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a b s t r a c t 

To efficiently construct phase diagrams of alloy systems, a machine learning-based method advanced by 

thermodynamics on phase equilibria is proposed. With the use of uncertainty sampling in active learn- 

ing, the next point to be synthesized or measured can be recommended to efficiently draw the phase dia- 

gram. For appropriate recommendations, two ingenuities are introduced in the machine learning method: 

training data preparation when the multiphase coexisting region is detected and search space reduction 

based on the Gibbs’ phase rule. We demonstrate the construction of ternary phase diagrams using our 

machine learning method by incorporating these ingenuities. The complicated phase diagram of alloy 

systems could be effectively plotted even when knowing only the information of single-component sys- 

tems in the initial step. The recommendation made by our machine learning method can help reduce 

the number of experiments required to construct a phase diagram to approximately 1/8 compared with 

random sampling. 

© 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Phase diagrams are indispensable for the development of ma- 

erials. In alloy systems, phase diagrams help understand the de- 

endency of a microstructure in specific phases on the tempera- 

ure, pressure, and composition. Knowing the phase diagram of a 

arget alloy system, the microstructures of the alloy can be con- 

rolled, and desired material properties can be obtained for indus- 

rial applications. To date, many binary phase diagrams have been 

nvestigated, and there is much information regarding the phase 

quilibria of binary systems [1] . However, even for binary systems, 

etermining the phase equilibria requires a significant amount of 
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ime and cost. Further, the superalloys [ 2 , 3 ] and aluminum alloys

 4 , 5 ] in practical use are becoming more complicated, and low-, 

edium-, and high-entropy alloys contain many types of elements 

6–8] . For such complicated alloys, experimental data are limited, 

nd there is no clarity regarding their phase diagram. It is diffi- 

ult to experimentally determine the phase diagram without spe- 

ific guidelines, particularly for a complicated alloy system. 

In recent years, the material science field has witnessed in- 

reasing application of machine learning [9–18] . For example, the 

lack-box optimization method represented by Bayesian optimiza- 

ion has been extensively applied, and materials with desired prop- 

rties have been prepared with as few experiments as possible 

19–21] . In this optimization scheme, a candidate material is it- 

ratively recommended through machine-learning predictions. In- 

pired by these advancements, some machine learning methods 

ave been proposed for phase diagrams [22–26] . As a black-box 

ptimization scheme for phase diagrams, we developed a method 
. This is an open access article under the CC BY license 
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Fig. 1. Flow of phase diagram construction using machine learning. The next candidate condition with the highest uncertainty is recommended by our machine learning 

method. At the synthesis and measurement parts of the selected condition, the two ingenuities are introduced for alloy systems. The first is the training data preparation 

when multiphases are detected. The second is the search space reduction based on the degree of freedom evaluated by the phase rule. 
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sing uncertainty sampling (US) called phase diagram construction 

PDC) [22] . 

In this method, the most uncertain point in the phase dia- 

ram is recommended for the subsequent experiment (see Fig. 1 ). 

n the following, we detail the steps involved in this method. (i) 

nitialization: The phase diagram to be drawn is discretized, and 

he position vectors of discretized points are input as { x i } i =1 , ... ,N . 

mong them, some points are randomly selected as initial data. 

ach phase of the selected points is identified by performing ex- 

eriments, and p = 1 , . . . , P is the label of phases at each point

hen P types of phases are found. These are used as training 

ata D = { x j , p j } j=1 , ... ,M 

when the number of initial data is M. 

ii) Phase estimation: The probability distribution of the phases 

t each point is estimated by semi-supervised learning using la- 

el propagation (LP) or label spreading (LS) methods as P (p| x ) 
rom the training data D . (iii) Uncertainty score: The uncertainty 

core is evaluated using P (p| x ) ; for example, one of the defini-

ions is u (x ) = 1 − ma x p P (p| x ) . The most uncertain point which

aximizes the uncertainty score in the phase diagram is selected 

s the next candidate for experiments. (iv) Experiment: Experi- 

ents are performed according to the selected condition, and the 

hase is identified. If the identified phase is known, the label of 

his point is selected from 1 , . . . , P , while if a new phase is de-

ected, a new label of P + 1 is attached. The training dataset is in-

reased as D = { x j , p j } j=1 , ... ,M+1 
. Steps (ii)-(iv) are iterated to ob- 

ain a better phase diagram. In general, the uncertain points in the 

hase diagram are concentrated near the phase boundary or are 
2 
ar from the already synthesized points. In Ref. [22] , for the well- 

nown diagrams such as liquidus projection, the performance of 

ur method was demonstrated, and we confirmed that the phase 

iagram could be effectively obtained. Furthermore, the US method 

as applied to construct new diagrams to obtain Zn-Sn-P films 

y molecular beam epitaxy [27] and to design block copolymers 

y the self-consistent field theory [28] . Thus, the US method is a 

roven tool for drawing phase diagrams. The code of PDC is avail- 

ble at https://github.com/tsudalab/PDC . 

