Associations between sleep-disordered breathing and behavioral and cognitive functions in children with and without attention-deficit/hyperactivity disorder

Kyoung Min Kim, MD, PhD, Myung Ho Lim, MD, PhD, Mina Ha, MD, PhD, Ho-Jang Kwon, MD, PhD

PII: S2667-2960(21)00181-6

DOI: https://doi.org/10.1016/j.jaclp.2021.10.002

Reference: JACLP 1284

To appear in: Journal of the Academy of Consultation-Liaison Psychiatry

Received Date: 13 April 2021

Revised Date: 22 September 2021

Accepted Date: 2 October 2021

Please cite this article as: Kim KM, Lim MH, Ha M, Kwon H-J, Associations between sleep-disordered breathing and behavioral and cognitive functions in children with and without attention-deficit/ hyperactivity disorder, *Journal of the Academy of Consultation–Liaison Psychiatry* (2021), doi: https://doi.org/10.1016/j.jaclp.2021.10.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Inc. on behalf of Academy of Consultation-Liaison Psychiatry.

1	Associations between sleep-disordered breathing and behavioral and cognitive functions
2	in children with and without attention-deficit/hyperactivity disorder
3	
4	Kyoung Min Kim, MD, PhD ^{a,b} , Myung Ho Lim, MD, PhD ^{b,c} , Mina Ha, MD, PhD ^{b,d} , Ho-Jang
5	Kwon, MD, PhD ^{b,d,*}
6	
7	^a Department of Psychiatry, Dankook University College of Medicine, Cheonan, Republic of
8	Korea
9	^b Environmental Health Center, Dankook University Medical Center, Cheonan, Republic of
10	Korea
11	^c Department of Psychology, College of Health Science, Dankook University, Cheonan,
12	Republic of Korea
13	^d Department of Preventive Medicine, Dankook University College of Medicine, Cheonan,
14	Republic of Korea
15	
16	*Corresponding author: Ho-Jang Kwon, MD, PhD
17	Department of Preventive Medicine, College of Medicine, Dankook University, 119 Dandae-
18	ro, Dongnam-gu, Cheonan-si, Chungnam-do 31116, Republic of Korea
19	Tel: +82-41-550-3879; E-mail: hojangkwon@gmail.com
20	E-mail address for each co-author
21	Kyoung Min Kim, MD: profuture@naver.com
22	Myung Ho Lim, MD, PhD: paperose@dankook.ac.kr
23	Mina Ha, MD, PhD: minaha@dku.edu

24 Short running head: SDB and behavior/cognition in children with and without ADHD

25 Abstract

26	Objective: This study aimed to investigate the associations between sleep-disordered
27	breathing (SDB) and behavioral and cognitive functions in children with and without
28	attention-deficit/hyperactivity disorder (ADHD).
29	Methods: A total of 341 children were included (ADHD group: 155, control group: 186; age:
30	6-10 years). The participants' sleep-related symptoms were assessed using a parent-rated
31	questionnaire, and they were categorized into low- and high-risk SDB groups based on their
32	scores. Behavioral symptoms were assessed using the Behavioral Assessment System for
33	Children, Second Edition (BASC-2), and cognitive sustained attention and inhibitory control
34	were assessed using a computer-based continuous performance test.
35	Results: In the ADHD group, the high-risk SDB children showed significantly higher scores
36	than the low-risk SDB group in externalizing problems (F = 4.22; $p = 0.042$), including
37	hyperactivity (F = 4.65; p = 0.033) and attention problems (F = 8.19; p = 0.005), but not
38	internalizing problems. Meanwhile, in the control group, the high-risk SDB children showed
39	significantly higher scores than the low-risk SDB group in internalizing problems ($F = 9.89$;
40	p = 0.002), depression (F = 9.45; p = 0.002) and somatization (F = 7.83; p = 0.006), as well
41	as in externalizing problems (F = 7.72; p = 0.006), including hyperactivity (F = 6.23; p = $(1 - 1)^{-1}$
42	0.013), aggression (F = 5.00; p = 0.027), and conduct problems (F = 6.79; p = 0.010).
43	Contrary to the behavioral outcomes, none of the attention performance subscale scores
44	showed significant differences between the high- and low-risk SDB groups in either the
45	ADHD or control group.
46	Conclusions: The present findings suggest that SDB is associated with behavioral problems

47 in children with ADHD and controls, with stronger associations in control children. On the

- contrary, SDB has no association with cognitive attention performance. This study extends 48
- our understanding of the associations of SDB with behavioral symptoms and cognitive 49
- 50 functions in children.
- 51

- Keywords: sleep-disordered breathing, child, behavior, cognition, attention-52
- deficit/hyperactivity disorder 53
- in,

55 Introduction

56	Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder
57	characterized by three core symptoms, namely hyperactivity, impulsivity, and inattention.
58	Cases of ADHD are commonly observed among children and adolescent psychiatry
59	outpatients. With a global prevalence of approximately 5%, ^{1,2} ADHD is associated with poor
60	academic performance and attainment in childhood and poor occupational productivity in
61	adulthood due to impairment of executive functions. ^{2, 3}
62	ADHD is highly comorbid with mood and behavioral problems, such as depression,
63	anxiety, aggression, and substance abuse. The prevalence of major depression, multiple
64	anxiety disorder, and oppositional defiant disorder in clinically referred school-aged children
65	with ADHD is reportedly 47%, 33%, and 59%, respectively. ⁴
66	Sleep-related problems are some highly prevalent comorbidities in children with
67	ADHD. These problems include difficulty in falling asleep, bedtime resistance, excessive
68	daytime sleepiness, rhythmic movements during sleep, restless leg syndrome, sleep walking,
69	and night terrors. ⁵⁻⁷ Up to 50% of parents whose children have ADHD reported difficulties
70	with their child's sleep.6 Therefore, the Diagnostic and Statistical Manual of Mental
71	Disorders, Third Edition, ⁸ included sleep disturbances as symptoms of ADHD.
72	Among various sleep-related problems, sleep-disordered breathing (SDB) is one of
73	the most common comorbid conditions in children with ADHD. SDB is a continuum of
74	sleep-related breathing disturbances ranging from mild primary snoring (PS) to severe
75	obstructive sleep apnea (OSA).9 Indeed, SDB is a common pediatric problem, with the
76	incidence of OSA peaking between 2 and 6 years old, when the tonsils and the adenoids are
77	the largest in size relative to the airway. ¹⁰ The reported prevalence of pediatric SDB ranges

~

о**т** .

