including a depot, an assembly plant and a number of suppliers.

hey suggested two types of modifications to their GA operations to

ackle limitations on solving the problem. Authors in [15] proposed

 metaheuristic algorithm to solve the special version of IRP. The al-

orithm follows a hierarchy-based consisting of a master problem for

oute adjustment and two subproblems for timing and flow decisions.

esearchers in [16] proposed an innovative mixed-integer linear pro-

ramming model for a green IRP with time windows. They developed

nd implemented three meta-heuristic algorithms, including original

nd Augmented Tabu search as well a differential evolution to efficiently

olved the proposed model. The author in [17] a hyper-heuristic method

o solve the inventory routing problem. The suggested approach uses

everal low-level heuristics to improve an aspect of the incumbent so-

ution. Their approach showed superior performance comparing to the

xisting competitors in a challenge. 

In this study, we formulate a multi-product multi-period inventory

outing problem (MMIRP) with a supplier, set of retailers (customers)

istributed in a geographical area, and set of heterogeneous vehicles.

e develop a Modified Adaptive Genetic Algorithm (MAGA) where we

odify the crossover and mutation operations based on the chromosome

epresentation matrix. Besides, to effectively define the GA parameters,

e adopt an adaptive approach. The performance of the MAGA is tested

gainst the Cplex software and a heuristic approach from the literature.

e considered three different metrics to compare the results. The re-

ainder of this paper is organized as follows: Section 2 present problem

efinition, assumptions, and mathematical formulation. Section 3 in-
2 
roduces the solution methodology, where we provide details regard-

ng the proposed heuristic. Section 4 presents instance characteristics,

enchmark methods, and extensive computational experiments. Finally,

ection 5 provides concluding remarks. 

. Model formulation 

.1. Problem definition 

In this work, the MMIRP is defined as follows: a given set of vehicles

hich are dispatched from a supplier ( 𝑤 0 ), a set of customers which are

istributed in a geographical area; the goal is to determine the efficient

outes for vehicles to satisfy the customers’ demand while minimizing

he fixed fleet cost, inventory, and transportation cost. The detailed as-

umptions regarding the model are provided as follows: 

• Different types of products are distributed in the network. 

• There are no restrictions on the availability of products for the sup-

plier. 

• Vehicles are heterogeneous, meaning that they can have different

loading capacities. 

• vehicles can visit multiple customers during their trip. 

• The demand of customers is deterministic. 

• Shortage is not allowed. 

.2. Notation 

• Sets 

• 𝐼 : Set of customers 

• 𝐼 : Set of customers and supplier where 𝐼 = 𝐼 ∪ { 𝑤 0 } 
• 𝑇 : Set of time periods 

• 𝑉 : Set of vehicles 

• 𝑃 : Set of products types 

• Model parameters 

• 𝑐 𝑖,𝑗 : Travel cost associated with edge ( 𝑖, 𝑗) ∈ 𝐼 . 

• 𝑞 𝑣 : Capacity of vehicle 𝑣 ∈ 𝑉 

• 𝑓 𝑣 
𝑡 
: Fixed cost of vehicle 𝑣 ∈ 𝑉 in period 𝑡 ∈ 𝑇 

• 𝑠 𝑖 : Storage capacity of customer 𝑖 ∈ 𝐼

• 𝛼𝑝 : Weight associated with product 𝑝 ∈ 𝑃 

• 𝑑 𝑝 
𝑖,𝑡 

: Demand of customer 𝑖 ∈ 𝐼 for product 𝑝 ∈ 𝑃 in time 𝑡 ∈ 𝑇 

• ℎ 𝑝 
𝑖 
: Inventory cost of per unit product 𝑝 for customer 𝑖 

• Decision variables 

• 𝑥 𝑣 
𝑖,𝑗,𝑡 

: 1 if the edge ( 𝑖, 𝑗) ∈ 𝐼 is traversed by vehicle 𝑣 ∈ 𝑉 in period

𝑡 ∈ 𝑇 , and 0 otherwise; 

• 𝑦 𝑣,𝑝 
𝑖,𝑗,𝑡 

: Amount of product 𝑝 ∈ 𝑃 carried by vehicle 𝑣 ∈ 𝑉 on edge

( 𝑖, 𝑗) ∈ 𝐼 . 

