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Abstract
Skin diseases have become a challenge in medical diagnosis due to visual similarities.
Although melanoma is the best-known type of skin cancer, there are other pathologies that
are the cause of many death in recent years. The lack of large datasets is one of the main
difficulties to develop a reliable automatic classification system. This paper presents a deep
learning framework for skin cancer detection. Transfer learning was applied to five state-
of-art convolutional neural networks to create both a plain and a hierarchical (with 2 levels)
classifiers that are capable to distinguish between seven types of moles. The HAM10000
dataset, a large collection of dermatoscopic images, were used for experiments, with the
help of data augmentation techniques to improve performance. Results demonstrate that the
DenseNet201 network is suitable for this task, achieving high classification accuracies and
F-measures with lower false negatives. The plain model performed better than the 2-levels
model, although the first level, i.e. a binary classification, between nevi and non-nevi yielded
the best outcomes.

Keywords Image processing · Deep learning · Classification · Skin cancer · Melanoma

1 Introduction

Skin alterations are caused due to multiple factors, like allergies, infections, exposition to the
sun, etc. The last one is a common practice of most people, who looks for a tan of their skin.
However, this search for beauty can have a negative effect on the appearance of skin lesions.
This is a typical example of one of the reasons for skin cancer.
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Melanoma and non-melanoma skin cancer are highly present in Caucasians. The most
common non-melanoma affections are basal cell carcinoma and squamous cell carcinoma.
There were more than one million cases in 2018, being the 5th most common cancer. On
the other side, melanoma is a less occurring cancer (in the 19th position), with around three
hundred thousand new cases last year. Despite the lower number of detections, melanoma
causes most of the mortality cases within the skin cancer area.

Melanoma is caused by an abnormal multiplication of melanocytes, the cells that produce
pigment and give color to the skin. The sooner the melanoma is detected, the greater the
chances of cure. Nevertheless, it could spread to other parts of the body if it is not detected
early [1], causing an irremediable effect. The problem resides in the capacity of the detection
of melanomas, as they are similar in characteristics to other benign nevi [12]. Dermatologists
find hard to distinguish between a benign and a malign mole, being a challenge to find an
appropriate rule to classify them.

A common methodology to detect melanomas is the use of the ABCDE rule [19]: asym-
metry, borders, color, diameter, and evolving (Fig. 1). These are the warning signs that are
monitored in order to diagnose melanoma. High levels of asymmetry or border irregularities
are the first alert sign, as well as a strange color of the mole and more than 6mm diameter.
All these signs are monitored to analyze their evolution along the time. The more changes,
the more probability to be a malignant mole.

Nowadays, physicians use their experience to analyze and diagnose the presence of skin
melanoma by using the rule above mentioned. This methodology might be imprecise, and
subject to measurement errors. This motivates to provide a lesion classification system that
can support specialists in their clinical procedure, providing an additional accurate diagnosis
of the lesion. Moreover, the correct establishment of the type of lesion is important to dispense
the adequate treatment to the patient. On the other hand, the creation of an automatic tool that
could be installed on any computer or mobile device is of interest for hospitals, physicians in
underdeveloped environments and researchers, so they can evaluate patients in a cheap and
fast way.

Most of the automatic classification systems in medical imaging have suffered the problem
of data availability, provoking an insufficient capability of generalization of the prediction
models. In addition to this, training datasets lack sufficient quality in the sense of homo-
geneity in the acquisition procedure and non-expected objects present in the image, making

Fig. 1 Traditional clinical analysis followed by dermatologists (ABCDE rule)
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it necessary to carry out several preprocessing steps [2] and segment the region of interest
[10,11]. Moreover, another commonly used technique is the extraction of features that are
used then to improve the classification rate [4,35]. The use of specific features extracted from
the melanoma images was widely used to develop classification models [3,25,34], although
the main inconvenience of these approaches is the requirement of specific expertise to extract
the adequate features and the high quantity of time necessary to select the most appropriate.
Moreover, image preprocessing may introduce errors or loss of essential information that can
affect the final classification rate. A simple example is the low accuracy obtained when a poor
segmentation of the skin lesion is carried out. Until a few years, the classical workflow was
the use of these traditional techniques [22], yielding not good enough accuracy. In order to
overcome these limitations, deep learning models have recently been developed with success,
having the ability to automatically learn the crucial features that distinguish among classes
of images.