78	from 7% to 22% for PS and from 0.7% to 3.0% for OSA.9 Two studies reported that the
79	prevalence of SDB was higher in children with ADHD than in those without ADHD
80	(controls), i.e. 50% versus 22% in one study 11 and 56.8% versus 17% in another study. 12
81	Several studies have investigated the association between SDB and unfavorable
82	behavioral problems in children. Most pediatric studies on behavioral aspects and OSA have
83	reported an association between OSA and internalizing and externalizing problems, such as
84	hyperactivity, attention deficit, aggressiveness, anxiety, and social and thought problems.13-17
85	Other researchers have investigated the association between OSA and cognitive
86	functions in terms of the overall intelligent quotient (IQ), attention, memory and learning,
87	language, executive functions, and academic performance. ¹⁸ A meta-analysis concluded that
88	the intellectual abilities of children with OSA may be impaired, albeit within the normal
89	range; impairments in other cognitive domains remain unclear due to inadequate evidence.18
90	Studies evaluating the association between OSA and cognitive function, in terms of attention,
91	have also reported inconsistent findings; some studies have revealed that the attention
92	performance in children with OSA was significantly more impaired than that in the
93	controls. ^{19,20} However, Halbower et al. ²¹ showed that children with OSA did not differ from
94	healthy control children in terms of omission and commission errors, despite their lower IQ.
95	Furthermore, Jackman et al. ²² demonstrated that SDB, independent of severity, was
96	associated with poor behavioral outcomes, but not with cognitive performance.
97	Multiple studies have investigated the associations between SDB and behavioral and

cognitive outcomes. However, despite the aforementioned strong associations between ADHD and SDB, most studies have been performed in normal children with no psychopathology of ADHD. Furthermore, to our knowledge, no study has directly compared

the differential associations of SDB with behavioral and cognitive functions between children
with and without ADHD. Thus, we aimed to investigate the associations between SDB and
behavioral problems and cognitive functions during childhood through a study comprising
healthy children and children with ADHD.

105

106 Methods

107 Participants

This study included 341 children, between 6 and 10 years, who participated in a screening for 108 neurodevelopmental disorders conducted in a medium-sized city in South Korea from 2008 to 109 2010. The screening questionnaires, including the Korean version of the ADHD rating scale 110 (K-ARS) and the autism spectrum screening questionnaire (ASSQ), were distributed to 111 parents or guardians of 30,227 children. From these, 417 children who were screened in 2009 112 and 2010 on the basis of K-ARS and ASSQ cutoff scores of 19 and 15, respectively, were 113 randomly sampled and invited to participate in this case-control study. The participating 114 children were assessed by a psychiatrist who conducted a diagnostic interview and 115 administered a continuous performance test. Parents of the participating children responded 116 to a questionnaire assessing sleep and behavioral symptoms. After excluding children 117 diagnosed with other psychiatric disorders (autism spectrum disorder; n = 67) and with 118 missing data for the questionnaire on sleep and behavioral symptoms (n = 9), a total of 341 119 children (ADHD group = 155, control group = 186) were finally included in the analysis. 120 121 Before inclusion in the study, all of the children and their parents were provided with the rationale for and an explanation of the study, and written informed consent was obtained. The 122 study protocol was approved by the institutional review board of Dankook University 123

124 Hospital, Cheonan, Korea

125

126 Measurements

127 Assessment of SDB

The parents responded to the pediatric sleep questionnaire (PSQ), which was developed to 128 assess multiple sleep-related problems in children.²³ The PSQ contains 70 items with the 129 following scores: "yes" = 1, "no" = 0, and "don't know" = missing. Chervin et al.²³ also 130 suggested the Sleep-Related Breathing Disorder (SRBD) scale, which comprises 22 of the 70 131 PSQ items, and the average optimal cutoff for identifying pediatric cases of OSA is set at 132 0.33. The SRBD scale includes the following symptom categories: snoring, breathing 133 problems, sleepiness, and behavioral problems. However, the items included in the behavioral 134 subscale coincide with the items included under ADHD symptoms. Thus, during SDB 135 assessment, we excluded these items and adopted only those that were subjected to the factor 136 of breathing in a previous validation study on the original SRBD scale.²³ Finally, our study 137 used eight items—A2, A3, A4, A5, A6, A7, A24, and A25—corresponding to the breathing 138 factors of the original SRBD scale (including symptom categories of snoring, breathing 139 problems, and mouth breathing). Compared with the other items of the SRBD scale, these 140 items presented a higher odds ratio for the presence of SRBD.²³ A cutoff value of 0.33 was 141 used for identifying the high-risk SDB group. 142

143

144 Assessment of behavior and neuropsychological function

The children's behavioral symptoms were assessed using the K-ARS and the Behavioral
Assessment System for Children, Second Edition (BASC-2). The ARS is a parent-rated

147	assessment tool for identifying ADHD symptoms in children and consists of 18 items rated
148	on a 4-point Likert scale (0–3 points) ²⁴ ; the K-ARS was validated by Kim et al. ²⁵ The
149	BASC-2 is a multidimensional parent-rated assessment tool that assesses the internalizing
150	and externalizing behavioral problems of children and consists of 160 items rated on a 4-
151	point Likert scale (0–3 points). ²⁶ The children's cognitive functions were assessed using the
152	Korean version of the ADHD Diagnostic System (ADS), a computer-based continuous
153	performance test.27 The ADS evaluates the sustained attention and inhibitory control of
154	children using auditory and visual approaches. The children's scores on the BASC-2 and
155	ADS were transformed to T-scores, with higher T-scores indicating unfavorable behavioral
156	characteristics and poor performances.
157	
158	Statistics
159	Demographic variables were analyzed using descriptive statistics, χ^2 tests, and independent <i>t</i> -
160	tests. Between-group comparisons of the scores on the K-ARS, BASC-2, and ADS subscales
161	were performed by analysis of variance for the crude model and analysis of covariance for
162	the adjusted model. In the analysis of the adjusted model, sex, age, paternal and maternal
163	educational level, and household income level were considered as covariates. To examine the
164	linear association between the SDB scores and behavioral and cognitive function scores, a
165	general linear model was utilized. The analysis was performed with SPSS version 25.0 (IBM
166	Corp., Armonk, NY, USA) for Windows (Microsoft, Redmond, WA, USA).
167	
168	Results

