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A B S T R A C T   

IoT as a disruptive technology is contributing toward ground-breaking experiences in contemporary enterprises 
and in our daily life. Rapidly changing business environment and phenomenally evolving technology enhance-
ment necessitate a robust understanding of IoT implications from business and management perspective. The 
current study benefits from an explanatory sequential mixed-method approach to represent and interpret the 
inductive topical framework of IoT literature in business and management with emphasis on business model. 
Bayesian statistical topic model called latent Dirichlet allocation is employed to conduct a comprehensive 
analysis of 347 related scholarly articles to reveal the topical composition of related research. Further, we fol-
lowed a thematic analysis for interpreting the extracted topics and gaining in-depth qualitative insights. Theo-
retical implications with emphasizing on research agenda for future study avenues and managerial implications 
based on influential themes are provided.   

1. Introduction 

Internet of Things (IoT) has flourished over the last decade as a new 
wave of digital transformation, which enables real-time sensing, col-
lecting and sharing data. The unique features of IoT like ubiquity have 
enabled the possibility of developing advanced applications across many 
domains. The momentum IoT has generated makes it an ideal frontier 
for driving technological innovation (Siow et al., 2018), garnering sig-
nificant attention from both practitioners and scholars. IoT is perceived 
as a disruptive innovation given its potentiality to truly reshape our 
world (Manyika et al., 2013). Pervasive applications of IoT are 
dramatically transforming many aspects of societies and economies such 
as healthcare (Pang et al., 2015; Tuan et al., 2019), transportation 
(Davidsson et al., 2016), logistic (Hopkins and Hawking, 2018), 
manufacturing (Birkel et al., 2019; Hasselblatt et al., 2018), and tourism 
(Byun et al., 2017; Gretzel et al., 2015). It is estimated that the IoT 
market size will reach $1.2 Trillion worldwide by 2022 (IDC, 2018). 
However, IoT’s extensive publicity and promising future do not guar-
antee its widespread success, since many concerns and potential issues 
of gaining actual value of IoT are not yet fully known (Nicolescu et al., 
2018). IoT mass adoption and actualizing its values depend not only on 

technological advances but more on understanding its business and 
managerial needs and challenges. Porter and Heppelmann (2014) 
maintain that we need to identify the dynamics of IoT technologies from 
business and management perspective to survive and gain competitive 
advantage during the technological transformations. 

The diffusion trend of IoT leads to a call for studies to advance our 
understanding of research on managerial and entrepreneurial opportu-
nities of this disruptive innovation (Clarysse et al., 2019). Despite 
exponentially expanding opportunities arising from IoT and 
ever-growing attention it attracts among scholars, practitioners, and the 
general public, a critical literature review indicates the lack of system-
atic and rigorous study on the business and management perspective of 
this technology. Mostly, the extant literature has taken a narrow view to 
discuss specific aspects of IoT business and management such as 
generating value from IoT data (Hajiheydari et al., 2019), concentrating 
on IoT applications in servitization (Rymaszewska et al., 2017), or 
providing a descriptive business model for IoT (Dijkman et al., 2015). 
This gap highlights the need for an integrative study that considers the 
current body of knowledge to connect the disciplinary perspective and 
insight around IoT studies with business and management identity. 

There are several grounds that signify examining IoT from the 
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business and management lens is both timely and essential. First, the 
ever-increasing growth of investment, the predicted market size (IDC, 
2018), and the continuous introduction of pervasive applications (For-
bes, 2019) necessitate understanding of IoT business implications. 
Further, calls continue for the ‘Managerial and Entrepreneurial Oppor-
tunities and Challenges of IoT’, principally based on the role of this 
disruptive technology in generating new venture opportunities, shifting 
the nature of competition, and eroding the traditional business models 
(Clarysse et al., 2019). Finally, due to growing expansion of IoT appli-
cations and related publications, researchers suggest quantitatively 
examining the related literature (Lu et al., 2018), to explore the hidden 
thematic structure of IoT research (Yoon et al., 2018), and IoT issues 
associated with managerial and organizational areas and theories 
(Mishra et al., 2016). 

Previous studies have mainly focused on ‘general IoT research 
domain’. By applying either quantitative or qualitative methods, re-
searchers attempted to examine the generic IoT knowledge field and 
objectively or subjectively analyse the literature. Co-word analysis (Kim 
and Kang, 2018; Yan et al., 2015), co-citation analysis (Ng et al., 2018), 
bibliometrics (Mishra et al., 2016), and scientometrics approaches 
(Erfanmanesh and Abrizah, 2018) are some of quantitative methods 
have been used to explore IoT research domain. On the other stream, 
qualitative and mainly literature review approaches have been followed 
to examine the IoT study domain (e.g., Atzori et al., 2010; Li et al., 2015; 
Siow et al., 2018; Lu et al., 2018). It thus appears that scholarly attempt 
with direct focus on uncovering the intellectual structure of IoT litera-
ture from the business and management perspective is largely dis-
regarded. This study contributes to advancing the current discourse on 
IoT in particular considering business and management issues more 
holistically, by integrating, representing and synthesizing current 
knowledge through an innovative methodological approach. 

The main goal of this systematic and rigorous research is to map and 
link the knowledge landscape of IoT in business and management do-
mains. To this aim, the present study seeks to: (i) extract the inductive 
topical framework to portray the IoT research field in business and 
management, and more specifically for the highly focal domain of 
‘business model’; (ii) analyse and explain the main business and man-
agement latent themes and sub-themes in the research field of IoT; and 
(iii) highlight the trend of business and management studies in the IoT 
field to detect novelty and emergence. To address these objectives, we 
analysed the corpus of IoT research in the business and management 
disciplines applying an explanatory sequential mixed-method approach. 
This study thereby provides three key contributions. First, it drives and 
presents phenomenon-based constructs and grounded conceptual re-
lationships in the IoT literature on business and management. Second, 
we explore and discuss the related latent subjects of these constructs and 
their relationships, with special attention to the business model theme. 
Finally, we provide theoretical contribution by proposing research 
agenda for future study avenues in this context, based on the identified 
thematic map. 

2. Research method 

As quantitative and qualitative methodological approaches both 
have certain weaknesses (Gioia et al., 2013), researchers have called for 
new methods to examine organizational phenomena (Taras et al., 2009). 
Some propose combining them to take the advantages of both methods, 
addressing their limitations, and overcoming the trade-off between 
performing large-scale quantitative analytics and gaining in-depth 
qualitative insights (Creswell and Clark, 2011, p. 17; Schmiedel et al., 
2018). Thereby, we use a novel algorithm-assisted inductive approach as 
a mixed-method study wherein: (a) topic modelling as a computational 
method uncovers the topical composition of IoT research in the business 
and management fields and (b) thematic analysis as a qualitative 
method enables us to thoroughly analyse and interpret the extracted 
topics. Recently, the interest for synergistically joining the strengths of 

computational modelling and the capabilities of qualitative methods for 
obtaining robust and interpretable results has increased among re-
searchers (e.g. Eickhoff and Wieneke, 2018; He et al., 2020; Rai, 2016; 
Tidhar and Eisenhardt, 2020). In our novel mixed-methods design, we 
followed “explanatory sequential mixed-method” procedure proposed 
by Creswell and Clark (2011), because of the need for further under-
standing of quantitative results in detail through a follow up qualitative 
thematic analysis. As shown in Fig. 1, we conducted this study in four 
stages, the details of which are discussed in the following sections. 

2.1. Corpus building 

We began our study by searching within Thomson Reuters’ Web of 
Science (WoS) core collection to identify the corpus of IoT research in 
the business and management fields. On May 5, 2019, we retrieved all 
English papers containing either “Internet of Things” or “IoT” term in 
the title, abstract, or keywords and also were indexed in the business or 
management WoS subject categories. To include only validated and 
verified knowledge, we removed document types other than journal 
papers. The search process resulted in 412 research papers as the initial 
dataset. However, a closer look at these results revealed that there were 
some papers without desired relevance to the research issue, due to the 
logic of WoS in assigning a journal’s documents to predefined subject 
categories (WoS, 2019). To eliminate irrelevant documents, first, each of 
the authors independently scrutinized the title, abstract, and keywords 
of the resulted records. Then, they reviewed the full text in cases of 
doubt and discussed together in cases of disagreement to reach a 
consensus and ensure the validity of the research corpus. Eventually, 
347 journal articles dated from 2010 to 2019 were retained as the ul-
timate dataset. Since the abstract of a research article is the best possible 
distillation of its main points, we used this textual attribute of the final 
papers to build the intended corpus. 

2.2. Corpus cleaning 

To perform the pre-processing, first, we removed the phrases of 
copyright notices, such as ‘(C) 2019 Elsevier B.V. All rights reserved.’ 
which normally appears at the end of abstracts. We also dropped the 
core keywords (i.e., “Internet of Things” and IoT) and stopwords by 
using NLTK (Loper and Bird, 2002) to avoid jeopardizing the cohesion of 
results. All characters were transformed into the lower-case; the corpus 
was stripped from the punctuations, digits, whitespaces, and terms with 
less than three characters. Finally, we used the Term Frequency-Inverse 
Document Frequency (TF-IDF) measure, as one of the best term 
weighting approaches (Salton and Buckley, 1988), to value the stemmed 
words in the corpus and identify relatively insignificant ones to be 
removed (Weiss et al., 2015, p. 25). As suggested by Jiang et al. (2016), 
we calculated the TF-IDF score for each word over all documents in the 
corpus (Equation (1)) and then, following the recommendations of best 
practices for text pre-processing (e.g., Antons and Breidbach, 2018), we 
removed the terms with scores less than the median of all TF-IDF values. 
The corpus, thus, was stripped from the less relevant words without 
enough discriminatory power to characterize the text. In Equation (1), fij 
is the frequency of the ith term in the jth document, Fj is the number of 
terms in the jth document, N is the total number of documents, and ni is 
the number of documents that contain the ith term. Except the first two 
steps, we used Python 3.6.0 to clean the corpus. 

TF − IDFi =
∑N

j=1

(
TFij

)
* (IDFi)=

∑N

j=1

(
fij

Fj

)

*
(

log
N
ni

)

(1)  

2.3. Topic modelling 

Lately, computerized text analyses have introduced as a viable 
quantitative techniques (Pandey and Pandey, 2019), which can provide 

M.S. Delgosha et al.                                                                                                                                                                                                                            



Technovation xxx (xxxx) xxx

3

new insights to the management and organizational research. Topic 
modelling, with some remarkable algorithmic and practical benefits, is 
one of such analyses that is well-used to divulge phenomenon-based 
constructs and grounded conceptual relationships in corpora. Topic 
models are a set of statistical algorithms that analyse the words of a 
textual collection to generate a representation of the latent topics dis-
cussed therein and thus organize and summarize the collection (Blei, 
2012). Through the topic modelling, researchers seek to render the 
corpus (i.e., ‘juxtaposing data and concept’ and ‘categorizing data’) to 
inductively extract theoretical artefacts as multidimensional constructs 
(Charmaz, 2014; Hannigan et al., 2019) and inductively study the 
phenomenon based on large empirical samples (Tonidandel et al., 
2018). 

In this study for topic modelling, we used Latent Dirichlet Allocation 
(LDA) developed by Blei et al. (2003), and now is the most common 
topic modelling method (Jelodar et al., 2019). The LDA is a generative 
probabilistic model conceptualizes corpus as made up of a limited 
number of salient topics, each of which is a probability distribution over 
a fixed vocabulary of words (Blei et al., 2003). It technically assumes 

each document has a distribution over the topics and for each word in 
the document, a topic is chosen from the topics distribution (Blei, 2012). 
By building a joint probability distribution over both the observed data 
and hidden variables (Equation (2)), the LDA model computes the 
conditional probability distribution of the latent topic structure vari-
ables (Equation (3)) (Blei, 2012). We estimated the model using Gibbs 
sampling (Griffiths and Steyvers, 2004) as a common Markov chain 
Monte Carlo algorithm. In Equations (2) and (3); βk represents a topic 
that is a distribution over the vocabulary (the per-topic word distribu-
tion), θd represent the topic proportions for the dth document, in which 
θd,k is the topic proportion for the kth topic in document d (the 
per-document topic proportion), zd represent the topic assignments for 
the dth document, in which zd,n is the topic assignment for the nth word 
in document d (the per-word topic assignment), wd represent the 
observed words for the dth document, in which wd,n is the nth observed 
word in document d, K represents the number of topics, D represents the 
number of documents in the corpus, and N is the number of words in the 
vocabulary (Blei, 2012).  