Deep learning has been applied to resolve very complex classification and segmentation
tasks [24,28] without the use of any image preprocessing method. The architecture of these
networks is mostly based on convolutional layers, which filter and extract essential features
of the images in order to learn the different lesions. For example, Zhou et al. [37] use
different modality images to learn the features that determine dementia cases. Commonly
named Convolutional Neural Networks (CNNs), they have been applied to many areas of
interest, showing exceptional performance in image and video processing [14,16]. Nowadays,
CNNs use the power of GPUs to compute a big amount of operations in a few seconds,
allowing them to process large datasets to create a reliable model to be applied in image
classification, recommender systems and object recognition and segmentation. Focusing on
medical imaging, with the increase of publicly available datasets the deep networks has shown
a great performance in medical image analysis [15]. Gao et al. [7] used neural networks fed
with extra privileged information to carry out strain reconstruction in ultrasound elastography.
Deep learning models have also used to detect vessel borders [5] and perceive blood flow
from angiographies [6]. Specifically, recent works for skin lesion classification [20,36] have
been published, although still there is a margin of improvement. These works are based on
a two-stage process, so they can segment and extract features with deep networks and then
make the prediction. Moreover, most of them focus on the two-classes problematic, and
different types of skin pathologies are usually grouped into the same class and not classified.

The aim of our work is to implement an automatic classifier of several classes of moles
without needing human intervention in the prediction. An end-to-end system is proposed to
classify skin diseases with the use of deep neural networks, which will be already trained for its
use by the user without requiring any parameter tuning. This paper evaluates the performance
of the state-of-art pre-trained deep networks for melanoma detection by applying transfer
learning. In this sense, the well-known HAM10000 dataset [33], which has been widely used
for the benchmark and training of dermatologists, was selected for the experiments. This
dataset contains more than 10000 images spread between 7 different classes (see Fig. 2) and
more than 50% of the images belong to the nevi class, which makes harder the classification
task. Our proposal aims to deal with the data imbalance to clearly differentiate between the
7 classes.

The main challenge of this study is to generate an efficient classification model by using
few images and dealing with unbalanced classes (nevi is highly the most prominent class).
For that purpose, in addition to the usual plain classifier composed by only one deep network,
an hierarchical classifier based on two levels (and two neural models) is proposed, where the
first neural network at the first level separates the nevi class from the rest, and the second one
classifies the other six classes. Additionally, finding adequate data augmentation techniques
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Fig. 2 Samples of the seven different classes of images

is also required to achieve the best results. Finally, overfitting also becomes a difficulty to
overcome due to the different distribution of the data. Consequently, this works includes
the following contributions: (i) the study of the applicability of transfer learning for skin
lesions image classification; (ii) the implementation of a two-stage classifier to deal with
class imbalance; (iii) a reliable study of the performance for the distinction among 7 types
of lesions.

The rest of the paper is organized as follows: Sect. 2 summarizes the state-of-art convo-
lutional neural networks oriented to object classification. Section 3 explains the proposed
methodologies to carry out the classification of melanomas. Experiments and results are pre-
sented in Sect. 4, while discussions are made in Sect. 5. In the end, Sect. 6 extract the main
conclusions of the work.

2 Deep Classification Networks

Convolutional neural networks have become an essential tool for object recognition, classi-
fication, and tracking, and benefited by the increase of data the performance, it has improved
enough to create automatic non-assisted systems that are used in many fields, as video-
surveillance or autonomous driving. In the medical imaging area, there are many tasks carried
out by radiologists and doctors that need to be helped to improve their diagnostics due to the
technical limitations of the images. The aim of this work is to use the power of deep learning
with images to assist dermatologists in the detection and classification of melanoma.

The main assumption of machine learning models is that data has to have common features
and similar distribution. Thus, in the case of the appearance of heterogeneity, deep learning
models suffer and need to be adapted and retrained from scratch with new extra datasets.
However, in most applications, this procedure in non-viable due to the lack of resources such
us image availability or enough budget to carry out the expenses. In those cases, a well-known
technique called transfer learning is appropriate, allowing to re-train an already good model
to adapt it to a specific problem.

If the data we want to classify is heterogeneous, i.e., the classes are clearly differentiable,
then the use of transfer learning may be suitable. There are a large number of classification
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models trained on huge datasets in order to classify objects. They have been trained on a
similar problem for hundreds of iterations in order to achieve good accuracy. Thus, some of
these networks are easily adaptable to similar situations such as medical image classification.
In this work, we analyze the performance of six widely known deep networks, which have
proved a good performance using transfer learning techniques.

GoogLeNet [29] was presented at the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2014 classification and detection challenges, also known as Inception. The main
difference with respect to AlexNet, one of the first classification networks, is the deepness
of the network, with a total of 22 layers. They increased the complexity of the network using
more neurons at each level as well. It is composed of modules named as Inception, including
a set of convolution layers and a max pooling, using a ReLU activation. The input is an RGB
image of size 224 × 224 and the output is a probability vector of 1000 classes.

