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A B S T R A C T   

Fast detection and isolation of faults in a DC microgrid is of particular importance. Fast tripping protection (i) 
increases the lifetime of power electronics (PE) switches by avoiding high fault current magnitudes and (ii) 
enhances the controllability of PE converters. This paper proposes a traveling wave (TW) based scheme for fast 
tripping protection of DC microgrids. The proposed scheme utilizes a discrete wavelet transform (DWT) to 
calculate the high-frequency components of DC fault currents. Multiresolution analysis (MRA) using DWT is 
utilized to detect TW components for different frequency ranges. The Parseval energy of the MRA coefficients are 
then calculated to demonstrate a quantitative relationship between the fault current signal energy and co
efficients’ energy. The calculated Parseval energy values are used to train a Support Vector Machine classifier to 
identify the fault type and a Gaussian Process regression engine to estimate the fault location on the DC cables. 
The proposed approach is verified by simulating two microgrid test systems in PSCAD/EMTDC.   

1. Introduction 

DC microgrids render increased efficiency compared to their AC 
counterparts and flexibility for the integration of DC power sources (e.g., 
photovoltaic and battery energy storage systems). Due to these advan
tages, DC microgrids have gained more attention in recent years [1–5]. 
One of the challenging tasks in DC microgrids’ operation is their proper 
and effective protection. The fault currents in a DC system possess 
different signatures compared to the AC systems. No zero crossing of 
current in DC systems makes the interruption of fault currents with fuses 
and circuit breakers more difficult which in turn creates arcing and long 
fault clearing time [6]. On the other hand, fast detection and isolation of 
faults in a DC microgrid is of particular importance [7–9]. Due to the 
presence of power electronics (PE) switches, the DC fault currents usu
ally are associated with a high magnitude that is sustained for a couple 
of milliseconds and then are attenuated after the internal protection of 
PE switches operates which blocks the switch operation. Therefore, the 
fast detection and isolation of faults are required to: (i) increase the 
lifetime of PE switches by avoiding high fault current magnitudes, and 
(ii) enhance the controllability over PE converters under fault scenarios 
by preventing unwanted PE switches’ blocked operation [7–11]. 

Conventionally, the protection of DC systems is based on overcurrent 

protection, undervoltage protection, rate of change of current, or dif
ferential schemes [12–16]. In [17], cable current derivatives are utilized 
to detect faults in DC microgrids. Alternatively, traveling wave (TW) 
protection schemes have been introduced to accommodate a faster 
tripping protection in electric power grids. These schemes rely on high- 
frequency measurements. The high-frequency transients can propagate 
through the system at a speed close to the speed of light. This feature can 
facilitate fast detection of TWs in less than 1 ms after the fault. More
over, TW protection does not depend on the magnitude of the fault 
currents which, in turn, is a good candidate to detect high impedance 
faults. TW protection is a promising approach for increasing the reli
ability and resilience of modern power grids with high penetration of 
renewable energy resources [18–24]. 

The TW protection of high voltage DC (HVDC) systems is addressed 
in [25–32]. In [25], the frequency characteristics of TWs are used to 
develop a protection scheme for HVDC transmission lines. This method 
uses the first locally measured TW and accounts for the frequency 
component and polarity of TW rather than its arrival time. In [26], a TW 
protection technique is proposed that considers the power developed by 
both the forward and backward TWs. The amount of power transferred 
by these TWs is used to determine the fault location. In [27], a TW 
backup protection for a transmission line in an HVDC system is 
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proposed. This reference analyzes the characteristics of TWs for internal 
and external fault currents and uses the characteristic differences to 
develop a backup protection scheme. In [28], a TW protection technique 
for a converter-based-high-voltage DC transmission line is proposed. 
This method can detect high resistance pole to ground (PG) faults. In 
[29], another approach for the protection of line-commutated converter- 
based-high-voltage DC is proposed that considers the electro-magnetic 
coupling effect between double circuit HVDC transmission lines. In 
[30], a TW protection scheme for multiterminal HVDC systems is pre
sented. Continuous wavelet transform is used to calculate the arrival 
time of the first TWs at all converter stations. In [31], the difference of 
arrival time between the ground mode and line mode TWs is used for 
fault detection in multiterminal HVDC systems. In [32], multiterminal 
differential protection is presented for an HVDC system. This method 
uses a derivative-based wavelet transform to calculate high-frequency 
components of fault currents. In [24], a high-speed phaselet-based dis
tance relaying scheme is proposed. Although, there are many TW pro
tection techniques available for HVDC systems, the TW protection of 
medium voltage DC (MVDC) microgrids is not well studied in the liter
ature. In [9], a TW protection scheme for MVDC microgrids is presented. 
This scheme requires the first locally measured TW and relies on its 
waveshape properties and polarity rather than its arrival time. This 
scheme uses a look-up table to map the waveshape properties and fault 
scenario. The lookup table should accommodate all possible fault sce
narios which can be a challenging task. In [33], wavelet transform and 
artificial neural networks (ANN) are used to detect and classify faults in 
an MVDC shipboard power system. The wavelet coefficients’ features 
are used to train ANN for classifying faults. This scheme is only able to 
detect and classify faults and cannot find their locations on the cables. In 
[34], a wavelet transform and ANN are used to detect faults and identify 
their type in a DC microgrid. The focus of both [33] and [34] is on fault 
detection and classification rather than finding the location of the fault 
along DC microgrid cables. 

On the other hand, more recently, machine learning techniques have 
been proposed as a promising solution for power system protection to 
further improve its performance. With increased access to real-time and 
historical data in modern power systems, machine learning algorithms 
have rendered a great potential for revolutionizing grid protection 
schemes. Fault detection, location, and response can benefit signifi
cantly with the addition of machine learning. A review of machine 
learning algorithms for power system protection is provided in [35]. 
Reference [36] uses frequency domain analysis and neural networks for 
fault location and fault section identification using line currents. In [37], 
a combined wavelet-transform-extreme learning machine is proposed 
for fault section identification, classification, and location in a series- 
compensated transmission line. In [38]-[39], Support Vector Machine 
(SVM) is utilized for fault location and classification in transmission 
systems. In [33,34], and [40], ANN is utilized to detect and classify 
faults in DC systems. In [41], Gaussian Process (GP) is used to detect 
faults in a simple DC system. 

