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A B S T R A C T

Cloud manufacturing represents a service-oriented manufacturing paradigm that allows ubiquitous and on- 
demand access to various customisable manufacturing services in the cloud. While a vast amount of research 
in cloud manufacturing has focused on high-level decision-making tasks, such as service composition and 
scheduling, the link between field-level manufacturing data and the cloud manufacturing platform has not been 
well established. Efficient data acquisition, communication, storage, query, and analysis of field-level 
manufacturing equipment remain a significant challenge that hinders the development of cloud 
manufacturing systems. Therefore, this paper investigates the implementation of the emerging Industrial Internet 
of Things (IIoT) technologies in a cloud manufacturing system to address this challenge. We propose a service- 
oriented plug-and-play (PnP) IIoT gateway solution based on a generic system architecture of IIoT-supported 
cloud manufacturing system. Service-oriented data schemas for manufacturing equipment are developed to 
capture just-enough information about field-level manufacturing equipment and allow efficient data storage and 
query in a cloud time-series database (TSDB). We tested the feasibility and advantages of the proposed approach 
via the practical implementation of the IIoT gateways on a 3D printer and a machine tool. Our research suggests 
that purposely developed service-oriented data schemas that capture the essential information for high-level 
cloud manufacturing decision-making via PnP IIoT technologies are a good solution for connecting field-level 
manufacturing equipment to a cloud manufacturing platform.   

1. Introduction

Cloud manufacturing represents a service-oriented manufacturing
paradigm where manufacturing resources are virtualised as 
manufacturing services that can be managed and configured in an 
intelligent and unified way in the cloud and allows ubiquitous and on- 
demand network access [1–3]. Cloud manufacturing aims to achieve 
efficient integration and sharing of distributed manufacturing resources 
to enable efficient on-demand production of highly customised prod
ucts. As a promising trend of the future of manufacturing, ever since the 
introduction of the concept of cloud manufacturing in 2010 [4], various 
research topics related to cloud manufacturing such as architecture 
design, resource virtualisation, service selection and composition, 

service searching and matching, and task scheduling have been widely 
discussed and studied in both academia and industry during the last 
decade [5]. However, despite the vast amount of research effort in this 
field, one has to admit that the envisioned cloud manufacturing para
digm has not been achieved yet. 

Resource virtualisation is a core technology in cloud manufacturing 
that allows various field-level manufacturing resources (machines, ro
botics, workpieces, software, knowledge, etc.) to be virtualised as ser
vices in the cloud [6, 7]. Resource virtualisation functions as a link 
between the physical manufacturing resources and the cloud, which 
builds the foundation of all the high-level decision-making tasks such as 
service composition, selection, matching, and scheduling. According to 
Lu et al. [7], resource virtualisation of the field-level manufacturing 
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equipment (machine tools, 3D printers, robotics, etc.) requires both the 
static manufacturing capability information and the dynamic avail
ability information that is reflected by their real-time status. Hence, a 
critical prerequisite for manufacturing resource virtualisation is the data 
acquisition of manufacturing equipment. While a significant amount of 
research works has been conducted on resource capability virtualisation 
and high-level decision-making tasks in cloud manufacturing, research 
related to resource availability virtualisation that considers real-time 
data acquisition of field-level manufacturing equipment and communi
cation between the field-level manufacturing equipment and the cloud 
manufacturing platform has not been widely investigated. The high di
versity of manufacturing equipment, data sources, data formats, and 
communication protocols have all posed a significant challenge for 
efficient data acquisition and communication in the context of cloud 
manufacturing. 

Recent advancements in Industrial Internet of Things (IIoT) have 
shown a great potential of addressing this challenge. IIoT adopts the 
Internet of Things (IoT) technologies in the industrial environment to 
achieve flexible and scalable industrial and machine-to-machine (M2M) 
communications [8]. As demonstrated by the prior research [9], IIoT 
technologies could be used to capture machine data and streamline them 
to external business systems and making manufacturing equipment as a 
service. However, how to utilise IIoT technologies to support cloud 
manufacturing needs to be further investigated. Firstly, a generic system 
architecture of IIoT-supported cloud manufacturing system needs to be 
developed as a strategic implementation guideline. Secondly, the 
mechanisms of IIoT-enabled data acquisition, communication, storage, 
query, and analysis of common manufacturing equipment (such as 3D 
printers and machine tools) in the context of cloud manufacturing need 
to be investigated. Furthermore, cloud manufacturing’s unique issues 
such as service-oriented manufacturing resource virtualisation, data 
interoperability between physical level and cloud platform, and data 
security and privacy also need to be addressed. 

In light of the issues above, this paper investigates the implementa
tion of IIoT technologies in a cloud manufacturing environment. Spe
cifically, we propose a service-oriented, plug-and-play (PnP) IIoT 
gateway solution to facilitate the data acquisition, communication, 
storage, query, and analysis between field-level manufacturing equip
ment and a cloud manufacturing platform. The rest of this paper is 
organised as follows. Section 2 reviews previous works on cloud 
manufacturing and IIoT and identifies the research gaps. Section 3 in
troduces the details of the proposed service-oriented IIoT gateway so
lution, including the system architecture of IIoT-supported cloud 
manufacturing system, the mechanism of the IIoT gateway, the service- 
oriented data schemas for manufacturing equipment, the cloud TSDB, 
and the data transformation process. Section 4 demonstrates the prac
tical development of two IIoT gateways for a 3D printer and a machine 
tool to validate the feasibility and advantages of the proposed approach. 
Section 5 concludes the paper and discusses future research works. 

2. Literature review

This section summarises state-of-the-art research on cloud
manufacturing and IIoT, and concludes the research gaps that motivated 
this research work. 

2.1. Cloud manufacturing 

Manufacturing resource virtualisation is the foundation of all the 
high-level decision-making activities in cloud manufacturing. Among 
the various types of manufacturing resources, manufacturing equipment 
plays a unique role since their static capability and dynamic availability 
both affect their feasibility as a service. Previous research on 
manufacturing resource virtualisation mainly focuses on the relatively 
static manufacturing capability. Ontology has been commonly used to 
represent the manufacturing capability due to its advantage of semantic 

interoperability. For example, Lu et al. [10] introduced an 
ontology-based approach to virtualising manufacturing resource by 
utilising existing industry standards such as STEP and STEP-NC. Sys
tematic guidance on developing ontologies for manufacturing resources 
was presented. Liu et al. [11] proposed a multi-granularity resource 
virtualisation model based on an ontology that considers the workflow, 
activity, and resource as the main factors. Resource aggregation and 
clustering algorithms were applied to achieve the virtualisation process. 
Luo et al. [12] developed a multidimensional information model and an 
ontology-based description method to realise the virtualisation of 
manufacturing capability in cloud manufacturing. Resource virtualisa
tion of dynamic manufacturing availability that considers real-time data 
acquisition and communication in cloud manufacturing has been rarely 
investigated, although the use of IoT and Cyber-physical System (CPS) 
technologies for field-level manufacturing data collection has been dis
cussed in some conceptual cloud manufacturing frameworks, such as the 
ones proposed in [13,14]. 