InceptionV3 [31] is an evolution of the original Inception, where the 7 × 7 convolution
kernels are transformed into 3 × 3 including new extra convolutions. Moreover, the size of
the filters in the inception modules was halved while the number of them was increased
considerably. There are more inception modules than the previous version. In summary, this
network has a total of 42 layers and the computation cost is about 2.5 times than GoogLeNet.
The experiments on the ILSVRC 2012 challenge validation set showed a great improvement
with respect to state-of-art methods.

DenseNet201 [8] is a deep network based on a modification of the connections between
layers. Whereas in the traditional nets one layer is connected only to the following one,
DenseNet connects one layer to all the subsequent layers, i.e. all the preceding feature maps
are used as input for the next layers. The network architecture is based on multiple densely
connected “dense blocks”, including convolutional, max pooling and activation layers as a
transition between one block and the following one, for a total of 201 layers. Experiments on
ImageNet,1 CIFAR-10 and 100,2 and SVHN3 datasets demonstrated that high performance
can be achieved with less computation, due to the reduced number of parameters of the
network. Another advantage of this approach is that the network performs feature reuse and
propagation, alleviating the vanishing-gradient problem.

Inception-ResNetV2 [30] is a combination of two well known deep network, that tries
to take benefit from the residual connections of ResNet accelerating the training of the
Inception network. Concretely, more simple Inception blocks than the original one are used,
followed by filter-expansion layers in order to scale up the dimensionality produced by the
Inception block, and before applying the summations. This convolutional neural network has
a total of 164 layers and it has been presented at the 2015 ILSVRC challenge, improving the
performance of the ILSVRC 2012 classification task.

MobileNetV2 [27], unlike the previous networks, is a mobile neural network, optimized
for constrained environments with small resources, but prepared for multiple tasks and bench-
marks. The main novelty of this network is the inverted residual with linear bottleneck, a
procedure that eliminates non-linearities and maintains the representational power. The archi-
tecture of MobileNetV2 has a total of 53 layers, where the initial layer is a full convolution
followed by 19 residual bottleneck layers. A constant expansion rate is used throughout the
network. The networks were tested with ImageNet, COCO,4 and VOC datasets.5

1 http://www.image-net.org.
2 https://www.cs.toronto.edu/~kriz/cifar.html.
3 http://ufldl.stanford.edu/housenumbers/.
4 http://cocodataset.org.
5 http://host.robots.ox.ac.uk/pascal/VOC/.
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The network structures are summarized in Table1, and the details can be found in the
literature. The performance of the pre-trained models is depicted in Fig. 3, where the nets are
ranked based on the accuracy versus the number of layers.

3 ProposedMethods

Given an image X = {xi }N
i=1, xi ∈ [0, 255]3 belonging to one of the C classes, the deep

network carries out a set of operations in order to determine on which class k ∈ {1, . . . ,C},
the image falls. These operations can be represented as a function

F(X,W ) = argmax
k

yk (1)

where W represents the parameters of the trained neural network and yk are the class proba-
bilities produced by the net.

One of the problems in the training stage of any classification model is the presence
of unbalanced classes in the dataset. In order to analyze and deal with these situations,
two different prediction methodologies are proposed for the above mentioned deep learning
models:

1. Plain classifier: a neural model is used, whose weights are tuned by applying transfer
learning. This method directly classifies the input image into one of the 7 classes. Here
the impact of unbalanced classes may be high, being necessary to apply a preprocessing
stage to improve its performance. The operation of the plain classifier can be expressed
as:

F P (X,W P ) = argmax
k

yk, k ∈ {1, . . . , 7} (2)

where W P represents the parameters of the fine-tuned network for the seven types of skin
lesions.

2. Hierarchical classifier: this approach is composed of two neural models, assembling a
2-level classifier. The first level is trained to distinguish the nevi class from the rest, and
the second one classifies the other 6 classes.

FH
1 (X,W H

1 ) = argmax {y1, ȳ1} (3)

FH
2 (X,W H

2 ) = argmax
k

yk, k ∈ {2, . . . , 7} (4)

where W H
i represents the fine-tuned model for two and six classes respectively. The first

neural model becomes a specialist model acting as a discriminator for the nevi class,
which contains most of the images of the dataset. The second classifier is only applied if
FH

1 (X,W H
1 ) does not output the nevi class.

Figure4 schematize the two proposals. A single image is provided to both classifiers and
the output has to be one of the types of moles. In the case of the hierarchical methods, if the
first level network determines that the predicted label is a nevus then it stops. Otherwise, the
image is inputted into the second level classifier.