• 𝑟 𝑝 
𝑖,𝑡 

: Amount of on-hand inventory of product 𝑝 ∈ 𝑃 by customer

𝑖 ∈ 𝐼

.3. Mathematical formulation 

in 
∑
𝑡 ∈𝑇 

( ∑
𝑖 ∈𝐼 

∑
𝑣 ∈𝑉 

𝑓 𝑣 
𝑡 
𝑥 𝑣 
𝑤 0 ,𝑖,𝑡 

+ 

∑
( 𝑖,𝑗)∈𝐼 

∑
𝑣 ∈𝑉 

𝑐 𝑖,𝑗 𝑥 
𝑣 
𝑖,𝑗,𝑡 

+ 

∑
𝑖 ∈𝐼 

∑
𝑝 ∈𝑃 

ℎ 
𝑝 

𝑖 
𝑟 
𝑝 

𝑖,𝑡 

) 

(1) 

.t. ∑
𝑗∈𝐼 

𝑥 𝑣 
𝑖,𝑗,𝑡 

≤ 1 ∀𝑖 ∈ 𝐼 , 𝑡 ∈ 𝑇 , 𝑣 ∈ 𝑉 , (2) 

∑
𝑗∈𝐼 

𝑥 𝑣 
𝑖,𝑗,𝑡 

− 

∑
𝑘 ∈𝐼 

𝑥 𝑣 
𝑘,𝑖,𝑡 

= 0 ∀𝑖 ∈ 𝐼 , 𝑡 ∈ 𝑇 , 𝑣 ∈ 𝑉 , (3) 

∑
𝑝 ∈𝑃 

𝛼𝑝 𝑦 
𝑣,𝑝 

𝑖,𝑗,𝑡 
≤ 𝑞 𝑣 𝑥 𝑣 

𝑖,𝑗,𝑡 
∀( 𝑖, 𝑗) ∈ 𝐼 , 𝑡 ∈ 𝑇 , 𝑣 ∈ 𝑉 , (4) 
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Fig. 1. Flowchart of the MAGA including two main phases: construction and improvement. 
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∑
𝑗∈𝐼 

𝛼𝑝 𝑦 
𝑣,𝑝 

𝑗,𝑖,𝑡 
− 

∑
𝑘 ∈𝐼 

𝛼𝑝 𝑦 
𝑣,𝑝 

𝑖,𝑘,𝑡 
≥ 0 ∀𝑖 ∈ 𝐼 , 𝑡 ∈ 𝑇 , 𝑣 ∈ 𝑉 , 𝑝 ∈ 𝑃 (5) 

 

𝑝 

𝑖,𝑡 −1 − 𝑟 
𝑝 

𝑖,𝑡 
+ 

∑
𝑣 ∈𝑉 

( ∑
𝑗∈𝐼 

𝑦 
𝑣,𝑝 

𝑗,𝑖,𝑡 
− 

∑
𝑘 ∈𝐼 

𝑦 
𝑣,𝑝 

𝑖,𝑘,𝑡 

) 

= 𝑑 
𝑝 

𝑖,𝑡 

∀𝑖 ∈ 𝐼 , 𝑡 ∈ 𝑇 , 𝑝 ∈ 𝑃 (6) 

∑
𝑝 ∈𝑃 

𝛼𝑝 𝑟 
𝑝 

𝑖,𝑡 
≤ 𝑠 𝑖 ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 , (7) 

 

𝑣 
𝑖,𝑗,𝑡 

∈ {0 , 1} ∀( 𝑖, 𝑗) ∈ 𝐼 , 𝑡 ∈ 𝑇 , 𝑣 ∈ 𝑉 , (8) 

 

𝑝 

𝑖,𝑡 
, 𝑦 

𝑣,𝑝 

𝑖,𝑘,𝑡 
≥ 0 ∀𝑖 ∈ 𝐼 , 𝑝 ∈ 𝑃 , 𝑡 ∈ 𝑇 , 𝑣 ∈ 𝑉 (9) 

The objective function (1) minimizes the fleet fixed, transportation,

nd inventory cost. Constraints (2) ensure that each customer is visited

t most once in every period. Connectivity of routes for every vehicle

s preserved by constraints 3 . Constraints (4) ensure that the amount of

roduct carried by each vehicle does not violate the vehicle’s capacity.

he sub-tour in any feasible solution is eliminated by constraint (5) .

onstraints (6) guarantee the balance between the demand and on-hand

nventory. Also, they ensure that the demand of customers is satisfied

n each period The customers’ storage capacity violation is prohibited

y constraints (7) . Finally, constraints (8) and (9) define the restrictions

or the variables. 

. Methodology and algorithm development 

The MMIRP could be solved by commercial solvers. However, to

olve the mid and large-scale instances we need to develop algorithms to

fficiently solve the MMIRP within a reasonable time limit. In the next

ection we comprehensively describe the MAGA that we developed to

olve the MMIRP. 
3 
.1. Modified genetic algorithm 

The genetic algorithm is a stochastic optimization technique inspired

y the process of natural selection, which is widely applied to solve dif-

erent classes of NP-Hard problems [2,18–20] . GA maintains a popula-

ion of candidate solutions through the selective procedure. GA is initial-

zed by a set of solutions called population. Each solution in the popula-

ion is called a chromosome. Chromosomes progress through successive

terations called generations. Throughout each iteration, the chromo-

omes are evaluated by a fitness function. The fitter chromosomes have

igher chances of being selected for GA operations such as mutation and

rossover. The GA operations choose some parents and produce several

ffsprings as the new solutions. The new solutions are then accepted or

ejected based on their fitness values as well as the solutions from the

revious iterations to keep the population size fixed. The GA may con-

erge to the best solution after a certain number of iterations. To solve

he MMIRP using the GA algorithm, we have three major challenges: (1)

