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A B S T R A C T   

Attention-deficit/hyperactivity disorder (ADHD) and pathological pain are two complex syndromes of multi-
factorial origin. Despite their prevalence and broad impacts, these conditions are seldom recognized and 
managed simultaneously. The co-existence of neuropsychiatric conditions (such as ADHD) and altered pain 
perception and chronic pain has been noted in children, and the comorbidity of ADHD and chronic pain is well 
documented in adults. Pathophysiological studies have suggested dysfunction of the dopaminergic system as a 
common neurochemical basis for comorbid ADHD and pain. Considerable evidence supports the role of neu-
roinflammation in the pathophysiology of both. 

We suggest that central neuroinflammation underlies altered pain perception and pain sensitization in persons 
with ADHD. 

Based on our hypothesis, targeting neuroinflammation may serve as a potential new therapeutic intervention 
to treat ADHD and comorbid pain in children and adolescents and a preventive strategy for the development of 
chronic pain in adults with ADHD.   

Introduction 

The present hypothesis considers the coexistence of somatic and 
mental health complaints and the relationship between them. In other 
words, the whole affects the parts just as much as the parts affect the 
whole. This is in line with a holistic (rather than reductionistic) way of 
thinking. 

Attention-deficit/hyperactivity disorder (ADHD) and chronic pain 
are complex syndromes of multifactorial origins. ADHD is a neuro-
developmental disorder associated with cognitive, emotional, and 
behavioral deficits. It is one of the most common psychiatric pathol-
ogies, with an estimated prevalence ranging from 5 to 29% in children 
(depending on country, year of study, and method of diagnosis) [1] and 
2–5% in adults [2] worldwide. 

Chronic pain is a major health problem that negatively impacts 
quality of life. In the USA, approximately 100 million people suffer from 
pain, costing about $600 billion per year in health care and lost pro-
ductivity [3]. The prevalence of chronic pain is approximately 8% in the 
general population [4]. In clinics, patients with ADHD report alterations 
to perceptual functions, particularly impairment of pain perception 

[5,6]. In turn, chronic pain causes increased impulsivity [7] and induces 
attentional and cognitive deficits, both in human patients [8,9] and in 
preclinical animal models of peripheral nerve injuries [10]. 

Currently, pharmacological treatment of ADHD implies chronic 
administration of psychostimulants (e.g., methylphenidate), which rai-
ses important concerns regarding potentially harmful long-term effects 
[11,12], including addiction [13] and anxiety [14]. Patients with ADHD 
also often suffer from coexisting complaints such as social disabilities 
and emotional deficits [15,16]. Therefore, in line with a holistic vision, 
elucidating common mechanisms between ADHD and common comor-
bidities may aid in providing novel therapeutical strategies to also 
alleviate core and minor symptoms of ADHD itself. Despite their prev-
alence and broad impacts, ADHD and pain conditions are seldom 
recognized and managed simultaneously. In general, investigations of 
ADHD and pain are conducted separately in specialized settings. 
Improved knowledge regarding the interactions between neuronal cir-
cuits underlying cognitive, affective, and pain pathologies is key to 
developing better treatment strategies and ensuring patient-centered 
care. 

Our hypothesis focuses on an issue that affects the growing 

* Corresponding author. 
E-mail address: nora.kerekes@hv.se (N. Kerekes).  

Contents lists available at ScienceDirect 

Medical Hypotheses 

journal homepage: www.elsevier.com/locate/mehy 

https://doi.org/10.1016/j.mehy.2021.110717 
Received 4 July 2021; Received in revised form 1 September 2021; Accepted 17 October 2021   

mailto:nora.kerekes@hv.se
www.sciencedirect.com/science/journal/03069877
https://www.elsevier.com/locate/mehy
https://doi.org/10.1016/j.mehy.2021.110717
https://doi.org/10.1016/j.mehy.2021.110717
https://doi.org/10.1016/j.mehy.2021.110717
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mehy.2021.110717&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Medical Hypotheses 157 (2021) 110717

2

proportion of children and adolescents who experience deviations from 
the “average” in regard to both somatic and mental health measures. 
This hypothesis brings together persistent/chronic pain in combination 
with a psychiatric syndrome—ADHD. At present, there are no estab-
lished health care routines for examining psychiatric symptoms when 
investigating functional pain conditions in a somatic care setting, nor is 
there any knowledge of offering patients with ADHD or other neuro-
psychiatric diagnoses adapted treatments for pain conditions. Since 
ADHD and pain sensitization are mutually worsening neurological and 
psychiatric disorders, a better understanding of fundamental patho-
physiological pathways and their interactions may provide a broadly 
applicable conceptual framework and subsequent means of therapeutic 
interventions. 