Fig. 1. Main phases and their respective key steps in the research process.  
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p
(
β1:K , θ1:D, z1:D,1:N

⃒
⃒w1:D,1:N

)
= p

(
β1:K , θ1:D, z1:D,1:N , w1:D,1:N

) /
p
(
w1:D,1:N

)

(3) 

To run LDA, first, we used the CountVectorizer class provided by the 
highly popular scikit-learn library (Pedregosa et al., 2011) to convert the 
corpus into a Document-Term Matrix (DTM) as the model’s input. An 
element in the DTM represent a term frequency in the corresponding 
document. Then, we used lda package,1 developed based on the 
collapsed Gibbs sampling, to implement the LDA model. The results 
show per-topic word distributions and per-document topic proportions, 
which represents the topic structure of the corpus. In addition, we used 
pyLDAvis package (Karpovich et al., 2017), to visualize the topic map 
and find the inter-topic distances based on the Multi-Dimensional 
Scaling (MDS) (Cox and Cox, 2000). In order to tune the LDA model 
parameters, as there is no widely accepted method, we used four 
different data-driven approach suggested by Griffiths and Steyvers 
(2004); Cao et al. (2009); Arun et al. (2010); and Deveaud et al. (2014) 
(please see Appendix A for details of the analysis). The results of this 
analysis showed that 10 topics best illustrate the latent structure of IoT 
business and management related research. Furthermore, we applied 
cross-validation method with 10-fold to check the sensitivity of pa-
rameters. The analysis indicated that results of LDA with 10 topics were 
acceptable in terms of perplexity and log-likelihood (please see Ap-
pendix A). 

2.4. Topic explaining 

After uncovering the topical structure hidden in a corpus, scholars 
propose various quantitative and qualitative methods for finding se-
mantic meaning and interpretations in inferred topics (e.g., Marchetti 
and Puranam, 2020; Schmiedel et al., 2018). For instance, Chang et al. 
(2009) suggest two quantitative measures to evaluate the latent space of 
topic models, that is word intrusion to assess whether a topic has 
human-identifiable semantic coherence, and topic intrusion to assess 
whether the association between a document and a topic makes sense. In 
another study, Sievert and Shirley (2014) introduced the relevance 
metric that enables flexibly ranking terms according to their usefulness 
for interpreting topics. Reviewing the extant literature for qualitatively 
analysing and interpreting topic modelling results indicates that the 
most common approach is building a list of words with the deepest 
linkage to each topic and using these words for labelling and inter-
preting the topics. However, the recent work in this area suggests more 
intuitive methods. For instance, Marchetti and Puranam (2020) pro-
posed ‘prototypical-text based interpretation (PTBI)’ methodology for 
enhancing replicability and interpretability of topic modelling results. 
The central tenet of this approach is to show some selected prototypical 
texts associated with each topic to the readers, thereby they can inter-
pret the topics by themselves. While this approach improves the trans-
parency and replicability of topic modelling results, Marchetti and 
Puranam (2020) stress that PTBI is viable when documents do not refer 
to multiple topics simultaneously and the average length of them in the 
corpus is relatively low —for avoid fatigue in the readers. 

As the documents in the corpus of this study are comparatively long 
(around 208 words) and mainly related to multiple themes, to firmly 

analyse and interpret the extracted topics in rich detail, we applied the 
thematic analysis (TA) to systematically identify, organize and describe 
patterns in our dataset (Braun and Clarke, 2006). In this method, a 
theme refers to some important concepts concerning the research 
questions that reflects some level of a patterned meaning within the set 
of data (Braun and Clarke, 2006). The main reasons for using the TA are 
its accessibility and flexibility that may overcome the methodological 
challenges (e.g., vagueness, mystique, and complexity) of other methods 
in recognizing what a topic has been exactly written about (Braun and 
Clarke, 2012). We used TA method for detailed textual analysis to 
identify, describe, and report topics found through topic modelling. 
Following the TA steps suggested by Braun and Clarke (2006), we first 
skimmed the most correlated terms and documents for familiarizing 
ourselves with the data in each identified topic.2 Second, we took into 
account each term in a topic as an initial generated code. Therefore, we 
examined the full text of the documents to evaluate the significance level 
of the codes in the topic’s context. We, thus, identified the most mean-
ingful and relevant terms in each topic, and ignored the irrelevant ones. 
Third, we searched the main theme and potential sub-themes among the 
retained terms in each topic. Forth, we reviewed the full and coded data 
as well as themes to revise the findings of the previous step. In the fifth 
step, the resulted theme and sub-themes were finalized for each topic. 
We then assigned names to the themes and defined them as labels of the 
corresponding topic based on the words and documents that were highly 
associated with each topic (Schmiedel et al., 2018). Finally, we precisely 
explained each topic based on the core theme and sub-themes regarding 
the documents to produce the topic modelling report. Table 1 summa-
rizes the activates, sample of inputs and outputs in each phase of our TA 
process. To ensure the validity of the TA results, the steps 1 to 5 were 
conducted by each author independently, and the findings were 
cross-checked to solve conflicts and reach consensus. In addition, the 
applying TA as a systematic method and closely following its steps assist 
us to improve the reliability of our findings. 

Furthermore, in order to robustly discover the latent structure of IoT 
business model, we repeated topic modelling for it as our dominant 
theme. In doing so, we reran LDA procedure to the most relevant, 
correlated documents to this topic, and quantitatively extracted the sub- 
topics to reveal the intellectual structure of IoT enabled business model 
as a topic with high attraction. 

3. Results 

Fig. 2 presents the global view of the topic model on IoT business and 
management research area. This view visualizes the output of topic 
modelling, wherein circles represent topics in a two-dimensional plane. 
Areas of the circles are proportional to the relative prevalence of the 
topics in the corpus. The centres of circles are estimated by calculating 
the distance between topics and further projected onto a two dimensions 
space by using multidimensional scaling to reflect the inter-topic dis-
tances (Chuang et al., 2012; Sievert and Shirley, 2014). This visualiza-
tion seeks to depict answers to two questions: (a) ‘How prevalent is each 
topic?‘, and (b) ‘How do topics relate to each other?’ (Sievert and 
Shirley, 2014, p. 63). As shown in Fig. 2, topics 10, 8, 2 are the most 
extensive research areas in 10-topic model fitted with 20, 15, 14 percent 

p
(
β1:K , θ1:D, z1:D,1:N , w1:D,1:N

)
=
∏K

k=1
p(βk)

∏D

d=1
p(θd)

(
∏N

n=1
p
(
zd,n|θd)p

(
wd,n
⃒
⃒β1:K , zd,n

)
)

(2)   

1 http://pythonhosted.org/lda/. 

2 In this step, the most correlated terms and documents were identified based 
on a cutoff number of terms in the per-topic word distributions and a threshold 
weight of topics in the per-document topic proportions. 
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of the corpus, respectively. Further, it is clear from the global view that 
T10 has high overlap of research topics with T8 and T3. In contrast, T2, 
T4 and T5 are complete exclusive topics that have distinct term 
distributions. 

The articles in the corpus were classified according to the subsequent 
probability of their belonging to each topic. Table 2 shows that the topic 
with the most articles is T10: IoT-enabled Business Model (72 articles), the 
second topic is T8: Smart Manufacturing (53 articles), and the third most 
prevalent topic discusses T2: IoT as an Emerging Technology (50 articles). 
In total, these three topics comprise 50% of the articles in the corpus. As 
shown in Table 2 from the total of 3152 references, T2: IoT as an 
Emerging Technology, T8: Smart Manufacturing, and T10: IoT-enabled 
Business Model together contain 57% of citations, indicating that these 
topics are in the focal point of researchers’ attention. 

Table 3 presents the 10 identified topics after labelling based on the 
dominant research theme within each topic. In addition, we introduced 
the three important journals with high impact factors and a list of the top 
three papers correlated with each topic. 

3.1. Topics distribution over time 

After exploring the hidden topics in the corpus, we examined their 
distribution over time. In so doing, we followed Sun and Yin (2017) and 
used Equation (4) to find the temporal trend of topic structure: 

θ[t]
k =

∑M
d=1θdk × I (td = t)
∑M

d=1I (td = t)
(4)  

where θ[t] represent the topic distribution at time t for all documents, θ[t]k 
is the proportion of topic k at time t, and I (td = t) is an indicator 
function where return 1 if predicate (td = t) is true and 0 otherwise. 

Fig. 3 shows the proportion of all the 10 topics from 2010 to 2019, in 
order (i.e., T1 to T10) from the bottom to the top. As the areas dedicated 
to each topic in Fig. 3 demonstrate, the most popular five topics are T10: 
IoT-enabled Business Model, T8: Smart Manufacturing, T3: IoT in Supply 
Chain, T2: IoT as an Emerging Technology, and T5: IoT and Servitization. 

Furthermore, we used the structural topic model (STM3) package in 
R to examine topics prevalence over time. Topic prevalence refers to 
how much of a document is associated with a topic (Roberts et al., 
2019), thereby we can analyse the frequencies with which different 
topics appear across documents and how topics’ prevalence has changed 
during the time. STM provides a more robust approach for analysing 
temporal distributions of topics since it uses regression models to predict 
topic prevalence by covariates (here year), rather than applying a global 
mean. Fig. 4 presents a closer look at the temporal trends of topics. In 
this figure it is visible that some topics have been declining over last 
years, such as T2: IoT as an Emerging Technology, T3: IoT in Supply Chain, 
T5: IoT and Servitization, and T10: IoT-enabled Business Model (cold 
topics), and some of them have an upward trend, like T1: Customer 
Experience, T6: IoT in Product Management, T7: IoT optimization, T8: 
Smart Manufacturing, and T9: IoT and Big Data, (hot topics). Also, T4: 
Smart Living has a steady movement over time and cannot be deemed as 
a cold/hot topic. 

3.2. Topic discussion 

T1. Customer Experience 
This theme aggregates studies that investigate different customer 

behaviours in relation with various IoT technologies. IoT technologies 
are extensively used in several areas, and inquiries about how these 
technologies can be adopted, used, or interacted by customers have 
attracted many researchers. Generally, these studies have contributed to 
understanding the rationale behind customer decisions that shape the 

Table 1 
Highlights of our TA process.  