169 **Participant characteristics**

170	Table 1 shows the characteristics of the participants. Parental education levels differed
171	significantly between the control and ADHD groups. The SDB score ($F = -2.10$; $p = 0.036$),
172	daytime sleepiness score (F = -3.12 ; p = 0.002), and the proportion of restless sleep ($\chi^2 = 6$.
173	16; $p = 0.013$) were significantly higher in the ADHD group than in the control group. The K-
174	ARS, BASC-2, and ADS subscale scores indicated significantly poorer outcomes with
175	respect to behavioral and cognitive functions in the ADHD group than those in the control
176	group.
177	
178	Comparison of the behavioral and cognitive functions between the high- and low-risk
179	SDB groups within the ADHD group
180	The results of the comparison of the behavioral and cognitive functions between the high-
181	and low-risk SDB subgroups in the ADHD group are shown in Table 2. The scores on the
182	BASC-2 subscales of externalizing problems (F = 4.22; $p = 0.042$), including hyperactivity (F
183	= 4.65; $p = 0.033$) and attention problems (F = 8.19; $p = 0.005$), differed significantly
184	between the high- and low-risk SDB groups. However, internalizing problems, such as
185	anxiety and depression, did not differ significantly between both groups. Furthermore, none
186	of the ADS subscale scores differed significantly between the high- and low-risk SDB
187	groups.
188	

189 Comparison of the behavioral and cognitive functions between the high- and low-risk

190 SDB groups within the control group

191 The results of the comparison of the behavioral and cognitive functions between the high-

and low-risk SDB subgroups in the control group are shown in Table 3. Contrary to the

193	ADHD group, the control group had significant differences between the high- and low-risk
194	SDB groups in terms of scores in internalizing problems (F = 9.89; $p = 0.002$), depression (F
195	= 9.45; p = 0.002), and somatization (F = 7.83; p = 0.006), as well as in externalizing
196	problems (F = 7.72; p = 0.006), including hyperactivity (F = 6.23; p = 0.013), aggression (F = $(1 + 1)^{-1}$)
197	5.00; $p = 0.027$), and conduct problems (F = 6.79; $p = 0.010$). Finally, similar to the results of
198	the ADHD group, the control group did not have significantly differences between the high-
199	and low-risk SDB subgroups in terms of the ADS subscale scores.
200	
201	Linear regression for the association between SDB scores and the behavioral and
202	cognitive function scores
203	Table 4 shows the results of the linear regression analysis performed for identifying the
204	association between SDB scores and the behavioral and cognitive functions scores in the
205	ADHD and control groups.
206	In the control group, the SDB score showed a significantly positive association with the K-
207	ARS total (β = 0.144; p = 0.047) and inattention subscale (β = 0.182; p = 0.012) scores. The
208	SDB score also presented a significantly positive association with the externalizing ($\beta =$
209	0.154; $p = 0.035$) and internalizing ($\beta = 0.222$; $p = 0.002$) problems on the BASC-2 scale. In
210	ADS, the SDB score had a significantly negative association with only the auditory
211	commission error ($\beta = -0.153$; p = 0.039).
212	Contrarily, in the ADHD group, the SDB score did not show a significant association with the
213	K-ARS scores. Furthermore, the SDB score had a significantly positive association with
214	externalizing problems ($\beta = 0.231$; p = 0.004), but not with internalizing problems. The SDB
215	score did not show significant associations with the scores on any subscales of ADS.

216

217 Discussion

The present cross-sectional study investigated the associations between SDB and behavioral and cognitive functions among elementary school children with ADHD and compared them with those identified in children without ADHD (controls). The findings of our study indicated that SDB was positively associated with multiple externalizing and internalizing problems in both children with and without ADHD. However, in a subgroup analysis, SDB was associated with higher BASC-2 subscale scores in control children than in children with ADHD.

The findings of the present study regarding the associations between SDB and 225 various pediatric behavioral functions are interesting when compared with those of previous 226 studies. For instance, several studies comparing behavioral problems between children with 227 OSA and controls consistently reported significant associations between SDB and 228 externalizing problems such as inattention, hyperactivity, and aggression, regardless of the 229 ADHD diagnosis.^{18, 28} In a review of 20 studies evaluating the association of 230 neurobehavioral morbidity with SDB, 12 studies reported positive associations between SDB 231 232 and hyperactivity/impulsivity, whereas five studies reported mixed findings.²⁸ Moreover, among the 13 studies that investigated the associations between SDB and inattention, only 233 two reported null findings, whereas seven and four studies reported positive and mixed 234 findings, respectively.²⁸ Our finding of a positive association between SDB and externalizing 235 problems in both the ADHD and control groups is consistent with these previous results. 236 Compared with the mainly consistent findings for externalizing problems, previous 237 studies have reported relatively inconsistent findings on the association of SDB with the 238

239 internalizing behavioral problems. Only two studies found clear elevation of anxiety or 240 depression in children with SDB on direct measurement, whereas two and eight studies found mixed or no significant associations, respectively.²⁸ Our study found a significant association 241 between SDB and internalizing problems in the control group, but not in the ADHD group. 242 These differences in the associations between SDB and internalizing problems suggest that, 243 in certain individuals, moderating factors (such as an ADHD diagnosis) might be involved, 244 which may have affected the results of the previous associative studies. Furthermore, the 245 stronger association identified between SDB and externalizing problems in the control group 246 than in the ADHD group suggests that the relationship between SDB and externalizing 247 problems in children with ADHD may be masked by the effects of the ADHD 248 psychopathology. 249