Background to hypothesis 

Attention-deficit/hyperactivity disorder (ADHD) 

ADHD is a neurodevelopmental disorder that is recognized today by 
the number and severity of its core symptoms—inattention and hyper-
activity/impulsivity [17]. It is a complex and heterogenous disorder that 
originates in early childhood and continues throughout the lifespan for 
most people [18]. In adults, untreated ADHD symptoms can lead to 
lower quality of life and a higher likelihood of developing drug and 
alcohol abuse [19]. 

The underlying neurobiological background of ADHD is not yet fully 
elucidated, but it has been shown to include morphological, functional, 
and neurotransmitter alterations in the brain. Cortical deficits have been 
proposed as a hallmark of ADHD pathophysiology. In particular, 
reduced volume, gray matter density, and cortical thickness have been 
identified in the prefrontal, frontal, parietal, temporal, and entorhinal 
cortices [20,21]. The prefrontal cortex is of particular interest for the 
understanding of the neurobiology of ADHD; several subdivisions have 
been implicated (e.g., dorsolateral, ventrolateral, and anterior cingulate 
areas) [22–25]. Neuronal connectivity is also altered in individuals with 
ADHD. Neuroimaging studies in patients with ADHD have identified 
structural and functional abnormalities in networks comprising the 
fronto-striatal, cingulate, fronto-parietal, fronto-cerebellar, and parieto- 
occipital tracts [26–29]. It was initially proposed that deficits in 
monoaminergic transmission within the fronto-striatal network were 
associated with ADHD [30,31]. In fact, several monoamines-related 
genes have been proposed as potential candidates in the etiology of 
ADHD [32]. These deficits result in insufficient cortical regulation of 
subcortical structures. Later, this view was expanded to other regions 
[33]. 

Indeed, in addition to cortical abnormalities, ADHD has been linked 
with early morphological alterations in the subcortical and limbic re-
gions [34]. A major mega-analysis spanning 60 years highlighted key 
structural differences between the brains of participants with and 
without ADHD [35]. This study showed bilateral decreased volume in 
various regions, including the nucleus accumbens, amygdala, caudate, 
hippocampus, and putamen, with no difference in the volume of the 
pallidum or thalamus. Interestingly, some alterations showed gender- 
specific differences (e.g., changes in caudate volume were reported 
only in male patients with ADHD) [36]. Other studies confirmed that 
several areas of the limbic system, including the hippocampus [35], 
amygdala [37], and nucleus accumbens [38], displayed specific struc-
tural features in patients with ADHD. At a functional level, it has been 
proposed that disinhibition of the nucleus accumbens accounts for lo-
comotor hyperactivity [38]. 

In combination, these data support the roles of the cortical, subcor-
tical, and limbic regions in the hypothesis of delayed brain maturation in 
patients with ADHD. 

Neuropsychological studies have revealed several well-documented 
differences in executive function and motivation domains between pa-
tients with ADHD and healthy control patients [39]. Strong evidence 

points to dopamine system dysfunction at the onset of ADHD [40]. Ac-
cording to the dopamine theory, children without ADHD experience an 
immediate anticipatory dopamine signaling, while children with ADHD 
have a delay. This would explain the sensitivity to a delay in reinfor-
cement—in other words, as seen in preclinical models, children with 
ADHD choose small immediate reinforcements over large, delayed ones 
[41–43]. For this reason, ADHD has also been classified as a subtype of a 
general condition known as Reward Deficiency Syndrome [44,45]. This 
syndrome is characterized by altered neurotransmitter signaling, 
resulting in aberrant reward-related behavior [44]. Primarily, the 
altered neurotransmitter is dopamine. A change in dopamine transfer 
underlies deficits in attention networks, resulting in reduced learning 
ability and motivation [46] and increased risk for the development of 
substance use disorder [47]. For that reason, since oral methylphenidate 
administration can increase extracellular dopamine in the brain, it is 
used as a treatment for ADHD [48]. 