Another typical requirement of deep neural networks is the need for large datasets in
order to properly train a model. Otherwise, the trained network may suffer from a lack of
generalization, i.e. an over-fitting might appear in the final model. A common technique
to reduce this effect is data augmentation, which has been applied with success in many
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Fig. 3 Performance of the studied deep networks with respect to their number of layers

Fig. 4 Scheme of the operation of the proposed classifiers

classification problems, including in the medical field [9]. A robust convolutional neural
network can be invariant to translation, viewpoint, size or illumination and this is the premise
of data augmentation. There are different kinds of methods that can be applied to enlarge the
input dataset, such as geometric deformations, data wrapping or color transformations. The
most used are an affine transformation of the original image, like reflections, random crops,
and translations of the image.

The idea of a hierarchical model comes up because the HAM10000 dataset is a completely
unbalanced set in favor of the nevi class, as it is described in Sect. 4. Although the use of
data augmentation might level the training of the model, our aim is to remove the differences
between classes by the first CNN and then specializes in the second one on the non-nevi class
to achieve better discrimination.
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(a) (b)

Fig. 5 Class distribution of the HAM10000 dataset

4 Experimental Results

This section summarizes the experiments we carried out in order to evaluate the performance
of the proposed models.

4.1 Dataset and Data Augmentation

The publicly available HAM10000 dataset [33] has been utilized for the experimental results
and analysis of the proposed approaches. The HAM10000 dataset consists of 10,050 dermo-
scopic images belonging to seven different classes including actinic keratosis (akiec), basal
cell carcinoma (bcc), benign keratosis (bkl), dermatofibroma (df), nevi (nv), melanoma (mel),
and vascular skin (vasc). This dataset has been widely used as a benchmark for comparisons
of humans and machines, even in several classification challenges. The 10,015 dermoscopic
images were collected over 20 years from the department of dermatology at the Medical
University of Viena (Austria) and the skin cancer practice of Cliff Rosendahl in Queensland
(Australia).

The first important drawback of this dataset is related to the unbalanced distribution of the
data, which can be seen in Fig. 5a. There are almost 7000 images belonging to the nevi class,
while the others contain no more than 1000. This may provoke the network to specialize
in those images with similar characteristics to nevi, like benign keratosis. In addition, there
are few dermatofibromas and vascular skin images. Thus, the performance on the test set
should be analyzed carefully because the proportion of images is considerably lower than in
other classes. Consequently, the use of augmentation techniques is necessary to balance the
skewed distribution in the training stage. This data augmentation was done by using different
reflections and rotations of the original images, and it was applied during the training process.
The selected data augmentation techniques were:

– Horizontal flipping with a probability of 0.5.
– Vertical flipping with another probability of 0.5.
– Image rotations with a probability of 0.75 using a random angle in the range [−90, 90].

However, data augmentation can smooth the effects, but not solve the 7:1 ratio between nevi
and other skin lesions. Therefore, the 2-stages model was implemented to first equilibrate the
dataset as shown in Fig. 5b, and then to improve the classification of the non-nevi images.
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Regarding to the class imbalance effects, the low inter-class variability of some lesions
makes difficult their correct predictions by the neural network. Nevi are benign neoplasms
of melanocytes with a symmetric distribution of color and structure. In contrast, melanoma
is usually chaotic, which makes them easily distinguishable from nevi. Something similar
happens with dermatofibroma and vascular skin, presenting a strong color contrast between
the center and the outer part. The most problematic lesions are the actinic keratoses, the basal
cell carcinoma, and the benign keratosis, which are very similar in color and shape. The
classification model might fail more often with these types of images.

4.2 Training and Performance

There are several parameters that can be tuned in a deep neural network. However, the main
ones we are focusing on (with their selected values) are given below. This configuration
was deduced from our previous work [32] with the same problem, where several different
configurations and neural models were tested.

– Batch size (16): indicates the number of images processed in one iteration.
– Initial learning rate (0.0001): establishes with which rate is going to start the learning

procedure.
– Validation frequencies (10): is the number of iterations between evaluations of the vali-

dation metrics.
– Optimizer (SGDM): the algorithm which updates the weights and biases of the network

in order to minimize the loss function. In our experiments, the Standard Gradient Descent
algorithm with Momentum of 0.9 was selected.

– Maximum number of epochs (10): the maximum number of times the full dataset is
passed to the neural network.

Both the plain and the hierarchical models were previously trained on the ImageNet
database and fine-tuning was performed on the HAM10000 dataset in order to transfer their
knowledge to the skin diseases classification problem. The dataset was split into three sets in
order to carry out the fine-tuning and posterior evaluation: training (70%), validation (20%)
and testing (10%). Repeated holdout was employed in order to provide a more reliable eval-
uation of the classification performance. Therefore, K = 10 repetitions of the experiments
were executed by randomly splitting the dataset multiple times according to the previous
division.