Contrary to the behavioral aspects, our study did not find significant differences in 250 251 cognitive attention performance (assessed by the continuous performance test) between the high- and low-risk SDB groups in either the control or ADHD groups; in the linear regression 252 analysis, only the auditory commission error in the control group had slightly significant 253 association with the SDB score. These findings are interesting when compared with the 254 inconsistent results of previous studies. Some studies have reported that OSA is associated 255 256 with poor attention performance.^{19,29,30} In a prospective study on 1,010 snoring and nonsnoring children aged 5 to 7 years, the mild and severe OSA groups exhibited a more 257 impaired visual attention performance, as assessed using NEPSY, a developmental 258 neuropsychological test.¹⁹ Another study on 28 children with and without OSA aged 4 to 8 259 years found that the OSA group was more impaired than the control group with respect to the 260 visual attention performance on NEPSY.20 261

262	Contrarily, other studies have reported no significant associations between OSA and
263	attention performance. ^{21, 22, 31-33} Similarly, a study on 153 children aged 3 to 5 years found
264	no significant differences in visual attention performance, as assessed by NEPSY, among
265	various groups categorized by SDB severity (control, PS, mild OSA, and moderate/severe
266	OSA).22 Giordani et al.32 reported no significant differences in the sustained attention
267	performance between the control and OSA groups in 79 children aged 5 to 12 years. Such
268	inconsistencies have additionally been reported for various cognitive aspects regarded as
269	separable domains, such as the IQ, memory, language, and academic achievement.18
270	Collectively, the findings of the present and previous studies suggest that the
271	associations between SDB and impairments in the cognitive function are less prominent than
272	the associations between SDB and unfavorable behavioral problems, especially externalizing
273	problems. These discrepancies between the behavioral and cognitive aspects might be
274	explained from different perspectives. Giordani et al.32 suggested that a lack of association
275	between SDB and cognitive function might reflect a combination of factors, including age,
276	daytime sleepiness, features of SDB too minimal to be evident on standard polysomnography
277	(PSG), and academic or environmental factors. The duration of SDB might be another
278	variable for cognitive function impairment. Jackman et al.,22 who studied a population of
279	younger children (3-5 years), did not find a significant association between SDB and
280	cognitive dysfunction, whereas a study on older school-aged children (7-12 years) did
281	identify a significant association between these factors. ³⁴ Such findings suggest that the
282	cumulative effects of years of habitual snoring or OSA may be evident in the brains of older
283	children, but they may not be apparent in younger children.

Behavioral adaptation in a child is determined by multiple genetic and environmental 284 factors and their interactions.³⁵ ADHD is a multifactorial disorder influenced by 285 environmental factors, with genetics playing a major role.³⁶ Our study suggests that the 286 behavioral functions of children may be influenced by various factors such as SDB and 287 ADHD diagnosis. Additionally, our findings suggest that routine activities of the participants, 288 as observed by parents, can be more easily affected than cognitive functions. The ability to 289 perform tasks requiring cognitive effort is relatively more preserved in children with SDB. To 290 elucidate the biological mechanisms underlying the discrepancies between associations of 291 SDB with cognitive and with behavioral functions, more sophisticated studies are needed in 292 the future. 293

Our study has a few limitations. First, the SDB symptoms were assessed by parental 294 ratings alone, and no objective measurements (such as PSG) were utilized. This might lower 295 the sensitivity of SDB symptom detection. In fact, previous studies using PSG reported a 296 higher prevalence of SDB in children with ADHD (50% and 56.8%)^{11,12} than that observed 297 in our study (16.1%), and this warrants future studies incorporating the PSG to confirm the 298 present findings. Nevertheless, previously, chronic snoring in children was found to be more 299 strongly associated with poor neurobehavioral outcomes than with PSG-defined OSA.28 300 Chervin et al.¹³ also reported that PSG assessments did not clearly predict baseline 301 neurobehavioral morbidities. Thus, the parent-rated questionnaire could be a useful 302 assessment tool for evaluating chronic snoring in children. Second, the internalizing and 303 externalizing functions were assessed only by the parent-reported scale. This is a common 304 shortcoming of most previous studies.²⁸ However, reports of psychiatric symptoms from 305 children and parents are often discrepant.³⁷ Parents tend to report internalizing symptoms, 306

307 such as depression and anxiety, less seriously than children do, because these symptoms are less visible than the externalizing symptoms.³⁸ Thus, future studies that include information 308 from multiple informants are needed to accurately evaluate the children's emotional 309 functions. Third, the limited sample size is another shortcoming of our study. Additional 310 studies with more participants will be helpful for confirming the associations between SDB 311 and the behavioral and cognitive functions in children. Finally, although ADHD was 312 diagnosed through a diagnostic interview by a trained psychiatrist on the basis of the DSM-313 IV-TR criteria,³⁹ a structured diagnostic tool to cover the full spectrum of psychiatric 314 disorders was not adopted. Thus, other psychiatric disorders such as depression and anxiety 315 were not considered in the process of diagnosis; this may introduce some bias in the selection 316 of the control group. 317

318

319 Conclusions

The present study extends our understanding of the associations between SDB and the behavioral and cognitive functions in children with ADHD and how these differ among those in healthy controls. Although SDB was positively associated with internalizing and externalizing behavioral problems, it was not associated with cognitive functions in schoolaged children. Additionally, our findings suggest that the association between SDB and behavioral problems may be mediated by other factors such as an ADHD diagnosis.

327 Funding

328	Th	s study was financially supported by the Ministry of Environment, Republic of Korea.
329	Th	e funding source had no involvement in the study design; collection, analysis, and
330	inte	erpretation of data; and writing of the article.
331		
332	Pot	tential conflicts of interest
333	Th	e authors have no conflicts of interest.
334		
335	Re	ferences
336	1.	Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide
337		prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry
338		2007;164:942-948.
339	2.	American Psychiatric Association. Diagnostic and statistical manual of mental disorders,
340		Fifth Edition (DSM-5®). American Psychiatric Association Publishing, Arlington, VA, ,
341		2013.
342	3.	Weyandt LL, Gudmundsdottir BG. Developmental and neuropsychological deficits in
343		children with ADHD. In: Barkley RA (ed.), Attention-deficit hyperactivity disorder, a
344		handbook for diagnosis and treatment, 4th ed. The Guilford Press, New York, NY, 2015;
345		116-139.
346	4.	Wilens TE, Biederman J, Brown S, Tanguay S, Monuteaux MC, Blake C, et al.
347		Psychiatric comorbidity and functioning in clinically referred preschool children and
348		school-age youths with ADHD. J Am Acad Child Adolesc Psychiatry 2002;41:262-268.
349	5.	Vélez-Galarraga R, Guillén-Grima F, Crespo-Eguílaz N, Sánchez-Carpintero R.
350		Prevalence of sleep disorders and their relationship with core symptoms of inattention