Altered pain perception and chronic pain 

Acute pain is often elicited by acute inflammation, and its biological 
significance is to protect wounded tissue. Nociceptive pain represents a 
normal response to noxious injury of tissues such as skin, muscles, 
visceral organs, joints, tendons, or bones. Noxious pain is often initiated 
in the periphery and follows the ascending pain pathways to cortical 
areas, where the conscious perception of pain develops. Alterations of 
these pain pathways may cause hypersensitivity such that pain loses its 
usefulness as an acute warning system and instead becomes chronic and 
debilitating. At some level, this can be considered as an extension of the 
normal healing process, promoting guarding and recovery of the injured 
area. In some pathological processes, however, this sensitization does 
not resolve, leading to chronic, pathological pain. Chronic pain may 
even persist long after the primary cause of the injury has disappeared. 

It is important to recognize that there is not one overarching, sin-
gular condition called chronic pain; rather, there are multiple etiologies 
of pain, each resulting from a different pathology and differing in its 
clinical presentation [49]. Chronic pain is usually subcategorized based 
on the mechanism of injury. Inflammatory pain results in activation and 
sensitization of the nociceptive pain pathway by a variety of mediators 
released at the site of tissue inflammation. Neuropathic pain is caused by 
damage to the nervous system itself, central or peripheral, either from 
disease, injury, or pinching. Other types of pain (e.g., cancer pain or 
dysfunctional pain) are indicated when no biological cause is identified. 

It is generally believed that neuronal plasticity of the somatosensory 
system in response to activity, inflammation, and neural injury results in 
chronic pain [50]. Neuronal plasticity consists of peripheral sensitiza-
tion in primary sensory neurons of dorsal root ganglia and trigeminal 
ganglia [51] and central sensitization of pain-processing neurons in the 
spinal cord and brain [52]. The International Association for the Study 
of Pain describes central sensitization as increased responsiveness of 
nociceptive neurons in the central nervous system to the normal or 
subthreshold afferent input [53]. Central sensitization first referred to 
the process through which a state of hyperexcitability is established in 
the central nervous system, leading to enhanced processing of noci-
ceptive (pain) messages [54]. Persistent nociceptive input leads to the 
increased release of neurotransmitters, neuropeptides, and growth fac-
tors from the primary afferent central terminals in the spinal cord and 
trigeminal nucleus. Through signal transduction, these neurotransmit-
ters induce a state of neuronal hyperactivity and hyperexcitability in the 
spinal cord and brain, known as central sensitization [55]. More 
recently, central sensitization was characterized as increased synaptic 
efficacy in the dorsal horn of the spinal cord following intense peripheral 
noxious stimuli, tissue injury, or nerve damage [56]. The current defi-
nition is broader, and central sensitization is now defined as enhance-
ment of the function of neurons and circuits in nociceptive pathways 
caused by increases in membrane excitability and synaptic efficacy [57]. 
Therefore, central sensitization may also include conditions like 
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increased central responsiveness due to dysfunction of the endogenous 
pain control system (e.g., reduced inhibition [58–59] and glial-neuronal 
interactions [3,60]. 