Service composition and selection is a fundamental issue of on- 
demand manufacturing service provision in cloud manufacturing [15]. 
Quality of service (QoS) is usually used as a critical indicator of the 
performance of a service. The commonly used QoS properties for 
manufacturing equipment include lead time, cost, reliability, availabil
ity, and maintainability. Lartigau et al. [16] proposed a service 
composition method based on QoS evaluation while considering the 
geo-perspective transportation constraints introduced by the locations 
of manufacturing resources. To solve the problem of multitask corre
sponding multi-service selection, Yuan et al. [17] developed a mathe
matical service composition model considering six QoS properties, 
including time, composability, quality, usability, reliability, and cost. 
The proposed method was verified in a complex mold manufacturing 
case study. Since semantic web allows efficient query and reasoning of 
knowledge, it has also been applied to perform the service composition 
tasks. Lu and Xu [18] proposed a semantic web-based framework for 
service composition in cloud manufacturing. A practical web-based 
system was developed to distribute engineering knowledge of 
manufacturing resources for intelligent service composition and adap
tive resource planning. Based on the service arrangement and the QoS of 
each subtask, Yang et al. [19] proposed a robust service composition and 
optimal selection (rSCOS) method for cloud manufacturing. A guiding 
artificial bee colony – grey wolf optimisation algorithm was developed 
to improve the robustness of the rSCOS process. However, their exper
iments used simulated data without considering practical data acquisi
tion issues. Recently, Liang et al. [20] introduced a deep reinforcement 
learning-based approach to solving the QoS-aware service composition 
problem in cloud manufacturing with the consideration of logistics. The 
Deep Q-Network, the dueling architecture, and the prioritized replay 
mechanism were integrated to achieve efficient and scalable service 
composition. Yu et al. [21] also proposed a blockchain-based cloud 
manufacturing system in which blockchain was used to intermediate the 
service composition and record transaction results. 

Task and service scheduling is another research focus in cloud 
manufacturing since it determines the efficiency of resource allocation 
and the effectiveness of service utilisation [22]. Though scheduling in 
cloud manufacturing relies closely on the real-time perception of 
field-level manufacturing equipment, previous research on scheduling 
focused mainly on the scheduling algorithms and decision-making 
processes while usually assuming the real-time status of 
manufacturing equipment is already available in the cloud 
manufacturing platform. Li et al. [23] proposed a scheduling model for 
distributed robots to achieve cooperative task execution in a cloud 
manufacturing environment. Four robot deployment methods were 
developed and tested in a simulation experiment. Liu et al. [24] intro
duced a multitask scheduling model for cloud manufacturing that in
corporates task workload modelling while considering service quantity, 
service efficiency, and enterprise capacity. In their simulation experi
ment, the availability of manufacturing equipment was again assumed 
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in the cloud manufacturing platform. Recently, Wang et al. [25] pro
posed an advanced planning and scheduling system framework in the 
context of cloud manufacturing. Package diagram was used to improve 
modeling efficiency and data stability. The proposed system was 
deployed in the Amazon Web Services (AWS) cloud platform and vali
dated though a real-world scheduling task in the printed circuit board 
production. 

2.2. Industrial internet of things 

The rapid development of Information and Communication Tech
nology (ICT) has triggered the introduction of IIoT, where smart objects, 
cyber-physical assets, information technologies, and cloud/edge 
computing platforms are networked to enable real-time, intelligent, and 
autonomous access, collection, analysis, communications, and exchange 
of process, product, and service information within the industrial envi
ronment [26]. In recent years, the great benefits of IIoT have attracted 
significant attention from both industry and academia. Based on the 
report of Gartner magic quadrant for IIoT platforms [27], currently, a 
considerable amount of commercial IIoT platform solutions have 
already been developed by various leading companies, including PTC 
ThingWorx IIoT solution platform, Microsoft Azure IoT Hub, Hitachi 
Vantara IIoT platform, AWS IoT, Siemens MindSphere IIoT platform, 
and so forth. 

Some preliminary industrial applications of IIoT have also been re
ported by researchers in academia. For example, Civerchia [28] devel
oped an IIoT solution for the pervasive monitoring of industrial 
machinery through battery-powered IoT sensing devices. The proposed 
system was implemented in an electricity power plant where 33 tem
perature and vibration sensor devices were installed on different ma
chinery to monitor their health status. This work shows a good example 
of using IIoT technology to support predictive maintenance of industrial 
systems. To achieve accurate supply-side energy modelling and energy 
consumption optimisation, Peng et al. [29] developed an IIoT-based 
data acquisition network to collect refined energy consumption infor
mation in an aluminium extrusions manufacturing system. The 
IIoT-based approach allows the acquired energy data to be correlated 
with job, machine, and process data, and hence creates production 
events that represent specific energy consumption processes. Salhaoui 
et al. [30] developed a smart IIoT monitoring and control system to 
achieve remote monitoring of a concrete batching plant using unmanned 
aerial vehicles (UAVs). The control of the UAVs was integrated with the 
plant’s industrial control system through an IIoT gateway, which also 
sends the data collected by the UAVs to the cloud for advanced data 
analysis. Aiming to improve the resource efficiency of food 
manufacturing, Jagtap et al. [31] introduced an IIoT-based framework 
that uses various IoT-based hardware and software to achieve accurate 
real-time monitoring of food waste generation and use of energy and 
water. The developed prototype showed great advantages in analysing 
and optimising the food manufacturing processes compared to tradi
tional paper-based systems. 