- and hyperactivity in children with attention-deficit/hyperactivity disorder. European
 journal of paediatric neurology 2016;20:925-937.
- 353 6. Sung V, Hiscock H, Sciberras E, Efron D. Sleep problems in children with attention-
- deficit/hyperactivity disorder: prevalence and the effect on the child and family. Arch
- 355 Pediatr Adolesc Med 2008;162:336-342.
- 356 7. Silvestri R, Gagliano A, Arico I, Calarese T, Cedro C, Bruni O, et al. Sleep disorders in
- children with Attention-Deficit/Hyperactivity Disorder (ADHD) recorded overnight by
 video-polysomnography. Sleep Med 2009;10:1132-1138.
- 8. Spitzer RL, Williams JB. Diagnostic and statistical manual of mental disorders.
- 360 American psychiatric association. Citeseer, 1980.
- 361 9. Ebert Jr CS, Drake AF. The impact of sleep-disordered breathing on cognition and
- 362 behavior in children: a review and meta-synthesis of the literature. Otolaryngology-
- 363 Head and Neck Surgery 2004;131:814-826.
- 10. Lynn Rosen C. Obstructive sleep apnea syndrome (OSAS) in children: diagnostic
- 365 challenges. Sleep 1996;19:S274-S277.
- 366 11. Golan N, Shahar E, Ravid S, Pillar G. Sleep disorders and daytime sleepiness in children
 367 with attention-deficit/hyperactive disorder. Sleep 2004;27:261-266.
- 12. Huang YS, Chen NH, Li HY, Wu YY, Chao CC, Guilleminault C. Sleep disorders in
- 369 Taiwanese children with attention deficit/hyperactivity disorder. J Sleep Res
- 370 2004;13:269-277.
- 13. Chervin RD, Ruzicka DL, Giordani BJ, Weatherly RA, Dillon JE, Hodges EK, et al.
- 372 Sleep-disordered breathing, behavior, and cognition in children before and after
- adenotonsillectomy. Pediatrics 2006;117:E769-E778.

374	14. Marcus C, Moore R, Rosen C, Giordani B, Garetz S, Taylor H, et al. Childhood
375	Adenotonsillectomy Trial (CHAT). A randomized trial of adenotonsillectomy for
376	childhood sleep apnea. N Engl J Med 2013;368:2366-2376.
377	15. Biggs SN, Vlahandonis A, Anderson V, Bourke R, Nixon GM, Davey MJ, et al. Long-
378	term changes in neurocognition and behavior following treatment of sleep disordered
379	breathing in school-aged children. Sleep 2014;37:77-84.
380	16. Weichard AJ, Walter LM, Hollis SL, Nixon GM, Davey MJ, Horne RSC, et al.
381	Association between slow-wave activity, cognition and behaviour in children with
382	sleep-disordered breathing. Sleep Medicine 2016;25:49-55.
383	17. Mulvaney SA, Goodwin JL, Morgan WJ, Rosen GR, Quan SF, Kaemingk KL. Behavior
384	problems associated with sleep disordered breathing in school-aged childrenthe
385	Tucson children's assessment of sleep apnea study. J Pediatr Psychol 2006;31:322-330.
386	18. Cardoso TDG, Pompeia S, Miranda MC. Cognitive and behavioral effects of obstructive
387	sleep apnea syndrome in children: a systematic literature review. Sleep Medicine
388	2018;46:46-55.
389	19. Hunter SJ, Gozal D, Smith DL, Philby MF, Kaylegian J, Kheirandish-Gozal L. Effect of
390	Sleep-disordered Breathing Severity on Cognitive Performance Measures in a Large
391	Community Cohort of Young School-aged Children. Am J Respir Crit Care Med
392	2016;194:739-747.
393	20. Barnes ME, Gozal D, Molfese DL. Attention in children with obstructive sleep apnoea:
394	an event-related potentials study. Sleep Med 2012;13:368-377.

- 395 21. Halbower AC, Degaonkar M, Barker PB, Earley CJ, Marcus CL, Smith PL, et al.
- Childhood obstructive sleep apnea associates with neuropsychological deficits and
 neuronal brain injury. PLoS Med 2006;3:e301.
- 398 22. Jackman AR, Biggs SN, Walter LM, Embuldeniya US, Davey MJ, Nixon GM, et al.
- 399 Sleep-disordered breathing in preschool children is associated with behavioral, but not
- 400 cognitive, impairments. Sleep medicine 2012;13:621-631.
- 401 23. Chervin RD, Hedger K, Dillon JE, Pituch KJ. Pediatric sleep questionnaire (PSQ):
- 402 validity and reliability of scales for sleep-disordered breathing, snoring, sleepiness, and
- 403 behavioral problems. Sleep Med 2000;1:21-32.
- 404 24. DuPaul GJ, Power TJ, McGoey KE, Ikeda MJ, Anastopoulos AD. Reliability and validity
- 405 of parent and teacher ratings of attention-deficit/hyperactivity disorder symptoms.
- 406 Journal of Psychoeducational Assessment 1998;16:55-68.
- 407 25. So YK, Noh JS, Kim YS, Ko SG, Koh YJ. The reliability and validity of Korean parent
- and teacher ADHD rating scale. Journal of Korean Neuropsychiatric Association
 2002;41:283-289.
- 410 26. Reynolds C, Kamphaus R. Behavior assessment system for children, (BASC-2) handout.
- 411 Encyclopedia of Clinical Neuropsychology AGS Publishing, 2004; 55014-51796.
- 412 27. Cho S-Z, Chun S-Y, Hong K-E, Shin M-S. A study of the development and
- 413 standardization of ADHD diagnostic system. Journal of the Korean Academy of Child
- 414 and Adolescent Psychiatry 2000;11:91-99.
- 415 28. Beebe DW. Neurobehavioral morbidity associated with disordered breathing during sleep
- 416 in children: a comprehensive review. Sleep 2006;29:1115-1134.