On the contrary, equilibrium phase diagrams of alloy systems 

re more complicated due to regions of multiphase (phase coex- 

stence) in addition to single-phase regions, and then how to deal 

ith such regions is key when phase diagrams are successful con- 

tructed using PDC method. Therefore, in this study, we address 

 strategy to prepare the training data when multiphase coexist- 

ng region is detected (see Fig. 1 ). In addition, a phase diagram 

s constructed according to the Gibbs’ phase rule [29] . Therefore, 

he search space can be narrowed down by utilizing the degree of 

reedom based on the phase rule, resulting in an accurate phase 

iagram can be obtained with fewer cycles. In this study, we only 

ocused on ternary phase diagrams with a fixed temperature and 

ressure as the first step. These ideas can be applied to high- 

imensional phase diagrams in a straightforward manner. 

In this study, we introduce two ingenuities to efficiently con- 

truct the phase diagram of alloy systems. The first is training data 

reparation when multiphases are detected. The second is search 

pace reduction based on the phase rule. First, we consider the 

https://github.com/tsudalab/PDC
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rst ingenuity. Depending on whether a single-phase region or 

 multiphase coexisting region is detected, the treatment of new 

ata points added to the training dataset should be changed. If a 

ingle-phase region is detected, the type of single phase at the rec- 

mmended point can only be obtained experimentally. Therefore, 

nly one training data point is added. On the other hand, when 

 multiphase coexisting region is detected, information in addi- 

ion to the recommended point is acquired. For example, in the 

ase of two-phase coexistence, the endpoints of the tie line are the 

orresponding single phases (see Fig. 1 ), and a two-phase coexist- 

ng region appears along the tie line. In a ternary phase diagram, 

he three-phase coexisting region forms a triangle, with its ver- 

ices representing the three different single phases (see Fig. 1 ). The 

ides of the triangle are two-phase coexisting regions. Thus, there 

re several ways in which the data points from the rich informa- 

ion can be added to the training data. In this study, two strategies 

ere considered. 

The first strategy is focused on only type of single phase for 

he training data set, and phase estimation is performed under the 

ondition that regions of multiphase are excluded. This is based 

n the idea that an effective search of the three-phase coexist- 

ng regions is key to drawing the phase diagram. These regions 

ill be located at the uncertain point where the possibilities of 

hree regions of single phase are stacked, and appropriate selection 

ill be realized when only single phases are considered. The pro- 

osed approach, called single-phase training (“Train.1”), for prepar- 

ng the training dataset is described as follows. (i) Detecting single- 

hase region: The type of single phase at the recommended point 

s added to the training dataset. Thus, one data point is added. (ii) 

etecting two-phase coexisting region: The types of single phases at 

he end points of the tie-line are added to the training dataset. 

hus, two data points are added. (iii) Detecting three-phase coexist- 

ng region: The types of single phases at the vertices of the three- 

hase coexisting region are added to the training dataset. Thus, 

hree data points are added. 

In the second strategy, information regarding the multiphase 

s included in the training. The representative points in the two- 

hase coexisting region are used as the training data, and the rea- 

on is as follows. If all the points in the detected coexisting regions 

re added to the training dataset, the number of the training data 

oints corresponding to the multiphase will be too high. In such 

ases, from the characteristics of the LP and LS methods, the co- 

xisting region will be too large, and the regions of single-phase 

re erased from the predicted diagram (see Supplementary note 

). This would be inefficient for appropriate recommendations. 