Coexistence of altered pain perception/pathological pain and ADHD 

Individuals with severe ADHD are more likely to have a greater 
symptom burden, greater functional impairment, and several psychiat-
ric co-morbidities [61], such as anxiety and mood and/or antisocial 
personality disorders [62–64]. In a 2016 national parent survey, the US 
Centers for Disease Control and Prevention identified frequent 
concomitant disorders that accompanied ADHD [65]. Their study 
showed that two thirds of children diagnosed with ADHD also suffered 
from mental, emotional, or behavioral disorders [65]. Interestingly, 
recent studies have indicated an association between attention deficits 
and altered sensory processing [66,67]. Attentional processes have been 
shown to regulate pain transmission through the modulation of brain 
networks [68] and descending pathways [69,70]. A high prevalence of 
neuropsychiatric conditions, including ADHD, has been documented in 
children and adolescents with chronic pain [71]. Rare yet existing evi-
dence suggests interplay between pain perception and the manifestation 
of ADHD in children and adolescents [72–74]. Clinical studies have 
reported a high prevalence of pain among adults with ADHD, suggesting 
an increased risk of pain disorder in patients with ADHD [75–79]. 
Moreover, recent clinical studies have highlighted the link between 
childhood ADHD and an increased risk of developing chronic pain in 
adulthood [80]. The increasing use of stimulants and opioids were 
associated with the diagnosis of pain in patients with ADHD, putting this 
population at risk with regard to the current opioid crisis [81]. ADHD is 
also highly comorbid with other psychiatric conditions (e.g., anxiety and 
depression) [82], which, in turn, are strongly associated with pain [83]. 
These disorders may contribute to pain sensitization but are not suffi-
cient to fully explain the development of pain pathologies in ADHD 
patients [79]. Conversely, chronic pain causes cognitive impairments 
and worsens ADHD symptoms in humans [8,9,84,85] and animal 
models [10]. As ADHD is frequently underdiagnosed [86–88], this co-
morbidity represents an important issue for pain specialists. 

Numerous experimental studies, as well as clinical observations, 
have provided strong evidence that cognitive (particularly attention- 
related) tasks are highly effective in modulating the pain experience, 
demonstrating how cognitive processes can interfere with pain percep-
tion [69,89]. Various neuroanatomical structures are at the crossroads 
of cognition and pain processing in the brain. Studies on attentional 
control of pain demonstrated that the responsiveness of neurons in 
primary somatosensory cortices (S1 and S2) to both nonpainful and 
painful stimuli is altered by the direction of attention in monkeys [90] 
and humans [91]. An opiate-sensitive descending pathway from the 
frontal cortex to the amygdala, periaqueductal grey matter, rostral 
ventral medulla, and spinal cord dorsal horn may also be involved in 
attentional and/or emotional modulation of pain [70,92]. Several areas 
of the brain that are involved in ADHD physiopathology also subserve 
the influence of affectivity on pain processing. The amygdala is a key 
neural substrate for pain integration in the brain [93–96] and may be at 
the crossroads of ADHD pathophysiology and pain processing [37,97]. 
Reciprocal connections exist between the amygdala and the entorhinal 
cortex and could jointly influence ADHD symptoms and the modulation 
of pain [21,98]. The cingulate cortex is involved in sustained attention 
and the psychopathology of ADHD [25,99,100], and it is also a central 
hub [101] for both the sensory-discriminative [102,103] and emotional 
components of pain [104–106]. 

Dysfunction of the thalamo-cortical ascending pathways is also 
implicated in comorbidity between pathological pain and psychiatric 
disorders. Indeed, the thalamocortical dysrhythmia model—which 
proposes that specific oscillatory pattern alterations underlie both 
neurological (Parkinson’s disease, tinnitus, neuropathic pain) and psy-
chiatric (depression) syndromes [107,108]—has long been accepted. 

Furthermore, recent studies based on this model have confirmed that an 
imbalance in the oscillatory patterns between descending pain inhibi-
tory pathways and ascending pain pathways exists in patients with 
chronic pain [109]. Interestingly, the treatment with antidepressant 
desvenlafaxine (which targets the serotine and norepinephrine systems) 
were found to reduce pain symptoms compared to placebo controls, 
possibly due to decreased functional connectivity in the thalamo- 
cortical-periaqueductal pathway [110]. 

The reward systems, and particularly the nucleus accumbens, are 
also implicated in alterations of partially overlapping circuits (e.g., be-
tween the nucleus accumbens and the caudate putamen) controlling 
both ADHD symptoms [38] and pain processing [111,112]. Reduced 
nucleus accumbens activity underlies alterations of reward circuits 
[113] and pain-induced negative affect [114]. Impairment of nucleus 
accumbens activity has also been proposed as a signature of chronic pain 
states [115]. The reward system being controlled by dopaminergic 
innervation, it is interesting to notice that also in healthy humans, 
polymorphisms in dopaminergic pathway genes are associated to 
increased pain perception [159]. 