417	29. Esteller E, Barceló M, Segarra F, Estivill E, Girabent-Farrés M. Neurocognitive and
418	behavioral disturbances after adenotonsillectomy in obstructive sleep apnea syndrome.
419	Anales De Pediatria (Barcelona, Spain: 2003). 2013; 214-220.
420	30. Li HY, Huang YS, Chen NH, Fang TJ, Lee LA. Impact of adenotonsillectomy on
421	behavior in children with sleep-disordered breathing. Laryngoscope 2006;116:1142-
422	1147.
423	31. Chervin RD, Chung S, O'Brien LM, Hoban TF, Garetz SL, Ruzicka DL, et al. Periodic
424	leg movements during sleep in children scheduled for adenotonsillectomy: frequency,
425	persistence, and impact. Sleep Med 2014;15:1362-1369.
426	32. Giordani B, Hodges EK, Guire KE, Ruzicka DL, Dillon JE, Weatherly RA, et al.
427	Neuropsychological and behavioral functioning in children with and without obstructive
428	sleep apnea referred for tonsillectomy. Journal of the International Neuropsychological
429	Society 2008;14:571-581.
430	33. Uema SFH, Pignatari SSN, Fujita RR, Moreira GA, Pradella-Hallinan M, Weckx L.
431	Assessment of cognitive learning function in children with obstructive sleep breathing
432	disorders. Brazilian journal of otorhinolaryngology 2007;73:315-320.
433	34. Bourke R, Anderson V, Yang JSC, Jackman AR, Killedar A, Nixon GM, et al. Cognitive
434	and academic functions are impaired in children with all severities of sleep-disordered
435	breathing. Sleep Medicine 2011;12:489-496.
436	35. Ellis BJ, Boyce WT, Belsky J, Bakermans-Kranenburg MJ, van Ijzendoorn MH.
437	Differential susceptibility to the environment: An evolutionary-neurodevelopmental
438	theory. Development and Psychopathology 2011;23:7-28.

439	36. Thapar A, Langley K, Asherson P, Gill M. Gene-environment interplay in attention-
440	deficit hyperactivity disorder and the importance of a developmental perspective. Br J
441	Psychiatry 2007;190:1-3.
442	37. Jensen PS, Rubio-Stipec M, Canino G, Bird HR, Dulcan MK, Schwab-Stone ME, et al.
443	Parent and child contributions to diagnosis of mental disorder: are both informants
444	always necessary? Journal of the American Academy of Child & Adolescent Psychiatry
445	1999;38:1569-1579.
446	38. Cantwell DP, Lewinsohn PM, Rohde P, Seeley JR. Correspondence between adolescent
447	report and parent report of psychiatric diagnostic data. Journal of the American
448	Academy of Child & Adolescent Psychiatry 1997;36:610-619.
449	39. American Psychiatric Association. Quick reference to the diagnostic criteria from DSM-
450	IV-TR. APA Washington, DC, 2000.

Table 1. Characteristics of the participants
--

Variable		Control group	ADHD group	$\chi 2 \text{ or } t$	р
Number of participants		186	155		
SDB risk, n (%)	Low	166 (89.2)	130 (83.9)	2.133	0.152
	High	20 (10.8)	25 (16.1)		
Age (mean, SD)		7.71 (0.95)	7.39 (0.84)	3.21	0.001**
Sex, n (%)	Male	117 (63.2%)	110 (71.0%)	2.27	0.132
	Female	68 (36.8%)	45 (29.0%)		
Paternal education level, n (%)	\leq 12 years	60 (32.3%)	74 (47.7%)	8.50	0.004**
	> 12 years	126 (67.7%)	81 (52.3%)		
Maternal education level, n (%)	\leq 12 years	86 (46.2%)	91 (58.7%)	5.27	0.022*
	> 12 years	100 (53.8%)	64 (41.3%)		
	≤ 2,000	25 (13.4%)	30 (19.4%)	7.64	0.106
Household income, n (%) (1,000 KRW per month)	2,000 to 3,000	43 (23.1%)	49 (31.6%)		
(),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3,000 to 4,000	60 (32.3%)	35 (22.6%)		
	4,000 to 5,000	34 (18.3%)	25 (16.1%)		
	> 5,000	24 (12.9%)	16 (10.3%)		
SDB score (mean, SD)		0.11 (0.15)	0.15 (0.20)	-2.10	0.036*
Daytime sleepiness (mean of 4 items)		0.14 (0.22)	0.21 (0.22)	-3.12	0.002**
Restless sleep, n(%)	No	100 (53.8%)	62 (40.3%)	6.16	0.013*
	Yes	86 (46.2%)	92 (59.7%)		
Restless leg symptom, n(%)	No	153 (82.3%)	121 (78.1%)	0.94	0.332
	Yes	33 (17.7%)	34 (21.9%)		
K-ARS (mean, SD)					
Total		6.55 (8.18)	22.85 (8.69)	-17.80	<0.001**
Hyperactivity-impulsivity		2.79 (3.96)	10.22 (4.59)	-16.06	< 0.001**
Inattention		3.76 (4.57)	12.63 (5.04)	-17.03	<0.001**
BASC-2 (mean, SD)					
Externalizing problems		44.49 (7.49)	53.54 (9.59)	-9.56	<0.001**
Internalizing problems		42.63 (8.62)	47.24 (9.68)	-4.59	<0.001**
Behavioral symptom index		45.99 (8.42)	54.80 (9.37)	-9.12	< 0.001**
Adaptive skills		47.71 (8.64)	41.19 (8.22)	7.09	< 0.001**
ADS (mean, SD)					
Visual omission error		50.64 (12.71)	66.23 (27.02)	-6.60	<0.001**
Visual commission error		49.92 (10.82)	66.05 (24.74)	-7.53	<0.001**
Auditory omission error		46.23 (8.68)	56.83 (16.30)	-7.27	<0.001**
Auditory commission error		43.86 (7.94)	53.30 (15.20)	-6.97	< 0.001**

SDB, sleep disordered breathing; ADHD, attention deficit/hyperactivity disorder; K-ARS, Korean version of the ADHD Rating Scale; BASC-2, Behavior Assessment System for Children, Second Edition; ADS, ADHD Diagnostic System; * p<0.05; ** p<0.01.