he delivery schedule to meet customers’ demand; (2) finding the best

oute for each vehicle; and (3) maintaining feasibility such that the ve-

icles and customer’s capacity are not violated. Each of these is complex

nd difficult to solve, hence, a naive GA may not perform well for this

roblem. Therefore, to overcome the complexity, we propose a modified

daptive GA to efficiently solve the MMIRP. The flowchart of MAGA for

he MMIRP is shown in Fig. 1 . 

The algorithm is designed in two phases: (1) construction phase,

here we randomly generate the initial population. For each chromo-

ome, we assign targets to vehicles and determine the delivery schedule

or each vehicle. Then, an optimal or a sub-optimal traveling salesman

roblem (TSP) tour for the EVs is obtained by the Lin-Kernigan Helgaun

euristic [21] . In the next step, the feasibility of each route in terms of

ehicle capacity is checked. The infeasible solutions are eliminated from

he population pool. Then the cost of each chromosome (fitness value)

s calculated. (2) improvement phase. In this phase, first, the chromo-

omes are sorted based on their fitness value, and the ones with the

igher fitness values are removed based on fixed population size. Dur-

ng the improvement phase, through a roulette wheel selection oper-

tion, some chromosomes are selected for the GA operations. The GA

perations such as crossover and mutation are performed to generate
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Fig. 2. Explanatory example network with a 

supplier and four customers. 

Fig. 3. A feasible solution for delivery schedules and shipment quantities represented in a matrix form. 
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ew solutions (offsprings). The routing and feasibility check are applied

gain on the new solutions. These steps constitute an iteration, and then

he roulette wheel selection is applied again to begin the next iteration.

he MAGA is terminated whenever a stopping criterion is met. 

.1.1. Solution representation 

To represent the solution of the MMIRP, we define a chromosome

n the form of a binary matrix of size ( |𝐼| × |𝑇 |) where |𝐼| and |𝑇 | de-

ote the number of customers and periods, respectively. The elements

 𝑖,𝑡 = 1 indicates that the customer 𝑖 in period 𝑡 should be served. The

epresentation matrix enables us to determine the amount of product

or delivery to each customer in each period. To better demonstrate the

dvantage of the representation matrix, we provide an example in the

ext section. 

.1.2. Explanatory example 

We consider a network with a supplier, four customers, two types of

roduct, four periods, and two vehicles with capacities of 300 and 400

nits. Also, the fixed cost for each of the vehicles is equals to 10 units.

he inventory costs of the two products for each customer in the dis-

ribution network are provided by mini-tables in Fig. 2 . Also, the trans-

ortation cost for each route is shown on the edges. A feasible solution

or this example is illustrated in Fig. 3 . Table (a) in this figure is the de-

igned chromosome represented in the form of a binary matrix. Based

n this matrix, customer 1 is served in periods 1, 3, and 4. Therefore,

here is no delivery in period 2, and customer 2’s demand is satisfied
4 
y the delivery in period 1. Similarly, the delivery schedule for the rest

f the customers is shown in table (a) in Fig. 3 . Tables (b) and (c) in

ig. 3 indicate the shipment quantity based on the weight of products

 and 2, respectively. For example, the shipment quantity of products

 and 2 in period 1 is 1 × (22 + 3) and 2 × (6 + 26) respectively, where 1

nd 2 are products’ weight coefficients. Finally, table (d) 3 shows the

otal shipment quantity. Once the shipment quantity for vehicles are

alculated, we solve the single-vehicle routing problem by applying the

in-Kernighan-Helsgaun heuristic (LKH) [21] . Fig. 4 shows the optimal

r near-optimal routes obtained by LKH. 

As it is stated before, there are three types of cost in the distribution

etwork: (1) fleet’s fixed cost, (2) transportation cost, and (3) inventory

ost. The first two costs are calculated based on the solution obtained

n Fig. 4 . The inventory cost calculation depends on the period in which

he products are delivered. For example, for the third customer, since

he demand for periods 3 and 4 are delivered in period 2, we calculate

he inventory cost as 1 × (27 + 39) + 2 × (12 + 12) = 114 where the coef-

cients 1 and 2 indicate the number of periods that products are stored

s inventory. 

The feasibility of the chromosome is preserved considering the fol-

owing conditions: 

• Since the shortage is not allowed, the representation matrix’s ele-

ments in the first column should be 1. 

• Split delivery should be avoided. 