Decreased brain dopamine levels, especially in the frontal and pre-
frontal cortices, are often associated with pain sensitization [69,116] 
and the etiology of ADHD [117,118]. Therefore, lesions of the dopa-
minergic system are of great interest for modeling ADHD in preclinical 
animal models. Accordingly, neonatal intracerebroventricular injection 
of 6-hydroxydopamine (6-OHDA) in rodents [119] generates ADHD-like 
animal models that display good face and predictive validity. One pre-
clinical study demonstrated that neonatal dopamine depletion in rats 
caused a hyperalgesic behavioral response (specifically to tonic chemi-
cal stimuli) and motor hyperactivity during adolescence [120]. We 
recently developed this 6-OHDA lesion model in mice and proposed a 
comprehensive assessment of ADHD-like symptoms [121,122]. Inter-
estingly, the 6-OHDA mouse model also exhibited changes to pain 
sensitivity for both basal and inflammatory pain conditions. These 
studies confirmed that developmental alterations of dopaminergic 
transmission may disrupt overlapping brain circuits involved in pain 
transmission and ADHD-like physiopathology. They further suggest 
possible interactions between these comorbid pathologies and offer the 
opportunity to manipulate neuronal circuits in animal models to test this 
hypothesis. 

Neuroinflammation as a link between ADHD and pain sensitization 

Neuroinflammation is associated with a broad range of psychiatric 
disorders, including depression [123], schizophrenia [124], bipolar 
disorder [125], and post-traumatic stress disorder [126]. 

As previously described, the pathophysiology of ADHD is still poorly 
understood. Evidence from human studies and animal models, while still 
incomplete, support the potential role of oxidative stress and neuro-
inflammation [127–129], especially during early neurodevelopment 
[130]. Epidemiological studies, including meta-analyses, have revealed 
that patients with ADHD are more likely than control patients to suffer 
from well-known inflammatory conditions such as asthma, allergic 
rhinitis, atopic dermatitis, and allergic conjunctivitis [128,131–133]. 
Moreover, maternal inflammatory status (eg obesity, asthma, autoim-
mune disease, infection and psychosocial stress) can trigger the inci-
dence of neurodevelopmental diseases, including autism spectrum 
disorder and ADHD in offspring [134]. This is in line with intergener-
ational psychiatry hypothesis suggesting that the mental problems 
observed in children are rooted in the exposure to adversity in the 
previous generation [135]. One prospective study with more than 
23,000 participants revealed that a maternal history of autoimmune 
disease was associated with an increased risk of ADHD [136]. Other 
observational data point to a strong association between ADHD and 
inflammatory and autoimmune disorders [132,133]. Neuro-
inflammation is associated with increased reactive oxygen species. 
Neurons are considered particularly vulnerable to oxidative damage, as 
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they have a comparatively high oxygen utilization [137]. Elevated 
maternal expression of the pro-inflammatory cytokine interleukin (IL)- 
13 has been linked to the occurrence of ADHD [138]. Pro-inflammatory 
cytokines also regulate beside tryptophan metabolism the dopaminergic 
pathways [139]; therefore, neuroinflammation could play a role in 
dopamine deficits. 

In summary, neuroinflammation involves glial activation, increased 
oxidative stress, and altered neurotransmitter metabolism [128]. 

Several reports have also indicated the role of neuroinflammation in 
pain [140]. Acute inflammation, which generally results in the percep-
tion of pain, serves an important protective and/or survival role by 
removing harmful stimuli, initiating the healing process, and restoring 
tissue integrity [141]. Thus, acute inflammation induces acute pain 
sensitization; this phenomenon is mostly peripheral. However, chronic 
neuroinflammation alters neural networks in the central nervous system 
and triggers central sensitization [109,141]. In turn, central sensitiza-
tion processes may also affect partially overlapping circuits that underlie 
different neurological functions [3,142]. 