The IIoT gateway is a crucial component in an IIoT system that 
collects the real-time data from field-level devices, performs data 
cleaning, formatting, processing, and transfers the data to the cloud. The 
specific forms and function requirements of the IIoT gateways depend on 
specific industrial needs. To improve data collection and communica
tion efficiency, Chen et al. [32] proposed an IIoT gateway solution that 
combines a field-programmable gate array (FPGA)-based hardware 
bridge and multiple scalable microcontrollers. The proposed system was 
implemented in a machine tool spindle monitoring scenario where the 
spindle vibration and temperature data from multiple sensors were 
collected and processed in the IIoT gateway. EI Kaed et al. [33] devel
oped a semantic rules engine for IIoT gateway to achieving dynamic and 
flexible rule-based monitoring and control of production facilities. The 
semantic rules engine allows the IIoT gateway to handle semantic 
queries and infer additional knowledge from previous experiences. To 

accelerate the optimisation process of high-level manufacturing plan
ning, Leng et al. [34] proposed an IIoT system that uses Raspberry 
Pi-based IIoT gateways to allow the permissioned blockchain to interact 
with machines via smart contracts. The manufacturing events collected 
from machines were batched up and transferred via the IIoT gateways as 
transactions and recorded in the blockchain database. Nevertheless, IIoT 
gateways that are specifically designed for complex manufacturing 
equipment such as machine tools, 3D printers, and robots have not been 
widely studied. In fact, the data acquisition and communication re
quirements of manufacturing equipment are different from common 
sensors and actuators due to the complex data structure and commu
nication interfaces of those manufacturing devices. 

In the context of IIoT, a reliable database that can handle massive 
amounts of time-series data generated by industrial devices also be
comes crucial. Recently, time-series database (TSDB) has been increas
ingly used in IIoT applications due to its better scalability and higher 
efficiency when dealing with time-series data compared with a rela
tional database. Di Martino et al. [35] compared the performance of 
three TSDBs, including InfluxDB, Cassandra, and MongoDB, in the 
context of IIoT, and found that InfluxDB outperforms the other two for 
their specific time-series dataset. Costa et al. [36] developed an IIoT 
platform to support the data communication between the shop floor and 
multiple Industry 4.0 applications such as smart robotic additive 
manufacturing and adaptive pick and place robot. In their IIoT platform, 
InfluxDB was used as the TSDB to store the various types of real-time 
data collected from the robots, 3D printers, automated guided vehi
cles, and other sensors. 

2.3. Research gaps 

The literature review shows that previous research on cloud 
manufacturing mainly focused on the virtualisation of static 
manufacturing capability and high-level decision-making tasks. The link 
between the field-level manufacturing data (particularly the real-time 
data generated by manufacturing equipment) and the cloud 
manufacturing platform has not been well established. Recent ad
vancements of IIoT have shown great potential in bridging this gap. 
However, IIoT gateways specifically designed for manufacturing 
equipment such as machine tools and 3D printers have not been widely 
studied. Besides, though existing resource virtualisation methods 
acknowledged that both the static capability information and dynamic 
availability information need to be captured, little research has been 
conducted on identifying the minimum amount of information about 
manufacturing equipment required for service selection and other 
decision-making tasks in cloud manufacturing. Research is required on 
building a generic service-oriented information model that captures the 
essential information for service management in cloud manufacturing. 

To address these research gaps, we propose a service-oriented IIoT 
gateway solution in cloud manufacturing to link the field-level 
manufacturing equipment with the cloud manufacturing platform. 

3. Service-oriented IIoT gateway for cloud manufacturing

This section introduces the proposed service-oriented IIoT gateway
solution for cloud manufacturing. First, the system architecture of IIoT- 
supported cloud manufacturing is proposed. Second, the mechanism of 
the service-oriented IIoT gateway is explained. Third, the service- 
oriented data schemas for machine tools and 3D printers are proposed. 
Finally, the cloud TSDB and data transformation process are further 
elaborated. 

3.1. System architecture of IIoT-supported cloud manufacturing 

To illustrate how IIoT technologies can be applied to establish the 
link between the field-level manufacturing equipment and the cloud 
manufacturing platform in the context of cloud manufacturing, we 
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propose a generic system architecture of IIoT-supported cloud 
manufacturing system as shown in Fig. 1. This subsection explains the 
overall mechanism and workflow of the proposed cloud manufacturing 
system. Details of the core components on which this research focuses 
are further discussed in the following subsections. 

The proposed IIoT-supported cloud manufacturing system follows 
the typical layered architecture of cloud manufacturing. The bottom 
layer represents the physical manufacturing resources provided by ser
vice providers or manufacturers. While manufacturing resources in the 
context of cloud manufacturing generally include all the hard resources 
(manufacturing facilities, computing facilities, materials, etc.) and soft 
resources (software, knowledge, personnel, etc.), the system architec
ture proposed in this research focuses specifically on the field-level 
manufacturing equipment such as machine tools, 3D printers, and ro
bots. The manufacturing equipment is usually equipped with different 
types of sensors to collect additional real-time data of the manufacturing 
processes or the equipment’s status. 

To efficiently collect these heterogeneous manufacturing data and 
transfer them to the cloud manufacturing platform for resource virtu
alisation and further decision-making tasks, we proposed an additional 
layer of IIoT gateways to bridge the physical world and the cloud. In this 

layer, each IIoT gateway is connected to a piece of manufacturing 
equipment and its associated sensors. The IIoT gateway uses stand
ardised communication protocols or software application programming 
interfaces (APIs) to acquire the real-time manufacturing data from the 
manufacturing equipment and sensors, assign a timestamp to each piece 
of the data, and transform them into a unified data format. The IIoT 
gateways transfer the unified, timestamped manufacturing data to a 
cloud time-series database (TSDB) in the cloud manufacturing platform 
through the Internet. 

In the cloud manufacturing platform, the physical manufacturing 
equipment are virtualised as manufacturing services based on their 
feasibility to conduct certain manufacturing tasks. The feasibility of 
manufacturing equipment is mainly determined by two factors, i.e., 
capability and availability. The capability of manufacturing equipment 
is relatively static since its structure and functions do not usually 
change. On the other hand, the availability of manufacturing equipment 
is dynamically changing depending on their real-time status and job 
schedule. The data related to both capability and availability of the 
manufacturing equipment are transferred from the IIoT gateways to the 
cloud manufacturing platform and stored in the cloud TSDB. The cloud 
manufacturing platform also hosts a knowledge base specifically 

Fig. 1. System architecture of IIoT-supported cloud manufacturing  
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designed for the manufacturing equipment. The knowledge base con
tains capability ontology and selection rules of the manufacturing 
equipment that are defined and updated by the equipment providers. An 
example of the capability ontology and selection rules for a computer 
numerical control (CNC) machine tool has been demonstrated in our 
previous work [7]. 

Resource virtualisation can be achieved by combining the capability 
data and availability data in the cloud TSDB with the ontology and rules 
in the knowledge base. The physical manufacturing equipment is vir
tualised as various types of individual manufacturing services. Finally, 
service management tasks such as service searching, selection, compo
sition, matching, and scheduling are performed by the platform operator 
to integrate the individual services provided by distributed 
manufacturing resources into composite manufacturing services that 
meet the service requesters’ specific needs. 