• In each period, the shipment product should not exceed vehicles’

capacity. 
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Fig. 4. Optimal or near-optimal routes for vehicles obtained by 

LKH method. 
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Fig. 5. The crossover operation on matrix chromosome. 

Fig. 6. The mutation operation on matrix chromosome. 
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• The amount of delivery to each customer minus the customer’s de-

mand at each period should not exceed the storage capacity. For in-

stance, suppose that the storage capacity for customer 4 is violated

in period 1, then we schedule a new delivery one period before the

scheduled delivery ( 𝑎 4 , 3 = 1 ) to avoid storage capacity violation. 

So, every chromosome is checked based on the above conditions dur-

ng the GA process, and the infeasible ones are corrected or dismissed

rom the solution pool. 

.1.3. Selection 

GA’s convergence could be significantly affected by chromosome

election. The roulette wheel selection was first introduced by Davis

22] to select the chromosomes for GA operations. Each section of the

oulette wheel is assigned to a chromosome based on the magnitude of

ts fitness value. The fitness value of each chromosome is equal to the

ummation of fleet cost, transportation and inventory cost. The fitness

alues of the chromosomes determine their chance of being selected. We

ummarize the selection procedure in Algorithm 1 . In the algorithm, the

lgorithm 1 : Selection. 

Step 1: Calculate the total fitness F: 

𝐹 = 

𝑝𝑠𝑖𝑧𝑒 ∑
𝑐=1 

𝑓 𝑐 

Step 2: Calculate the selection probability for each 

chromosome: 

𝑝 𝑐 = 

𝐹 − 𝑓 𝑐 

𝐹 × ( 𝑝𝑠𝑖𝑧𝑒 − 1) 

Step 3: Calculate the cumulative probability for each 

chromosome: 

𝑔 𝑐 = 

𝑐 ∑
𝑖 =1 

𝑝 𝑗 𝑐 = 1 , 2 , ..., 𝑝𝑠𝑖𝑧𝑒. 

Step 4: Select the chromosome 𝑐 if : 

𝑔 𝑐−1 < 𝑟 ≤ 𝑔 𝑐 

where 𝑟 is a random number in range (0,1]. 

election and cumulative probabilities of a chromosome 𝑐 are referred

s 𝑝 𝑐 and 𝑔 𝑐 , respectively, and the population size as 𝑝𝑠𝑖𝑧𝑒 . 

.1.4. Crossover 

The crossover operator is an essential part of the genetic algorithm,

here two chromosomes (parents) contribute characteristics in creating

 new chromosome (offspring), by randomly exchanging information.

rossover operator stochastically generates new solutions from an exist-

ng population. Crossover operation increases GA’s ability in searching

ecause it helps inherit and blend the good properties of the parents in

he offspring from the elite solutions among the population. Since the

esigned chromosome in this work is constructed in a matrix form, the

rossover operators can be applied on the rows or columns of the ma-

rix. At each iteration, we randomly select a row or column from each
5 
arent and exchange the selected row or column among the parents. Fig.

 illustrates the crossover operator on the matrix chromosome. 

.1.5. Mutation 

The mutation is another genetic operator that is used to explore new

olutions in the solution space. In some newly formed offspring, some

f their genes can be mutated with a low random probability and they

ay find characteristics that do not belong to any of their parents. If

he mutation probability is too high, the searching process will trans-

orm into a primitive random search. The mutation occurs to maintain

he diversity within the solution population and avoid trapping in local

ptima. The mutation operator designed for this problem is as follows:

nce the roulette wheel algorithm selects a parent, we randomly select

wo rows or columns and flip their position. The new chromosome is

hen checked by the feasibility conditions and then added to the pool.

ig. 6 shows the mutation procedure. 

.1.6. Adaptive GA operators (AGO) 

The performance of GA highly depends on its parameters. In our

tudy, we use the idea developed by Mak et al. [23] . In their approach,

hey used the parents’ and offsprings’ fitness values in each generation

o create adaptive crossover and mutation. The mutation and crossover

ates are adjusted based on the returned fitness value. The better the fit-

ess value returned by any operator, the higher chance of operator rate.

herefore, the AGO strengthens the well-performing operators to gener-

te more offsprings. We summarize the AGO steps in 2 . In this algorithm

e denote parent size, offspring size, mutation rate, and crossover rate

t iteration 𝑘 as 𝑝𝑟 𝑘 
𝑠𝑖𝑧𝑒 

, 𝑜𝑓 𝑘 
𝑠𝑖𝑧𝑒 

, 𝑚𝑟 𝑘 , 𝑐𝑟 𝑘 . Also, 𝐹 𝑘 
𝑝𝑟 𝑠𝑖𝑧𝑒 

and 𝐹 𝑘 
𝑜𝑓 

indicate

𝑠𝑖𝑧𝑒 
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Algorithm 2 : AGO. 