In this paper, a TW protection scheme utilizing machine learning 
(ML) for DC microgrids is proposed. The proposed scheme utilizes 
discrete wavelet transform (DWT) to calculate the high-frequency 
components of DC fault currents. Multiresolution analysis (MRA) is 
used along with DWT to calculate TW components for multiple high 
frequency ranges. The Parseval energy of MRA coefficients are then 
calculated to demonstrate a quantitative relationship between the fault 
current signal energy and coefficients’ energy. The calculated Parseval 
energies are used to train ML engines to (i) identify the fault type and (ii) 
estimate the fault location on the DC cables. In this paper, SVM is used as 
a classifier for fault type classification. GP is used as the regression tool 
for estimating fault location. The proposed approach is verified by 
simulating two microgrid test systems in PSCAD/EMTDC. This paper 
makes the following contributions:  

• The fast tripping protection of DC microgrids is addressed by using 
the TW signatures at different high-frequency ranges. 

• The proposed scheme does not require any communication infra
structure and only relies on local measurements for fault detection 
and location.  

• The proposed scheme effectively works for other bolted and resistive 
pole to pole (PP) and PG faults and can effectively find the fault type, 
location, and direction.  

• DWT and MRA are applied on DC fault current and voltage TWs to 
not only detect and classify faults but also find the location of the 
fault along the cables. 

The rest of the paper is organized as follows: Section 2 provides the 
preliminaries of TWs in a fault condition. In Section 3, the DWT and 
MRA are introduced. Section 4 elaborates on the characteristics of MRA 
outputs for faults in a DC system. In Section 5, our proposed fault 
detection and location scheme is discussed. Simulation results are pro
vided in Section 6. Section 7 concludes the paper. 

2. Preliminaries on TW theory 

TWs are electromagnetic waves propagated along the power system 
equipment such as lines or cables when a disturbance (e.g., fault, 
lightning, switching, etc.) occurs. When the high-frequency TWs reach a 
new environment with different circuit parameters (e.g., at a line ter
minal), a portion of the incident TW is reflected while the other portion 
is refracted to the neighboring equipment. Depending on the circuit 
parameters at both sides of the terminal, the amplitude of reflected and 
refracted TWs changes accordingly. The reflected TWs are also reflected 
and refracted again after they reach the fault location or line terminals 
[19]. TWs along transmission lines are formulated using the telegra
pher’s equations. These coupled differential equations relate voltage v 
(x,t) and current i(x,t) at any point in time and space. In phasor domain, 
the general solutions to these equations can be described as [18,42] 
⎧
⎨

⎩

Ĩ(x, t) = I+0 e− γx + I −0 eγx

Ṽ(x, t) = V+
0 e− γx + V −

0 eγx
(1)  

where I+0 , I−0 , V+
0 , and V−

0 are the Laplace transforms of voltage and 
current TW components (i.e., incident and reflection). x describes the 
distance from the fault point. γ denotes the propagation constant. In time 
domain, one can write the voltage TW equation as 
⎧
⎪⎪⎨

⎪⎪⎩

v(x, t) = v+(x, t) + v− (x, t)
v+(x, t) =

⃒
⃒V+

0

⃒
⃒e− αxcos(ωt − βx)

v− (x, t) =
⃒
⃒V −

0

⃒
⃒eαxcos(ωt + βx)

, (2)  

where α and β denote the attenuation constant and phase constant, 
respectively. A similar procedure can be used to obtain the equations for 
i(x, t). The propagation constant is 

γ = α+ jβ (3) 

Alternatively, the propagation constant can be formulated as 

γ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(R + jωL)(G + jωC)

√
(4)  

where R, L, G, and C are the per unit length resistance, inductance, 
conductance, and capacitance of the transmission line or cable. ω rep
resents the angular frequency of the TW. The propagation velocity of a 
TW is 

v = ω/β (5) 

In general, higher frequency TWs travel faster but have a larger α and 
hence a lower magnitude compared to the lower frequency ones. 
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3. DWT and MRA 

The wavelet transform (WT) has been widely utilized as an effective 
tool for the simultaneous analysis of waveforms in time and frequency 
domains [43,44]. As opposed to the Fourier Transform where the fre
quency content is related to the entire duration of the analyzed signal, 
WT can accommodate localized frequency contents in time. DWT is 
defined as [33] 

WD(m, k) =
1̅
̅̅̅̅
am

0
√

∑

n
x[n]g

[
k − nb0am

0

am
0

]

(6) 

with g[] defined as the mother wavelet. The function m(am
0 , nb0am

0 )

facilitates scaling and time shifting with parameters a0 and b0. DWT is 
subject to the uncertainty principle of signal processing where both time 
and frequency cannot be located very precisely; the better resolution in 
frequency would compromise the time resolution and vice versa. 

In order to effectively construct wavelets over a wide frequency 
range, multiresolution analysis (MRA), advanced by Mallat [45], is a 
practical approach for fully implementing the DWT. MRA details the 
procedure to obtain an orthonormal wavelet basis with compact sup
port. MRA can be implemented by a series of high-pass and low-pass 
filters and decimators as shown in Fig. 1. As seen, the outputs of low 
and high-pass filters at each level are ai[n] and di[n]. The output of the 
low-pass filter at each level is passed through the next level for con
structing wavelets for the next decomposition level. The low-pass filter 
outputs are referred to as scaling coefficients while the high-pass filter 
outputs are called wavelet coefficients. Assuming that the initial sam
pling frequency of WT is set as fs, then the frequency range of each level 
is shown in Fig. 1. In this paper, the wavelet coefficients are of interest 
since they better represent the high-frequency behavior of TWs [33]. 

According to [46], it is possible to reconstruct the original signal using 
wavelet series reconstruction. To this end, reverse filters are used to up 
sample the coefficients by the factor of 2. The reconstruction facilitates 
the delivery of wavelet coefficients of different scales with a finer 
resolution. 

Once the MRA based wavelet coefficients are identified, the Par

2

HHPF,1[n]GLPF,1[n]

Sampled Signal

2

d1

2

HHPF,2[n]GLPF,2[n]

2

a1

2

HHPF,3[n]GLPF,3[n]

2

a2 d2

a3 d3

[fs/4 , fs/2]

[fs/8 , fs/4]

[fs/16 , fs/8]

Fig. 1. MRA block diagram.  