Pro-inflammatory mediators released by activated microglia 
contribute to hypersensitivity to pain and provoke central sensitization. 
This has been particularly well studied in the spinal cord [60,143]. Pro- 
inflammatory cytokines, including IL-1β, IL-6, and tumor necrosis fac-
tor-α, have been shown to accelerate pain sensitization, while inhibitors 
of these cytokines reduce neuropathic pain [144]. The microglial in-
hibitor minocycline also decreases hypersensitivity to pain in a number 
of different models, including burns, spinal cord injuries, and chronic 
constriction lesions [145]. In addition, treatment of pain with cytokine 
inhibitors shows encouraging results in patients [141]. Interestingly, 
beyond the spinal cord, numerous pain-related areas of the central 
nervous system that are also implicated in ADHD (e.g., the cingulate 
cortex [146] and nucleus accumbens [114,147] are often altered by 
neuroinflammation. 

Furthermore, dysfunction of the dopaminergic system has been 
shown to contribute significantly to the development of neuro-
inflammation [148]. For example, dopamine affects the ability of 
microglia to secrete cytokines [149], and dopamine receptor activation 
directs the shift toward specific microglial pro-inflammatory pheno-
types, a phenomenon at the origin of inflammatory processes [150]. The 

current evidence suggests that high dopamine levels stimulate the low- 
affinity dopamine receptors, inducing an anti-inflammatory effect in 
microglia, while low dopamine levels selectively stimulate the high- 
affinity dopamine receptors, triggering inflammation [151]. 

The hypothesis 

We suggest a link between altered pain perception and a higher risk 
of developing chronic pain in ADHD, and we propose that this link is 
neuroinflammation. This may also open possibilities to develop new 
treatment strategies. 

The previously described relationships between lifelong ADHD, 
altered pain perception, the development of chronic pain, and the 
common inflammatory pathologies behind ADHD and pain conditions 
led us to the formation of this hypothesis (Fig. 1). 

Our hypothesis includes two stages. First, we make the hypothesis 
that pain and ADHD are commonly associated. This has been suggested 
by several studies, especially in adults with ADHD, but not yet unam-
biguously established and still debated for children. Importantly, the 
underpinning mechanisms have not been studied also far. The second 
stage of our hypothesis is that neuroinflammation is at the origin of 
ADHD and pain comorbidity. We propose that the persistence of neu-
roinflammatory processes leads to the development of ADHD and co-
morbid pain sensitization. Neuroinflammation triggers neuronal 
dysfunction in cortical, subcortical, and/or limbic structures that, in 
turn, may impair circuits involved in social cognition, impulse control, 
and attention. These areas overlap with those involved in pain pro-
cessing. Furthermore, from a neurochemical perspective, neuro-
inflammation has the capacity to disrupt dopaminergic regulatory 
circuits and a dysfunctional dopaminergic system could explain the 
concomitance of ADHD and altered pain processing. 

We have excluded other neurodevelopmental psychiatric conditions 
potentially coupled to dopaminergic dysfunction and altered pain pro-
cession such as the Autism Spectrum Disorder (ASD), mainly for two 
reasons. Firstly, the role of dopamine in ASD is not yet clearly estab-
lished, as some authors propose hyperactivity while others propose 
hypoactivity of dopaminergic pathways [152]. Moreover, beside dopa-
mine alterations, several other important neurochemical alterations 

Fig. 1. A summative schematic representation of the previously described relationships between ADHD, pain, and neuroinflammation that form the basis of 
our hypothesis. 
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(GABA and glutamate, serotonin, N-acetyl aspartate, oxytocin and 
arginine-vasopressin, melatonin, vitamin D, orexin, endogenous opi-
oids, and acetylcholine) are associated to ASD [153]. Secondly, 
regarding the pain comorbidity, although increased autism traits have 
been reported in children with chronic pain [71], patients with ASD 
most often show hypoalgesia. Furthermore, in a recent study no sys-
tematic dysfunction of pain modulation could be detected in adults with 
ASD compared to matched control participants [154]. Therefore, our 
hypothesis remains focused on ADHD and pain, proposing that 
dopamine-dependent neuroinflammatory processes in specific brain 
areas lead to these comorbid pathological conditions. Consequently, our 
hypothesis also suggests that early targeting of neuroinflammation may 
result in decreased phenotypic manifestation of inattention, impulsivity, 
and increased pain sensitivity while also contributing to the prevention 
of chronification of these pathologies (such as chronic pain disorders 
and adult ADHD). 