Phases of 
Thematic 
Analysis 

Summary of activities Example of 
inputs 

Example of 
outputs 

Phase 1: 
Familiarizing 
yourself with 
your data 

Identifying valid 
sources 
Collecting and 
skimming documents 
Building the corpus 
Cleaning the corpus 

WoS core 
collection 
Dataset 
containing 347 
journal papers 

Prepared corpus 

Phase 2: 
Generating 
initial codes 

Debriefing peers 
Sensitivity analysis 
and selecting number 
of topics 
Running the LDA 
Extracting the codes 
(terms) distributions 
for each topic 
Selecting the most 
relevant and 
meaningful codes 
based on documents 

Document term 
matrix 
Results of 
sensitivity of 
analysis ( 
Appendix A) 
Term 
distributions 
Topic 
distributions 

Finalized list of 
most probable 
terms in each 
topic (Table 3) 

Phase 3: 
Searching for 
themes 

Coding and collating 
the data in the corpus 
Reviewing coded data 
to identify themes 
Diagramming to make 
sense of themes in the 
corpus 
Inductively (data 
driven) identifying 
potential themes and 
subthemes 
Exploring 
relationships between 
themes 
Triangulating 
researchers to cross- 
check 

Initial coded 
data 
Potential themes 
and subthemes 
Global view of 
topics 

List of candidate 
themes and 
subthemes 
Collated data 
relevant to each 
theme 

Phase 4: 
Reviewing 
themes 

Reviewing entire 
corpus and coded data 
Testing for referential 
adequacy by returning 
to collated data 
Triangulating 
researchers to cross- 
check 

Set of themes 
and subthemes 

Refined list of 
themes and 
subthemes 

Phase 5: 
Defining and 
naming 
themes 

Clearly defining and 
specifying themes and 
subthemes 
Documenting the 
focus, scope, and 
purpose of themes and 
subthemes 
Identifying the story 
that each theme tells 
Triangulating 
researchers to cross- 
check 

Global and 
collated data 
Reviewed and 
discussed data 
related to the 
themes and 
subthemes 

Named and 
defined themes 
and subthemes 
Deep analytics of 
each theme and 
subthemes (T1- 
T10) 

Phase 6: 
Producing the 
report 

Describing process of 
topic modelling and 
analysis of topics 
Thick descriptions of 
context 
Report on reasons for 
theoretical, 
methodological, and 
analytical choices 
throughout the entire 
study 
Provide a compelling 
story about data based 
on the analysis. 

Fully established 
themes and 
subthemes 
Detailed analysis 
of themes 

Final analysis 
Topic 
distribution over 
time (Figs. 3 and 
4) 
Report about 
interesting data 
within and 
across themes ( 
Figs. 5 and 6)  

3 http://structuraltopicmodel.com/. 
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lifecycle of IoT technologies, including adoption, usage, and termina-
tion. Moreover, given the unique features of IoT, particularly its smart 
interactivity capability, recent IoT literature have shifted their attention 
from objects to interactions, from technical characteristics to relational 
ones (Pauget and Dammak, 2019). 

IoT adoption. To investigate customers adoption of IoT, some re-
searchers have used a specific theory or an extension of it, such as the 
Technology Acceptance Model (TAM) (Shin et al., 2018) or the Unified 
Theory of Acceptance and Use of Technology (UTAUT) (Chong et al., 
2015). Others combined different theories, such as the Theory of 
Reasoned Action (TRA) and the Theory of Planned Behaviour (TPB) 
(Shin, 2017), TAM with Task-Technology Fit (TTF) (Chen, 2019), TAM 
with TRA and TPB (Mital et al., 2018), TAM and Innovation Diffusion 
Theory (IDT) (Jayashankar et al., 2018), or TAM with technology 
readiness perspective and organizational theory (Roy et al., 2018). In 
contrast, Mani and Chouk (2017) have deployed their self-developed 
model comprising various influential constructs. 

Typically, IoT adoption studies have featured both descriptive and 
exploratory investigations and examined the impact of various de-
terminants using different adoption theories and models. Three main 
constructs, ‘attitude’, ‘intention’, and ‘behaviour’ towards IoT are 
considered as the dependent variables. Majority of these studies have 
considered ‘perceived ease of use’ as the most influential antecedent, 
and the other TAM variable ‘perceived usefulness’ is mentioned as the 
other important predictor (Chen, 2019; Mital et al., 2018; Roy et al., 
2018). Compatibility (Shin et al., 2018), superior functionality (Roy 
et al., 2018), subjective norm (Mital et al., 2018), big-5 personality traits 
(Chong et al., 2015), and trust (Harwood and Garry, 2017) are other 
reported influential factors. 

Mani and Chouk (2018) studied resistance behaviour and attempted 
to explain why consumers are unwilling to accept new IoT services. They 
provided an integrative framework that combined functional, psycho-
logical, and individual barriers to explain consumers’ resistance to smart 
services as an innovation. In a similar study, researchers found func-
tional barriers caused by product characteristics (price, usefulness, 
novelty, and intrusiveness) and psychological inhibitors raised by con-
sumer characteristics (dependence, self-efficacy, and privacy) are the 

Fig. 2. Global view of the IoT business and management research domain.  

Fig. 3. Topic distribution over time.  
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main antecedents of consumer resistance to smart products (Mani and 
Chouk, 2017). 

IoT satisfaction and usage. In addition to the adoption studies, the un-
successful Google Glass case persuaded research on quality of experi-
ence, satisfaction, IoT technologies continuance and discontinuous 
(Canhoto and Arp, 2017; Shin, 2017; Touzani et al., 2018). Previous 
studies suggest various salient factors for IoT satisfaction and usage such 
as utilitarian, hedonic, and social values (Touzani et al., 2018), 
observability of activities in social media or online communities, tech-
nical infrastructure, user attitudes and goals in using IoT objects (Can-
hoto and Arp, 2017), coolness and affordance (Shin, 2017). 

IoT interaction. As the smart connected IoT objects are increasingly used 
in various contexts around us such as households, cars, offices, cities, 
etc, researchers have inclined toward studying their special emergent 
relationships with consumers. Prior work has examined three different 
kinds of IoT interactions including ‘interaction between humans through 

IoT’, ‘human and object interaction’, and ‘interaction of smart objects’. 
As Sundar and Nass (2001) suggest, IoT distinctive capacities have 
provided unprecedented opportunities to improve our knowledge of 
relationships either between humans and objects or even between ob-
jects. Whereas, in the past, scholars merely perceived objects as passive 
entities that humans invest meaning in them, currently they take into 
account objects’ active roles. In this novel view, smart objects endows 
with various degrees of agency, autonomy, and authority (Novak and 
Hoffman, 2019), and their unique capabilities in interaction with 
humans and with each other. IoT profoundly transforms 
human-machine interactions or interaction between humans and the 
literature is now more keen to embrace these new emergent relation-
ships. In this manner, researchers have investigated human-object in-
teractions in different domains, such as consumer IoT interactions 
(Novak and Hoffman, 2019; Roy et al., 2017; Verhoef et al., 2017), 
e-learning (Farhan et al., 2018), social interactions in mobile services 
(Qi et al., 2014), agriculture (Kitouni et al., 2018), monitoring road 
conditions (Laubis et al., 2019), and healthcare (Laplante et al., 2017). 

Fig. 4. Prevalence of 10 topics over time  
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Given smart objects’ capacities to affect and be affected, Hoffman and 
Novak (2017) believe traditional human-centric conceptualization is not 
sufficient. Thus, they raised a very important and foundational question: 
‘Is it time to consider expanding the boundaries of consumer behaviour 
from usual human-centric perspective to nonhuman-centric one?‘. 
Similarly, Verhoef et al. (2017) introduced the POP-framework, dis-
cussing three types of connectivity: ‘People-wise’, ‘Object-wise’, and 

‘Physical-wise’, which is not purely human-centric. 

T2. IoT as an emerging technology 
Many studies has introduced IoT as a disruptive technology with 

great potentiality for changing the existing industries and markets, and 
capability in unlocking new economic and market values (e.g. Kumar 
et al., 2018; Xu et al., 2018). IoT is bridging the physical and digital 
areas, assisting us in digitizing the physical world and turning physical 
attributes into digital data. IoT by providing a novel infrastructure for 
synthetic knowing to capture rich biographies of everything, digital 
materiality to add new functionalities to objects and expand capabilities 
of products to become smart and connected underpins a huge power for 

Fig. 5. Venn diagram of identified themes.  

Fig. 6. Mind-map of the IoT business and management research domain.  

Table 2 
Number of articles and citations in each topic.  

ID No. of 
articles 

% of 
articles 

No. of 
citations 

% of 
citations 

Dominant research 
theme 

T1 18 5 70 2 Customer 
Experience 

T2 50 14 665 21 IoT as an Emerging 
Technology 

T3 22 6 447 14 IoT in Supply Chain 
T4 25 7 213 7 Smart Living 
T5 20 6 83 3 IoT and 

Servitization 
T6 28 8 129 4 IoT in Product 

Management 
T7 29 8 257 8 IoT Optimization 
T8 53 15 594 19 Smart 

Manufacturing 
T9 30 9 169 5 IoT and Big Data 
T10 72 21 525 17 IoT-enabled 

Business Model 
Total 347 100 3152 100   
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disruptive breaks in current industries and societies. Also, the new 
expanded automation, utilization, optimization, and personalization 
capabilities deriving from IoT are increasingly putting businesses under 
pressure to redefine how they operate (Fleishman, 2020). 

Digital knowing. Sensors expand the scope and reach of digital knowing 
by providing real-time rendering through seeing, hearing, tasting, 
smelling, and touching, they can thus increasingly mimic embodied 
perception. Monteiro and Parmiggiani (2019) proposed the notion of 
synthetic knowing to break up the dichotomy of physical versus digital 
and provide an integrated knowledge of both worlds. They argue that 
what we know as digital representations and how we know it are 
constituted by digitalisation. In this context, IoT has a transformational 
role, since sensors are currently vehicles for liquefaction (i.e., e decou-
pling of information from its related physical object) (Michel et al., 
2008). IoT allows us to create rich repositories of current and historical 
data about the physical object properties, such as origin, ownership, 
physical specifications, and sensory context (Ng and Wakenshaw, 2017). 
IoT enables digital materiality of physical objects (Yoo et al., 2012) and 
can add new functionalities to them, like sensibility, addressability, 
traceability, associability, communicability, programmability, and memora-
bility (Yoo et al., 2010). 

Digitalized industry. Industries are experiencing a revolution enabled by 
the employing innovative technological advancements in miniatur-
isation of equipment and network connectivity (Feng & Shanthikumar, 
2018). Xu et al. (2018) suggest that we are at the edge of the fourth 
industrial revolution, wherein IoT plays a key role in this industrial 
revolution. IoT combines the global reach of the Internet with industrial 
capabilities to coordinate, manage, and control the physical world of 
goods, machines, infrastructures, and factories, such that can transform 
existing industries (Ng and Wakenshaw, 2017). Industrial companies by 
using IoT besides cyber-physical systems (CPS) and cloud computing 
would be able to employ novel solutions to develop, integrate, 

reconfigure, or even completely reengineer both their internal and 
external operations (Kim et al., 2012; Kumar et al., 2018). In addition to 
operations, IoT has transformed the notion of product. Integrating IoT 
with physical products could add two new features which radically 
change them: smartness and connectedness (Porter and Heppelmann, 
2014). Such interconnected, intelligent, products create and collect 
huge amounts of data about their usage, context, recovery, and reuse 
(Kortuem et al., 2009). As a result, IoT opens up the opportunity of 
generating connected rich biographies of products and even expanding 
to its components and parts, which in turn enable achieving circular 
economy objectives (Spring and Araujo, 2017; de Sousa Jabbour et al., 
2018). 

Digitalized involvement. As societies move towards the era of IoT, 
altering static, fragmented and immobile data into dynamic, integrated, 
and transferrable resource generate disruption. Ng and Wakenshaw 
(2017) assert that IoT boost liquefaction of digitalized data which 
eventually improves engagement with products and also with their 
states, interactions, and description. Firms acquire various important 
benefits from IoT, particularly by engaging their customers in value 
co-creation processes, not only marketing but all of their internal and 
external operations (Agrifoglio et al., 2017). IoT facilitates a higher 
degree of customization and automation of on-board operations, thus 
can nurture customer’s involvement and participation (Agrifoglio et al., 
2017). 

T3. IoT in supply chain. Supply chain is one of the most visible areas that 
has profoundly benefited from IoT (Atzori et al., 2010; Lu et al., 2018). 
Enhancing operational efficiency and effectiveness of warehousing, 
transportation, and logistics through the sharing of information and 
physical assets, besides providing revenue opportunities are the main 
reasons for deploying IoT in supply chains (Lee et al., 2018; Qian et al., 
2017). In the recent years, supply chain managers have recognized the 
importance of IoT in bringing visibility to their operations. 

Table 3 
Identified topics in the IoT business and management research domain.  