Journal Pre-proof **Table 2.** Comparison of behavioral and cognitive functions between the SDB groups in children with ADHD

Variable	SDB	Crude model		Adjusted model ¹		
Vallable	Low-risk (n=130)	High-risk (n=25)	F	р	F	р
K-ARS						
Total	22.65 (9.15)	23.88 (5.72)	0.42	0.520	0.35	0.553
Hyperactivity-impulsivity	10.14 (4.77)	10.64 (3.57)	0.25	0.618	0.17	0.678
Inattention	12.52 (5.28)	13.24 (3.6)	0.43	0.512	0.42	0.517
BASC-2						
Hyperactivity	54.65 (10.54)	58.96 (11.39)	3.41	0.067	4.65	0.033*
Aggression	51.22 (8.42)	53.28 (11.16)	1.13	0.290	1.85	0.176
Conduct problems	52.03 (10.1)	55.76 (9.43)	2.92	0.090	3.05	0.083
Anxiety	43.78 (8.4)	44.64 (10.18)	0.20	0.653	0.24	0.627
Depression	52.81 (10.31)	54.48 (9.01)	0.57	0.450	0.54	0.465
Somatization	45.75 (9.46)	49 (10.34)	2.39	0.124	2.92	0.090
Atypicality	52.5 (10.6)	56 (12.13)	2.18	0.142	2.26	0.135
Withdrawal	49.45 (9.04)	50.52 (7.67)	0.31	0.579	0.29	0.589
Attention problems	58.99 (8.69)	64.64 (8.09)	9.05	0.003**	8.19	0.005**
Adaptability	46.09 (8.92)	43.96 (8.55)	1.21	0.273	0.58	0.447
Social skills	41.05 (8.98)	38.88 (8.45)	1.24	0.267	0.87	0.353
Leadership	43.07 (8.56)	39.84 (8.28)	3.01	0.085	1.56	0.214
Activities of daily living	40.72 (8.82)	34.72 (9.38)	9.50	0.002**	7.51	0.007**
Functional communication	43.98 (9.99)	41.64 (10.28)	1.14	0.288	0.45	0.505
Externalizing problems	52.94 (9.4)	56.68 (10.16)	3.24	0.074	4.22	0.042*
Internalizing problems	46.88 (9.68)	49.08 (9.62)	1.08	0.300	1.25	0.265
Behavioral symptom index	54.17 (9.25)	58.08 (9.54)	3.71	0.056	4.15	0.044*
Adaptive skills	41.79 (8.01)	38.04 (8.76)	4.46	0.036*	2.81	0.096
ADS						
Visual omission error	67.26 (28.49)	60.88 (16.87)	1.17	0.281	1.43	0.234
Visual comission error	65.58 (23.85)	68.44 (29.37)	0.28	0.599	0.42	0.519
Visual response time	52.73 (14.47)	53.36 (15.39)	0.04	0.844	0.21	0.647
Visual response time variability	69.26 (24.47)	68.84 (29.18)	0.01	0.939	0.04	0.850
Auditory omission error	56.47 (16.56)	58.72 (15.06)	0.40	0.529	0.45	0.501
Auditory comission error	53.08 (15.46)	54.44 (14.05)	0.17	0.684	0.15	0.703
Auditory response time	59.92 (17.95)	57.8 (15.87)	0.30	0.582	0.21	0.646
Auditory response time variability	62.48 (15.13)	64.6 (13.68)	0.42	0.517	0.74	0.391

SDB: sleep disordered breathing; ADHD, attention-deficit/hyperactivity disorder; K-ARS: Korean version of the ADHD Rating Scale; BASC-2: Behavior Assessment System for Children, Second Edition; ADS: ADHD Diagnostic system; ¹ Adjusted model: sex, age, paternal and maternal education level, and household income level were included as covariates. * p<0.05; ** p<0.01.

		Journal	l Pre-proof	
Table 3.	Comparison of behavioral and	d cognitive functions l	between the SDB groups in controls	

X7. 1.1.	SDB §	Crude model		Adjusted model ¹		
Variable	Low-risk (n=166)	High-risk (n=20)	F	р	F	р
K-ARS						
Total	6.37 (8.21)		0.80	0.373	1.18	0.278
Hyperactivity-impulsivity	2.77 (3.99)	2.95 (3.75)	0.04	0.849	0.17	0.680
Inattention	3.60 (4.53)	5.15 (4.72)	2.08	0.151	2.56	0.111
BASC-2						
Hyperactivity	44.44 (8.23)	49.30 (9.94)	5.94	0.016*	6.23	0.013*
Aggression	45.05 (6.45)	48.65 (10.23)	4.79	0.030*	5.00	0.027*
Conduct problems	44.23 (6.96)	48.35 (7.50)	6.15	0.014*	6.79	0.010*
Anxiety	42.15 (7.59)	45.15 (8.13)	2.74	0.099	3.41	0.067
Depression	45.84 (7.31)	51.30 (12.03)	8.45	0.004**	9.45	0.002**
Somatization	42.73 (7.50)	48.15 (14.31)	7.31	0.007**	7.83	0.006**
Atypicality	46.34 (7.75)	50.30 (8.45)	4.57	0.034*	4.89	0.028*
Withdrawal	48.18 (9.53)	52.25 (10.19)	3.20	0.075	3.03	0.083
Attention problems	48.73 (9.36)	52.85 (10.41)	3.36	0.068	2.78	0.097
Adaptability	50.32 (9.11)	46.15 (10.38)	3.63	0.058	3.10	0.080
Social skills	44.62 (8.64)	43.05 (7.35)	0.61	0.436	0.55	0.460
Leadership	46.42 (9.02)	42.30 (7.45)	3.84	0.051	3.74	0.055
Activities of daily living	50.42 (9.28)	42.25 (10.11)	13.58	< 0.001**	14.77	< 0.001**
Functional communication	50.83 (9.32)	45.65 (10.41)	5.37	0.022*	5.97	0.016*
Externalizing problems	43.98 (7.10)	48.65 (9.37)	7.16	0.008**	7.72	0.006**
Internalizing problems	41.99 (7.69)	47.90 (13.31)	8.72	0.004**	9.89	0.002**
Behavioral symptom index	45.39 (8.08)	50.95 (9.74)	8.08	0.005**	8.25	0.005**
Adaptive skills	48.29 (8.52)	42.90 (8.28)	7.18	0.008**	7.29	0.008**
ADS						
Visual omission error	50.85 (13.07)	48.95 (9.29)	0.40	0.530	0.53	0.468
Visual comission error	50.04 (11.05)	49.00 (8.86)	0.16	0.687	0.00	0.957
Visual response time	48.57 (10.19)	50.15 (10.71)	0.42	0.517	0.29	0.593
Visual response time variability	50.02 (8.74)	51.05 (8.08)	0.25	0.616	0.26	0.610
Auditory omission error	46.13 (8.89)	47.10 (6.84)	0.22	0.638	0.03	0.860
Auditory comission error	43.99 (8.29)	42.80 (3.98)	0.40	0.527	0.68	0.411
Auditory response time	57.38 (13.34)	60.00 (12.59)	0.69	0.406	0.40	0.529
Auditory response time variability	50.91 (11.62)	54.50 (12.37)	1.67	0.197	1.19	0.276