AC

DC C1
LoadAC Grid

Sensor
Main 

Converter

Fig. 2. Simple DC microgrid system.  

0.015m
0.017667m
0.020667m

0.5m

Core 
Conductor

Sheath

Fig. 3. Cable configuration of the DC system in Fig. 2.  

Fig. 4. PP fault signatures for a fault at 2625 m in Fig. 2: (a) sensor fault 
current on the positive pole; (b) MRA’s level 1 wavelet coefficient; (c) wavelet 
coefficient’s Parseval energy. 
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seval’s theorem is used to calculate the energy corresponding to the 
identified coefficients. In this paper, the MRA analysis is conducted on 
both voltage and current measurements. As discussed in [33,43], if the 
scaling function and mother wavelet in form an orthonormal basis, then 
Parseval’s theorem can be used to build a relationship between the 
calculated wavelet coefficients and the energy spectrum of the fault 
signal (i.e., cable’s voltage or current measurement). Under this condi
tion, Parseval’s theorem states that the energy of the fault signal can be 
described mathematically in terms of the expansion coefficients (i.e., the 
integral or sum of the square of the original function is equal to the sum 
of the square of the coefficients). The DWT can split the energy of fault 
signals in time and frequency domains. With Parseval’s theorem, one 
can effectively interpret the high-frequency signatures of TWs by 
relating the current or voltage TW energy to the energy of the wavelet 
coefficients. The fault signal can be described by the wavelet coefficients 
of different ranges. The total Parseval energy of the wavelet coefficients 
of current or voltage measurements, di, at mth time step after an initial 

time t0 are defined as [33,43] 

EPRS(m) =
∑n

i=1

∑m

j=1
d2

i (t0 + jΔt) (7)  

where di(t) denotes the wavelet coefficient calculated for the i-th 
decomposition level at the time t; Δt is the time step used in DWT. The 
Parseval energy of a single wavelet coefficient that corresponds to a 
specific MRA level can be described as 

EPRS,i(m) =
∑m

j=1
d2

i (t0 + jΔt) (8) 

In the following, EPRS,i(m) is calculated for different MRA levels of 

Fig. 5. Parseval energy values for different fault locations on the cable of DC 
system with 1 MHz sampling frequency in Fig. 2: (a) MRA’s level 1; (b) MRA’s 
level 2; (c) MRA’s level 3. 

Fig. 6. Parseval energy values for different fault locations on the cable of DC 
system with 2 MHz sampling frequency. 
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Fig. 7. PG fault signatures for a fault at 1500 m in Fig. 2: (a) sensor fault 
current on positive pole; (b) PP voltage; (c) PPG voltage; (d) NPG voltage. 
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current and voltage measurements on each cable. EPRS,i(m) values will be 
analyzed and utilized for the proposed fault detection, classification, and 
location algorithms. 

4. High-frequency fault signatures in a DC system 

In order to study the high-frequency fault signatures of DC systems, a 
simple DC system (shown in Fig. 2) is modeled in PSCAD/EMTDC. This 
circuit includes a controllable DC voltage source, one cable with the 
length of 3000 m, and a DC load with the resistance of 10 Ω. The 
nominal voltage of this system is ± 375 V. The cable is modeled using 
the frequency-dependent distributed parameter model available in 
PSCAD/EMTDC. The cable specifications are provided in Fig. 3. It is 
assumed that each pole is buried 1 m deep. The core conductor re
sistivity is 2 × 10-8 Ωm while sheath resistivity is 30 × 10-8 Ωm. 

4.1. PP faults 

When a PP fault occurs on a cable, the voltage at the local terminal of 
cable (i.e. where the sensor is located) hugely drops while the pole 
current increases significantly and is attained for a short period of time 
until the internal protection of the main converter PE operates and the 
pole currents are forced back to zero. To illustrate the high-frequency 
fault current signatures in a DC system, it is assumed that a PP fault is 
applied at 2625 m of Cable C1 from the current sensor side. The fault is 

applied at t = 0.5 s. The sensor’s current, MRA’s level 1 wavelet coef
ficient, and its Parseval energy are shown in Fig. 4. Fig. 4b clearly il
lustrates the TW incidents received at the sensor location after the fault 
occurs. In this study, the sampling frequency of DWT is 1 MHz. Dau
bechies (db8) is used as the mother wavelet. Therefore, the wavelet 
coefficient shown in Fig. 4b represents the TW components corre
sponding to [250 kHz, 500 kHz] frequency range. The Parseval energy, 
shown in Fig. 4c, demonstrates a quantitative measure of the TWs. As 
seen, after the first incident of TW arrives at the sensor location, the 
Parseval energy increases and is settled at an interim value until the next 
TW incident reaches the sensor location. Using the Parseval energy 
value, one can identify the timing of TW incidents at different decom
position levels. In this paper, the Parseval energy of the first incident of 
TWs is of interest. This value will be later used in the fault classification 
and location algorithm. 

As mentioned in Section 3, MRA is an effective tool to demonstrate 
the high-frequency fault signatures in different frequency ranges. In 
order to show how the Parseval energy of wavelet coefficients of each 
MRA’s level is impacted for different fault locations, PP faults are 
applied at every 75 m of Cable C1 in Fig. 2. First, it is assumed that 
DWT’s sampling frequency is 1 MHz. The Parseval energy values for 
three levels of MRA applied to the current measured at the sensor in 
Fig. 2 are shown in Fig. 5. Herein, level 1, 2, and 3 are associated with 
[250 kHz, 500 kHz], [125 kHz, 250 kHz], and [67.5 kHz, 125 kHz] 
frequency ranges. As seen in Fig. 5a, the Parseval energy value is 
generally decreasing as the fault location gets closer to the end of the 
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Fig. 8. Impact of PG fault on pole to pole and pole to ground voltages’ s Par
seval energy: (a) PP voltage; (b) PPG voltage; (c) NPG voltage. 

Fig. 9. Impact of PP fault on pole to pole and pole to ground voltages’ Parseval 
energy: (a) PP voltage; (b) PPG voltage; (c) NPG voltage. 