From users’ perspective, the service requesters/customers only need 
to send their manufacturing service requests (product design files, 
quality requirements, delivery time, etc.) to the cloud manufacturing 
platform through applications and wait for the service to be delivered. 
The service providers/manufacturers need to not only provide their 
physical manufacturing equipment as manufacturing resources, but also 
ensure the field-level manufacturing data and the equipment-specific 
manufacturing knowledge can be efficiently transferred to and upda
ted in the cloud manufacturing platform. The platform operators then 
only focus on the high-level decision-making tasks such as resource 
virtualisation and various service management tasks while assuming all 
the needed data and knowledge are already available in the cloud 
manufacturing platform. 

Thus, the proposed IIoT-supported cloud manufacturing system en
ables an efficient data transformation process, as indicated on the right 
side of Fig. 1. The raw field-level manufacturing data generated by 
manufacturing equipment is transformed into unified, timestamped data 
by the IIoT gateways. Then the data become meaningful information 
representing the capability and availability of the manufacturing 
equipment in the cloud manufacturing platform. Next, the 
manufacturing knowledge further transforms the meaningful informa
tion into virtualised resources in individual manufacturing services. 
Lastly, these services are integrated with other services and become 
composite manufacturing services that fulfil the customers’ specific 
requirements. 

3.2. Mechanism of the IIoT gateway 

The proposed IIoT gateway is the focus of this research. In general, 
the IIoT gateway leverages the advantages of current IIoT technologies 
to achieve highly efficient data acquisition, transformation, communi
cation, storage, query, analysis, and visualisation. In this research, the 
IIoT gateway is specifically designed as a critical component that en
ables the field-level manufacturing data to be transferred to and updated 
in the cloud manufacturing platform to support further resource virtu
alisation and service management. The IIoT gateway comprises four 

main modules: 1) import interface, 2) data schema, 3) data trans
formation module, and 4) export interface. The workflow of the pro
posed IIoT gateway in a cloud manufacturing system is depicted in 
Fig. 2. 

Firstly, the raw field-level manufacturing data generated by 
manufacturing equipment and sensors are extracted from the machine 
control software or standardised data servers to the IIoT gateway 
through the import interface. Currently, more and more manufacturing 
equipment providers are attempting to make (part of) the data of their 
machines available to users by supporting open and standardised in
dustrial communication protocols such as OPC UA [37] and MTConnect 
[38]. Despite their differences in data encoding, data modelling method, 
etc. [39], these two protocols both apply a similar server-client 
communication architecture and allow standardised real-time data 
communication. In this case, the MTConnect or OPC UA client can be 
implemented in the IIoT gateway as the import interface to extract the 
manufacturing data from the MTConnect agent or the OPC UA server of 
the manufacturing equipment. Alternatively, some manufacturing 
equipment uses open-source control software to develop their APIs (such 
as RESTful API) to extract data directly from the software. Secondly, a 
service-oriented data schema needs to be developed to organise all the 
collected manufacturing data. The data schema categorises the 
manufacturing data into capability data and availability data and de
fines the specific data items that need to be transferred to the cloud 
manufacturing platform. Details of the data schema will be further 
explained in Section 3.3. Thirdly, based on the data schema, the trans
formation module transforms the manufacturing data collected from the 
import interface into the format that can be accepted by the cloud TSDB. 
The specific target data format depends on the specific TSDB used in the 
cloud manufacturing platform. Details of the cloud TSDB and data 
transformation will be further explained in Section 3.4. Finally, the 
transformed capability data and availability data are streamed to the 
cloud TSDB in the cloud manufacturing platform through the export 
interface, which consists of the data input APIs of the corresponding 
cloud TSDB and an Internet connection to the cloud. 

The proposed IIoT gateway has some distinct advantages in practical 
implementation compared to traditional field-level data acquisition 
systems. The IIoT gateway is a lightweight, low-cost solution that utilises 
various open-source software, APIs, communication protocols, and 
TSDBs. Common low-cost IoT-based microcontrollers such as Raspberry 
Pi and Arduino can be used as the hardware for the IIoT gateway. The 
standardised communication protocols, APIs, and ubiquitous Internet 
access endow the IIoT gateway with a PnP capability, such that different 
types of manufacturing equipment can be easily connected to the IIoT 
gateway without time-consuming and costly hardware configurations. 
The customisable data schema also provides the IIoT gateway with a 
service-oriented feature in line with the cloud manufacturing paradigm. 
In the data schema, the manufacturing equipment providers can define 
the specific data items they want to make available in the cloud 
manufacturing platform, thus providing only the data that best describe 
their services without disclosing other confidential manufacturing data. 

Fig. 2. Workflow of the IIoT gateway in cloud manufacturing  
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This can also reduce the network load between the IIoT gateways and 
the cloud. 

3.3. Service-oriented data schemas for manufacturing equipment 

Manufacturing equipment such as machine tools and 3D printers 
contain large volume and variety of data due to their complex structures 
and functions. In a cloud manufacturing platform, different data items of 
a manufacturing equipment will be used for different decision-making 
tasks such as service selection, composition, and scheduling. For 
ensuring these data can be efficiently queried and analysed in the cloud 
manufacturing platform, a service-oriented data schema for the 
manufacturing equipment needs to be developed. In the IIoT gateway, 
the data schema allows equipment providers to define and organize the 
specific data items they want to stream to the cloud. In the cloud 
manufacturing platform, the data schema is used as the reference to 
design the data structure of the cloud TSDB. Therefore, the data schema 
design for manufacturing equipment in a cloud manufacturing system 
needs to follow a service-oriented approach. On the one hand, the data 
schema should categorise the manufacturing data into different groups 
based on different services they are related to in the cloud 
manufacturing platform. On the other hand, the data schema should 
conform to the data structure requirement of the cloud TSDB and allow 
efficient data query and analysis for high-level decision-making tasks. 
Based on these requirements, this research proposes two generic service- 

oriented data schemas for machine tools and 3D printers, as shown in 
Fig. 3 and Fig. 4, respectively. 

To allow easy implementation and data query for the cloud TSDB, 
the data schemas are designed as a tree structure with four levels. The 
first three levels represent the abstract data categories, and the fourth 
level represents the specific data items. As mentioned in the preceding 
sections, the feasibility of a manufacturing equipment to conduct certain 
services is determined mainly by two factors: capability and availability. 
The capability represents if the manufacturing equipment can conduct 
certain manufacturing tasks. In contrast, the availability represents if the 
manufacturing equipment is available to conduct specific 
manufacturing tasks at a particular time point. Therefore, the feasibility 
is firstly divided into capability data and availability data. The two data 
categories are then further divided into different sub-categories with 
each containing some specific data items. 