Label Most probable terms Top journals Most correlated articles 

T1. Customer Experience consum, use, technolog, smart, perceiv, experi, 
object, model, risk, adopt 

Journal of the Academy of Marketing Science 
Technological Forecasting and Social Change 
Journal of Product Innovation Management 

Novak and Hoffman (2019) 
Shin et al. (2018) 
Mani and Chouk (2018) 

T2. IoT as an Emerging 
Technology 

technolog, industri, new, emerg, manufactur, futur, 
digit, challeng, potenti, chang 

MIS Quarterly 
Annals of Operations Research 
Production and Operations Management 

Monteiro and Parmiggiani (2019) de Sousa 
Jabbour et al. (2018) 
Kumar et al. (2018) 

T3. IoT in Supply Chain chain, suppli, rfid, retail, data, custom, adopt, 
manag, logist, inventori 

International Journal of Physical Distribution 
& Logistics Management 
International Journal of Production Economics 
Decision Support Systems 

Papert et al. (2016) 
Fan et al. (2015) 
Geerts and O’Leary (2014) 

T4. Smart Living smart, system, use, citi, healthcar, context, devic, 
intellig, user, commun 

Technological Forecasting and Social Change 
Expert Systems with Applications 
IEEE Systems Journal 

Escolar et al. (2019) 
Lee et al. (2017) 
Santos et al. (2016) 

T5. IoT and Servitization servic, model, busi, user, custom, develop, product, 
web, social, connect 

International Journal of Production Research 
IEEE Systems Journal 
Research-Technology Management 

Moghaddam and Nof (2018) 
Temglit et al. (2017) 
Heinis et al. (2018) 

T6. IoT in Product 
Management 

product, decis, logist, system, time, cost, order, 
strategi, life, mainten 

International Journal of Production Economics 
European Journal of Operational Research 
Reliability Engineering & System Safety 

Joshi and Gupta (2019) 
Yang et al. (2019) 
Li et al. (2019) 

T7. IoT Optimization network, secur, devic, sensor, algorithm, wireless, 
machin, node, optim, power 

IEEE Systems Journal 
Reliability Engineering & System Safety 
Computers & Operations Research 

Hu et al. (2014) 
Park (2017) 
Fadda et al. (2018) 

T8. Smart Manufacturing system, manufactur, product, industri, process, time, 
applic, manag, smart, integr 

International Journal of Production Economics 
Journal of Manufacturing Systems 
International Journal of Production Research 

Reaidy et al. (2015) 
Mourtzis and Vlachou (2018) 
Kusiak (2018) 

T9. IoT and Big Data data, method, collect, process, energi, big, predict, 
model, analyt, applic 

International Journal of Computer Integrated 
Manufacturing 
Decision Support Systems 
Information & Management 

W. Wang et al. (2018) 
Baecke and Bocca (2017) 
Townsend et al. (2018) 

T10. IoT-enabled Business 
Model 

busi, valu, innov, model, compani, industri, design, 
firm, strategi, resourc 

Technological Forecasting and Social Change 
Technovation 
Research Policy 

Metallo et al. (2018) 
Kiel et al. (2017a) 
Kim et al. (2017)  
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Consequently, this promoted visibility streamlines processes, reduces 
uncertainties, and enables data-driven decision making based on in-
sights produced by IoT real-time collected data. 

Supply chain visibility. The IoT automatic identification and tracking 
capabilities improve the visibility and traceability of individual pack-
ages to entire containers throughout the entire supply chain (Geerts and 
O’Leary, 2014). IoT, as an enabler of end-to-end supply chain visibility, 
provides access to live data of every transaction and process within the 
supply chain. This greater visibility contributes to managing un-
certainties, product quality, security, and process control, as well as 
optimization in many areas, such as manufacturing, transportation, 
distribution, retailing, and healthcare (Fan et al., 2015; Jie et al., 2015; 
Papert et al., 2016; Qian et al., 2017). 

Papert et al. (2016) argue that IoT can provide real-time data about 
identity, availability, position, and status quo as the different di-
mensions of visibility in supply chains. In fact, IoT with identifying, 
locating, sensing, communicating, and data storing functionalities 
overpasses current technologies, such as barcodes, data loggers, and 
data matrix codes for visibility purpose. Today, customers also expect 
visible and flexible delivery services, and supply chains can use IoT to 
provide real-time tracking and monitoring capabilities for them (Jie 
et al., 2015). 

IoT adoption in supply chain. Digital supply chain is the result of 
adopting IoT in supply chains and can be defined as the exchange of 
strategic and operative information among members of the supply chain 
to enhance collaboration and coordination. Higher flexibility in the 
production system, effective information sharing within supply chain 
members, focusing on core strengths, demand forecasting on point-of- 
sale, development of reliable suppliers, and logistics synchronization 
are the main success factors for IoT adoption in digital supply chains 
(Korpela et al., 2017). However, three challenges are associated with IoT 
adoption: ‘technological’, ‘organizational’, and ‘resource availability’ 
(Haddud et al., 2017). Tu (2018) identified that perceived cost, 
perceived benefits, and external pressure have substantial influence on 
IoT adoption in supply chains, while concerns about the IoT reliability, 
its trustworthiness, and integration with other systems might undermine 
IoT adoption. Additionally, Hsu and Yeh (2017) suggest that environ-
ment, organization, and security dimensions are critical aspects need to 
be considered for IoT adoption in the logistics industry. 

T4. Smart living 
‘Smartness’ is the result of combining and integrating various IoT 

technologies to sense, collect, interpret, and communicate data which 
allow monitoring, analysing, and reacting to real-world situations. IoT is 
transforming humans living by the means of ubiquitous hyper- 
connected objects that are present at any place, any time, and can 
communicate with anyone and any other thing (Escolar et al., 2019). In 
the recent past, scholars and practitioners have introduced various ap-
plications of smart living such as smart cities (Escolar et al., 2019; 
Marsal-Llacuna, 2018), smart homes (Lee et al., 2017), smart grids 
(Whitmore et al., 2015), smart transportation (Laubis et al., 2019), 
smart tourism (Almobaideen et al., 2017), and smart healthcare (Da Xu 
et al., 2014; Dimitrov, 2016; Vesselkov et al., 2018). 

Smart environment. Smart environment refers to a “physical world that is 
richly and invisibly interwoven with sensors, actuators, displays, and 
computational elements, embedded seamlessly in the everyday objects 
of our lives, and connected through a continuous network” (Weiser 
et al., 1999, p. 694). The main purpose of a smart environment which is 
extensively equipped with IoT is to automatically provide various ser-
vices based on users’ activities and requirements (Lee et al., 2017). To 
become smart, an environment, like a city uses various computing 
technologies to make its critical infrastructure, services, and resources 

more interconnected and intelligent. Put simply, a smart environment 
attempts to offer its inhibitors the highest possible quality services. 
Achieving such objective requires an intensive usage of IoT, which can 
sense the world by themselves and implicitly work for citizens (Escolar 
et al., 2019). Atzori et al. (2010) suggest that IoT brings several benefits 
in optimizing traditional public services, such as surveillance and 
maintenance of public areas, transport and parking, preservation of 
cultural heritage, lighting, garbage collection, and education. 

IoT in daily life. Various IoT devices equipped with different capabilities 
are weaved deeply into the fabric of everyday life with the potentiality 
to change people experiences. For instance, IoT technologies can con-
nect and integrate to daily life objects, such as smartphones, sport de-
vices, personal computers, and home appliances for the applications in 
home entertainment, security, healthcare, and fitness (Li et al., 2015). 
Combination of Intelligent Personal Assistants (IPAs) with IoT can pro-
vide a perfect personal assistant with the capabilities to act, manage, and 
interact continuously and autonomously with the environment. It may 
even suggest suitable solutions to problems that arise in humans’ daily 
life. IoT increases IPAs knowledge by learning the behaviour of their 
users through direct interactions with them, and other smart objects in 
the users’ environment (Santos et al., 2016). 

IoT in healthcare. The main issues in the healthcare industry are col-
lecting and transmitting patient data, tracking medical equipment, and 
developing hospital and laboratory information systems (Rahmani et al., 
2018). IoT has capabilities to resolve these problems and enable 
healthcare practitioners to provide smart services, such as patient 
addressing, monitoring of vital signs, position and posture monitoring, 
and optimization of patient flow in hospitals (Da Xu et al., 2014). 
Dimitrov (2016) suggests that IoT is be able to transform the healthcare 
industry by making it personalized, participatory, predictive, and preven-
tive, which is referred to as ‘P4 medicine’. 

Due to the ‘ageing boom’, elderly management is a critical concern 
from both social and economic perspectives. Senior care is one of the 
fastest-growing applications of the IoT, because of its various function-
alities and capabilities, such as body sensors and connected wearables 
(Pauget and Dammak, 2019). The effect of wearables on the healthcare 
industry is remarkably different from the other digital technologies. 
Most of the healthcare digital innovations have taken place on 
supply-side like hospitals, while emerging wearable devices enable the 
receivers of health services to manage their wellness and diseases by 
themselves (Vesselkov et al., 2018). 

T5. IoT and servitization 
A growing body of IoT literature argue that the emergence of IoT 

technologies is blurring the conventional boundaries between 
manufacturing firms and service providers (e.g. Velamuri et al., 2013; 
Raddats et al., 2019). By employing IoT technologies, businesses can 
shift the type of value exchanges from selling products to providing 
services and establish completely new relationships with their customers 
and partners. The creation and delivery of IoT based integrated 
product-service solutions (PSS) offer novel business opportunities for 
firms to fulfil a broader range of customers’ demands. Integrating IoT 
into operations and products enable firms to achieve closer and better 
proximity to their customers and reshape their value chains by 
expanding the scope of their product–service offerings (Rymaszewska 
et al., 2017). Turning these new opportunities aroused from IoT inte-
grated PSS into real-world business applications and their economic 
benefits is an important research theme (Moghaddam and Nof, 2018). 

IoT servitization benefits. Servitization is the process of shifting focus 
from selling products to providing integrated customers solutions thor-
ough bundling services to the core physical products in search of higher 
returns and additional growth opportunities (Baines et al., 2009). 
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Opresnik and Taisch (2015) contend that servitization can be an 
extremely successful differentiation strategy and sustainable competi-
tive advantage, particularly to avoid the commodity trap and price 
competition and to secure market share. Connectivity, agility, and 
decentralization are the main requirements of modern industrial sys-
tems and ‘servitization’ is one of the approaches for addressing these 
challenges (Moghaddam and Nof, 2018). Motivations for servitization 
can be classified into three general categories of ‘competitive’, ‘eco-
nomic’, and ‘demand-based’ motivations (Raddats et al., 2019). Servi-
tization through IoT contributes in establishing new relationships with 
customers, increasing their loyalty and product differentiation for 
meeting competitive motivations (Dachs et al., 2014), increasing reve-
nue and makes stability and profitability as economic motivations 
(Raddats et al., 2019), and addressing more complex customers’ re-
quirements for demand-based reasons (Gebauer et al., 2011). 

IoT servitization challenges. In the servitization approach, the true po-
tential capability of services in an IoT environment is realized when 
bundling services into products leads to more powerful solutions with 
more sophisticated functionalities. Therefore, selecting the most 
appropriate combination of IoT-based services to optimize the entire 
quality of a PPS is a complex task. The response time, price, availability, 
reliability, trustworthy, and also the energy level of IoT devices are 
important properties of service quality (Temglit et al., 2017). Further-
more, the development of smart services for PPS raises the challenge of 
selecting the right configuration of technology, people, organization, 
and information (Maglio and Spohrer, 2013). 

Developing innovative models for capturing value is another crucial 
challenge of moving to servitization. Servitization in an advanced level 
offers solutions as outcome-based contracts that charges the customer 
for the actual performance of a product (Visnjic et al., 2017). Thus, 
capturing value needs new pricing models that reflect the actual deliv-
ered value by the PSS. For this purpose, pay-per-use models are among 
the most commonly used pricing model (Baines and Shi, 2015), but they 
require establishing meaningful metrics for usage, like operating time, 
activity type, and material processed (Heinis et al., 2018). 