The performance of each model and each deep network was compared with the standard
classification measures: Accuracy, Precision, Recall and F-measure. It is well-known that the
accuracy measures the proportion of the true detections, while the precision is the proportion
of relevant instances among the retrieved instances and recall is the proportion of relevant
instances that have been retrieved over the number of relevant instances. The F-measure
provides a good overall evaluation of the performance of a given method considering both
the precision and the recall. All measures are ranged between 0 and 1, being the higher the
better.

The formulation of each measure is written as follow:

Accuracy = T P + T N

T P + F P + F N + T N
(5)

Recall = T P

T P + F N
(6)

Precision = T P

T P + F P
(7)
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(a) (b)

Fig. 6 Performance of the addressed models in the training process

Table 2 Accuracy results of the
plain classifier

Model Accuracy

Training Validation Test

DenseNet201 0.9618 0.8787 0.8773

GoogLeNet 0.8465 0.8093 0.8013

Inception-ResNetV2 0.8669 0.8347 0.8322

InceptionV3 0.8955 0.8487 0.8412

MobileNetV2 0.8928 0.8457 0.8431

Each deep network was tested with the training, validation and test sets
The best performance is shown in bold

F-measure = 2 · Precision · Recall

Precision + Recall
(8)

where T P , T N , F P , and F N denote the true positives, true negatives, false positives, and
false negatives, respectively. In addition, the average of the recall, precision, and F-measure
among classes will be computed in order to obtain a precise measure that it is not corrupted
by the class imbalance. Note that the average recall is the equivalent to the balanced accuracy
for multi-class problems.

The training curves for the fine-tuning of the five deep networks studied in this work
are presented in Fig. 6. It can be seen that DenseNet201 is clearly the most efficient model
achieving the highest accuracy and the lowest loss. InceptionV3 seems to be rather unstable,
while Inception-ResNetV2 has the worst training performance reaching a bit of overfitting.

4.3 Results

The results on the training, validation and test sets of the two methods, are shown in Tables 2
and 3. In the case of the plain classifier shown in the former Table, most of the neural
networks carried out good training accuracy but DenseNet201 excels with respect to the
others achieving 96% of correct classifications. The tendency in the validation and test sets is
similar. It is remarkable that DenseNet201 has worsened its performance by 9% with respect
to the training set, while Inception-ResNetV2 has only fallen 3% its accuracy.

On the other hand, Table3 shows the performance of each level of the hierarchical classifier.
In the first level (Table3a) DenseNet201 again yields the best accuracy in the training set,
with more than 96%. However, on the validation and test sets, it suffers again of a lack of
generalization distinguishing between a nevi or a non-nevi image, and being the InceptionV3
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Table 3 Accuracy results of the
hierarchical classifiers for each
level and network

Model Accuracy

Training Validation Test

(a) Level 1

DenseNet201 0.9657 0.8922 0.8912

GoogLeNet 0.9045 0.8717 0.8698

Inception-ResNetV2 0.8968 0.8637 0.8610

InceptionV3 0.9393 0.8937 0.8911

MobileNetV2 0.9256 0.8717 0.8691

(b) Level 2

DenseNet201 0.9252 0.7628 0.7620

GoogLeNet 0.7481 0.6692 0.6671

Inception-ResNetV2 0.8082 0.7266 0.7259

InceptionV3 0.6488 0.6269 0.6258

MobileNetV2 0.8187 0.7190 0.7188

Each deep network was tested with the training, validation and test sets
The best performance is shown in bold

network very competitive in this matter. MobileNetV2 also achieves high rates in this first
step. Compared with the plain model, the binary classification accuracy rate outperforms
the seven-class classification model, which may indicate that the networks distinguish better
between benign and malign moles that between classes individually. Thus, the inputs of the
second level should be adequate enough to avoid misclassifications.

However, the results of the second level are a bit worse. GoogLeNet and InceptionV3
do not get to have a good convergence in training, yielding bad accuracies (< 75%) not
only in the validation and test sets, actually also in the training data. MobileNetV2 and
Inception-ResNetV2 perform better with around 81% but far from the desired results. The
case of DenseNet201 is very particular because the training accuracy is good enough but its
capacity of generalization on the validation and test sets falls 15%. This indicates symptoms
of over-fitting which might be caused by a lack of enough images to fine-tune properly these
deep networks.