hus, the following approach, called single and multiphase training 

“Train.12”), is considered for preparing the training data. (i) De- 

ecting single-phase region: The type of single phase at the recom- 

ended point is added to the training data. Thus, one data point is 

dded. (ii) Detecting two-phase coexisting region: The types of sin- 

le phases at the end points of the tie-line are added to the train-

ng dataset. In addition, the midpoint of the tie line is assigned 

o the multiphase in the training dataset (e.g., the cross point in 

ig. 1 ). Here, regardless of the type of multiphases, the same label 

s attached. Thus, three data points are added. (iii) Detecting three- 

hase coexistence: The types of single phases at the vertices of the 

hree-phase coexisting region are added to the training dataset. In 

ddition, the midpoints of the sides of the triangular region are as- 

igned to the multiphase (e.g., cross points in Fig. 1 ). Here, regard- 

ess of the types of multiphases, the same label is attached, which 

s common for detecting the two-phase coexisting region. Thus, six 

ata points are added. In the training data, the types of detected 

ingle phases and one label of multiphase are included. 

Next, we explain the idea of reducing the search space in the 

hase diagram based on the Gibbs’ phase rule. For the equilibrium 

hase diagram, the phase rule was introduced by Gibbs, and the 
3 
egree of freedom at each point when the temperature and pres- 

ure are fixed can be defined by 

 = C − P, (1) 

here C is the number of components, and P is the number of 

hases. In this study, we focused on a ternary phase diagram, in 

hich case C = 3 . Thus, the degrees of freedom are as follows: 

 = 2 in the single-phase region ( P = 1 ), F = 1 in the two-phase

oexisting region ( P = 2 ), and F = 0 in the three-phase coexisting

egion ( P = 3 ). In the three-phase coexisting region, a new phase 

annot appear. Thus, it is not necessary to search in this region. 

owever, the degree of freedom remains in the single-phase and 

wo-phase coexisting regions, which cannot be excluded from the 

earch space because the phase boundary is not determined. How- 

ver, to rapidly construct an outline of the phase diagram, the 

ppropriate exclusion of the search space should be made effec- 

ively in our machine learning approach. In this study, we con- 

ider the following three types of exclusion strategies based on 

he phase rule. (i) Exclusion of three-phase coexisting region (“Ex.3”) : 

he inside of the three-phase coexisting region is excluded from 

he search space (see Fig. 1 ). This excluded area has F = 0 . (ii) Ex-

lusion of two- and three-phase coexisting regions (“Ex.23”) : In addi- 

ion to (i), the region surrounded by the same tie lines is excluded 

see Fig. 1 ). These excluded areas have F = 0 or 1. (iii) Exclusion of

ingle-phase, and two- and three-phase coexisting regions (“Ex.123”) : 

n addition to (ii), the region surrounded by the straight lines con- 

ecting to the same types of single-phase points is excluded (see 

ig. 1 ). These excluded areas have F = 0 , 1 , and 2. Here, the possi-

ility of new phases appearing in the excluded region is the high- 

st in (iii) and is zero in (i). Conversely, the area of the excluded 

egion will increase in the order of (iii), (ii), and (i). 

We demonstrate our machine learning technique by applying it 

o construct the ternary phase diagrams of Cr–Co–Ni, Co–Cr–Mn, 

e–Co–Cr, and Cr–Mn–Ni systems. These phase diagrams were ob- 

ained using the Thermo-Calc software with the TCHEA3 database 

30] and are shown in Fig. 2 . The numbers of phases are sum- 

arized in Table 1 . Cr–Co–Ni has the simplest one, whereas Cr–

n–Ni has the most complicated one. Note that these ternary sys- 

ems are subsystems of high-entropy CrMnFeCoNi (Cantor) alloys 

 31 , 32 ]. 

To make the construction of phase diagrams more challeng- 

ng, we consider the case in which only the phase information of 

ingle-component systems is known in the initial step. In other 

ords, the information for the binary alloys is not used. To eval- 

ate the performance, the metric of the remaining area D r is in- 

roduced, defined as the area remaining after subtracting the area 

y Ex.123 from the entire area. D r is normalized, and the value is 

 when the experimental results are nonexistent and 0 if all the 

hases are filled from the viewpoint of Ex.123. Fig. 3 shows the 

alue of D r with respect to the iteration step. Fig. 4 shows the 

umber of three-phase coexisting regions detected with respect to 

he iteration step. Here, we compare the results where combina- 

ions of two training strategies (Train.1 and Train.12) and three ex- 

lusion strategies (Ex.3, Ex.23, and Ex.123) were used. Furthermore, 

he results of random sampling, where the next recommendation 

s randomly generated in each iteration without training or exclu- 

ion of the search space, are also shown. In these figures, the LP 

ethod is used for training, and the uncertainty score is evaluated 

sing the least confident (LC) method. In Supplementary note B, 

he definitions of the uncertainty score are given, and the results 

f other methods are shown for Cr–Co–Ni (simplest) and Cr–Mn–

i (most complicated) cases. 