T6. IoT in product management 
As noted above, IoT technologies are changing many aspects of in-

dustries and societies; product management is no exception. Traditional 
product life cycles are linear chains of processes, manufacturers design, 
build and sell products and provide after-sale services. Nowadays, by 
using IoT technologies, the product life cycles have accelerated and even 
reversed themselves. Before the era of IoT, firms had to rely on customer 
feedback to learn what features were working and not working about 
their products, but with IoT, they can obtain an unprecedented level of 
feedback, in real-time. Modern product management depends on smart 
digital infrastructures that facilitate a smooth flow of data and estab-
lishing an integrated view of the product’s data throughout its lifecycle. 
Overall, this theme joins the studies examining how IoT improves and 
transforms product management. 

Product life management. Collecting real-time data in the product life 
cycle is essential for realizing green and sustainable manufacturing, yet 
it is very challenging (Zuo et al., 2018; Yang et al., 2019). IoT technol-
ogies are used for collecting real-time and dynamic data in the product 
entire life cycle. Studies in cold supply chain show that IoT provides 
information about the location, identity, ambient, quality of cargo, and 
other tracking information of perishable items and their environment 
(Bogataj et al., 2017; Yang et al., 2019). IoT technologies give the chance 
of adaptive controlling of ambient conditions like temperature, lighting, 
and humidity, even optimizing the routes and enhance fleet efficiency to 
reduce the wastes and save on fuel costs (Bogataj et al., 2017). Further, 
embedded IoT technologies allows firms to sense, monitor, and autho-
rize transferring products among customers, therefore, they would even 

be able to economically participate in collaborative consumption and 
sharing markets (Weber, 2017). 

Product End-Of-Life management. During the last two decades, End-Of- 
Life (EOL) product management and reverse logistics have been hot 
research areas mainly due to the sustainability issues and governmental 
regulations (Alqahtani et al., 2019; Joshi and Gupta, 2019). The EOL 
product management is a difficult process and IoT plays a significant 
role in reducing the uncertainties and ambiguities related to the quan-
tity, conditions, types, and remaining lives of the returned EOL products 
(Joshi and Gupta, 2019). Collected data from sensors embedded in 
products and RFID tags enables the determination of characteristics of 
products such as model number, warranty, customer information, sales 
date, critical failures, bill of materials, remaining life of the components, 
etc. (Joshi and Gupta, 2019; Li et al., 2019). Additionally, using 
embedded sensors and RFID tags in advanced manufacturing-to-order 
systems allows customers to define minimum quality demands and 
guarantees for their orders. 

T7. IoT optimization 
Optimization is an important concern in developing IoT technologies 

and researchers point out several challenges affecting the quality and 
quantity of data collected, transmitted, and processed by IoT (Mukho-
padhyay and Suryadevara, 2014). An important challenge in using IoT is 
the significant amount of resources required for flawlessly sensing, 
connecting, and computing data. Ensuring sensing coverage (Chen et al., 
2014; Fadda et al., 2018; Gong et al., 2018), balancing the workload of 
sensors (Hu et al., 2014), high robustness and reliability of the sensor 
networks (Park, 2017), and sensor selection (Jones et al., 2018) are 
among the most important issues in IoT optimization. 

IoT coverage and flexibility. Wireless technologies have some advan-
tages, such as flexibility, mobility, and coverage over hard-to-reach lo-
cations with lower cost of installation and maintenance fitting them for 
harsh environments. Typically, sensing coverage is considered as a sig-
nificant measure for data service quality in IoT since it indicates how 
well the sensors cover a specific region of interest (Chen et al., 2014). 
Some scholars proposed efficient and autonomous ways for determining 
the number and location of wireless nodes to fully cover an environment 
(Gong et al., 2018). Intelligently sensing and monitoring moving targets 
is another important application of IoT. The quality of target detection 
principally involves balancing between the probability of missing a 
target, the delay for detection, and the network lifetime. The failure or 
loss of connection between sensors and actuators may result in money or 
life loss (Hu et al., 2014). Opportunistic IoT based on social engagement 
model is a new suggestion for solving the problem of gathering data 
when the coverage of hubs and hotspots is insufficient. In this sharing 
model, by exchanging a reward, selected users permit access to their 
devices as mobile hotspots to gather data in large-scale areas, like cities, 
which otherwise need a huge expensive network (Fadda et al., 2018). 

IoT energy efficiency. As IoT nodes are normally powered by batteries 
with limited energy, reliable and energy-efficient data transmission is a 
big challenge for IoT based systems (Kaur and Sood, 2015a). There is a 
trade-off between the amount of data collected and analysed by IoT 
devices and their energy consumption (Song et al., 2017). Thus, the 
more IoT nodes collect or process data, the more energy they consume. 
Further, the energy consumed in a node can be classified into the 
computation energy and communication energy consumption (Tian 
et al., 2015). Different cooperative communications are introduced to 
improve energy-efficient communications, reliability, overall 
throughput, power control, and resource allocations in IoT systems. 
Recently, business and technological benefits of Low-Power Wide-Area 
Networks have been introduced as economically enable connecting 
massive number of IoT objects. Many mobile operators, start-up 
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companies, and independent users have adopted this type of network, 
which provides better coverage at significantly lower costs and power 
consumption than the existing cellular networks (Sandell and Raza, 
2018). 

IoT security and privacy. The security goals of integrity, confidentiality, 
authentication, encryption, detecting attacks, and nonrepudiation in a 
logical single step are critical for the realization of IoT applications (Selis 
and Marshall, 2018; Yeh, 2018; M. Zhang et al., 2015). Typical IoT 
devices with low computing power and limited storage are usually 
connected to the public networks; therefore, securely sending a message 
from a sensor to a host is a vital issue for successful IoT function. For 
detecting sophisticated attacks, IoT objects need processing a large 
amount of data in a short period and because of their low computational 
capability, they are not capable to discover an attack in real-time (Selis 
and Marshall, 2018). In this respect, some scholars proposed new effi-
cient heterogeneous online/offline encryption schemes, such as sign-
cryption (Ting et al., 2017), or attribute-based hash proof system (M. 
Zhang et al., 2015). In addition, IoT objects, like wearable consumer 
devices, have shown significant potentiality for contactless mobile 
payments but the traditional payment security infrastructures are not 
appropriate for IoT networks with limited computing resources and 
constrained bandwidth (Yeh, 2018). 

IoT applications raise serious privacy concerns, as IoT objects not 
only collect personal information, but could also monitor user activities, 
habits, and interactions with others. Privacy is Indeed often considered 
as a double-edged sword (Zhou and Piramuthu, 2015). From one side, 
users want to dynamically restrict or disclose information to others, 
depending on their preferences and location (Celdrán et al., 2014); on 
the other hand, companies require customers’ information for 
enhancing their products/services or providing innovations. Since 
complete privacy protection is extremely difficult, Zhou and Piramuthu 
(2015) argue that privacy issue should be seen context-aware and 
consumer-heterogeneous, with which users are able to dynamically 
restrict or reveal information to others (Celdrán et al., 2014). Privacy 
issues are currently understudied, especially in terms of the scalability 
and the complex environment characterising IoT scenarios (Sicari et al., 
2015). 

T8. Smart manufacturing 
In smart manufacturing as a new paradigm, manufacturing machines 

are largely integrated with IoT technologies to improve system effi-
ciency, product quality, and sustainability while decreasing costs 
(Kusiak, 2018). In this novel paradigm, the relations of humans, objects, 
and systems allow self-organized, dynamic, real-time improved, and 
cross-company value creation networks (Yin et al., 2018), while more 
autonomy is rendered to production systems (Mourtzis and Vlachou, 
2018). Decision-making authorities thus can be transferred and dele-
gated from a centralized hierarchical setting to a semi-autonomous 
collective of equipment, machines, operators, and mobile devices (Yin 
et al., 2018). In addition, IoT unique capabilities enable dynamic 
intelligent manufacturing processes and provide integrated and 
self-organized operations that can predict and react to unexpected 
changes throughout the whole manufacturing process (Fatorachian and 
Kazemi, 2018). In this theme, literature considers IoT as one of the en-
ablers of the manufacturing revolution, increasingly used to develop 
innovative intelligence in manufacturing and operational processes. 

Planning and decision making. Applying IoT enables capturing the real- 
time status of the distributed manufacturing resources that facilitates 
runtime production exception identification and dynamic decision- 
making (Y. Zhang et al., 2015). Recent advances in IoT technologies, 
like ambient intelligence and RFID, empower data collection from pro-
duction lines and allow the development of a new approach in 
manufacturing domain so-called ‘bottom-up’ (Reaidy et al., 2015). The 

conventional approach is static-based, while the bottom-up approach is 
autonomous and uses IoT infrastructure and multi-agent interactions to 
establish self-organization behaviour and connected network between 
manufacturing entities. IoT based agents, by communicating with each 
other, form self-organized systems to discover the best local solution for 
the resource management problems, such as order fulfilment, replen-
ishment, and path planning issues (Reaidy et al., 2015). For two 
important reasons, the connection between the physical and information 
world changes the ways in which manufacturing processes are concep-
tualized and implemented: (1) enabling the interaction between IoT 
objects and humans to reach organizational goals; and (2) integrating 
different organizational levels (Neubauer et al., 2017). 

Monitoring and controlling. Manufacturing companies use different in-
formation systems to manage performance through pervasive moni-
toring and control; however, they struggle for capturing real-time data 
that reflect the current situation. IoT interconnected sensors are an 
effective solution for this problem (Hwang et al., 2017). They can 
detecting events, measuring signals, and collect real-time data from 
factory floors and monitor the health conditions of manufacturing 
equipment and operations (Wu et al., 2017). Meyer et al. (2011), in their 
study, indicated that by using IoT technologies, realizing decentralized 
monitoring and control in the manufacturing context is possible. In 
another study, (Lee, 2017) showed while continuously monitoring 
various quality aspects are very difficult in multi-sites and 
multi-products manufacturing, using IoT beacons in manufacturing 
machines and devices to measure manufacturing processes’ quality 
factors is an appropriate solution for self-monitoring and real-time 
controlling. 

T9. IoT and big data 
The adoption of IoT has a worldwide and growing impact (Da Xu 

et al., 2014), which results in generating and collecting massive amount 
of data, more than ever before (Atzori et al., 2010; M. Chen et al., 2014). 
However, if this huge amount of data cannot be transferred to a central 
repository and analysed in real-time and fast, the results would not be 
much promising. The big data collected by IoT in the form of numbers, 
text, image, audio, and video, when combines with data analytics 
practices generates innovative opportunities for automating or sup-
porting business decision-making. Although IoT and big data analytics 
evolved independently, over the recent period, more and more they 
have become intertwined, facilitating the emergence of edge computing. 
Edge computing is a new networking philosophy attempting to shift 
computing as close to the source of data as possible instead of relying on 
the cloud in order to provide fast on-demand and real-time information 
and knowledge. 

Cognitive IoT and streaming analytics. IoT devices gather a vast amount 
of structured and unstructured data and are increasingly capable to 
perform analytics at the source of data generation and collection. This 
IoT capability leads to ‘streaming analytics’ as a new type of analytics in 
the edge computing, which continuously extracting useful information 
and insights from the streaming data generated from human activities, 
machines, or sensors. Streaming analytics has great potential for many 
businesses because of its real-time event analysis capability to discover 
patterns of interest, simultaneously with generating and collecting data. 
Streaming analytics is used not just for monitoring current conditions, 
but also for predicting future situations (Lee, 2017). 