The capability of manufacturing equipment is relatively static since 
it is determined by the equipment’s intrinsic properties and function
alities that do not change over time unless its physical components are 
changed or performance degradation appeared after long time of use. In 
the context of cloud manufacturing, the equipment providers are 
responsible for providing accurate capability data of their 
manufacturing equipment. Most of the capability data (such as type of 
machine, table size, and max load) can be fetched from the manuals of 
the equipment, while some capability data (such as dimensional accu
racy and max spindle speed) need to be provided based on the 

Fig. 3. Service-oriented data schema for machine tools.  
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equipment providers’ experience and updated periodically (e.g. yearly) 
to reflect the actual capability of the equipment due to long-term 
degradation. 

The availability of manufacturing equipment is dynamically chang
ing based on its real-time status. The availability data can be categorised 
into different levels such as production status, machine status, and 
process status. The higher level production status and machine status 
data can be directly used as dynamic availability information for 
resource virtualisation of the manufacturing equipment in the cloud 
manufacturing platform. The lower level process status data, on the 
other hand, can be further analysed with advanced data analytics tools 
to support various decision-making tasks such as service selection and 
composition in the cloud manufacturing platform. For example, the 
sensor data collected during machining processes such as motor current, 
vibration, and temperature can be used for pretrained machine learning 
models in the cloud to evaluate the machining quality such as surface 
roughness and machining accuracy. These evaluation results can be 
treated as QoS properties of the manufacturing service that can be used 
for service selection and composition. 

The capability and availability information of a manufacturing 
resource collectively provides just-enough information for resource 
virtualisation, service composition, matching and scheduling. As dis
cussed separately above, these two categories of information are the 
essential data inputs for manufacturing scheduling and optimisation in 
factories, though different types of resources may have slightly different 
data items under both categories. 

In the data schema for machine tools (Fig. 3), the capability data 
comprises ten sub-categories. The property contains the data items 

representing the machine tool’s basic information such as its manufac
turer, type, controller model, and dimension. The location contains the 
specific location of the machine tool, which is essential for service se
lection. The machinable size, weight, materials, and features contain the 
part-related data items used in the capability ontology to evaluate if the 
machine tool can manufacture a specific part. The machining accuracy 
and efficiency contain the data items that determine if the machine tool 
can meet the quality and time requirements of the service requesters. 
The cost and time contain data items describing the cost and lead time of 
certain parts. The availability data comprises five sub-categories. The 
production status contains the real-time data related to the production 
progress and schedule assigned to the machine tool. The machine status 
represents the real-time working mode of the machine tool. The process 
status contains real-time machining data of the current process. Note 
that process status may contain confidential process parameters optional 
to be included by the equipment providers. The inventory status rep
resents the available materials and cutting tools of the machine tool. The 
connection status contains data items that indicate the connectivity and 
network quality of the machine tool and its IIoT gateway. 

The data schema for 3D printers (Fig. 4) is similar to machine tools, 
though some sub-categories and specific data items are different due to 
the differences between 3D printers and machine tools. The detailed sub- 
categories and their corresponding commonly used data items for ma
chine tools and 3D printers are listed in Figs. 3 and 4. It is worth 
mentioning that the proposed data schemas do not intend to provide an 
exhaustive list of all the data items for machine tools and 3D printers. 
While the four-level tree structure should be fixed to conform with the 
data structure in the cloud TSDB, the equipment providers could easily 

Fig. 4. Service-oriented data schema for 3D printers.  
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customise the data schema by editing the sub-categories and their cor
responding data items. This allows the equipment providers to deter
mine the specific manufacturing data they want to be exposed to the 
cloud manufacturing platform, thus fundamentally protecting their 
confidential data. 

3.4. Cloud TSDB 

The cloud TSDB is an essential component in the proposed IIoT- 
supported cloud manufacturing system. It resides in the cloud 
manufacturing platform and is directly linked with the field-level IIoT 
gateways through the Internet. All the field-level manufacturing data 
specified in the data schemas are streamed to the cloud TSDB from the 
connected IIoT gateways. The cloud TSDB stores those data in the cloud 
manufacturing platform and allows the platform operators to efficiently 
query, visualise, and analyse them to conduct high-level decision-mak
ing tasks. 

As mentioned in the literature review, TSDB is chosen to be the cloud 
database because its advantages are scalability and efficiency compared 
to relational databases. TSDBs are specifically designed and optimised 
for time-series data, such as the data generated by various types of IIoT 
devices. TSDBs store data in chronological order and provide high 
concurrency and high throughput of data writing. Since both capability 
data and availability data need to be streamed to the cloud 
manufacturing platform from multiple IIoT gateways, TSDB becomes a 
good choice for the proposed cloud manufacturing system. Currently, 
there exist various open-source TSDBs that can be used to support the 
proposed low-cost IIoT gateway solution. Some popular open-source 
TSDBs include InfluxDB, Ddb+, Prometheus, Graphite, TimescaleDB, 
among others. Though the diversity of available open-source TSDBs 
provides more choices for the proposed cloud manufacturing system, it 
is noted that different TSDBs may apply different data structures in 
practical implementation. Meanwhile, the implementation of the 

proposed data schemas and the data transformation process both need to 
conform with a specific TSDB. Hence, to demonstrate the feasibility of 
the proposed approach, this research chooses one of the most popular 
and best-performing TSDBs, i.e., InfluxDB, to illustrate how the pro
posed data schemas can be used to develop the cloud TSDB for the IIoT 
gateways. 

InfluxDB is an open-source TSDB that is purpose-built to handle the 
massive volume and multi-source time-series IoT data. It provides 
various built-in functions such as automatic time series transformation 
and aggregation that facilitate the efficient development of various ap
plications for data query, visualisation, and analysis. Data communica
tion with InfluxDB can be achieved through the prevalent network 
transport protocols such as HTTP (Hypertext Transfer Protocol), TCP 
(Transmission Control Protocol), and UDP (User Datagram Protocol). 
The database structure of InfluxDB is summarised in Fig. 5. The top level 
of the database structure is the bucket that stores all InfluxDB data. Each 
bucket represents a database with an associated retention policy that 
defines the duration of time that each data point persists in that data
base. A bucket contains a set of measurements that are similar to the 
tables in relational databases. A measurement acts as a container for 
tags, fields, and timestamps. Tags and fields are both defined as key- 
value pairs. The tag key-value pairs are used to store the abstract met
adata that can only be in string format. The field key-value pairs store 
the name and the actual value of a data item. In general, the combina
tion of bucket name, measurement name, tag key-value pairs, and field 
keys can be used to query the values of specific data items stored in the 
TSDB. 