Initialization: 

Set: 𝑘 ← 1 , 

while 𝑘 ≤ 𝑘 𝑚𝑎𝑥 : 

if 
𝐹 𝑘 𝑝𝑟 𝑠𝑖𝑧𝑒 

𝐹 𝑘 
𝑜𝑓 𝑠𝑖𝑧𝑒 

− 1 ≥ 0 . 1 : 

𝑚𝑟 𝑘 +1 ← 𝑐 𝑟 𝑘 + 0 . 005 , 𝑐 𝑟 𝑘 +1 ← 𝑐 𝑟 𝑘 + 0 . 05 

elif 
𝐹 𝑘 𝑝𝑟 𝑠𝑖𝑧𝑒 

𝐹 𝑘 
𝑜𝑓 𝑠𝑖𝑧𝑒 

− 1 ≤ 0 . 1 : 

𝑚𝑟 𝑘 +1 ← 𝑐 𝑟 𝑘 − 0 . 005 , 𝑐 𝑟 𝑘 +1 ← 𝑐 𝑟 𝑘 − 0 . 05 
else : 

𝑚𝑟 𝑘 +1 ← 𝑐 𝑟 𝑘 , 𝑐 𝑟 𝑘 +1 ← 𝑐 𝑟 𝑘 
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Table 1 

Characteristics of the generated instances. 

Parameters 

Number of product types 

|𝑃 | = 2 |𝑃 | = 5 
|𝐼| [5,10,20,30] [5,10,20,30] |𝑇 | [5,7] [5,7] |𝑉 | [3,5] [3,5] 

𝑞 𝑣 |𝑁| × 50 |𝑁| × 100 
𝑠 𝑖 300 500 

𝛼𝑝 [1,2] [0.25,0.75,1,1.5,2.5] 
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he average fitness value of parents and offsprings. We define a stopping

riterion as 𝑘 𝑚𝑎𝑥 which denotes the number of non-improving steps. 

. Experiments and results 

In this section, we compare the computational performance of the

roposed GA and Constructive Heuristic for Multi-product Inventory

outing Problem (CHMPIRP) proposed by Dabiri et al. [24] . The au-

hors employed three performance measures to evaluate the quality of

heir heuristic as follows. 

Difficulty : is calculated as follows: 

ifficulty (%) = 

Upper bound − Lower bound 

Upper bound 

he lower difficulty percentage shows the tighter bound found by the

olver within the stipulated time-limit. This measure is defined to better

epresent the other two measures. 

Closeness : The closeness represents the distance between the heuris-

ic’s objective value (HBV) and the best lower bound obtained by Cplex

n percentage: 

loseness (%) = 

HBV − Lower bound 

HBV 

arge values of Closeness indicate the weak lower bound or poor per-

ormance of heuristic. 

Saving : The Saving indicates the distance between the best upper

ound obtained by heuristic’s objective value (HBV) and lower bound

f Cplex in percentage: 

aving (%) = 

Upper bound − HBV 

Upper bound 

Large values of Saving indicates the higher quality of heuristic solu-

ion comparing to the Cplex solver. 

They also provided the lower and upper bounds obtained by solving

he model using Cplex 11.0 software package. In our study, all the ex-

eriments were implemented in MATLAB 2019a using a computer with

n Intel ®, CPU Core(TM) i7-9750H, 2.60 GHz, and 8 GB RAM. In total
Fig. 7. Comparison between the MAGA and CHMPRIP in term

6 
6 instances were generated in a square grid of size [20, 20], and the

upplier at (10,10). The other details regarding instances are provided

n Table 1 . 

.1. Results 

Tables 2 and 3 compare the CHMPIRP with the MAGA. The first

ve columns indicate the instance number and the size of the instances

n terms of the number of customers, periods, and vehicles. Columns 6

nd 7 show the lower and upper bounds obtained by Cplex. The next

wo columns represent the best objective value returned by MAGA and

HMPIRP. Column 10 specifies the difficulty measure calculated by the

ower and upper bounds obtained by Cplex. The closeness and saving

easures calculated for MAGA and CHMPIRP are reported in the next

our columns. The last two columns represent run time in seconds for

AGA and CHMPIRP, respectively. 

In total, 96 instances were solved. In 16 instances the Cplex could not

eturn any lower or upper bound within the stipulated time limit (2 h).

lso, in four instances, the Cplex could only return the lower bound.

o better compare the MAGA’s performance with CHMPRIP, we rank

he problems based on the difficulty measure. Fig. 7 illustrates the ob-

ective values returned by the two approaches ranked by difficulty per-

entage. Although the CHMPRIP offers a better performance in terms of

un time, the results show that in almost all the instances, the MAGA out-

erformed the CHMPRIP by a significant margin in terms of the quality

f solutions. Figs. 8 and 9 represent the performance of the two algo-

ithms in terms of closeness and saving measures. The MAGA algorithm

as able to provide better closeness in 95 instances by considerable dif-

erence comparing to the CHMPRIP. Also, in 94 instances, the MAGA

ndicated superior performance in terms of saving measure compared

o the CHMPRIP. 