To make a smart IoT solution, after mining and analysing the 
collected data, the extracted information have to be utilized in cognitive 
decision-making (Wu et al., 2014). The cognitive IoT can be effectively 
used in various contexts. For instance, the ubiquity of the sensing 
capability of IoT objects enables the continuous monitoring of em-
ployees’ actions, which makes regular performance evaluation possible 
(Kaur and Sood, 2015b). Recently, deep learning has received much 
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interest as an advanced artificial intelligence to analyse IoT sensory big 
data. Deep learning techniques by extracting knowledge from collected 
data, play a critical role in predicting analytics, gaining new insights, 
enhancing operational efficiency, supporting making decisions, and 
reducing errors (J. Wang et al., 2018). Combining real-time events with 
historical data allows the development of predictive and prescriptive 
analytics, to solve problems and propose solutions in real-time. How-
ever, a key challenge in IoT big data realm is how to manage and process 
data to prepare it for mining and analysis to gain new insights (Cuomo 
et al., 2017). 

IoT big data applications. Massive amount of data generated via IoT 
provides new possibilities for further improvement of reliability and 
efficiency of business operations. Businesses can use IoT big data ana-
lytics for improving product quality, system productivity, sustainability, 
and reducing costs (J. Wang et al., 2018). For instance, real-time 
manufacturing data can be collected and by embedding and using IoT, 
bottleneck detection and prediction in shop-floor can be realized (Huang 
et al., 2019). Due to increasing energy prices, new environmental 
legislation and concerns over energy scarcity, industries extensively use 
IoT to access and analyse real-time and multi-source energy consump-
tion data (W. Wang et al., 2018). In marketing, an increasing amount of 
IoT objects with pervasive networks supports the collection of detailed 
data about customers’ behaviour. In insurance domain, Baecke and 
Bocca (2017) proposed combining and analysing telematics data with 
traditional customer-specific, car-specific, and past claims to analyse the 
risk elements. In dynamic operational fields like underground coal 
mines, Wu et al. (2019) suggest that fast analysis of big data collected by 
IoT would assist in identifying major issues that affect equipment and 
operation. Also, since frequent monitoring to be aware of exact opera-
tional status is inefficient and costly, new managerial event-driven and 
periodical monitoring empowered by IoT technologies and big data 
analytics could provide essential descriptive and predictive insights for 
better operation management (Townsend et al., 2018). 

T10. IoT-enabled business model 
The great ‘anything, anytime, and anywhere’ IoT gold rush has 

begun, and it is significantly influencing industries. A large number of 
firms are working on how to exploit new revenue opportunities arising 
due to the IoT and actualize its innovative capacities in the creation and 
delivery of new business values. 

The fact that many academic and practice research have recognized 
IoT as a key enabler of business models and as it is the most prevalent 
topic in our IoT corpus, we were encouraged to render the latent 

structure of this topic. Thus, we repeated the LDA process for IoT- 
enabled business model corpus to explore the most important sub- 
themes in this topic (Table 4). Sub-themes of the IoT-enabled business 
model topic was again labelled based on examining the associated key 
terms and documents in each topic. 

t1. IoT business model configuration. Several scholars have examined the 
whole, or some important building blocks of IoT business models by 
mapping to the Osterwalder et al.’s (2005) business model ontology (e.g. 
Arnold et al., 2016; Dijkman et al., 2015; Kiel et al., 2017a; Metallo 
et al., 2018). Abbate et al. (2019), in a comparative study of IoT com-
panies, contend that in offering ‘customized products and services’ only 
key resources are core elements and key activities and partners stand as 
complementary factors. In a study about how active companies in the 
IoT industry configure the essential components of their business 
models, Metallo et al. (2018) found that value proposition and key ac-
tivities are the salient elements, and the main differences in business 
models are rooted in key activities and key resources. By using IoT, 
companies are seeking to change their business model value and trying 
to offer novel or enhanced products, services, or even PSS. Higher effi-
ciency, improved performance, getting the job done, and more conve-
nience are among the values companies propose to their customers 
(Dijkman et al., 2015). 

Offering complex IoT-based products and services requires a close 
relationship and consultation with customers. Co-creation and self- 
service are the two distinct customer relationship styles enabled by IoT 
(Dijkman et al., 2015). Having a close relationship with customers re-
quires robust channels. Complementing direct traditional channels with 
inherited communication in products through IoT helps companies to 
have continuous and stable relationships with their customers (Kiel 
et al., 2017a; Momeni and Martinsuo, 2018). While IoT capabilities 
support addressing new markets and customer segments, Kiel et al. 
(2017a) argue that some companies prefer or are only proficient to offer 
IoT-enabled values to their current customers. The various combinations 
of hardware and software components in IoT require special 
value-added activities. Simulating, product and process design, platform 
and software development (Metallo et al., 2018), acquisition, mining, 
and analysing data (Rymaszewska et al., 2017; Turunen et al., 2018) 
along with common standardised and modularised functions are sig-
nificant key activities in IoT business model. To perform crucial activities, 
human resource roles are changed from operators to sophisticated 
controllers and problem solvers, thus, new skills and qualifications in IT, 
CPS, and data analytical know-how are required (Arnold et al., 2016). 
Sensors, software components, and relevant IT systems, such as cloud 

Table 4 
Identified topics in the IoT-enabled business model research domain.  

Label Most probable terms Inter-topic distance map 

t1. IoT Business Model 
Configuration 

valu, industri, servic, new, data, develop, process, product, technolog, 
design 

t2. IoT Business Model 
Typology 

adopt, valu, success, offer, sector, gener, innov, specif, use, logic 

t3. Strategic Venture 
Development 

ventur, resourc, opportun, valu, growth, firm, oper, entrepreneuri, 
smart, allianc 

t4. IoT Business Model 
Innovation 

innov, technolog, market, strategi, manag, firm, relationship, industri, 
knowledg, develop 

t5. IoT Ecosystem Business 
Model 

busi, model, network, ecosystem, differ, chang, actor, valu, structur, 
connect  
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technologies are other key resources in IoT business models (Rymas-
zewska et al., 2017). 

Key partnership is another building block, which is considered more 
important and complex than in conventional business models (Dijkman 
et al., 2015; Kiel et al., 2017a). Collaborating with software and app 
developers, hardware partners, and data analysis companies through a 
secure, robust, and consistent platform-based network is a prerequisite 
in IoT business models. Besides these key partnerships shaped on the 
IoT-inherent horizontal connectivity (Arnold et al., 2016), customers are 
considered as a strategic partner in developing, engineering, and 
designing the products and services (Abbate et al., 2019). Considering 
the value capture dimension, IoT enables novel revenue streams, such as 
pay-by-usage models, dynamic pricing, performance-based payment, 
and licensing models (Arnold et al., 2016). Finally, the 
technology-driven character of IoT necessities new cost structure related 
to IT facilities, software, and platforms (Arnold et al., 2016). 

t2. IoT business model typology. Suppatvech et al. (2019) identified four 
archetypes of IoT-enabled business models according to their main value 
propositions. In the ‘add-on business model’, companies use IoT to 
provide additional utilities or personalized services to the existing 
physical products or services. ‘Sharing business model’ is close to rent-
ing, in which ownership of the physical good is not transferred and the 
customers pay only for using or accessing it. ‘Usage-based business 
model’ adopts pay-per-use and subscription revenue models, and de-
ploys IoT to measure the actual usage and needs. In a B2B context, the 
‘solution-oriented business model’ refers to business models that utilize 
IoT in enabling the provision of availability and optimization/consulting 
solutions to business customers. 

IoT mobile apps provide machine-to-machine connectivity, allow 
sharing of data services, and facilitate ubiquitous computing across 
various devices. Guo et al. (2017) propose four possible business models 
for such apps including ‘novelty’, ‘efficiency’, ‘lock-in’, and ‘comple-
mentarity’ that if properly selected by developers assist them to satisfy 
their customers and retain IoT value. Therefore, businesses have 
different options for defining IoT-enabled business models based on 
their target market and value configuration. 

t3. Strategic venture development. It has been argued that IoT brings ad-
vantages for organizational adaptation, innovation, and success in a 
dynamic world, especially for companies with large amounts of data and 
connectivity (e.g. Guo et al., 2016; Yu et al., 2016). Although IoT 
pervasive connectivity provides various opportunities for entrepreneurs, 
it lacks successful reference business models (Guo et al., 2016), partic-
ularly, for new ventures. One of the main challenges in IoT venturing is 
how different organizational resources should be utilized, combined, or 
transformed to achieve success or growth. Two venturing principles, 
‘effectuation’ and ‘causation’, guide entrepreneurs’ decision-making in 
‘resource bundling’. Resource bundling helps entrepreneurs creatively 
combine IoT resources, such as smart objects with traditional resources 
to create extraordinary venturing growth (Guo et al., 2016). Based on a 
dynamic capability perspective, IoT capability can be defined as the 
ability to align IoT resources, knowledge, and skills with organizations’ 
strategic directions and innovations. With IoT capability as a competi-
tive advantage, organizations can make strategic decisions effectively 
and efficiently, exploit business opportunities, counter to environmental 
threats, and sustain their competitiveness (Yu et al., 2016). 

Furthermore, IoT capability provides entrepreneurship opportunities 
by (1) bridging vertical markets; (2) enabling the growth and rising of 
new market segments and applications; and (3) optimizing business 
processes (Miorandi et al., 2012). However, using IoT alone is not suf-
ficient for fully actualizing the benefits. Akhtar et al. (2018) argued that 
companies should link IoT capabilities with productive data and infor-
mation processing competences to enhance agility and achieve a better 
competitive advantage. Balancing exploration and exploitation is an 

important concern for many businesses. Ambidexterity is not easily 
achievable, especially in complex contexts, such as integrating IoT into 
big and multinational organizations. Today, companies are looking for 
the exploitation of business opportunities that come from the applica-
tion of IoT technologies to new markets. Nevertheless, they also try to 
explore new profitable business models to commercialise and to profit 
from different products and services presented by IoT capabilities 
(Bresciani et al., 2018). 

t4. IoT business model innovation. Several researchers and futurists posit 
that smart IoT objects are reshaping industries and the nature of 
competition, thus companies need new business models. Business model 
innovation as an umbrella term outlines companies’ attempts to find 
new business logic or new ways to create and capture values (Casade-
sus-Masanell and Zhu, 2013). At the core of business model innovation is 
the transformations triggered by new technological means (Cortimiglia 
et al., 2016). IoT as an emerging technology has driven new opportu-
nities for designing and redesigning business models (Rymaszewska 
et al., 2017). Yu et al. (2016) demonstrated that IoT capability could 
enhance product innovation. However, IoT capability alone is not 
enough and IoT strategic alliance with external entities is also required 
for both product and process innovation. 

Finally, there are different pathways to actualize business model 
innovation, such as developing and commercialising customer-centric 
novel business models based on innovative servitization and individu-
alization (Kiel et al., 2017b) and offering to retrofit to customers 
(Amshoff et al., 2015) to equip and prepare customers for IoT imple-
mentation. IoT-based servitization (Turunen et al., 2018) and 
IIoT-driven innovation (Kiel et al., 2017b) exemplify generating higher 
value and reaching competitive advantage through combining data from 
many sources, providing platforms that facilitate combinatory innova-
tion, as well as reducing time-to-market and increasing flexibility 
(Moeuf et al., 2018). 

t5. IoT ecosystem business model. There is a rising trend among IoT 
scholars (Leminen et al., 2018; Papert and Pflaum, 2017; Rong et al., 
2015; Westerlund et al., 2014) to examine the expansion of business 
model boundaries from an individual company to an ecosystem 
perspective. In today’s networked economy, firms are often members of 
complex business ecosystems and having direct experience with the IoT 
contributes to their partnerships. The core of an IoT ecosystem is 
bridging the physical world of things with the digital world of software, 
Internet, and standards (Kim et al., 2017; Mazhelis et al., 2012). West-
erlund et al. (2014) identified four key areas of value in IoT business 
model ecosystems including ‘drivers’, ‘nodes’, ‘exchanges’, and 
‘extraction dynamics’. Value nodes are members, activities, and systems 
that are linked together in an ecosystem, while value drivers are the 
motivations of members to extract and exchange value in the ecosystem. 