The next three tables sum up the detailed measures of each model and network using the
whole HAM10000 dataset. Average values of recall, precision and F-measure among classes
were computed. Table4 presents the results of the first level of the hierarchical classifier, i.e
the binary classifier. InceptionV3 and DenseNet201 yield measures greater than 90%, with
the exception of recall and F-measure for InceptionV3. The 92% of F-measure obtained by
DenseNet201 verifies that this network is very appropriate for the classification of nevi and
non-nevi. A lower precision value for Inception-ResNetV2 means that this network provokes
many false positives but its high recall indicates that the false negatives are not predominant.
In medical applications, the absence of false negatives is crucial to avoid the non-diagnosis of
malignant moles. However, MobileNetV2 has the opposite effect, which is not recommended
for this task.

Compared with the classifier of seven types of moles showed in Table5, the performance
of DenseNet201 is better in the binary model, being also the best among the other networks in
this modality. In this occasion, the second position is for MobileNetV2 since the true positive
rate is around 80%, much better than the rest of the models, which have good accuracy values
but poor F-measure. These results indicate that transfer learning is more effective when we
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Table 4 First level results (hierarchical classifier) for each network

Model Accuracy Avg. recall Avg. precision Avg. F-measure

DenseNet201 0.9509 0.9157 0.9346 0.9251

GoogLeNet 0.8980 0.8520 0.8413 0.8466

Inception-ResNetV2 0.8902 0.9115 0.7890 0.8458

InceptionV3 0.9302 0.8438 0.9388 0.8888

MobileNetV2 0.9148 0.8088 0.9241 0.8626

Accuracy and average recall (i.e balanced accuracy), precision and F-measure among classes measured on the
overall dataset are presented
The best performance is shown in bold

Table 5 Results of the plain classifiers for each network

Model Accuracy Avg. recall Avg. precision Avg. F-measure

DenseNet201 0.9452 0.9050 0.9203 0.9126

GoogLeNet 0.8390 0.6523 0.7667 0.7049

Inception-ResNetV2 0.8605 0.6661 0.8035 0.7284

InceptionV3 0.8862 0.7492 0.8657 0.8032

MobileNetV2 0.8834 0.8009 0.8175 0.8091

Accuracy and average Recall (i.e balanced Accuracy), Precision and F-measure measured on the overall dataset
are presented
The best performance is shown in bold

Table 6 Results of the hierarchical classifiers for each network

Model Accuracy Avg. Recall Avg. Precision Avg. F-measure

DenseNet201 0.9173 0.8480 0.8530 0.8505

GoogLeNet 0.8234 0.6234 0.7323 0.6735

Inception-ResNetV2 0.8280 0.7086 0.6855 0.6969

InceptionV3 0.8277 0.4992 0.7522 0.6002

MobileNetV2 0.8604 0.6845 0.7818 0.7299

Accuracy and average recall (i.e balanced accuracy), precision and F-measure among classes measured on the
overall dataset are presented
The best performance is shown in bold

tried to classify between two classes than with seven, although in both cases the best deep
network achieved an accuracy of around 95% and a balanced accuracy of around 91%.

Focusing on the performance of the hierarchical model (Table6), the best outcomes are
produced again by DenseNet201, with 91% accuracy and 85% of F-measure and precision
as reference values. The other networks behaved badly, being MobileNetV2 the most close
to the winner. However, the results are worst compared to the plain classifier. The results of
the first level showed in the previous table are quite good but the final classification of the
malignant moles is not good enough. The main reason for this might be the bad accuracies
of the second level yielded in Table3. The same configuration was applied for all networks
and more over-fitting is present in DenseNet201.

A detailed analysis can be extracted from the confusion matrices depicted in Figs. 7 and 8.
The first figure shows the predictions for the plain classifier. The blue diagonal corresponds to
the true positives, where the saturation indicates the percentage of images correctly identified.
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(a) (b)

(d)

(e)

(c)

Fig. 7 Confusion matrices of the plain classifiers generated using the whole dataset

Also, note that the balanced accuracy (the average of the diagonal values) is equal to the
average recall shown in the previous tables.

The differences among networks are very small for all classes with the exception of the
melanoma class (mel). DenseNet201 classifies 81% of melanoma images correctly where
the rest of the networks almost do not overpass the 55%. This set of images is usually
misclassified as benign keratosis (bkl) and could be the main reason for the accuracy drop.
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(a) (b)

(d)

(e)

(c)

Fig. 8 Confusion matrices of the hierarchical classifiers generated using the whole dataset

On the other hand, the confusion matrices of the hierarchical model presented in Fig. 8
reflect a general spread of the predictions. For example, InceptionV3 is not able to iden-
tify dermatofibromas (df) and vascular skin (vas) as good as before, and either GoogLeNet
Inception-ResNetV2 and MobileNetV2 confuses the basal cell carcinoma (bcc) with benign
keratosis. If we taking into account the image examples presented before in Fig. 2, these
inconsistencies are reasonable due to the similarity between classes and the lack of general-
ization of the second classifier.
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(a) (b)

Fig. 9 Accuracy for 10 repeated holdout cross-validation

(a) (b)

Fig. 10 Balanced accuracy for 10 repeated holdout cross-validation

In general, the balanced accuracy yielded by the DenseNet201 model is the highest one
for both the plain and hierarchical classifiers. In order to have a better quality assessment of
the models, repeated holdout cross-validation was carried out and the results are shown in
Figs. 9 and 10. Boxplots summarize the 10 repetitions of the classification measures for the
whole dataset.