.2. Statistical analysis 

To statistically compare the proposed method with the MAGA

ethod, we use the paired t-test where the null hypothesis is that the

ean difference between two sets of observations is zero. To do so, we

olve each of the 96 problems five times and calculate the average for
s of the objective functions ranked by difficulty metric. 
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Table 2 

Computational results for the generated instances. 

Instance |I | |P | |T | |V | Cplex Objective Value Difficulty (%) Closeness (%) Saving (%) Run Time (%) 

Lower Upper MAGA CHMPIRP MAGA CHMPIRP MAGA CHMPIRP MAGA CHMPIRP 

1 5 2 5 3 694.9 724.2 751.64 882.6 4.04 7.54 21.26 -3.78 -21.87 5.69 0.02 

2 530.5 550.8 570.51 587.8 3.68 7.01 9.74 -3.57 -6.71 7.35 0.02 

3 639.9 684.8 698.31 779 6.55 8.36 17.85 -1.97 -13.75 6.37 0.02 

4 5 538.3 566.5 595.41 720 4.97 9.59 25.23 -5.1 -27.09 6.47 0.02 

5 445.6 485.4 500.12 537.7 8.19 10.9 17.12 -3.03 -10.77 6.67 0.02 

6 554.5 583.5 600.97 668.8 4.97 7.73 17.09 -2.99 -14.61 6.02 0.02 

7 7 3 581.9 590.3 945.8 1031.1 1.42 38.47 43.56 -60.22 -72.67 14.35 0.02 

8 700.9 726.7 916.35 1011.8 3.55 23.51 30.72 -26.09 -39.23 12.19 0.02 

9 775.8 854.2 884.67 1037.4 9.17 12.3 25.21 -3.56 -21.44 12.63 0.02 

10 5 753.3 829.1 892.04 988.2 9.14 15.55 23.77 -7.59 -19.18 15.62 0.02 

11 612.7 673.8 671.16 724.4 9.06 8.71 15.41 0.39 -7.5 12.85 0.02 

12 823.4 897.8 985.85 1110.8 8.28 16.47 25.87 -9.8 -23.72 13.57 0.02 

13 5 5 3 651.3 715.8 742.79 837.6 9.01 12.31 22.24 -3.77 -17.01 8.08 0.03 

14 618.5 669.8 680 743.1 7.65 9.044 16.76 -1.52 -10.94 7.75 0.02 

15 646.1 745.5 785.33 785.3 13.33 17.72 17.72 -5.34 -5.33 9.11 0.02 

16 5 642.5 693.3 707.63 702.3 7.32 9.2 10.8 -2.06 -3.89 8.01 0.02 

17 672.1 725 774.91 790.6 7.29 13.26 14.98 -6.88 -9.04 7.80 0.02 

18 468.9 524 533.28 533.3 10.51 12.07 12.07 -1.77 -1.77 7.62 0.02 

19 7 3 1071.5 1200.6 1246 1327.1 10.75 14 19.26 -3.78 -10.53 16.06 0.02 

20 781.2 879.9 934.77 949.6 11.21 16.42 17.73 -6.23 -7.92 16.49 0.02 

21 756.5 884.5 940 987.4 14.47 19.52 23.38 -6.27 -11.63 17.56 0.03 

22 5 724.1 814.1 837.38 884.9 11.05 13.52 18.17 -2.85 -8.69 14.00 0.02 

23 876.3 1015.9 1022.82 1062.4 13.74 14.32 17.51 -0.68 -4.57 14.86 0.03 

24 805.4 935.4 928.61 928.6 13.89 13.26 13.26 0.72 0.72 13.9 0.03 

25 10 2 5 3 841.9 931.3 957.07 992.5 9.599 12.03 15.17 -2.76 -6.57 18.28 0.08 

26 806.7 931.5 914.64 1026.4 13.39 11.8 21.4 1.8 -10.18 18.85 0.08 

27 780.9 856.6 875.9 945.3 8.837 10.84 17.39 -2.25 -10.35 15.68 0.08 

28 5 757.8 878.7 853.82 905.5 13.75 11.24 16.31 2.83 -3.04 17.90 0.09 

29 766.6 885.8 909.99 1037.1 13.45 15.75 26.08 -2.73 -17.08 18.09 0.08 

30 697.7 826.4 828.31 880.8 15.57 15.76 20.78 -0.23 -6.58 22.24 0.08 

31 7 3 1189.3 1318.3 1375.14 1460.6 9.78 13.51 18.57 -4.31 -10.79 25.04 0.11 

32 1026.3 1178.8 1215.72 1385 12.93 15.58 25.89 -3.13 -17.49 21.44 0.13 

33 905.2 997.1 1017.24 1110.4 9.216 11.01 18.47 -2.01 -11.36 23.55 0.09 

34 5 1091.7 1320.4 1282.09 1347.6 17.32 14.84 18.98 2.9 -2.05 25.88 0.13 

35 822.5 1031 997.41 1012.7 20.22 17.53 18.78 3.25 1.77 24.92 0.11 

36 999 1190.6 1153.13 1255.3 16.09 13.36 20.41 3.14 -5.43 22.40 0.11 

37 5 5 3 785.5 894.2 875.09 875.1 12.15 10.23 10.23 2.13 2.13 21.98 0.08 

38 798.7 1173.3 1002 1002 31.92 20.28 20.28 14.59 14.59 26.77 0.08 

39 581.8 723.1 713.07 713.1 19.54 18.4 18.41 1.38 1.38 25.44 0.08 

40 5 755.4 1370.7 1022.79 1032.5 44.88 26.14 26.83 25.38 24.67 24.50 0.08 

41 636.7 967.3 808 813.9 34.17 21.2 21.77 16.46 15.85 25.81 0.08 

42 724.5 1284.9 919.36 927.8 43.61 21.19 21.91 28.44 27.79 28.08 0.11 

43 7 3 1186.4 1510.7 1416.5 1484.6 21.46 16.24 20.08 6.23 1.72 20.07 0.11 

44 1060.2 1569.5 1254.22 1299.4 32.44 15.46 18.4 20.08 17.2 26.55 0.11 

45 1123 1386.7 1455.3 1378 19.01 22.83 18.5 -4.947 0.62 25.04 0.17 

46 5 818.3 1432.8 1078.7 1087.2 42.88 24.14 24.73 24.71 24.12 29.28 0.13 

47 1098.8 4024.7 1485 1510 72.69 26 27.23 63.1 62.48 24.57 0.13 

48 1096.8 4374.8 1449.2 1487.8 74.92 24.31 26.28 66.87 65.99 23.17 0.13 

Fig. 8. Comparison between the MAGA and CHMPRIP in terms of closeness metric ranked by difficulty. 
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Table 3 

Computational results for the generated instances (continue). 

Instance |I | |P | |T | |V | Cplex Objective Value Difficulty (%) Closeness (%) Saving (%) Run Time (%) 