IoT is a novel infrastructure for collaborative value creation; how-
ever, it is strategically important to examine the ecosystem contextual 
issues, such as interdependencies, interactions, and partnerships in 
designing IoT business models. Leminen et al. (2018) propose four types 
of IoT ecosystem business models based on the nature of service and the 
type of ecosystem: ‘value chain efficiency model’, ‘industry collabora-
tion model’, ‘horizontal market model’, and ‘platform model’. Burkitt 
(2014) further argues that there are three different strategic roles in 
these ecosystem business models: ‘enablers’ who develop and imple-
ment the core technologies underpinning the ecosystems, ‘engagers’ 
who plan, implement, integrate, and deliver IoT services to customers, 
and ‘enhancers’ who devise value-added services on the top of the ser-
vices provided by engagers. 

In another study, Papert and Pflaum (2017) examined the role of 
solution integrator as a central role in the IoT ecosystem. They assert 
that the main duty of solution integrator is to produce a complete IoT 
platform involving hardware, applications, and connectivity. In 

M.S. Delgosha et al.                                                                                                                                                                                                                            



Technovation xxx (xxxx) xxx

15

addition, this role maintains and orchestrates network formation and 
coordinates and integrates knowledge across the diverse actors of the 
heterogeneous network (Prince et al., 2014). Finally, Rong et al. (2015) 
highlight that IoT-based business ecosystems are much more complex 
networks than ordinary ones. To understand how IoT-based business 
ecosystem works, they proposed a 6C framework: ‘context’, ‘construct’, 
‘configuration’, ‘cooperation’, ‘capability’, and ‘change’. 

4. Conclusion and implications 

4.1. Theoretical implication and future research 

Our findings contribute to the literature on business and manage-
ment of IoT in three ways. First, the findings of this study uncover and 
present a thematic map of IoT research streams in business and man-
agement domains. This study is a response to a call by Lu et al. (2018) 
that highlight a need for a more quantitative approach to drive and 
present the inductive classification framework for eliciting the latent 
structure of IoT extant literature. To map out a broad and rich picture of 
the business and managerial related thematic landscape of IoT, we 
designed a computational thematic analysis method as a new 
mixed-method approach, addressing the call for methodological 
pluralism to study organizational phenomena (Schmiedel et al., 2018). 
In the current paper, we proposed a research framework to incorporate 
topic modelling as a computational technique into inductive thematic 
analysis to cover both the breadth and depth of the subject. The results 
of topic modelling by applying LDA method reveal 10 topics for IoT in 
the business and management areas. For each topic, we presented the 
most probable terms, top journals, most correlated articles, and its dis-
tribution over time. Then, by following a thematic analysis process, we 
discussed and critically analysed the latent themes. 

Second, tracing the studies in each topic shows that identified themes 
can be allocated to the juxtaposition of three main spaces: individual, 
organizational, and supra-organizational (Fig. 5). To deepen our un-
derstanding of extracted topics, we focused on two key dimensions of 
IoT—interconnectivity and smartness—to realize how IoT could create 
value for its stakeholders. Focusing on three distinct but interconnected 
levels of analysis, we examined the affiliation of topics with these two 
IoT features and different beneficiaries. IoT unique capability of inter-
connecting physical and digital world provides great exceptional op-
portunities for innovative applications that were not possible before. IoT 
interconnectivity capacity could link human, things and software at 
individual, organizational, supra-organizational levels in ways that can 
radically transform many aspects of functions and interactions. Some 
examples of emerging applications of IoT in business are: making 
products smart and connected, facilitating sharing and collaborative 
economies, restructuring industries and supply chains, contributing to 
realizing circular economy and sustainability, and developing new 
business models. 

At the individual level, smart connected products offer new func-
tionality, greater performances, higher engagement, and capabilities 
that cut across and transcend traditional product boundaries (Porter and 
Heppelmann, 2014), offering new emerging relationships from con-
sumers’ interactions with them (Novak and Hoffman, 2019). At the 
organizational level, IoT provides a smart, connected infrastructure for 
modern product management, dynamic intelligent manufacturing, and 
differentiating businesses by moving beyond merely selling products to 
delivering integrated product-service solutions to their customers. At the 
supra-organizational level, IoT improves collaboration and coordination 
between members of a supply chain by bringing visibility and trace-
ability to the entire chain, enables social environments like cities to 
make their critical infrastructure, services, and resources more inter-
connected and intelligent, and provides a novel infrastructure for 
collaborative value creation in the networked economy. 

Finally, at the intersection of these spaces, digital knowing and big 
data could be positioned. IoT by its pervasive interconnectedness 

capability at different levels generates and collects huge amounts of 
data, which might be correlated to any level of its applications from 
individual to supra-organizational. Furthermore, this huge amount of 
data is processed and analysed to create rich biographies about how 
products are used and humans interact with them. 

Further, using a thematic analysis approach we explored and dis-
cussed latent sub-themes in each topic. Fig. 6 shows the knowledge 
structure of the IoT business and management research at a glance. 

Finally, drawing on the results of the mixed-method analysis, the 
third theoretical contribution of our study is identifying and proposing 
future research avenues for IoT business and management. The future 
research streams are discussed as follow: 

IoT shapes new interactions, consumers’ consumption habits, and 
engagement. Analysing related theoretical models and frameworks used 
by current studies reveals a heterogeneous set and different paradigms. 
Some scholars have considered pre adoptions behaviours of IoT; while 
the others have focused on its usage and satisfaction, mostly by testing 
classical theories and models. However, future research may leverage 
other theoretical lenses, especially in social contexts, like the theory of 
self-expansion and consumer culture theory and broaden their studies to 
consider context-specific factors, or economic and social factors, such as 
price, social presence, and co-presence modes. Most of the studies have 
examined human and IoT object relationships, but future research could 
explore social interactions through IoT and consider a new perspective 
and expand the boundaries to nonhuman-centric consumer behaviours 
(Hoffman and Novak, 2017). Scholars have increasingly addressed ser-
vitization, yet, there is still a paucity of well-suited theoretical and 
empirical models and methods, in applying IoT technologies and 
shaping inter-company relationships to exploit opportunities provided 
by PSS (Böhmann et al., 2014; Kamp and Parry, 2017). IoT facilitates 
inter-organizational collaborations by enabling visibility, but future 
research could consider IoT roles in less studied supply chain activities, 
such as sourcing or reverse logistics, and also offer solid and compre-
hensive frameworks for IoT adoption in a digital supply chain context. 
While many believe IoT has disruptive power and put emphasis on the 
scientific theory and its engineering design, analysis of its innovation 
dynamics has been largely overlooked. Future studies could examine the 
commercialization, standardization, and diffusion of IoT technologies. 
Smart products, built with sensing and embedded control features is a 
hot topic in integrating IoT with product life cycle management. IoT 
impacts in shaping collaborative consumption experiences and exam-
ining consumers’ active role in smart product lifecycle are worth further 
investigation. Most of important IoT applications involve solutions that 
are not merely technical, thus for studying them considering 
socio-technical perspective is necessary. Interoperability, compatibility, 
standardization and risk management in the entire lifecycle of smart 
products are critical areas for future research. Future research on smart 
manufacturing can investigate regulatory framework and end-to-end 
digital integration, reference architectures for crucial infrastructures 
for IIoT and return on investment of advanced IoT innovations in in-
dustry 4.0 initiatives. IoT holds the promise of improving humans’ life 
which requires using tons of things, with seeing, sensing, hearing, and 
smelling capabilities. Social policies and legal systems in the national 
and international levels should consider the impacts of IoT technologies 
on people’s life. Examining the influence of different factors on suc-
cessfully deploying IoT services in human life and investigating security 
and privacy issues are potential research streams in this topic. Designing 
appropriate tools that could measure other dimensions of smart living 
experiences is also suggested (i.e. social, psychological, emotional, and 
cognitive dimensions). With the rapid expansion of IoT, many scholars 
have tried to explore different ways to extract useful information or 
knowledge from a large volume of generated data. Potential emphases 
for future research in IoT big data are considering temporal aspect, 
metadata and semantics, management, authority, integrity, and gover-
nance of IoT data. 

Research on IoT emerging impacts on business models is discussed 
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largely. Some studies have examined the IoT potential changes on main 
elements of established business models, and the others attempted to 
design novel business models based on IoT innovative products and 
services. Future research should discuss the benefits of different business 
models from a customer’s point of view, as innovative business model 
adoption is also likely to rely on customer perspective (Suppatvech et al., 
2019). Given the fact that IoT business models are still in their early 
stage, conducting longitudinal surveys to observe the IoT business 
models’ evolution and their effect on long-term performance is benefi-
cial. Finally, the strategic values of implementing and deploying IoT are 
less considered by scholars. Therefore, future studies could take the 
perspective of dynamic capabilities or resource-based view to explore 
how businesses can exploit the combination of IoT resources and capa-
bilities with existing ones. 

4.2. Managerial implication 

This study offers a range of insight for entrepreneurs and managers. 
Mangers can augment IoT into their existing services and products and 
make them more efficient for their customers. They should consider IoT 
capabilities for offering customized products or services, and the coop-
eration with customers through IoT networks as a differentiating 
competitive advantage. Additionally, inheriting automated analysis ca-
pacity in IoT technologies or processing big data sensed and collected 
enable managers to gain more knowledge about their customers and 
their operations. Managers can leverage these new insights to initiate 

the corrective actions, adjust business rules and optimize business pro-
cesses as well as systems in real-time. To take the advantages of IoT 
business opportunities, changing the role of workforces from operators 
to problem solvers is extremely important but it requires companies to 
make a serious effort for educating their employees to gain new skills, 
abilities, and knowledge. Supply chain practitioners can also use various 
IoT technologies to enhance visibility and increase efficiency and 
effectiveness of operations. Managers can integrate IoT to create more 
innovative, beneficial business values for their customers. They should 
consider utilizing IoT as a central feature in proposing innovative PSS 
that support their customers’ requirements. Reconfiguring business 
models according to IoT capabilities is another strategic concern for 
innovative companies. 

Entrepreneurs who intends to develop IoT solutions for consumers 
should employ smart technologies that are compatible and interoperable 
with greater ease of use, superior functionality, and high usefulness. 
Moreover, entrepreneurs need to ensure that the IoT solutions encom-
pass hedonic and social dimensions. In designing IoT services, both 
quality of service and quality of experience should be considered. Se-
curity and privacy are also significant factors for consumers, particularly 
where sensitive personal data is collected. Companies, thus should 
invest in their IoT platforms security and privacy. In designing novel 
business models, entrepreneurs also can incorporate IoT capabilities in 
configuring value map to fulfil their customer needs, to optimize their 
resources and partnership or to transform their revenue streams.  

Appendix A 

Topic modelling sensitivity analysis 

We followed Griffiths and Steyvers (2004) recommendations to run LDA on our corpus using Gibbs sampling with T ranging from 6 to 24 and 1000 
iterations. The LDA packages4 that we used for sensitivity analysis, estimates the values of alpha and beta parameters with starting score of T/50, 0.1, 
respectively. We calculated the metrics of four LDA models and presented the normalized results of them in the left part of Figure A-1. In two of these 
models, i.e. Griffiths and Steyvers (2004) and Deveaud et al. (2014) we seek maximum scores, while for the other two models, i.e. Cao et al. (2009) and 
Arun et al. (2010), we look for minimum scores. 

Following Geva et al. (2019), we summed the scores of the four models for each number of topics to find a topic number with good aggregated 
score. We computed (1-score) for two models in which higher values consider better (i.e. Griffiths and Steyvers, 2004; Deveaud et al., 2014). As a 
result, the optimal number of topics was the one with the minimum overall score. The aggregated scores of four models are shown in the right part of 
Figure A-1.

Figure A-1. Left: results of four models, Right: aggregated results of sensitivity analysis .  

We further used 10-fold cross-validation analysis to evaluate the performance of our LDA model. In 10-fold cross-validation, the dataset is 
randomly partitioned into 10 equal size subsamples. Of the 10 subsamples, a single subsample is retained as the validation data for testing the model, 
and the remaining 9 subsamples are used as training data. We computed the perplexity of LDA models with different numbers of topics to find the 

4 topidmodels package: (https://cran.r-project.org/web/packages/topicmodels/index.html), and ldatuning package (https://cran.r-project.org/web/packages/lda 
tuning/index.html). 
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optimal number. From Figure A-2, we can see 10 number of topics yields the best results, with the lowest average perplexity on the 10 different hold- 
out sets.