Evaluation of the hypothesis 

In support of our hypothesis, it is well accepted that attention and 
pain are intimately related. Attention can modulate pain perception; this 
is demonstrated by studies in which subjects who were engaged in a task 
requiring attention perceived less pain to the same stimulus than sub-
jects not doing such a task [69]. Contrarily, (chronic) pain reduces 
attention span [9]. In humans, recent evidence indicates that the pres-
ence of ADHD alters (increases) pain perception [76], and the preva-
lence of generalized pain is higher in patients with ADHD (up to 80%) 
than in control patients (17%) [75]. Interestingly, methylphenidate 
treatment for ADHD (stabilizing the dopaminergic function) can 
partially reduce nociception in adults [6]. To date, while an increased 
prevalence of ADHD symptoms has been found in children with chronic 
pain [71], sparse and inconsistent findings exist regarding the alteration 
of pain perception in children with ADHD. 

Moreover, neuroinflammation has been reported as a common de-
nominator for the co-occurrence of pain and depression, and other 
psychiatric condition (for review, see [155]). Therefore, it is safe to 
speculate that neuroinflammation may be implicated in pain concomi-
tant with ADHD. 

A distinctive aspect of neuroinflammation is the activation of glial 
cells that results in the release of pro-inflammatory cytokines. Several 
reports have indicated that elevated levels of central cytokines can 
induce hyperalgesia and allodynia by sensitization—that is, increase the 
neuronal response of specific pathways involved in pain perception 
[156]. Sensitization is driven by changes in synaptic plasticity. Neuro-
inflammation is a strong modulator of synaptic plasticity [157], 
inducing synaptic loss [158]. 

Thus, this evidence supports that neuroinflammation affecting syn-
aptic function is a risk factor for the development of ADHD symptoms 
and altered pain perception, leading to chronic pain. 

Consequences of the hypothesis and discussion 

Posner et al. [18], upon reviewing recent major discoveries about 
ADHD, emphasized the need for new knowledge about the pathophys-
iology of ADHD—inviting innovative thoughts and hypotheses chal-
lenging our current ways of thinking about ADHD, which may give rise 
to new and potentially more effective clinical treatment strategies. 

The implications of our hypothesis in science and health advances 
would have an impact on patients with ADHD and pain. 

Based on our hypothesis, targeting neuroinflammation would be a 
new potential therapeutic intervention in patients with ADHD and co-
morbid pain as well as a preventive strategy for adults with ADHD to 
avoid developing chronic pain. 

The hypothesis must be proven utilizing preclinical and clinical 
means. To do that, the experimental work will resolve the following: 1) 
The association between altered pain perception and ADHD needs to be 

specified in patients stratified by gender, ADHD type, and age (sepa-
rating children and adolescents). 2) As ADHD commonly occurs along-
side other psychiatric conditions, it is necessary to define whether (and 
how) comorbid conditions (and which ones) may alter the relationship 
between pain and ADHD. 3) Studies must demonstrate unquestionably 
that (neuro)inflammation etiology underlies ADHD and coexisting 
altered pain perception. 4) Cellular and molecular studies should focus 
on the relationship between neuroinflammation and synaptic plasticity 
in the dopaminergic connections and neuronal mechanisms involved in 
ADHD and pain. 5) The effects of anti-inflammatory substances on 
symptoms of ADHD and altered pain perception and central sensitiza-
tion should be tested at the cellular, molecular, and clinical levels. 

A better understanding of the fundamental pathophysiological 
pathways of ADHD and pain, their interaction, and their links with 
neuroinflammation may provide a broadly applicable conceptual 
framework and subsequent means of new therapeutic interventions. 
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