R. Montoya et al.                                                                                                                                                                                                                               



International Journal of Electrical Power and Energy Systems 135 (2022) 107590

6

cable, however, some local peaks are observed that happen at every 375 
m. A similar pattern is observed in Fig. 5b; however, the local peaks 
occur at every 750–800 m. Finally, Fig. 5c shows that the local peaks 

occur at every 1500 m. As a rule of thumb, the number of local peaks 
approximately doubles from level 3 to level 2 and as well as from level 2 
to level 1. In Fig. 6, it is assumed that the DWT’s sampling frequency is 2 
MHz. Doing so, level 1 and 2 are associated with [500 kHz, 1 MHz] and 
[250 kHz, 500 kHz] frequency ranges, respectively. As seen in Fig. 6, a 
similar pattern to Fig. 5 can be observed. In general, with a higher 
DWT’s sampling frequency, (i) more oscillations on the Parseval energy 
profile of fault currents is observed, and (ii) the first incident of TW can 
be detected faster. The latter is based on an inherent feature of TWs in 
which the higher frequency TWs travel faster with a lower magnitude. 

As discussed in Section 3, the spectrum of the energy of the fault 
signals corresponds to the Parseval energy of wavelet coefficients. The 
Parseval energy patterns for different fault locations in Fig. 5 and Fig. 6 
are based on the inherent behavior of TW currents and voltages as 
described in Section 2. More specifically, the incident TW current 
incurred by a fault can be formulated as 

MRA
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i+(x, t) =
⃒
⃒I+0

⃒
⃒e− αxcos(ωt − βx), (9)  

where α and β denote the attenuation constant and phase constant, 
respectively. x denotes the distance from the fault location. Alterna
tively, one can reformulate to derive a function between the incident TW 
current at the cable terminal where the sensor is located (see Fig. 2) and 
fault location assuming sliding faults along the cable. Doing so, the 
incident TW current at the cable terminal and fault location xf can be 
represented as 

i+(xf , t) =
⃒
⃒I+0

⃒
⃒e− αxf cos(ωt − βxf ) (10) 

According to (10), the relationship between the incident TW current 
at the sensor location and fault location inherits a combined exponen
tial/sinusoidal behavior. Due to the existence of a cosine function, some 
local peaks are observed. These local peaks at a specific time t1 occur at 

xLocalPeak = (ωt1 − 2nπ)/β, n = 0, 1, ... (11) 

Since the MRA coefficients correspond to the magnitude of TW at a 
specific frequency range and Parseval energy sums up the square of MRA 
coefficients over time, the Parseval energy as a function of fault location 
results in the waveshapes seen in Fig. 5 and Fig. 6. Moreover, from (11), 
the local peaks of incident TW current at the sensor location as a func
tion of fault location occur periodically and are a function of TW angular 
frequency ω. According to (3) and (4), β also corresponds to ω. With ω 
appearing in the denominator of (11), one can conclude that as ω in
creases, more local peaks with a higher frequency can occur as seen in 
Fig. 5 and Fig. 6. 

4.2. PG faults 

When a PG fault occurs on a cable, the main converter of the DC 
microgrid is able to regulate the PP voltage and maintain it at the 
nominal voltage of the microgrid. After the PG fault occurs, at the fault 
location, the faulted pole’s voltage is forced to zero, while the healthy 
pole voltage absolute value is forced to DC microgrid’s nominal voltage. 
Therefore, the PP voltage and current measurements at the local ter
minal of cable (i.e. where the sensor is located) do not experience any 
significant change and only small transients are noticed on these 
quantities. The voltage and current at the sensor of DC microgrid in 
Fig. 2 for a PG fault at 1500 m are shown in Fig. 7. It should be noted that 
the microgrid’s grounding happens at the middle point of the DC link of 
the microgrid’s AC/DC converter. As seen in Fig. 7a and Fig. 7b, after the 
PG fault is applied at 0.25 s, only small transients are observed in the 
current and PP voltage at the sensor location. However, Fig. 7c and 
Fig. 7d show that the positive pole to ground (PPG) voltage drops to zero 
while the negative pole to ground (NPG) voltage reaches to − 750 V. 

One distinguishing factor between PP and PG faults is how the 

Parseval energy of TWs for PP and PG voltage values change. For PG 
faults, positive and negative pole voltages’ Parseval energies experience 
a significantly higher change compared to PP voltage’s Parseval energies 
(See Fig. 8 and Fig. 9). 

5. Fault classification and location scheme 

The proposed fault classification and location algorithm is shown in 
Fig. 10. In this section, first, the fault direction algorithm is described. 
Then, the fault classification and fault location algorithms are elabo
rated in detail. 

5.1. Fault detection and direction algorithm 

The goal of the fault detection algorithm is to distinguish a fault 
scenario from a regular transient in the microgrid system. The fault 
detection algorithm is based on comparing the calculated Parseval en
ergy value of the current flowing through the protection relay sensor, 
EPRS,I , and a threshold η which is calculated as follows: 

η = γmin(EPRS,I,PP,EPRS,I,PG), (12)  

where EPRS,I,PP and EPRS,I,PG are the summation of the first N levels of 
Parseval energy of the current flowing through the protection relay 
sensor for remote end bolted PP and PG faults, respectively. γ is a 
parameter to account for measurement noises. In general, regular 
microgrid transients (e.g., load outage, converter outage, etc.) create 
TWs with lower Parseval energy values compared to a bolted fault sce
nario. Therefore, can be used to distinguish between a bolted fault 
scenario and other transients in the system. For highly resistive faults, 
may fail to distinguish a transient condition from the fault condition 
since resistive faults have lower current Parseval energy values. To 
tackle this challenge, the summation of the first N levels of Parseval 
energy of the PP, PPG, and NPG voltages are utilized. For a regular 
transient in the system, the Parseval energy values of PP, PPG, and NPG 
voltages remain very small. However, for a resistive PP fault, the sum
mation of the first N levels of Parseval energy of PP voltage is much 
higher than a regular transient. For a resistive PG fault, the summation 
of the first N levels of Parseval energy of PPG and NPG voltages are much 
higher than the regular transients. Therefore, by calculating the Parseval 
energy values of PP, PPG, and NPG voltage values, one can distinguish 
between a regular transient and highly resistive fault condition. 

The fault direction algorithm is extracted from [13]. The algorithm 
assumes that the convention for the direction of current measurement 
units is as follows (See Figure 11): On the positive pole, the positive 
direction of the current measurement unit is toward the line while on the 
negative pole, the positive direction of the current measurement unit is 
toward the terminal. Depending on the fault type and location, one of 
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Fig. 12. DC Microgrid 1.  
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the following scenarios can happen: 

• For PP faults, when a forward fault is applied in front of the mea
surement unit, the measurement unit will see a decreasing voltage 
surge and an increasing current surge. 