Figure A-2. Perplexity results of LDA models with different number of topics .  
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crowdsensing-based road condition monitoring service by intermediary. Electron. 
Mark. 29 (1), 125–140. 

Lee, C.K.M., Lv, Y., Ng, K.K.H., Ho, W., Choy, K.L., 2018. Design and application of 
Internet of things-based warehouse management system for smart logistics. Int. J. 
Prod. Res. 56 (8), 2753–2768. 

Lee, H., 2017. Framework and development of fault detection classification using IoT 
device and cloud environment. J. Manuf. Syst. 43, 257–270. 

Lee, I., 2017. Big data: dimensions, evolution, impacts, and challenges. Bus. Horiz. 60 
(3), 293–303. 

Lee, J.S., Choi, S., Kwon, O., 2017. Identifying multiuser activity with overlapping 
acoustic data for mobile decision making in smart home environments. Expert Syst. 
Appl. 81, 299–308. 

Leminen, S., Rajahonka, M., Westerlund, M., Wendelin, R., 2018. The future of the 
Internet of things: toward heterarchical ecosystems and service business models. 
J. Bus. Ind. Market. 33 (6), 749–767. 

Li, N., Gebraeel, N., Lei, Y., Bian, L., Si, X., 2019. Remaining useful life prediction of 
machinery under time-varying operating conditions based on a two-factor state- 
space model. Reliab. Eng. Syst. Saf. 186, 88–100. 

M.S. Delgosha et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0166-4972(21)00017-1/sref43
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref43
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref43
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref44
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref44
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref44
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref45
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref45
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref46
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref46
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref47
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref47
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref48
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref48
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref48
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref48
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref49
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref49
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref50
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref50
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref50
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref51
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref51
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref52
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref52
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref53
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref53
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref53
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref54
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref54
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref54
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref55
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref55
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref55
https://www.forbes.com/sites/hodfleishman/2020/01/22/disruption-20-how-iot-and-ai-are-breaking-up-the-business-world/#11599a3b62cf
https://www.forbes.com/sites/hodfleishman/2020/01/22/disruption-20-how-iot-and-ai-are-breaking-up-the-business-world/#11599a3b62cf
https://www.forbes.com/sites/hodfleishman/2020/01/22/disruption-20-how-iot-and-ai-are-breaking-up-the-business-world/#11599a3b62cf
https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018-roundup-of-internet-of-things-forecasts-and-market-estimates/#6f40f6027d83
https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018-roundup-of-internet-of-things-forecasts-and-market-estimates/#6f40f6027d83
https://www.forbes.com/sites/louiscolumbus/2018/12/13/2018-roundup-of-internet-of-things-forecasts-and-market-estimates/#6f40f6027d83
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref58
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref58
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref59
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref59
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref60
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref60
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref61
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref61
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref62
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref62
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref62
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref63
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref63
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref64
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref64
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref65
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref65
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref65
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref66
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref66
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref66
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref67
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref67
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref67
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref68
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref68
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref68
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref69
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref69
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref69
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref70
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref70
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref71
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref71
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref72
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref72
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref73
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref73
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref73
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref74
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref74
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref75
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref75
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref76
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref76
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref77
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref77
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref77
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref78
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref78
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref78
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref79
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref79
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref79
https://www.idc.com/getdoc.jsp?containerId=prUS43994118
https://www.idc.com/getdoc.jsp?containerId=prUS43994118
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref81
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref81
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref81
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref82
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref82
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref82
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref83
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref83
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref84
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref84
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref84
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref85
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref85
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref85
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref86
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref86
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref87
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref87
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref88
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref88
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref88
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref89
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref89
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref90
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref90
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref91
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref91
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref91
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref92
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref92
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref92
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref93
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref93
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref93
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref94
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref94
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref95
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref95
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref95
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref96
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref96
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref96
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref97
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref97
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref97
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref98
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref98
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref99
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref99
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref100
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref101
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref101
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref102
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref102
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref102
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref103
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref103
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref103
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref104
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref104
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref105
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref105
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref106
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref106
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref106
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref107
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref107
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref107
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref108
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref108
http://refhub.elsevier.com/S0166-4972(21)00017-1/sref108


Technovation xxx (xxxx) xxx

19

Li, S., Da Xu, L., Zhao, S., 2015. The Internet of things: a survey. Inf. Syst. Front 17 (2), 
243–259. 

Loper, E., Bird, S., 2002. July). NLTK: the natural language toolkit. Proceedings of the 
ACL Workshop on Effective Tools and Methodologies for Teaching Natural Language 
Processing and Computational Linguistics. Association for Computational 
Linguistics, Philadelphia, PA, pp. 62–69. 

Lu, Y., Papagiannidis, S., Alamanos, E., 2018. Internet of things: a systematic review of 
the business literature from the user and organisational perspectives. Technol. 
Forecast. Soc. Change 136, 285–297. 

Maglio, P.P., Spohrer, J., 2013. A service science perspective on business model 
innovation. Ind. Market. Manag. 42 (5), 665–670. 

Mani, Z., Chouk, I., 2017. Drivers of consumers’ resistance to smart products. J. Market. 
Manag. 33 (1–2), 76–97. 

Mani, Z., Chouk, I., 2018. Consumer resistance to innovation in services: challenges and 
barriers in the Internet of things era. J. Prod. Innovat. Manag. 35 (5), 780–807. 

Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., Marrs, A., 2013. Disruptive 
Technologies: Advances that Will Transform Life, Business, and the Global Economy. 
McKinsey Global Institute. Retrieved from. https://www.mckinsey.com/business 
-functions/digital-mckinsey/our-insights/disruptive-technologies. (Accessed 4 May 
2019). 

Marchetti, A., Puranam, P., 2020. Interpreting Topic Models Using Prototypical Text: 
from ‘Telling’To ‘Showing. https://doi.org/10.2139/ssrn.3717437 (October 23, 
2020). INSEAD Working Paper No. 2020/49/STR, Available at: SSRN: https://ssrn. 
com/abstract=3717437. 

Marsal-Llacuna, M.L., 2018. Future living framework: is blockchain the next enabling 
network? Technol. Forecast. Soc. Change 128, 226–234. 

Mazhelis, O., Luoma, E., Warma, H., 2012. Defining an internet-of-things ecosystem. 
Lect. Notes Comput. Sci. 7469, 1–14. 

Metallo, C., Agrifoglio, R., Schiavone, F., Mueller, J., 2018. Understanding business 
model in the Internet of things industry. Technol. Forecast. Soc. Change 136, 
298–306. 

Meyer, G.G., Wortmann, J.C., Szirbik, N.B., 2011. Production monitoring and control 
with intelligent products. Int. J. Prod. Res. 49 (5), 1303–1317. 

Michel, S., Vargo, S.L., Lusch, R.F., 2008. Reconfiguration of the conceptual landscape: a 
tribute to the service logic of Richard Normann. J. Acad. Market. Sci. 36 (1), 
152–155. 

Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I., 2012. Internet of things: vision, 
applications and research challenges. Ad Hoc Netw. 10 (7), 1497–1516. 

Mishra, D., Gunasekaran, A., Childe, S.J., Papadopoulos, T., Dubey, R., Wamba, S., 2016. 
Vision, applications and future challenges of Internet of things: a bibliometric study 
of the recent literature. Ind. Manag. Data Syst. 116 (7), 1331–1355. 

Mital, M., Chang, V., Choudhary, P., Papa, A., Pani, A.K., 2018. Adoption of Internet of 
things in India: a test of competing models using a structured equation modeling 
approach. Technol. Forecast. Soc. Change 136, 339–346. 

Moeuf, A., Pellerin, R., Lamouri, S., Tamayo-Giraldo, S., Barbaray, R., 2018. The 
industrial management of SMEs in the era of industry 4.0. Int. J. Prod. Res. 56 (3), 
1118–1136. 

Moghaddam, M., Nof, S.Y., 2018. Collaborative service-component integration in cloud 
manufacturing. Int. J. Prod. Res. 56 (1–2), 677–691. 

Momeni, K., Martinsuo, M., 2018. Remote monitoring in industrial services: need-to- 
have instead of nice-to-have. J. Bus. Ind. Market. 33 (6), 792–803. 

Monteiro, E., Parmiggiani, E., 2019. Synthetic knowing: the politics of the Internet of 
things. MIS Q. 43 (1), 167–184. 

Mourtzis, D., Vlachou, E., 2018. A cloud-based cyber-physical system for adaptive shop- 
floor scheduling and condition-based maintenance. J. Manuf. Syst. 47, 179–198. 

Mukhopadhyay, S.C., Suryadevara, N.K., 2014. Internet of things: challenges and 
opportunities. In: Mukhopadhyay, S.C. (Ed.), Internet of Things. Springer, Cham, 
pp. 1–17. 

Neubauer, M., Krenn, F., Majoe, D., Stary, C., 2017. Subject-orientation as design 
language for integration across organisational control layers. Int. J. Prod. Res. 55 
(13), 3644–3656. 

Ng, C.K., Wu, C.H., Yung, K.L., Ip, W.H., Cheung, T., 2018. A semantic similarity analysis 
of Internet of things. Enterprise Inf. Syst. 12 (7), 820–855. 

Ng, I.C., Wakenshaw, S.Y., 2017. The Internet-of-things: review and research directions. 
Int. J. Res. Market. 34 (1), 3–21. 

Nicolescu, R., Huth, M., Radanliev, P., De Roure, D., 2018. Mapping the values of IoT. 
J. Inf. Technol. 33 (4), 345–360. 

Novak, T.P., Hoffman, D.L., 2019. Relationship journeys in the Internet of things: a new 
framework for understanding interactions between consumers and smart objects. 
J. Acad. Market. Sci. 47 (2), 216–237. 

Opresnik, D., Taisch, M., 2015. The value of big data in servitization. Int. J. Prod. Econ. 
165, 174–184. 

Osterwalder, A., Pigneur, Y., Tucci, C.L., 2005. Clarifying business models: origins, 
present, and future of the concept. Commun. Assoc. Inf. Syst. 16 (1), 1–25. 

Pandey, S., Pandey, S.K., 2019. Applying natural language processing capabilities in 
computerized textual analysis to measure organizational culture. Organ. Res. 
Methods 22 (3), 765–797. 

Pang, Z., Zheng, L., Tian, J., Kao-Walter, S., Dubrova, E., Chen, Q., 2015. Design of a 
terminal solution for integration of in-home health care devices and services towards 
the Internet-of-things. Enterprise Inf. Syst. 9 (1), 86–116. 

Papert, M., Pflaum, A., 2017. Development of an ecosystem model for the realization of 
Internet of Things (IoT) services in supply chain management. Electron. Mark. 27 
(2), 175–189. 

Papert, M., Rimpler, P., Pflaum, A., 2016. Enhancing supply chain visibility in a 
pharmaceutical supply chain: solutions based on automatic identification 
technology. Int. J. Phys. Distrib. Logist. Manag. 46 (9), 859–884. 

Park, J.H., 2017. Time-dependent reliability of wireless networks with dependent 
failures. Reliab. Eng. Syst. Saf. 165, 47–61. 

Pauget, B., Dammak, A., 2019. The implementation of the Internet of things: what impact 
on organizations? Technol. Forecast. Soc. Change 140, 140–146. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 
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