Lower Upper MAGA CHMPIRP MAGA CHMPIRP MAGA CHMPIRP MAGA CHMPIRP 

49 20 2 5 3 457.9 561.9 537.94 587.4 18.5 14.87 22.04 4.26 -4.53 31.53 0.47 

50 439.8 570.6 532.22 564.8 22.92 17.36 22.13 6.72 1.01 30.94 0.52 

51 484.6 648.9 590.19 623.4 25.31 17.89 22.26 9.04 3.92 39.62 0.47 

52 5 466.2 729.7 590.26 647.5 36.11 21.01 28 19.1 11.26 35.69 0.48 

53 432.4 701.7 591.04 607 38.37 26.8 28.76 15.77 13.49 38.55 0.47 

54 425.8 679.6 556.34 591.1 37.34 23.46 27.96 18.13 13.02 34.47 0.48 

55 7 3 645.5 966.2 787.48 873.4 33.19 18.02 26.09 18.49 9.6 32.80 0.7 

56 708.6 880.8 820.09 832.7 19.55 13.59 14.9 6.89 5.46 33.57 0.72 

57 579.2 916.7 706.56 827.8 36.81 18.02 30.03 22.92 9.69 37.45 0.72 

58 5 574.1 1600.5 820.15 883.7 64.12 30 35.03 48.75 44.78 34.81 0.78 

59 639.2 1926.2 548.41 898.9 66.81 24.65 28.89 55.95 53.33 37.72 0.75 

60 692.8 1998.8 887.44 905.5 65.33 21.93 23.48 55.6 54.69 34.07 0.72 

61 5 5 3 N/A N/A 606.44 681.2 - - - - - 31.02 0.48 

62 427.9 N/A 608.51 624.5 - 29.68 31.48 - - 34.41 0.47 

63 401.1 N/A 576.83 581.8 - 30.46 31.05 - - 36.37 0.5 

64 5 N/A N/A 559.38 565.2 - - - - - 38.73 0.48 

65 N/A N/A 648.26 649.6 - - - - - 36.85 0.53 

66 N/A N/A 544 556.5 - - - - - 35.93 0.47 

67 7 3 500.7 1158.7 859 866 56.78 41.71 42.18 25.86 25.26 31.42 0.73 

68 429.6 1049.8 821.16 840.1 59.07 47.68 48.86 21.77 19.97 31.22 0.73 

69 431.9 1032.9 812.95 848.1 58.18 46.87 49.07 21.29 17.89 37.42 0.72 

70 5 282.3 1234.8 896.53 964.5 77.13 68.51 70.73 27.39 21.89 33.56 0.69 

71 289.8 2295.7 851.74 872.9 87.37 65.97 66.8 62.89 61.97 30.31 0.72 

72 382.7 2648.2 921.6 944 85.548 58.47 59.45 65.199 64.35 43.60 0.73 

73 30 2 5 3 527.1 825.4 688.99 725 36.14 23.49 27.29 16.52 12.16 38.36 1.52 

74 570.9 734 668.96 705.2 22.22 14.65 19.04 8.86 3.92 49.32 1.5 

75 553.7 1381.9 686.08 729.4 59.93 19.29 24.08 50.35 47.21 40.16 1.48 

76 5 473.6 1581.8 671.55 689 70.05 29.47 31.26 57.54 56.44 45.34 1.55 

77 521.3 1840.9 699.72 729.5 71.68 25.49 28.54 61.99 60.37 43.08 1.5 

78 425.8 1752.6 631.38 675.1 75.7 32.56 36.92 63.97 61.48 40.14 1.77 

79 7 3 803.4 2559.7 995.16 1058.3 68.61 19.26 24.085 61.12 58.65 46.34 2.81 

80 765.8 2348.1 936.23 979.8 67.38 18.2 21.84 60.12 58.27 49.50 2.73 

81 761.6 2354.5 934.1 1025.2 67.65 18.46 25.71 60.32 56.45 44.47 2.64 

82 5 653.4 2417.4 947.46 961.9 72.97 31.03 32.07 60.8 60.2 42.00 2.92 

83 644.6 N/A 877.12 918.4 - 26.5 29.81 - - 50.87 2.83 

84 633.6 N/A 961.92 1034.3 - 34.13 38.74 - - 56.66 2.75 

85 5 5 3 N/A N/A 723.79 765.7 - - - - - 66.74 1.53 

86 N/A N/A 693.05 706 - - - - - 63.50 1.52 

87 N/A N/A 650 655 - - - - - 68.22 1.58 

88 5 N/A N/A 709.17 710.7 - - - - - 61.17 1.55 

89 N/A N/A 691.26 734.2 - - - - - 73.10 1.53 

90 N/A N/A 747.62 821.1 - - - - - 76.00 1.53 