Since the service-oriented data schemas for manufacturing equip
ment introduced in the preceding subsection are designed as a four-level 
tree structure, they can be efficiently mapped to the database structure 
of InfluxDB. Specifically, the implementation of the proposed data 
schemas in InfluxDB is explained as follows. Firstly, since the capability 
data are relatively static, and the availability data are dynamically 

Fig. 5. Database structure of InfluxDB.  
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changing, different data retention policies should be applied to them in 
the TSDB. While the capability data should last in the TSDB for a long 
period as they are not frequently changed, the availability data that are 
continuously updated and accumulated in the TSDB should have a 
shorter retention period to keep the size of the TSDB within control. 
Hence, at the top level, capability data and availability data are sepa
rated into two individual buckets that have different retention policies. 
Secondly, each sub-category in the proposed data schemas (property, 
location, machine status, etc.) is mapped as a measurement in InfluxDB. 
These measurements represent the abstract groups of manufacturing 
data, and their names can be used for data query. Thirdly, the specific 
data items (manufacturer, address, spindle speed, etc.) and their values 
are mapped as the field key-value pairs in InfluxDB. Each field key-value 
pair is assigned with a timestamp. The field keys represent the data 
items’ names, while the actual values are stored as the corresponding 
field values. In addition, a tag key-value pair is assigned to each mea
surement as the identification of the data source. The tag key represents 
the type of manufacturing equipment (machine tool, 3D printer, etc.), 
while the tag value represents the unique name or ID of the 
manufacturing equipment. In this way, the proposed schemas can be 
implemented as the database structure for the cloud TSDB and enable 
efficient data query. 

3.5. Data transformation 

As mentioned previously, in practical application, the manufacturing 
data collected from the control software and data servers need to be 
transformed in the IIoT gateways before streaming to the cloud TSDB. In 
this case, the data need to be transformed into the line protocol format as 
defined by InfluxDB. The line protocol format is a text-based format that 
contains four elements defined in the database structure, including 
measurement, tag key-value pairs, field key-value pairs, and timestamp. 
Fig. 6 shows the typical arrangement of the elements in the line protocol 
format and a simplified example in practical application. Data are 
written into InfluxDB as multiple lines of text in the line protocol format 
in the data streaming process. Each line represents a data point that 
contains a measurement name, one or more tag key-value pairs, one or 
more field key-value pairs, and a timestamp. 

Since the proposed data schemas have been mapped to the database 
structure, the aforementioned data transformation process can be ach
ieved by encoding the sub-categories and data items in the data schema, 
the actual manufacturing data, and their timestamps as the corre
sponding elements in the line protocol. An example of the line protocol 
format data transformation of the process status data collected from a 
milling machine tool is demonstrated in the following pseudocode. In 
this example, the Point() method creates a data point and assigns 
process_status as the measurement name of the data point. The equip
ment type (machine_tool) and the ID of the equipment (Mill_1) are 
assigned to the data point as the tag key-value pair, respectively. The 
API.get() method represents a generic API that retrieves the raw 
manufacturing data from the control software or the data server. In this 
example, seven data items of process status have been collected, and 
their names and values are appended to the data point as field key-value 
pairs, respectively. The timestamp of the collected data is also retrieved 
through another generic API, API.datetime.now(), and appended to the 
data point. Finally, the pseudocode returns a transformed line of text 

containing all the retrieved process status data in the line protocol 
format that can be directly streamed to InfluxDB.  

Pseudocode: Line protocol format data transformation 
Input: Manufacturing data of process status collected from a milling machine tool 

Output: Transformed line protocol format data 
/* Create an empty line protocol */ 
1: transformed_data = [] 
/* Create a data point and assign the sub-category as the measurement name */ 
2: process_status = Point(“process_status”) 
/* Assign the equipment type and equipment ID as a tag key-value pair to the data 
point */ 
3: process_status.tag(“machine_tool”, Mill_1) 
/* Append related data items and their values as field key-value pairs to the data 
point */ 
4: process_status.string(“job_name”, API.get(“job_name”)) 
5: process_status.string(“g_code”, API.get(“g_code”)) 
6: process_status.double(“spindle_speed”, API.get(“spindle_speed”)) 
7: process_status.double(“x_position”, API.get(“x_position”)) 
8: process_status.double(“y_position”, API.get(“y_position”)) 
9: process_status.double(“z_position”, API.get(“z_position”)) 
10: process_status.double(“process_progress”, API.get(“process_progress”)) 
/* Assign a timestamp to the data point */ 
11: process_status.datetime(API.datetime.now()) 
/* Return the data point as a line protocol */ 
12: transformed_data.append(processStatusPoint)  

4. Case studies

This section presents two IIoT gateways for a 3D printer and a CNC
machine tool, respectively, to validate the feasibility and advantages of 
the proposed approach. Details of the field-level data acquisition and 
transformation, data schemas of the machines, data streaming and 
storage in the cloud TSDB, and data query and visualisation in the cloud 
are explained. 

4.1. IIoT gateway for 3D printer 

In this case study, a low-cost PnP IIoT gateway is developed for a 3D 
printer based on the proposed approach. The overall development pro
cess of this case study is briefly illustrated in Fig. 7. The 3D printer used 
in this case is an Anycubic Kossel Linear Plus (Delta) 3D printer. A 
Raspberry Pi 3 Model B is used as the hardware for the IIoT gateway. 
InfluxDB is used as the cloud TSDB. The data query process is demon
strated by a data visualisation and analytics application developed with 
a dedicated open-source software named Grafana. 

The 3D printer is controlled by open-source control software, Octo
Print, which allows control and monitoring of the 3D printer using 
standard web browsers and is implemented on the Raspberry Pi. Since 
OctoPrint is open-source, real-time data acquisition of the 3D printer can 
be achieved by utilising self-developed APIs. In this case study, RESTful 
APIs are developed with an API development tool, Postman, to 
communicate with the OctoPrint server. The HTTP GET method is used 
to retrieve the specific data items from OctoPrint. In this case, since 
there is no additional sensor installed for this 3D printer, the availability 
of the real-time data items depends on the OctoPrint server. The real- 
time data collected from the OctoPrint server are originally repre
sented in JSON format. Part of the JSON response retrieved by the 
RESTful API is demonstrated in Fig. 7. 