• For PP faults, when a forward fault is applied behind the measure
ment unit, the measurement unit will see a decreasing voltage surge 
and a decreasing current surge.  

• For PG faults, since the changes of the measured current at the relay 
location are minimal, it is recommended to use the fault location 
algorithm in Section 5.3. If the fault is located on one of the cables 
behind the measurement unit, the amount of Parseval energy values 
seen at the relay location are highly attenuated due to the reflections 
at the local terminal. 

5.2. Fault classification algorithm 

To distinguish between PP and PG faults, the Parseval energy of PP 
voltage at the sensor location is compared against the Parseval energies 
of the positive or negative pole to ground voltage. This procedure is 
shown in Fig. 10. As discussed in Section 4, for PG faults, the Parseval 
energies of positive or negative pole to ground voltage are significantly 
higher than the Parseval energy of PP voltage. To this end, the algorithm 
first calculates the summation of the first N levels of Parseval energy 
values related to PP voltage and PPG voltage using (i.e., EPRS,VPP and 
EPRS,VPG respectively). Then, EPRS,VPP and EPRS,VPG are compared against 
each other to determine the fault type. Herein, the ratio of EPRS,VPG /EPRS, 

VPP is calculated and compared against λFT threshold. This threshold can 
be found by trial and error on the microgrid system. Since EPRS,VPG is 
significantly higher than EPRS,VPP for PG faults, λFT is always greater than 
1. As a rule of thumb, the threshold is selected at around 10% of the EPRS, 

VPG /EPRS,VPP ratio for the remote end PP and PG faults. 
Once the fault type (i.e., PP versus PG) is identified, an SVM classifier 

is used to find if the fault is resistive or bolted. SVM has been proposed as 
a strong classification tool. The preliminaries of SVM is discussed in 
[48]. For this purpose, multiple bolted and resistive faults are simulated 
at different locations of cable (e.g., every 25 m) in a simulation software 
package (e.g., PSCAD/EMTDC). It should be noted that the fault resis
tance values adopted in the simulations depend on the DC microgrid 
conditions like voltage level or geographical location. After the simu
lation results are gathered, the SVM classifier is trained using the labeled 
Parseval energy values. For PP faults, the inputs to the SVM classifier are 
the N level Parseval energy values of pole current and PP voltage at the 
sensor location. For PG faults, the inputs to the SVM classifier are the N 
level Parseval energy values of pole current and PPG voltage at the 
sensor location. The output of the classifier is the fault resistance value. 

5.3. Fault location algorithm 

Once the fault type is classified, first, the proposed approach ensures 
that the fault is located on the primary cable. To this end, the Parseval 
energy value of the current flowing through the protection relay sensor, 
EPRS,I, is calculated. Depending on the fault type, EPRS,I is compared 
against the precalculated Parseval energy value related to the remote 
end bolted PP, resistive PP, bolted PG, or resistive PG fault. The pro
posed fault location algorithm relies on the Parseval energy values 
gathered from MRA. The algorithm utilizes the first N levels of MRA, 
calculates the Parseval energy of the first TW incidents, and then utilizes 
GP regression engines to find the fault location. The proposed fault 
location algorithm is shown in Fig. 10. 

GP Regression: A GP is a generalization of the Gaussian probability 
distribution. GP is a collection of any finite number of random variables 
with a joint Gaussian distribution. GP is a strong tool for classification 
and regression of datasets with linear or nonlinear relationships. A 
training set of n observations (inputs and outputs) is given by D = {(xi,

yi)|i = 1,…, n} or equivalently D = (X, y). A GP regression model Ta
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predicts an output value ynew for the new input of xnew. A linear GP 
regression model can be written as [49] 

y = xT β+ ε, (13)  

where εÑ
(
0, σ2

n
)

is the denotes an additive noise described as with a 
Gaussian distribution with zero mean and variance of σ2

n . The regression 
tool tries to estimate the coefficients β and variance σ2

n . A GP regression 
tool finds the solution by incorporating the GP-based latent variables {
f(xi)|i = 1,…, n} and the basis functions h which turn into 

y = h(x)T β+ f (x), (14) 

with f(x) formed by a GP with zero mean and covariance function of 
k(x,x′

). A sample of solution y can be represented as 

P(yi|f (xi), xi ) ∼ N
(
yi
⃒
⃒h(xi)

T β + f (xi) , σ2 ) (15) 

Equivalently, the joint distribution of latent variables in the proba
bilistic GP regression model is 

P(f |X) ∼ N(f |0,K(X,X ′

)), (16)  

where X =
[

xT
1 xT

2 ... xT
n
]

and 

K(X,X
′

) =

⎡

⎢
⎢
⎣

k(x1, x1) k(x1, x2) ⋯ k(x1, xn)

k(x1, x2) k(x2, x2) ⋯ k(x2, xn)

⋮ ⋮ ⋮ ⋮
k(xn, x1) k(xn, x2) ⋯ k(xn, xn)

⎤

⎥
⎥
⎦ (17) 

The covariance functions are represented through a set of Kernel 
hyperparameters [49]. 

The fault location algorithm utilizes different GP regression engines 
corresponding to bolted and resistive PP and PG faults. In order to 
effectively train the GP regression engine, the number of MRA levels, N, 
requires to be greater than or equal to three. Although the higher value 

of N increases the accuracy of the GP regression engine, increasing the 
levels of MRA decreases the speed of the fault location algorithm as MRA 
has a slower response for lower frequency ranges. The value of Parseval 
energy selected for each decomposition level is the value that is 
observed after the first traveling wave corresponding to that decompo
sition level reaches the sensor location. In this paper, to effectively train 
the GP regression engine, the Parseval energy of MRA’s six levels at 
multiple fault locations (e.g., every 50 m of the cable) are utilized. Once 
trained, the GP regression tool can identify the fault location using the 
Parseval energy of MRA’s six levels for any new fault scenario on the 
cable. Both SVM and GP don’t require extensive training datasets for 
their effective operations. 