The accuracy outcomes depicted in Fig. 9 showed that the previous results were coherent.
There is low dispersion among trainings except for the Inception-ResNetV2 in the plain
classifier and DenseNet201 in the hierarchical, although the tendency for both models is very
similar. DenseNet201 presents the best outcomes arriving at 90% accuracy, while GoogleNet
and Inception-ResNetV2 are always below 85%.

If we focus on the balanced accuracy (see Fig. 10), the results are slightly worse although
the behavior of the methods is very similar to global accuracy. InceptionV3 differs a bit
yielding worse balanced accuracy than MobileNetV2. 82.5% of balanced accuracy is the
best measure obtained, being DenseNet201 the model who is near this performance.

A visual representation of the features learned by the DenseNet201 network is depicted
in Fig. 11. Here the main differences are not manifested as edges or shapes, but with color
variations. For example, melanoma class (mel) is clearly distinguishable due to the brown
and orange specks. However, there few similarities with benign keratosis (bkl) and nevi (nv)
classes. This fact can be also seen in the confusion matrices, where the predicted class of
a melanoma image is sometimes confused by one of these ones. Something similar occurs
with the actinic keratosis (akiec), whose features have not a clear pattern and are confused
mostly with the bkl class. On the other hand, vascular skin (vasc) is the most differentiable
class since its purple and circular specks are unique. It presents the lowest percentage of
confusion.

In Table7 the measures of each class of the best method (DenseNet201) are detailed. It
can be seen that the nevi class (nv) is well identified in both plain and hierarchical models,
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Fig. 11 Feature maps for each class of the final fully convolutional layer of the DenseNet201

Table 7 Results of the Densenet201 model for each class

Class Plain Hierarchical

Recall Precision F-measure Recall Precision F-measure

akiec 0.8624 0.9126 0.8868 0.7523 0.8119 0.7810

bcc 0.9163 0.9128 0.9146 0.8833 0.8919 0.8876

bkl 0.9026 0.9059 0.9043 0.8417 0.8171 0.8292

df 0.9043 0.9204 0.9123 0.8087 0.7440 0.7750

mel 0.8104 0.9029 0.8542 0.7592 0.8180 0.7875

nv 0.9812 0.9624 0.9717 0.9684 0.9588 0.9636

vasc 0.9577 0.9252 0.9412 0.9225 0.9291 0.9258

due to the presence of a large number of images within this class. The vascular skin (vas) is
also recognized with more than 92% of F-measure because the net detected strong features in
this type of image. The main problem of the 2-level classifier resides in the misclassification
of actinic keratosis, dermatofibroma and melanoma.

4.4 Times Comparison

In addition to the classification performance of the tested models, a comparison in terms
of computational time was carried out. Training and testing times were measured and the
results are summarized in Table8, where the mean and standard deviation of the measurements
among the 10 repetitions is presented.

The training stage takes around 8h for DenseNet201 and Inception-ResNetV2 for both the
plain and hierarchical classifiers, being the slowest models. It is important to remark that this
training is a fine-tuning of a pre-trained network, which needed several days to be trained.
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Table 8 CPU times comparison between the tested models

Model Plain Hierarchical

Fine-tuning (h) Testing (s) Fine-tuning (h) Testing (s)

DenseNet201 7.311 ± 0.076 0.017 ± 1.279e−5 9.084 ± 0.100 0.025 ± 5.733e−4

GoogLeNet 1.113 ± 0.008 0.003 ± 1.277e−5 1.298 ± 0.006 0.017 ± 6.531e−5

Inception-ResNetV2 7.519 ± 0.094 0.016 ± 5.092e−5 9.256 ± 0.141 0.017 ± 5.417e−4

InceptionV3 2.590 ± 0.004 0.007 ± 1.013e−5 3.094 ± 0.007 0.017 ± 3.182e−4

MobileNetV2 1.635 ± 0.010 0.006 ± 1.755e−5 1.950 ± 0.015 0.017 ± 2.760e−4

Mean and standard deviations were computed. The fine-tuning columns present to the overall training stage
in hours, while the testing columns present the time needed to test one image in seconds

Table 9 Comparison with other state-of-art methods using HAM10000 dataset for classification of seven
classes of skin lesions