Fig. 6. Elements and example of line protocol format in InfluxDB.  
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Upon analysing available real-time data that can be collected from 
the OctoPrint server, a concrete data schema for the Anycubic 3D printer 
is developed based on the generic data schema for 3D printers intro
duced in Section 3.3. Table 1 shows the detailed data schema corre
sponding to the InfluxDB data structure. The data source of each data 
item is also indicated. In this case, since the OctoPrint server only pro
vides the real-time status data of the 3D printer, all the other relatively 

static data need to be manually inputted to the TSDB by the equipment 
provider. 

Based on the developed data schema, data transformation is per
formed in the IIoT gateway by encoding the manufacturing data of the 
3D printer into line protocol format using python codes. On the one 
hand, the real-time JSON data retrieved from the OctoPrint server are 
parsed and converted into line protocol format following the 

Fig. 7. Development process of the IIoT gateway for 3D printer.  
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pseudocode introduced in Section 3.4. On the other hand, the manual 
input data items are hardcoded directly into line protocol format texts. 
In the cloud TSDB, each bucket is assigned with a unique ID to allocate 
the related measurements. All the transformed data are streamed from 
the InfluxDB client in the IIoT gateway to their corresponding buckets in 
the cloud TSDB through the Internet. An authentication token is created 
and verified like a password during the data streaming process to protect 
data privacy and enhance data security for the equipment provider. Part 
of the data transformation code and the user interface of the cloud TSDB 
are demonstrated in Fig. 7. 

With the vast amount of field-level manufacturing data streamed to 
and stored in the cloud TSDB, efficient data query becomes a critical 
requirement for the subsequent resource virtualisation and service 
management tasks in the cloud manufacturing platform. Since the high- 
level decision-making tasks in the cloud manufacturing platform are not 
the focus of this research, a data visualisation application is developed in 
this case study to demonstrate the efficiency of data query and analytics 
in the proposed IIoT-supported cloud manufacturing system. The 
application is developed using Grafana Dashboard, an open-source web- 
based data query, analytics, and visualisation tool. The data query is 
performed using a standalone data scripting and query language named 

Flux. Flux allows efficient filtering and query of specific data items 
within a specific time period in the cloud TSDB based on the bucket ID, 
measurement name, and field key. Various data analytics functions, such 
as windowing, aggregating, and statistical calculations can also be 
performed during the query process. Part of the Flux query code used in 
this case study is demonstrated in Fig. 7. In this case study, all the 
available data items in the cloud TSDB are queried using Flux codes, and 
the query results are imported to Grafana Dashboard for data visual
isation. Some examples of the visualisation results are shown in Fig. 8. 
The relatively static capability data are displayed as texts, while the 
changing availability data are displayed as different types of dynami
cally updated graphs. The data update rate can be customised in the 
Grafana Dashboard interface. 

Overall, the field-level data of the 3D printer are continuously 
streamed from the IIoT gateway to the cloud TSDB, and simultaneously 
queried, updated, and visualised in the Grafana Dashboard. Hence, the 
developed application has validated the feasibility of the proposed 
approach. When the cloud TSDB is implemented in a cloud 
manufacturing platform, the platform operator can efficiently query the 
capability and availability data of all the connected field-level 
manufacturing equipment and perform resource virtualisation and 
various decision-making tasks in the cloud. 

4.2. IIoT gateway for CNC machine tool 

The second case study is the development of a low-cost PnP IIoT 
gateway for a CNC machine tool. The CNC machine tool used in this case 
is a 3-axis Sherline mill. The IIoT gateway is still developed using a 
Raspberry Pi. The general development procedures are the same as the 
previous case study and hence are not repeated here. Compared with the 
previous one, the major differences of this case study lie in the data 
acquisition and communication between the field level and the IIoT 
gateway. In this case, field-level manufacturing data acquisition from 
the machine tool is achieved based on our previous work on the 
MTConnect-enabled Cyber-Physical Machine Tool [40]. The overall 
system architecture of this case study is demonstrated in Fig. 9. 

At the field level, the CNC machine tool is controlled by an open- 
source control software named LinuxCNC. Different types of sensors 
and a data acquisition system are used to collect additional real-time 
process data from the machine tool. In the data server, an MTConnect 
Adapter is developed to retrieve the real-time machining data from both 
LinuxCNC software and external sensors. These raw data are converted 
into a unified data format (SHDR format) in the Adapter, assigned with 
timestamps, and then transmitted to the MTConnect Agent. The Agent 
organises all the field-level machining data based on a customised 
MTConnect data model and responds to data requests from MTConnect 
Clients. The MTConnect data model is essentially an XML file structured 
based on the rules defined by the MTConnect standard. It can contain 
both static values and real-time data items. Hence, in this case, the 
manual input data items in the data schema are stored and updated in 
the MTConnect data model by the equipment provider, such that no 
hard coding is needed in the data transformation process. 

In this case study, the import interface of the IIoT gateway is 
developed as a simplified MTConnect Client, which communicates with 
the MTConnect Agent. The Client sends HTTP requests to the Agent and 
receives all the available machining data as an MTConnect-compliant 
XML file. These machining data, containing both capability and avail
ability data, are well structured based on the data schema developed 
explicitly for the Sherline machine tool. Fig. 10 demonstrates an 
example of part of the XML file that the IIoT gateway received from the 
data server. The example contains some real-time availability data of the 
machine tool, such as spindle speed, vibration, and controller status. 
Each data item is assigned with a unique ID to differentiate it from 
others. A timestamp is also attached to each data item to indicate the 
specific time point at which the data is collected. The black texts in 
Fig. 10 represent the actual value of each data item. 

Table 1 
Data schema of the Anycubic 3D printer used in the case study.  