Remark 1. In this paper, six MRA’s levels are used as the inputs to the 
GP regression engine. Generally, it is preferred to utilize more MRA’s 
levels in order to cover more signatures of the fault current at a wider 
frequency range. However, with a higher MRA level, the computational 
time of the algorithm becomes significantly higher which in turn slows 
down the protection scheme [33,47]. Therefore, six levels of MRA are 
selected to provide a tradeoff between the comprehensiveness of fault 
current signatures and the computational efficiency of the algorithm. 

Remark 2. It should be noted the proposed protection scheme can 
effectively work with different DWT sampling frequencies. The DWT 
sampling frequency only impacts the speed of the fault location algo
rithm. With a higher sampling frequency, MRA is able to calculate the 
first N levels of wavelet coefficients faster. For example, with 8 MHz 
sampling frequency and six MRA levels, the proposed algorithm will be 
able to find the fault location in 200 µs. With the recent advancements in 
signal processing and measurement technologies, high-frequency data 
sampling and measurement can be easily accommodated for the 
implementation of the proposed scheme. In fact, existing commercial 
TW relays are able to perform very high frequency (in the order of MHz) 

Fig. 13. Parseval energy values for bolted PP faults on C1: (a) Level 1; (b) Level 2; (c) Level 3; (d) Level 4; (e) Level 5; (f) Level 6.  
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Fig. 14. Parseval energy values for bolted PP faults on C2: (a) Level 1; (b) Level 2; (c) Level 3; (d) Level 4; (e) Level 5; (f) Level 6.  

Fig. 15. Parseval energy values for bolted PP faults on C3: (a) Level 1; (b) Level 2; (c) Level 3; (d) Level 4; (e) Level 5; (f) Level 6.  
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Fig. 16. Parseval energy values for bolted PP faults on C4: (a) Level 1; (b) Level 2; (c) Level 3; (d) Level 4; (e) Level 5; (f) Level 6.  

Fig. 17. Parseval energy values for bolted PP faults on C5: (a) Level 1; (b) Level 2; (c) Level 3; (d) Level 4; (e) Level 5; (f) Level 6.  
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measurements [50]. 

Remark 3. For both SVM classifier and GP regression tools, a super
vised learning approach is adopted. The supervised learning uses the 

simulation model to create labeled data sets for training both SVM and 
GP tools. When the proposed protection scheme is deployed in the field, 
the data gathered from the fault incident is used to identify fault type 

Fig. 18. Parseval energy values for bolted PP faults on C6: (a) Level 1; (b) Level 2; (c) Level 3; (d) Level 4; (e) Level 5; (f) Level 6.  

Table 2 
Comparison of faults’ Parseval energy values versus a regular transients’ Parseval energy values.  

Relay Scenario Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

R2 Remote bolted PP fault on C2 8.87 47.22 300 1459 670 9037 
Remote resistive PP fault on C2 2.15 11.51 72.59 393 145 2871 
Remote bolted PG fault on C2 8.864 47.11 297.9 1461 668.3 8722 
Remote resistive PG fault on C2 0.93 4.96 30.5 161 71.5 1365 
C3 Outage 1.43 × 10-11 6.6 × 10-10 8.15 × 10-09 1.99 × 10-07 4.25 × 10-06 2.61 × 10-05 

NG2′s Load Switching 2.67 × 10-9 4.75 × 10-8 5.92 × 10-7 6.63 × 10-7 1.96 × 10-6 1.4 × 10-5 

R3 Remote bolted PP fault on C3 0.6 23.65 212 305 1641 3404 
Remote resistive PP fault on C3 8.54 × 10-7 3.35 × 10-5 0.0003 0.00043 0.0023 0.0049 
Remote bolted PG fault on C3 0.8951 33.61 291.8 425.7 2389 6870 
Remote resistive PG fault on C3 0.16 5.89 50.01 79.69 410 1044 
NG2 Outage 4.8 × 10-10 2.18 × 10-09 8.73 × 10-09 5.25 × 10-08 5.74 × 10-06 6.25 × 10-05 

NG2′s Load Switching 1.47 × 10-9 3.45 × 10-8 9.87 × 10-8 2.07 × 10-7 6.43 × 10-7 6 × 10-6 

R4 Remote bolted PP fault on C4 29.05 79.7 372 648 4423 5469 
Remote resistive PP fault on C4 3 × 10-4 8 × 10-4 3.7 × 10-3 6.5 × 10-3 0.044 0.055 
Remote bolted PG fault on C4 29.97 87.73 396.2 705.6 5538 4348 
Remote resistive PG fault on C4 2.03 6.33 29.56 60.55 454 389 
NG3 Outage 1.23 × 10-12 3.12 × 10-11 6.41 × 10-10 4.47 × 10-08 7.64 × 10-07 3.95 × 10-6 

NG3′s Load Switching 1.05 × 10-10 7.49 × 10-9 4.94 × 10-8 1.83 × 10-7 5.06 × 10-6 2.76 × 10-5 

R5 Remote bolted PP fault on C5 15.98 104 782 3895 1343 20,367 
Remote resistive PP fault on C5 0.00017 0.0011 0.0084 0.0418 0.0144 0.218 
Remote bolted PG fault on C5 5.813 32.60 207.5 925.7 1088 3838 
Remote resistive PG fault on C5 0.92 5.29 35.46 169 167 696 
NG4 Outage 6.96 × 10-13 2.07 × 10-11 1.3 × 10-10 1.49 × 10-09 1.21 × 10-07 1.09 × 10-7 

NG4′s Load Switching 6.52 × 10-13 2.04 × 10-11 1.32 × 10-10 1.49 × 10-9 1.18 × 10-7 1.12 × 10-7 

R6 Remote bolted PP fault on C6 1.76 6.05 182 949 3276 7350 
Remote resistive PP fault on C6 1.72 × 10-5 6.46 × 10-5 0.0019 0.0104 0.035 0.079 
Remote bolted PG fault on C6 0.0006 0.06203 0.5678 8.558 311.13 3699 
Remote resistive PG fault on C6 9.31 × 10-5 0.01 0.1 1.44 54.38 722 
NG1 Outage 6.56 × 10-12 7.8 × 10-12 1.46 × 10-10 1.12 × 10-09 1.11 × 10-08 2.16 × 10-07 

NG1′s Load Switching 4.14 × 10-12 2.27 × 10-11 7.68 × 10-11 7.44 × 10-10 9.59 × 10-9 2.21 × 10-7  

R. Montoya et al.                                                                                                                                                                                                                               



International Journal of Electrical Power and Energy Systems 135 (2022) 107590

13

and estimate fault location using the most recent trained SVM and GP 
tools. Then, the new dataset along with the fault type and location will 
be added to the training set and both SVM and GP tools will be trained 
with the updated training set. 