Approach Best results

Ours Accuracy in training: 0.961, in validation: 0.878, in testing: 0.877

Nugroho et al. [21] Accuracy in training: 0.800, in testing: 0.780

Shahin et al. [28] Accuracy in validation 0.899

Khan et al. [13] Accuracy in testing: 0.898

Moldovan [18] Accuracy 1st level: 0.850, 2nd level: 0.750

Mobiny et al. [17] Accuracy in testing: 0.8359 ± 0.170

Sae-Lim et al. [26] Accuracy: 0.832, Recall: 0.850, F-measure: 0.820

Pai and Giridharan [23] Accuracy in testing: 0.780

The best performance is shown in bold

Thus, we are reducing the time considerably. Nevertheless, the testing of an image is quite
fast for all methods, and much faster that traditional methods than usually need to extract
features before making a prediction.

On the other hand, GoogLeNet is the fastest model for training and testing, followed
by MobileNetV2. While GoogLeNet does not achieve a good classification performance,
MobileNetV2 is suitable for its use in skin lesion diagnostic in a fast way and integrated into
low-cost hardware.

5 Discussion

From the previous section, it can be concluded that it is possible to achieve a good classi-
fication performance with an adequate combination of fine-tuning and data augmentation.
Nevertheless, this work would be useless if we do not make a comparison of the performance
of our proposal with the state-of-art. For that purpose, we have searched the recently pub-
lished works that employ the same HAM10000 dataset for their work, and their best results
were summarized in Table9.

Nugroho et al. [21] presented a custom convolutional neural network with only 9 layers,
which is very efficient in terms of resource usage, although the classification accuracy is
only 80%. Shahin et al. [28] combined the outputs of the well-known ResNet50 and the
InceptionV3 with an ensemble technique to obtain 89.9% accuracy on the validation set. A
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similar result was obtained by Khan et al. [13] on the test set, where first the features are
extracted by a multi-modal CNN and then pass through a support vector machine with an RBF
kernel. Moldovan [18] developed a 2-step classification method using DenseNet121, dividing
into three and four classes. The first one yielded an accuracy of 85% and the second 75%.
Bayesian DenseNet169 was used by Mobiny et al. [17] to obtain an accuracy of 84% on the
test set. while a modified version of MobileNet implemented by Sae-Lim et al. [26] performed
a few worse. Finally, Pai and Giridharan [23] created a website application based on VGGNet
to provide 78% accuracy for testing. Therefore, we can say that our work overcomes some
of the recent methods based on deep learning for skin lesion classification.

Comparing the plain and the hierarchical classifiers, we found the first one more appropri-
ate for this task. The data augmentation techniques worked better when the class imbalance
is pronounced. The hierarchical classifier provides an effective way to discriminate between
nevi and non-nevi moles with 96% accuracy. More work should be done at the second level
to distinguish the rest of the lesions.

The main limitation of the proposed method is its dependency on the type of images con-
tained within each class. The intra-class variance could be difficult to overcome because each
image would need a specific preprocessing. The basis of deep learning is that it works well
with big datasets but with low variance in each class. Another drawback we encountered for
the hierarchical classifier is that the second level was not able to distinguish adequately the
non-nevi images. This may indicate similarities between classes that should be considered
to avoid over-fitting.

6 Conclusions

We have presented two frameworks based on transfer learning for computer-aided diagnosis
of malignant moles in the skin. In addition to the nevi and melanoma classes, the usual
classification, we tried to classify the other five types of skin diseases. Five well-known
convolutional neural networks were fine-tuned using the HAM10000 dataset, and used in
two different proposed frameworks: a plain model and a hierarchical model with 2 levels, the
first level deals with the distinguishing between nevi and non-nevi images and the second
one to classify the malign moles (non-nevi).

Experiments showed that the best deep network is DenseNet201, being around 10% better
than the rest of the networks in all measures, and specifically in recall that indicates a low
level of false negative detections, which is essential in medical diagnosis. The plain model
behaved better for both binary (first level of the hierarchical model) and seven classes clas-
sification, with almost a 95% accuracy and 92% of F-measure on the whole HAM10000
dataset. The imbalance of the dataset and the absence of enough images, despite the use of
data augmentation, are the reason for the lower generalization of DenseNet201 in the second
level classifier, dragging its results to the complete model. Note that the same configuration
was used for each deep network in order to compare the performance of all neural networks
with the same parameter values.

Further works will be focused on the testing of more deep networks and other hierarchies,
including preprocessing steps in order to distinguish better between the six non-nevi classes.
A specific analysis of the features of each class is a necessary task to generate an adequate
classifier. The inclusion of probabilistic techniques to make an accurate prediction of different
classifiers is another research line.
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