Bucket Measurement Field key-value pair Data source 

Capability Property Printer brand = Anycubic Manual input 
Printer model = Kossel Linear 
Plus 

Manual input 

Printer type = FDM Manual input 
Dimension = 380*380*680 
mm 

Manual input 

Location Location = Auckland city Manual input 
Printable size Max width = 230 mm Manual input 

Max depth = 230 mm Manual input 
Max height = 300 mm Manual input 
Bed shape = Circle Manual input 

Pintable 
materials 

Printable materials = PLA, 
ABS, HIPS, Wood 

Manual input 

Printing 
accuracy 

Extruder quantity = 1 Manual input 
Nozzle diameter = 0.4 mm Manual input 
X positioning accuracy =
0.0125 mm 

Manual input 

Y positioning accuracy =
0.0125 mm 

Manual input 

Z positioning accuracy =
0.0025 mm 

Manual input 

Layer resolution = 0.1-0.4 mm Manual input 
Printing 
efficiency 

Max travel speed = 60 mm/s Manual input 
Print speed = 20-60 mm/s Manual input 

Availability Production 
status 

Printing progress (%) OctoPrint 
server 

Current printing time (min) OctoPrint 
server 

Remaining printing time (min) OctoPrint 
server 

Job schedule Manual input 
Machine status Printer state OctoPrint 

server 
Process status Print speed (mm/s) OctoPrint 

server 
Layer height (mm) OctoPrint 

server 
Nozzle temperature actual (◦C) OctoPrint 

server 
Nozzle temperature target (◦C) OctoPrint 

server 
Bed temperature actual (◦C) OctoPrint 

server 
Bed temperature target (◦C) OctoPrint 

server 
Inventory status Material inventory Manual input 
Connection 
status 

Connection status IIoT gateway 
Baud rate (KiB) IIoT gateway  
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After receiving the field-level data from the data server, data trans
formation is then performed in the IIoT gateway by parsing the XML file, 
extracting the data items and their values based on the data schema, and 
converting the extracted data into line protocol format. The other tasks 
such as data query, analytics, and visualisation are achieved in the same 
way as introduced in the previous case study. Similar results have 
validated the feasibility of the proposed approach. 

This case study has also demonstrated the distinct advantage of using 
standardised communication protocols in the proposed IIoT gateway 
system. Since MTConnect is an open-source, cross-platform, and stand
ardised protocol, any CNC machine tool supporting MTConnect-based 
communication can be easily connected with the IIoT gateway in a 
PnP manner, despite their brands and models. The equipment providers 
only need to determine which data items they want to stream to the 
cloud manufacturing platform by customising the data model of the 
machine tool. Hence, the proposed low-cost PnP IIoT gateway solution 
can be easily implemented in large-scale manufacturing systems to 

support the development of the envisioned cloud manufacturing 
systems. 

5. Conclusions and future work

Cloud manufacturing aims to allow ubiquitous and on-demand
network access to a shared pool of various customisable 
manufacturing resources and services. While the high-level decision- 
making tasks in the cloud manufacturing platform, such as service se
lection, composition, matching, and scheduling, have been widely dis
cussed and studied, the link between the field-level manufacturing data 
generated by various types of manufacturing equipment and the cloud 
manufacturing platform has not been well established. 

In light of the great advantages shown by recent advancements in 
IIoT technologies, this paper proposes a service-oriented, low-cost, 
open-source, PnP IIoT gateway solution to realise efficient 
manufacturing data acquisition, communication, storage, query, and 

Fig. 8. Data visualisation of query results using Grafana Dashboard.  
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analysis in a cloud manufacturing system. The major contributions of 
this research work are summarised as follows:  

• Proposed a generic system architecture of IIoT-supported cloud
manufacturing system as a strategic guideline for integrating IIoT
technologies in the cloud manufacturing environment.

• Proposed a service-oriented PnP IIoT gateway solution for efficient
data acquisition, communication, query, analysis, and visualisation
of manufacturing equipment in a cloud manufacturing system.

• Developed two generic service-oriented data schemas for machine
tools and 3D printers that allow efficient data management and
query for the decision-making tasks in the cloud manufacturing
platform.

• Developed two practical PnP IIoT gateways for a 3D printer and a
CNC machine tool that validate the feasibility of the proposed
approach.

The proposed IIoT-supported cloud manufacturing system enables
huge amounts and various types of field-level manufacturing data to be 
efficiently collected and transmitted to the cloud manufacturing plat
form, thus establishing a link between field-level manufacturing pro
cesses and cloud-based decision-making activities. The utilisation of IIoT 
techniques in cloud manufacturing significantly enhances the capability 
of resource virtualisation of various shop floor manufacturing equip
ment. The developed service-oriented data schemas allow both capa
bility data and availability data of the manufacturing equipment to be 

captured and managed efficiently, thus facilitating the following 
decision-making tasks such as service selection and composition in the 
cloud manufacturing platform. Furthermore, the customisable data 
schemas allow the equipment providers to determine the specific data 
items they want to stream to the cloud, and hence protect their data 
privacy fundamentally. Based on the data schemas, a cloud TSDB is 
developed to enable efficient data storage, query, visualisation, and 
analysis in the cloud manufacturing platform. To demonstrate the 
feasibility and advantages of the proposed approach, we have developed 
two practical PnP IIoT gateways for a 3D printer and a CNC machine 
tool, respectively. The developed IIoT gateways demonstrated distinct 
advantages over traditional data acquisition systems due to the exten
sive utilisation of various low-cost hardware, open-source APIs and 
software solutions, and standardised communication protocols. Experi
mental results proved that the proposed IIoT gateway solution has a 
great PnP capability, and hence can be easily implemented in real- 
world, large-scale, complex manufacturing systems. Therefore, the 
proposed approach represents a low-cost, flexible, and efficient solution 
to practically transforming traditional manufacturing systems into cloud 
manufacturing systems. 

The concept of cloud manufacturing has been introduced for a 
decade and has attracted enormous attention from both academia and 
industry. Though the great advantages of cloud manufacturing have 
been commonly recognised and a vast amount of research has been 
conducted, practical development of the envisioned cloud 
manufacturing systems is still at the preliminary stage. Efficient data 

Fig. 9. Overall system architecture of the IIoT gateway for CNC machine tool.  

Fig. 10. XML format machining data received from the MTConnect agent.  
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acquisition, communication, storage, query, and analysis of the field- 
level manufacturing equipment have been a significant challenge that 
hinders the development of cloud manufacturing systems. This research 
investigates the implementation of IIoT technologies in a cloud 
manufacturing system to address this challenge. Results from this 
research indicate that deep integration of various emerging IIoT tech
nologies in manufacturing systems could establish the link between the 
field-level manufacturing equipment and the cloud manufacturing 
platform, and hence significantly accelerate the realisation of the envi
sioned cloud manufacturing paradigm. 

Based on this research work and our previous research on resource 
virtualisation [7, 10], service composition [18], and big data analytics 
[9] in cloud manufacturing, our future work will focus on dynamic 
manufacturing resource virtualisation in the IIoT-supported cloud 
manufacturing environment. The knowledge base (as mentioned in 
Fig. 1) that contains both capability ontology and availability selection 
rules of the manufacturing equipment will be developed. Integration of 
the field-level manufacturing data and the knowledge base will be 
studied to realise dynamic resource virtualisation of different 
manufacturing equipment in the cloud manufacturing platform. 
Furthermore, various types of service management tasks based on the 
proposed cloud manufacturing system could also be investigated. 
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