Remark 4. Mother wavelet can significantly impact the accuracy and 
speed of the MRA. It is of particular importance to select a suitable 
mother wavelet for the proposed fault location algorithm. The criteria 
for selecting a mother wavelet are: (i) incorporating enough number of 
vanishing points for accounting for the salient features of waveforms, 
(ii) sharp cutoff frequencies to minimize the amount of energy leakage to 
the next decomposition level, and (iii) being orthonormal, (iv) minimum 
description length (MDL) [33,51]. According to [33], Daubechies (db) 
mother wavelets are promising candidates that comply with the afore
mentioned criteria and facilitate fast and accurate MRA. 

Remark 5. The proposed protection approach can also provide backup 
protection for forward cables that are located in front of the protection 
relay. This is achieved by calculating the Parseval energy value related 
to faults applied at the remote end of the shortest forward cable. If the 
Parseval energy of the current flowing through the protection relay 
sensor is lower than the precalculated Parseval energy value of a fault 
applied at the remote end of the primary cable and greater than the 
Parseval energy value related to a fault applied at the remote end of the 
shortest forward cable, then the protection relay can provide backup 
protection. In order to coordinate backup and primary protection relays, 
the backup protection should operate with a delay named the coordi
nation time interval (CTI). According to [9], the CTI (i) should be greater 
than the operating time of primary protection relay, (ii) should be 
greater than the operating time of solid-state dc circuit breaker which is 
assumed to be around 200 µs, and (iii) must include a 20% security 
margin. For example, if the operating time of the primary relay is 200 µs, 
then the CTI is equal to (200 + 200) × 1.2 = 480 µs. 

6. Performance verification 

To verify the performance of the proposed fault detection and loca
tion scheme, two different DC microgrid systems are utilized. The 
simulation results for these two microgrid systems are provided as 
follows: 

Table 3 
Fault location estimation error for DC Microgrid 1.  

Cable Bolted PP Resistive PP Bolted PG Resistive PG 

C1  4.9%  3.6% 2.5%  4.1% 
C2  5.1%  2.9% 3.9%  1.1% 
C3  4.7%  6.1% 4%  2.7% 
C4  1.1%  0.4% 2.1%  0.2% 
C5  6.3%  0.6% 0.8%  0.6% 
C6  5.3%  4.8% 6.2%  3.4%  
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Fig. 19. Regression verification plots for C4: (a) bolted PP faults; (b) resistive PP faults; (c) bolted PG faults; (b) resistive PG faults.  
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6.1. DC microgrid 1 

The DC microgrid test system is illustrated in Fig. 12. This DC 
microgrid system is based on a real DC microgrid system in the city of 
Albuquerque, NM. We have utilized high frequency (in the order of 10 
MHz) field measurements from the actual microgrid to calibrate the 
created model in PSCAD/EMTDC. The DC microgrid is supplying four 
residential houses. Each residential house is described as a nanogrid 
(NG). Each NG included the residential house load, a PV system, a 
Battery Energy Storage System (BESS), and DC-DC converters to inte
grate NG into the rest of the microgrid. The PV system is associated with 
a maximum power tracking scheme. The size of the PV system in each 
NG is 10 kW while the size of BESS is 6 kW/12 kWh. The load of NG1, 
NG3, and NG4 is 56.25 kW and the load of NG2 is equal to 50 kW. It is 
assumed that the microgrid includes a community BESS and PV system 
with the size of 20 kW/40 kWh and 18 kW, respectively. The microgrid’s 
main converter is modeled as a multi-level voltage sourced converter 
[52]. The microgrid’s grounding happens at the middle point of the DC 
link of the microgrid’s AC/DC converter. The size of this converter is 
500 kW. Load L1′s size is 10 Ω. RC1 is 25 mΩ and LC1 is 20 µH. In 
Fig. 12, Relays R1 to R6 identify the location of our proposed fault 
detection and location algorithms. The cables configuration is provided 
in Fig. 3. It is assumed that each cable has its own local protection. 

To verify the effectiveness of the proposed scheme, bolted and 
resistive PP and PG faults are applied at different locations of all six 
cables in the DC microgrid test system shown in Fig. 12. The fault 
resistance for both PP and PG faults is equal to 5 Ω. The length of each 
cable and its simulated fault locations are summarized in Table 1. In 

these simulations, DWT’s sampling frequency is 8 MHz. Six levels of 
MRA are used for the fault classification and location algorithm. For 
Cables C1 and C6, 40 different fault locations are simulated; for Cables 
C2 and C5, 30 different fault locations are simulated; for Cable C3, 38 
different fault locations are simulated; for Cable C4, 22 different fault 
locations are simulated. The captured Parseval energy values for bolted 
PP faults on Cables C1 to C6 are illustrated in Figs. 13–18. 

In Table 2, the Parseval energy values measured at Relays R2, R3, R4, 
R5, and R6 for the remote end faults on Cables C2, C3, C4, C5, and C6 are 
compared against the Parseval energy values resulting from non-fault 
transient events close to each relay. The non-fault transients include 
the outage of a cable or NG as well as nonlinear load switching inside 
NGs. For the nonlinear load switching scenarios, it is assumed that all 
the loads are modeled as a nonlinear voltage-dependent model where 
the load’s power is a nonlinear function voltage satisfying P =

P0(V/V0)
2 with P and V as the load’s power and operating voltage and P0 

and V0 as the rated power and voltage of load. For each cable, the close- 
by nonlinear load is switched off. All transients occur at 2.5 sec and then 
the Parseval energy values of the relay’s current are captured after 200 
us, which are summarized in Table 2. As seen, the non-fault transients 
result in much lower Parseval energy values on current TWs captured at 
Relays R2, R3, R4, R5, and R6. 

The algorithm was able to effectively distinguish PP faults from PG 
ones by selecting 10 as the λFT threshold in Fig. 10. To verify the 

Table 4 
Comparison of different regression techniques for Cable C2.  