SDB: sleep disordered breathing; K-ARS: Korean version of the ADHD Rating Scale; ADHD, attention deficit/hyperactivity disorder; BASC-2: Behavior Assessment System for Children, Second Edition; ADS: ADHD Diagnostic System;

¹ Adjusted model: sex, age, paternal and maternal education level, and household income level were included as covariates. * p<0.05; ** p<0.01.

Table 4. Linear regression for the associations between SDB score and the behavioral and cognitive function							
	Crude n	nodel		Adjusted	l model1		
	В	β	р	В	β	р	
Control group (n = 186)							
K-ARS							
Total	9.86 (1.89 to 17.84)	0.177	0.016*	7.96 (0.11 to 15.81)	0.144	0.047*	
Hyperactivity-Impulsivity	3.16 (-0.73 to 7.05)	0.117	0.111	2.35 (-1.5 to 6.19)	0.088	0.230	
Inattention	6.71 (2.29 to 11.12)	0.216	0.003**	5.61 (1.27 to 9.96)	0.182	0.012*	
BASC-2							
Externalizing problems	8.74 (1.43 to 16.05)	0.172	0.019*	7.83 (0.54 to 15.12)	0.154	0.035*	
Internalizing problems	14.64 (6.37 to 22.91)	0.250	0.001**	13.00 (4.73 to 21.27)	0.222	0.002**	
Behavioral symptom index	11.97 (3.81 to 20.13)	0.209	0.004**	10.59 (2.52 to 18.66)	0.185	0.010*	
Adaptive skills	-11.24 (-19.64 to -2.85)	-0.192	0.009**	-9.7 (-18.11 to -1.30)	-0.165	0.024*	
ADS							
Visual omission error	-4.07 (-16.67 to 8.53)	-0.047	0.525	-3.70 (-16.50 to 9.11)	-0.043	0.570	
Visual commission error	-2.39 (-13.12 to 8.35)	-0.033	0.661	-2.56 (-13.02 to 7.89)	-0.035	0.629	
Auditory omission error	-2.24 (-10.85 to 6.38)	-0.038	0.609	-1.42 (-9.50 to 6.65)	-0.024	0.728	
Auditory commission error	-8.79 (-16.57 to -1.02)	-0.163	0.027*	-8.26 (-16.09 to -0.42)	-0.153	0.039*	
ADHD group (n = 155)			0				
K-ARS							
Total	5.1 (-1.76 to 11.95)	0.118	0.144	4.71 (-2.19 to 11.6)	0.109	0.180	
Hyperactivity-Impulsivity	2.59 (-1.04 to 6.21)	0.113	0.160	2.34 (-1.35 to 6.03)	0.103	0.211	
Inattention	2.51 (-1.47 to 6.5)	0.100	0.215	2.36 (-1.61 to 6.33)	0.094	0.241	
BASC-2							
Externalizing problems	10.43 (2.99 to 17.86)	0.219	0.006**	11.04 (3.52 to 18.56)	0.231	0.004**	
Internalizing problems	6.04 (-1.6 to 13.67)	0.126	0.120	6.37 (-1.45 to 14.19)	0.133	0.109	
Behavioral symptom index	10.49 (3.24 to 17.75)	0.225	0.005**	10.58 (3.18 to 17.98)	0.227	0.005**	
Adaptive skills	-7.98 (-14.39 to -1.57)	-0.195	0.015*	-7.02 (-13.49 to -0.55)	-0.172	0.034*	
ADS							
Visual omission error	-14.48 (-35.82 to 6.86)	-0.108	0.182	-15.45 (-37.38 to 6.47)	-0.115	0.166	
Visual commission error	7.38 (-12.24 to 27)	0.060	0.458	10.37 (-9.11 to 29.84)	0.084	0.295	
Auditory omission error	3.08 (-9.86 to 16.03)	0.038	0.638	4.25 (-8.79 to 17.3)	0.052	0.520	

ADHD, Attention-Deficit/Hyperactivity Disorder; SDB, Sleep Disordered Breathing; K-ARS, Korean version of the ADHD Rating Scale; BASC-2, Behavior Assessment System for Children, Second Edition; ADS, ADHD Diagnostic system;

0.706

2.53 (-9.82 to 14.88)

0.033

0.686

0.031

¹ Adjusted model: Sex, age, paternal and maternal educational level, and household income level were included as covariates. * p<0.05; ** p<0.01

2.31 (-9.76 to 14.38)

Auditory commission error

Highlights

- The link of SDB with behavioral and cognitive functions in children was investigated.
- Children with ADHD were compared with controls and grouped according to SDB risk.
- SDB was associated with externalizing behavioral problems in the ADHD group.
- The control group showed significant associations between SDB and internalizing and externalizing behavioral problems.

outrat

• Cognitive functions were not significantly associated with SDB in the control or ADHD group.

Potential conflicts of interest

The authors have no conflicts of interest.