91 7 3 N/A N/A 921.68 1003.2 - - - - - 88.28 2.75 

92 N/A N/A 1070.6 1098.8 - - - - - 90.00 2.77 

93 N/A N/A 1009.9 1079.9 - - - - - 94.25 2.75 

94 5 N/A N/A 933.27 973 - - - - - 101.67 2.8 

95 N/A N/A 938 980 - - - - - 107.75 2.28 

96 N/A N/A 931.41 969.4 - - - - - 101.64 2.22 

Average 53.60 29.05 32.77 35.99 32.22 49.60 1.36 

Standard Deviation 20.90 14.20 13.02 22.13 23.88 21.39 0.86 

Fig. 9. Comparison between the MAGA and CHMPRIP in terms of saving metric ranked by difficulty. 
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ach problem separately for each method. We use a paired t -test to com-

are the means in these two populations, where observations in one

ethod can be paired with observations in the other method. The ob-

ained t-statistic is equal to -9.52, resulting in a p -value of 1 . 7 × 10 −15 
hich is smaller than the threshold of 0.05, indicating that there is

trong evidence that the mean difference between the two methods is

ot equal to zero. With an average difference of -49.47 (95% CI: -59.78,

39.15), the proposed method generally yields smaller objective values

ompared with the MAGA method. 

. Conclusion 

In this research, we considered a multi-product multi-period inven-

ory routing problem with a heterogeneous fleet of vehicles. We pro-

osed a modified adaptive genetic algorithm to efficiently solve a vari-

ty of instances. The approach incorporated different techniques within

he genetic algorithm framework to enhance the performance of the

lgorithm. Numerical studies were performed on randomly generated

ata sets from literature. The efficacy of the proposed method is bench-

arked by comparing it to the commercial solver Cplex as well as a

euristic from the literature (CHMPRIP). The quality of the solutions is

ustified based on three different metrics. Other than a few instances, the

esults indicate that MAGA has outperformed the CHMPRIP in all met-

ics by a significant margin. Besides, we performed a statistical analysis

o show the significant difference between the two heuristics in terms of

olution quality. In conclusion we were able to construct a decision sup-

ort and computer-based approach to assist policy and decision-makers

n the pathway of constructing a sustainable society. Future work could

nclude incorporating green approaches by either replacing the vehicles

ith Electric vehicles or incorporating CO 2 emissions into the objective

unctions. Another extension could be incorporating uncertainties into

he customers’ demand. From an algorithmic perspective, the use of de-

omposition algorithms like the column generation techniques can also

e evaluated. 
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