Fault Type GP ANN Decision Tree ε-SVM Nu-SVM 

Bolted PP  5.1%  8.6% 9% 8.2% 15% 
Resistive PP  2.9%  4.8% 6% 5.9% 14% 
Bolted PG  3.9%  8.9% 5.9% 7.7% 9% 
Resistive PG  1.1%  2.9% 2.2% 2% 6%  
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Fig. 20. DC Microgrid 2.  

Table 5 
Fault location estimation error for DC Microgrid 2.  

Relay This paper Reference [9] 

Bolted PP Bolted PG Bolted PG 

R25  0.26%  0.82%  0.045% 
R52  0.27%  0.58%  1.54% 
R26  0.42%  0.54%  0.54% 
R62  0.39%  0.54%  1.11% 
R56  0.46%  0.51%  1.6% 
R65  0.69%  0.41%  1.46%  
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performance of the SVM classifier for identifying bolted faults from 
resistive ones, two separate datasets were used for training and testing. 
60% of the available data were used for training and 40% of them were 
used for testing randomly. In the SVM, a linear Kernel is used while the 
penalty factor for misclassified data is set to 1. The verification results 
rendered 100% precision in classifying bolted faults versus resistive 
faults using the six levels of current and voltage Parseval energies at 
Cable C1. In Table 3, the fault location estimation errors using GP en
gines for all cables and different types of faults are summarized. The 
estimation error percentage is equal to the mean absolute error of testing 
dataset over the length of the cable. For each cable, around 65% of the 
gathered datasets are used for training and the rest are used for testing. 
The training and testing datasets are selected randomly. The fault 
location estimation errors in Table 3 verify the effectiveness of the 
proposed fault location algorithm. In Table 3, the estimation error de
pends on the number of datasets available for training and the length of 
the cable. In general, simulating faults at more locations can increase the 
number of training datasets which in turn improves the performance of 
the GP regression engine in estimating fault location. The regression 
results for Cable C4 are illustrated in Fig. 19. As seen, for both resistive 
and bolted PP and PG faults, the GP regression engine can effectively 
locate faults with small estimation errors. In all cases, the proposed al
gorithm is able to find the fault location in 200 µs. 

In Table 4, the performance of GP for fault location is compared 
against some other regression techniques, including Artificial Neural 
Network (ANN) [53], Decision Tree [54], ε-SVM [55], and Nu-SVM 

[56]. ANN has been utilized in [33] and [34] for the fault location of 
DC systems. The comparisons are performed for Cable C2. As seen, GP 
renders higher accuracy compared to the other regression techniques. 

6.2. DC microgrid 2 

The goal of this case study is to verify the performance of the pro
posed fault location scheme in a microgrid with a meshed topology. To 
this end, the DC Microgrid 2 shown in Fig. 20 is considered. As seen, this 
microgrid has a meshed network topology. Herein, the DC microgrid test 
system in [9] is modified by changing the operating voltage to 750 V. 
The nanogrids, AC-DC converter, and cable configuration are similar to 
the ones in DC Microgrid 1. The microgrid’s grounding happens at the 
middle point of the DC link of the microgrid’s AC/DC converter. To 
verify the effectiveness of the proposed scheme, bolted PP and PG faults 
are applied at every 50 m of the three cables interconnecting nodes 2, 5, 
and 6. These three cables form a mesh and are highlighted in red in 
Fig. 20. In these simulations, DWT’s sampling frequency is 1 MHz. Six 
levels of MRA are used for the fault classification and location algorithm. 
In Table 5, the fault location estimation errors using GP engines for all 
cables and different types of faults are summarized. The estimation error 
percentage is equal to the mean absolute error of the testing dataset over 
the length of the cable. For each cable, around 65% of the gathered 
datasets are used for training and the rest are used for testing. The 
training and testing datasets are selected randomly. The fault location 
estimation errors in Table 5 verify the effectiveness of the proposed fault 
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Fig. 21. Regression verification plots for Relays R25 and R52: (a) bolted PP faults at Relay R25; (b) bolted PG faults at Relay R25; (c) bolted PP faults at Relay R52; 
(d) bolted PG faults at Relay R52. 
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location algorithm. The regression results for Relays R25 and R52 are 
illustrated in Fig. 21. As seen, for both relays, the GP regression engine 
can effectively locate faults with small estimation errors. In all cases, the 
proposed algorithm is able to find the fault location in less than 1 ms. 

Since a similar microgrid system to [9] is utilized, in Table 5, the 
fault location accuracy of our proposed scheme is compared against the 
fault location technique in [9]. It should be noted that, in [9], fault 
location estimation is only performed for PG faults. Comparing the fault 
location estimation errors using the fault location algorithm in this 
paper against the algorithm proposed in [9], one can see that the esti
mation errors are very small using both approaches with better accu
racies reported for R52, R62, R56, and R65 using the algorithm 
proposed in this paper. 

7. Conclusion 

In this paper, a TW-based scheme for fast tripping protection of MV 
and LV DC microgrids is proposed. The proposed scheme utilizes MRA to 
calculate the high-frequency components of DC fault currents. The 
Parseval energy of MRA coefficients are then calculated which provide a 
quantitative relationship between the fault current signal energy and 
MRA’s coefficients’ energy. The calculated Parseval energy values are 
used to train an SVM classifier to identify the fault type and a GP 
regression engine to estimate the fault location on the DC cables. The 
proposed fault classification and location algorithm: (i) is a single-ended 
communication-free approach that increases the resilience of the pro
tection systems, and (ii) can effectively work for both bolted and resis
tive PP and PG faults in LVDC microgrids. The proposed approach was 
verified by simulating two microgrid test systems in PSCAD/EMTDC. 
One of the microgrids is radial and the other one has a meshed topology. 
The simulation results show that the proposed scheme can effectively 
identify the fault type and estimate fault locations. The SVM classifier 
renders 100% precision in distinguishing bolted faults from resistive 
ones. The GP regression engine is also able to locate faults with an 
acceptable estimation error range (less than 5% in most of the cases). 
The case study results show that the GP regression engine renders higher 
accuracy with a larger number of training datasets. The proposed pro
tection scheme can effectively work with different DWT sampling fre
quencies. The DWT sampling frequency only impacts the speed of the 
fault location algorithm. With a higher sampling frequency, MRA is able 
to calculate the first N levels of wavelet coefficients faster. For example, 
with 8 MHz sampling frequency and six MRA levels, the proposed al
gorithm will be able to find the fault location in 200 µs. 
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