In all the cases, D r is more rapidly decreased by Train.12 than 

rain.1. This means that information regarding the multiphase is 

equired in the training to efficiently construct the phase diagram. 

s shown in Supplementary Movies 1–4, by Train.1, the recom- 
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Fig. 2. Target ternary phase diagrams obtained using the Thermo-Calc software. The gray areas represent the two-phase coexisting regions. 

Table 1 

Numbers of single-phase region two- and three-phase coexisting regions in the respective 

ternary phase diagrams of alloys. 

Cr-Co-Ni Co-Cr-Mn Fe-Co-Cr Cr-Mn-Ni 

# of single-phase region 5 6 6 9 

# of two-phase coexisting region 7 9 9 15 

# of three-phase coexisting region 3 4 4 7 

# of total phases 15 19 19 31 
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d

ended points are intensively selected in the two-phase coexist- 

ng regions, and it is difficult to detect new phases. Contrarily, 

ven if Train.1 is used, the performance is dramatically improved 

hen exclusion strategies Ex.23 and Ex.123 are applied instead 

f Ex.1. 

The most natural exclusion strategy is Ex.3, and if Tran.12 is 

dopted as the training strategy, the efficiency is higher than that 

f random sampling in terms of D r . By focusing on the number 

f detected three-phase coexisting regions, a satisfactory perfor- 

ance can be achieved, except in the case of Fe–Co–Cr system. 

hus, we conclude that our machine learning method can be used 

or constructing phase diagrams if appropriate training and exclu- 

ion strategies are implemented. However, to rapidly determine the 

utline, the strategies Train.12 & Ex.23 and Train.12 & Ex.123 are 

ore suitable. If these strategies are adopted, a complete phase di- 

gram can be obtained in approximately 40 experiments with the 

elp of machine learning. When the random sampling is adopted, 

ver 300 experiments are necessary. Thus, the recommendation 

ade by our machine learning method can help reduce the num- 

er of experiments required to construct a phase diagram to ap- 

roximately 1/8 compared with random sampling. Notice that if 

he information regarding the binary systems is included as initial 
4 
ata, the results can be much faster. For Cr–Co–Ni and Cr–Mn–Ni 

ystems, the phase diagram can be obtained in less than 15 exper- 

ments (see Supplementary note C). 

In conclusion, the consideration of multiphase for training 

hase diagrams was discussed for an efficient recommendation by 

achine learning. The appropriate exclusion of the search space 

ased on the Gibbs’ phase rule was addressed. We demonstrated 

hat if appropriate training for the multiphase and exclusion strate- 

ies is used, machine learning can help effectively construct the 

hase diagram of complex alloy systems. In a previous study [22] , 

e demonstrated the performance of our method for the phase di- 

grams with only single phase regions. In this case, the exclusion 

trategy based on the phase rule should be effective, and the re- 

ults can be obtained with fewer cycles. 

Our approach can be extended to multicomponent alloys and 

emperature-dependent phase diagrams in a straightforward man- 

er. When such difficult phase diagram will be constructed, in- 

luding Gibbs’ phase rules, it will be useful to incorporate knowl- 

dge of various rules and equations related to phase diagrams 

uch as Clausius-Clapeyron equation when generating the training 

ata. Furthermore, our approach can serve as a powerful tool for 

ifficult-to-conceive higher dimensions. We believe that our ma- 
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Fig. 3. Remaining area D r plotted against the iteration step for the two training strategies and three exclusion strategies. For the training strategy, single-phase training 

(Train.1) and single-phase and multiphase training (Train.12) are considered. To exclude the search space based on the phase rule, exclusion of three-phase regions (Ex.3); 

exclusion of two- and three-phase regions (Ex.23); exclusion of single-, two-, and three-phase regions (Ex.123) are used. Training is performed by LP, and the uncertainty 

score is evaluated by LC. 

Fig. 4. Number of detected three-phase coexisting regions with respect to the iteration step when using the two training strategies and three exclusion strategies. 

5 
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